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Abstract

Computer systems have enjoyed an exponential growth in processor speed for the past 20 years, while

main memory speed has improved only moderately. Today a cache miss to main memory takes hundreds

of processor cycles. Recent studies have demonstrated that on commercial databases, about 50% or more

of execution time in memory is often wasted due to cache misses. In light of this problem, a number of

recent studies focused on reducing the number of cache misses of database algorithms. In this thesis, we

investigate a different approach: reducing the impact of cache misses through a technique called cache

prefetching. Since prefetching for sequential array accesses has been well studied, we are interested in

studying non-contiguous access patterns found in two classes of database algorithms: the B+-Tree index

algorithm and the hash join algorithm. We re-examine their designs with cache prefetching in mind, and

combine prefetching and data locality optimizations to achieve good cache performance.

For B+-Trees, we first propose and evaluate a novel main memory index structure, Prefetching B+-

Trees, which uses prefetching to accelerate two major access patterns of B+-Tree indices: searches and

range scans. We then apply our findings in the development of a novel index structure, Fractal Prefetch-

ing B+-Trees, that optimizes index operations both for CPU cache performance and for disk performance

in commercial database systems by intelligently embedding cache-optimized trees into disk pages.

For hash joins, we first exploit cache prefetching separately for the I/O partition phase and the join

phase of the algorithm. We propose and evaluate two techniques, Group Prefetching and Software-

Pipelined Prefetching, that exploit inter-tuple parallelism to overlap cache misses across the processing

of multiple tuples. Then we present a novel algorithm, Inspector Joins, that exploits the free information

v



obtained from one pass of the hash join algorithm to improve the performance of a later pass. This new

algorithm addresses the memory bandwidth sharing problem in shared-bus multiprocessor systems.

We compare our techniques against state-of-the-art cache-friendly algorithms for B+-Trees and hash

joins through both simulation studies and real machine experiments. Our experimental results demon-

strate dramatic performance benefits of our cache prefetching enabled techniques.
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Chapter 1

Introduction

Computer systems have enjoyed an exponential growth in processor speed for the past 20 years, while

DRAM main memory speed has improved only moderately [39]. Today a cache miss to main memory

takes hundreds of processor cycles (e.g., about 200 cycles on Itanium 2); considering the wide issue rate

(e.g., up to six instructions on Itanium 2 [44]) of modern processors, this represents a loss of about a

thousand or more instructions. Unfortunately, the CPU cache hierarchy provides only a partial solution

to this problem. It works effectively when the working set of a program fits in the CPU cache, as

evidenced by many of the SPEC benchmark results [80]. However, for programs working on large data

sets with poor data locality, the cache-to-memory latency gap can be a major performance bottleneck.

Recent database performance studies have demonstrated that, on commercial database systems, about

50% or more of the execution time in memory is wasted due to cache misses [2, 5, 51].

In light of this problem, a number of recent research studies focused on improving the CPU cache

performance of database systems [1, 13, 14, 15, 28, 31, 36, 37, 38, 53, 62, 66, 67, 75, 78, 83, 84, 90,

102, 103]. Most of these studies aimed to improve the data locality of database algorithms for reducing

the number of cache misses. In this thesis, we investigate a different approach: reducing the impact of

cache misses by overlapping cache miss latencies with useful computations through a technique called

cache prefetching. Combined with data locality optimizations, this technique enables larger freedom in

redesigning core database structures and algorithms, leading to better CPU cache performance.
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Chapter 1 Introduction

Let us begin by understanding the challenges of optimizing CPU cache performance. At first glance,

this new cache-to-memory gap may look similar to the familiar memory-to-disk gap. Main memory

is used as a buffer cache for disk, while hardware SRAM caches are used as caches for DRAM main

memory. Data is transferred in units of a certain size: a disk page for the memory-to-disk gap, and a

cache line for the cache-to-memory gap. When SRAM caches or DRAM main memory are full and

new data is requested, some cache line or memory page has to be replaced to make room for the new

data. Because of this similarity, a question immediately arises: Can we simply adapt disk optimization

techniques to the cache-to-memory gap and solve the entire problem?

1.1 Can We Simply Adapt Memory-to-Disk Techniques?

Because of the similarity between the two gaps, some disk optimization techniques indeed can be ap-

plied to the cache-to-memory gap. An example is the partitioning technique for the database hash

join algorithm. In order to avoid expensive random disk accesses, the hash join algorithm divides its

working set into pieces (a.k.a. partitions) that fit into main memory using an I/O partitioning tech-

nique [54, 59, 74, 89, 101]. Similarly, it is also a good idea to fit the working set of a program into

the CPU cache, and therefore the cache-to-memory counterpart to the I/O partitioning technique can

effectively avoid random memory accesses for good hash join cache performance [14, 66, 90].

However, a close examination reveals a lot of differences between the two gaps as shown in Table 1.1,

several of which have fundamental impacts on the designs of optimization techniques. Moreover, the

optimization targets are more complex. We cannot simply optimize for a single gap (the cache-to-

memory gap) because both the cache-to-memory gap and the memory-to-disk gap are important for

commercial database systems. Therefore, adapting memory-to-disk techniques does not provide a full

solution to the cache-to-memory problem. We discuss the two reasons at length in the following.

• The differences between the two gaps present new challenges and opportunities. Although

database systems have full control of the main memory buffer pool, CPU caches are typically

managed by hardware. This is because CPU caches are performance critical from the viewpoint
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Section 1.1 Can We Simply Adapt Memory-to-Disk Techniques?

Table 1.1: Comparing the Cache-to-Memory Gap and the Memory-to-Disk Gap.

Feature Largest SRAM Cache DRAM Main Memory

Capacity 1-10 MB 1 GB - 1 TB

Transfer Unit Size 32-128B 4-64 KB

Miss Latency 102-103 cycles 106-107 cycles

Associativity 4-16 way set associative fully associative

Replacement Policy variants of LRU in each set variants of LRU

Management hardware software

Note: Data sources include processor manuals and textbooks [39, 44, 46, 50, 81, 91, 96].

of processors; even the largest cache is designed to be very close to the processor (e.g., a 12-cycle

access latency on Itanium 2 [44]). Therefore, CPU caches cannot afford to support sophisticated

software strategies such as previous proposals of data replacement techniques for main memory

buffer pools [21, 48, 76].

Given the hardware replacement policy (typically some variants of LRU within a set [39]), whether

a data item is in the cache is determined implicitly by the memory accesses seen at the cache.

Although we may expect some useful data items to stay in the cache when designing an algorithm,

they may well be evicted from the cache because of cache pollution, e.g., from streaming through

a large amount of read-once data, or because the processor performs activities other than the target

algorithm, such as executing other procedures for the same database query or running different

threads for other queries. Therefore, robustness to such cache interference is a desirable property

of an optimization technique.

Apart from the difference in cache management, another major difference between the cache-

to-memory and the memory-to-disk gap is the extremely different transfer unit sizes: 32-128B

cache lines vs. 4-64 KB disk pages. Naively, one might regard the transfer unit size simply as an

adjustable parameter to optimization techniques. However, it has more profound impacts because

of its relative size to the data stored. For example, if index node size is chosen to be the transfer
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unit size for good performance (as in B+-Trees [81, 84, 91]), the resulting structures at the cache

granularity have much smaller node fanouts and much higher trees. Realizing that accessing every

level of a tree index incurs an expensive cache miss, researchers proposed various techniques to

increase the fanout of index nodes for better cache performance [13, 53, 83, 84].

Moreover, the relationship between database records and transfer units changes. Note that database

records can be 100 bytes or larger (as evidenced by the TPC benchmark setups [98]). Therefore,

records can no longer be stored inside a transfer unit at the CPU cache granularity, but rather span

one or a few transfer units. From our experience, understanding this subtlety is often important in

designing a good solution and in analyzing the cache behavior of a program.

• Commercial database systems require both good cache and good disk performance. There are

two primary types of relational database systems: traditional database systems and main memory

database systems. The latter assume the entire database resides in main memory, which has been

an important research topic [25, 57, 58] and led to commercial products such as TimesTen [97],

and research systems such as Dalı́ [47] and Monet [71]. However, the leading commercial database

systems including Oracle [77], IBM DB2 [41], and Microsoft SQL Server [70], all follow the

structure of traditional database systems [3, 95]: Data is stored on disk and loaded into the main

memory buffer pool before being processed. In such a database system, both the cache-to-memory

gap and the memory-to-disk gap may become the performance bottleneck depending on system

configurations and database workloads. Therefore, it is important to optimize for both good CPU

cache performance and good disk performance. Achieving this goal often presents more chal-

lenges than putting together disk and cache optimization techniques, as evidenced by the studies

that optimize data page layout for better CPU cache performance [1, 36, 82],

Summarizing the above discussions, we point out that optimizing the cache-to-memory gap is not as

simple as an exercise of applying the memory-to-disk techniques. New challenges and new opportunities

arise in optimizing the CPU cache performance for database systems.
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1.2 Cache Optimization Strategies

After analyzing the challenges in optimizing CPU cache performance, we describe the general opti-

mization strategies in this section. Our purpose is to provide a framework to clarify the position of our

approach in the entire schemes towards bridging the cache-to-memory gap.

There are two general optimization strategies for improving CPU cache performance of a program:

reducing the number of cache misses and reducing the impact of cache misses by overlapping cache

misses with computations and other misses.

1.2.1 Reducing the Number of Cache Misses

The first general strategy is to remove cache misses of a program by improving data reference locality

of the program. The idea is to fit the working set of the program into the CPU cache, thus reducing

the need to load data from main memory. One way to achieve this goal is to change the order in which

data items are visited in the program so that references to the same data item occur closely in time

(temporal locality) and references to multiple data items from the same cache line occur closely in

time (spatial locality) without incurring any additional cache misses. A well-known example is blocked

matrix multiplication, which works on sub-blocks of matrices for good cache performance [39]. An

alternative way to improve data reference spatial locality is to modify the placement of data items in a

program by packing into the same cache lines data items that are used closely in time. This may require

changes ranging from reordering fields in data structure definitions, to introducing preprocessing steps

such as the partitioning step for hash joins [14, 66, 90], as discussed previously in Section 1.1. Moreover,

compression techniques [13, 31, 53, 104, 83, 84] trade off the processor’s processing power for more

compact data representations, thus helping reduce the working set of a program.

In terms of the types of cache misses, the above discussion focuses on reducing capacity misses,

i.e. cache misses because of a program’s working set exceeding cache capacity. This is often a major

cause for poor cache performance (as in matrix multiplication and hash joins). Cache misses can also

result from accessing data for the first time (cold misses) and from the limited set associativities of CPU
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caches (conflict misses)1 . Conflict misses are usually less of a problem when the set associativities are

8 or higher [39], which is common for high-end processors [50, 44], and the trend is to support higher

associativities. However, cold misses cannot be easily removed by definition (except that compression

techniques might help).

1.2.2 Reducing the Impact of Cache Misses

The second general strategy for optimizing CPU cache performance is to make cache misses less ex-

pensive by exploiting memory system parallelism. Modern processors allow multiple outstanding cache

misses to be in flight simultaneously within the memory hierarchy. For example, the Itanium 2 sys-

tem bus control logic has an 18-entry out of order queue, which allows for a maximum of 19 memory

requests to be outstanding from a single Itanium 2 processor [44]. Modern processors support several

mechanisms that exploit this parallelism:

• Instruction Speculation. In many modern processors, the hardware attempts to overlap cache

misses by speculating ahead in the instruction stream. While this mechanism is useful for hiding

the latency of primary data cache misses that hit in the secondary cache, the number of instructions

a processor can look ahead (a.k.a. instruction window size)2 is far too small to fully hide the

latency of cache misses to main memory [26].

• Hardware-Based Cache Prefetching. Modern processors (e.g., Intel Pentium 4 [46] and Itanium

2 [44]) can automatically load instructions and/or data from main memory before use, thus over-

lapping cache miss latencies with useful computations. However, hardware-based data prefetching

techniques [4] rely upon recognizing regular and predictable (e.g., strided) patterns in the data ad-

1Data sharing (true sharing or false sharing) between multiple threads running on different processors in a multiprocessor

system may cause coherence cache misses. In this thesis, we mainly focus on cache misses incurred by a single thread of

execution.
2Intel Pentium 4 [12] has an 126-instruction reorder buffer. Intel Itanium 2 [44] has an eight-stage core pipeline with a

24-instruction buffer between stage 2 and 3. Since its issue rate is up to six instructions per cycle, there can be up to 72

instructions running in the pipeline simultaneously in Itanium 2. Note that the instruction window size is roughly one order

of magnitude smaller than the instruction opportunities wasted per cache miss.

6



Section 1.2 Cache Optimization Strategies

tim
e

Fetch A

Fetch B

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

load A

load B

Without Prefetching

Fetch A
Fetch B�

�
�
�
�

�
�
�
�
�

�
�
�

	
	
	








�
�
�

prefetch B

load B
load A

prefetch A

With Prefetching

�
�
�
�
�
�

�
�
�
�
�
�

Stalled Because of Cache Miss

Busy Executing Instructions

Figure 1.1: Illustration of the use of prefetch instructions to hide cache miss latencies.

dress stream, while many important database algorithms (e.g., searching a B+-Tree index and

visiting a hash table in hash joins) have less regular or rather random access patterns.

• Software Cache Prefetching. Modern processors (e.g., Intel Itanium 2 [44] and Pentium 4 [46])

provide prefetch instructions that allow software to influence the timing of cache misses. Fig-

ure 1.1 illustrates the use of prefetch instructions to hide cache miss latencies. As shown on the

left, without prefetching, the processor stalls when it attempts to load two locations that are not

present in the cache. As shown on the right, if we know the memory addresses of the loads early

enough, we can issue prefetch instructions to read the data into the cache before the execution of

the actual load instructions. In this way, the cache miss latencies can be overlapped with the exe-

cution of other useful instructions. Moreover, the first cache miss latency can be overlapped with

the second. This is because the memory system can serve multiple cache misses simultaneously.

Prefetch instructions can be regarded as light-weight, non-blocking memory load operations with-

out register destinations. Such memory operations are performed in the background, and do not

block the foreground executions. Software has the flexibility to decide what and when to prefetch.

Therefore, software cache prefetching is potentially helpful for reducing the impact of any types

of cache misses, including both capacity misses and cold misses, for handling different kinds of

memory access patterns, and for improving all kinds of programs.

A processor can support many different flavors of prefetch instructions. For example, both Itanium
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2 and Pentium 4 support prefetch instructions to load data into different levels of caches [45,

43]. They also support special streaming prefetch instructions, which indicate that the prefetched

data will be used only once and therefore should be loaded in a special way to reduce cache

pollution. Moreover, Itanium 2 supports both faulting and non-faulting prefetches [45]. Non-

faulting prefetches will be dropped if the virtual page table entry is missing from the TLB or

if other exceptional conditions may result from executing the prefetches. In contrast, a faulting

prefetch behaves more like a common load instruction; upon a TLB miss, it will load the page

entry into the TLB table and continue. Therefore, faulting prefetches are specially useful if TLB

misses are likely, e.g., when prefetching for random memory accesses.

• Multiple Hardware Threads. More and more processors support multiple hardware threads

through simultaneous multithreading (SMT) [99] or single chip multiprocessors (CMP) [6, 34, 35]

or a combination of the two (e.g., Intel Pentium 4 [44], IBM Power 5 [50], and Sun UltraSPARC

IV [96]). When one hardware thread blocks because of a cache miss, the other hardware threads

can be still running on the processor. However, it is a non-trivial task to break down a sequential

program into multiple parallel threads in order to reduce the elapsed time of a single program,

as evidenced by a recent study to utilize a multi-threaded and multi-core network processor for

query processing [28]. Even if assuming hardware support for speculating threads [92] so that

correctness is guaranteed, it still requires significant efforts to minimize data sharing across threads

in order to achieve good performance [22]. Without these efforts, simply running a program on an

SMT or CMP processor does not necessarily speed up the program, rather the program tends to

slow down because of cache interference from other threads running on the same processor.

The two general optimization strategies described above are complementary. The first strategy is

important because it reduces memory bandwidth requirement. The second strategy is important because

a significant number of misses (e.g., cold misses) often still exist after applying the first strategy. The

two strategies constitute a framework for bridging the cache-to-memory gap: reducing as many cache

misses as possible with the first strategy, then reducing the impact of the remaining cache misses with

the second strategy.
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1.3 Our Approach: Redesigning Database Systems in Light of CPU

Cache Prefetching

With the general optimization strategies in mind, we see that cache prefetching (software cache prefetch-

ing3 ) is a promising technique for reducing the impact of cache misses. Cache prefetching has been

shown to be effective for both array-based and pointer-based codes in scientific and engineering appli-

cations [64, 65, 72, 73]. However, it has not been systematically studied for database systems before.

Therefore, in this thesis, we investigate cache prefetching for improving the CPU cache performance of

database systems. Unlike most previous studies (as will be described in Section 1.4), we target tradi-

tional disk-oriented database systems, which are supported by all the leading database vendors and are

widely used, rather than main memory databases. We redesign core database structures and algorithms

by using novel techniques enabled and inspired by cache prefetching.

Since prefetching for sequential array accesses has been well studied before and is often supported by

hardware-based prefetching [4], we are interested in studying non-contiguous access patterns in database

systems. Such patterns are abundant in algorithms involving tree structures and hash tables. Therefore,

we focus specially on the B+-Tree index [7, 8] as a representative tree implementation, and the hash join

algorithm [54, 89] as a representative algorithm using hash tables. We re-examine their designs with

cache prefetching in mind, and combine cache prefetching and data locality optimizations to achieve

good cache performance. In the following, we describe our approaches to improving the B+-Tree index

and the hash join algorithm in more detail.

• B+-Trees. B+-Trees [7, 8] are used extensively for fast associative lookups throughout database

systems. Compared to a binary tree, a B+-Tree is a multi-way search tree. Our goal for studying

B+-Trees is to improve the performance of B+-Trees in commercial database systems in light of

prefetching. We achieve this goal in two steps. In the first step, we focus purely on the CPU cache

performance of B+-Trees within a main memory database environment. With the understandings

obtained from the first step, we then optimize B+-Trees in a traditional database system with disk

3Throughout the thesis, we use cache prefetching or prefetching as short terms for software cache prefetching unless

otherwise noted.
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I/Os in the picture. Our goal in the second step is to achieve good cache performance when most of

the B+-Tree is in the main memory buffer pool, and still maintain good disk performance when the

B+-Tree is mainly on disk. Moreover, it is interesting to analyze whether the techniques developed

in the first step for the cache-to-memory gap are also applicable to the memory-to-disk gap, which

will provide a deeper understanding of the differences between the two gaps.

• Hash Joins. Commercial hash join algorithms consist of two phases: the I/O partitioning phase

and the join phase [54, 59, 74, 89, 101]. The I/O partitioning phase divides the input relations into

memory-sized partitions to avoid random disk accesses because of hashing. Our goal for studying

hash joins is to improve the performance of both partitioning and join phases of the hash join

algorithm in commercial database systems. We also take two steps in this study. Our first step is

to exploit cache prefetching for the two phases separately. The major challenge is to effectively

issue prefetch instructions despite the random access patterns of hash table visits. Our second step

is to take advantage of the two-phase structure of the hash join algorithm for further optimizing its

performance. Moreover, because multiple processors can join multiple memory-sized partitions

simultaneously, hash join is a good workload for studying the impact of multiple processors on

the performance of prefetching algorithms.

We implement our optimization algorithms and measure the actual performance of working codes

both on an Itanium 2 machine and on a simulation platform to better understand the cache behaviors of

the algorithms.

1.4 Related Work

In this section, we present related work to B+-Tree cache performance and hash join cache performance.

Please note that some of the studies we discuss appeared after our original publications [16, 17, 18, 19] in

the completion of this thesis. In the following, we mainly describe the high-level ideas. We will perform

more detailed experimental comparisons between previous techniques and our proposals in Chapter 2-5.
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1.4.1 Related Work on B+-Trees

A B+-Tree [7, 8] is a multi-way search tree, where each leaf node contains multiple index entries, and

each non-leaf node has multiple children. A B+-Tree is a balanced tree structure; all the leaf nodes

occur at the same level. Leaf nodes are connected through sibling links into key order to facilitate the

retrieval of a range of index entries. A B+-Tree is also a dynamic index structure; it supports insertions

and deletions efficiently without the need to re-build the tree periodically.

Main Memory B+-Trees. Chilimbi, Hill, and Larus demonstrated that B+-Trees with cache line

sized nodes can outperform binary trees for memory-resident data on modern processors [20]. Likewise,

B+-Trees outperform index structures specially designed for main memory databases (in the first thrust

of main memory database research assuming uniformly fast memory accesses), i.e. T-trees [57], on

today’s processors [83].

Main memory B+-Trees have cache-line-sized nodes with small fanouts (typically 8 compared to

several hundred for disk-oriented B+-Trees with disk-page-sized nodes). Therefore, the trees are very

high (e.g., 8 levels when there are 10 million 4-byte keys in trees with 64-byte nodes). Realizing that the

number of expensive cache misses in a search is roughly proportional to the height of the tree, researchers

aimed to improve the fanout of cache-line-sized nodes to reduce the tree levels, thus reducing the number

of expensive misses. Rao and Ross proposed “Cache-Sensitive Search Trees” (CSS-Trees) [83] and

“Cache-Sensitive B+-Trees” (CSB+-Trees) [84] that restrict the data layout of sibling nodes so that all

(or nearly all) of the child pointers can be eliminated from the parent. This saves space in non-leaf nodes

for more index entries. Bohannon, Mcllroy, and Rastogi proposed partial-key trees that store compressed

keys in indices for larger fanouts [13].

Beyond improving the performance of a single search operation, researchers have studied how to

improve the throughput of a large number of back-to-back searches. Zhou and Ross proposed to buffer

accesses at every non-root tree node so that multiple accesses may share the cache miss of visiting a

node [102]. Moreover, Cha et al. [15] proposed an optimistic scheme for B+-Tree concurrency control

in main memory.
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CPU Cache Performance of Disk-Oriented B+-Trees. In commercial database systems, B+-Tree

nodes are disk pages, typically 4-64KB large. Binary searches in such a large node can have very poor

spatial locality; the first several probes in a binary search always access a single key out of an entire cache

line, then discard the rest of the line. To reduce the number of cache misses of searches, Lomet described

an idea, intra-node micro-indexing, in his survey of B+-Tree page organization techniques [62]. It places

a small array in a few cache lines of the page that indexes the remaining keys in the page. This small

micro-index replaces the first several probes in a binary search, thus improving the spatial locality of

a search. However, this scheme suffers from poor update performance. As part of future directions,

Lomet [62] has advocated breaking up B+-Tree disk pages into cache-friendly units, pointing out the

challenges of finding an organization that strikes a good balance between search and insertion perfor-

mance, storage utilization, and simplicity. Bender, Demaine, and Farach-Colton presented a recursive

B+-Tree structure that is asymptotically optimal, regardless of the cache line sizes and disk page sizes,

but assuming no prefetching [9].

1.4.2 Related Work on Hash Joins

Hash join [54, 59, 74, 89, 101] has been studied extensively over the past two decades. It is commonly

used in today’s commercial database systems to implement equijoins efficiently. In its simplest form, the

algorithm first builds a hash table on the smaller (build) relation, and then probes this hash table using

records of the larger (probe) relation to find matches. However, the random access patterns inherent

in the hashing operation have little spatial or temporal locality. When the main memory available to

a hash join is too small to hold the build relation and the hash table, the simplistic algorithm suffers

excessive random disk accesses. To avoid this problem, the GRACE hash join algorithm [54] begins by

dividing the two joining relations into smaller intermediate partitions such that each build partition and

its hash table can fit within main memory; pairs of memory-sized build and probe partitions are then

joined separately as in the simple algorithm. This I/O partitioning technique limits the random accesses

to objects that fit within main memory and results in nice predictable I/Os for both source relations and

intermediate partitions.
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A technique similar to I/O partitioning, called cache partitioning was proposed to avoid random mem-

ory accesses, thus reducing the number of cache misses. Cache partitioning, in which the joining re-

lations are partitioned such that each build partition and its hash table can fit within the (largest) CPU

cache, has been shown to be effective in improving performance in memory-resident and main-memory

databases [14, 66, 90]. Shatdal, Kant, and Naughton showed that cache partitioning achieves 6-10%

improvement for joining memory-resident relations with 100B tuples [90]. Boncz, Manegold, and Ker-

sten proposed using multiple passes in cache partitioning to avoid cache and TLB thrashing when joining

vertically-partitioned relations (essentially joining two 8B columns) in the Monet main memory database

environment [14, 66]. The generated join results are actually a join index [100] containing pointers to

matching pairs of records stored in vertical partitions. In order to efficiently extract the matching records,

Manegold et al. proposed a cache conscious algorithm, called Radix-Decluster Projection that performs

sophisticated locality optimizations [67].

In summary, most related work on CPU cache performance of B+-Trees and hash joins focused on

reducing the number of cache misses in main memory database environments. Very few studies tried to

address their CPU cache performance in disk-oriented databases, and those that do exist did not provide

extensive experimental evaluations of the proposed ideas. In contrast, we investigate cache prefetching

to reduce the impact of cache misses, we target traditional disk-oriented database systems, which are

supported by all the leading database vendors, and we present detailed performance studies of all our

proposed techniques.

1.5 Contributions

The primary contributions of this thesis are the following:

• The first study that reduces the impact of cache misses for B+-Trees and hash joins by exploiting

cache prefetching. In addition to inserting prefetches, we redesign algorithms and data structures

to make prefetching effective. Unlike most previous studies on B+-Tree and hash join cache per-
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formance, we target traditional disk-oriented database systems rather than main memory databases

because traditional disk-oriented databases are widely supported and used. For B+-Trees, we ad-

dress both the cache-to-memory gap and the memory-to-disk gap in the disk-oriented environment.

For hash joins, we demonstrate that disk-oriented hash joins are CPU-bound with reasonable I/O

bandwidth. Therefore, we mainly focus on bridging the cache-to-memory gap.

• The proposal and evaluation of a novel main memory index structure, Prefetching B+-Trees, which

uses cache prefetching to accelerate two major access patterns of B+-Tree indices in the pure main

memory environment: searches and range scans. Our solution has better search performance,

better range scan performance, and comparable or better update performance over B+-Trees with

one-cache-line nodes. Moreover, we achieve better performance than CSB+-Trees [84], and we

show that CSB+-Trees and our prefetching scheme are complementary.

• The proposal and evaluation of a novel index structure, Fractal Prefetching B+-Trees, that opti-

mizes index operations both for cache performance and for disk performance. We propose two

different implementations of this index structure, a disk-first implementation and a cache-first

implementation. Experimental results show that the disk-first implementation achieves the goals

while the cache-first implementation may incur large disk overhead. We also study the effects of

employing the prefetching techniques proposed in pure main memory environments for optimizing

disk performance.

• The proposal and evaluation of two prefetching techniques, Group Prefetching and Software-

Pipelined Prefetching, that exploit inter-tuple parallelism for overlapping cache misses incurred

in processing a tuple across the processing of multiple tuples. Experimental results show that

our techniques achieve dramatically better performance over cache partitioning and original hash

joins. Moreover, our techniques are more robust than cache partitioning when there are concurrent

activities in the computer system.

• The proposal and evaluation of a novel hash join algorithm, Inspector Joins, that exploits the free

information obtained from one pass of the hash join algorithm to improve the performance of a

later pass. We propose a specialized index that addresses the memory bandwidth sharing problem,
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and can take advantage of nearly-sorted relations. Moreover, we utilize cache prefetching to im-

prove the robustness of Inspector Joins in the face of cache interference. Furthermore, we present

an illustrative example of how Inspector Joins can use its collected statistics to select between two

join phase algorithms for the given query and data. Finally, our experiments demonstrate signifi-

cant performance improvement of Inspector Joins over previous state-of-the-art cache prefetching

and cache partitioning algorithms.

1.6 Thesis Organization

Chapter 2 investigates cache prefetching techniques for improving B+-Trees in main memory environ-

ments. This is the first step in our B+-Tree study. We describe our solution for improving two major

access patterns of B+-Trees: searches and range scans. For searches, we present a novel scheme to

avoid predicting and prefetching child nodes. For range scans, we solve the pointer chasing problem.

We compare the performance of our solution against CSB+-Trees [84]. We also combine our prefetching

techniques with CSB+-Trees to understand the interactions of the two schemes.

Chapter 3 describes our design of a single index structure, Fractal prefetching B+-Trees, that achieves

both good cache performance and good disk performance. The basic idea is to embed B+-Trees opti-

mized purely for cache performance into B+-Trees optimized purely for disk performance. Our cache-

optimized B+-Trees are based on the study in Chapter 2. This embedding process usually leads to large

overflow or large underflow of disk pages. We describe two schemes, a disk-first scheme and a cache-

first scheme, to solve this problem. We evaluate the performance of our solutions against B+-Trees and

micro-indexing. Moreover, we discuss the implications of applying the same prefetching techniques

from Chapter 2 for improving memory-to-disk performance.

Chapter 4 exploits cache prefetching for improving hash join performance. This is the first step in

our hash join study. The major difficulty in employing prefetching is that it is impossible to generate

addresses for hash table accesses early enough for effective prefetching. We solve this problem by

taking advantage of the large number of records to be joined and exploiting the inter-tuple parallelism.
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We describe two techniques, group prefetching and software-pipelined prefetching, for improving the

I/O partitioning phase and the join phase performance. Our experimental results first show that hash

joins are CPU bound in a balanced server system. We then compare the performance of our solution

against cache partitioning and original hash joins.

Chapter 5 first studies the impact of memory bandwidth sharing on the existing cache-friendly hash

join algorithms. We see that the performances of these algorithms degrade significantly when multiple

(8 or more) processors are eagerly competing for the memory bandwidth in a shared-bus multiprocessor

system. To cope with this problem, we exploit the two-phase structure of the hash join algorithm. We

describe our new algorithm, Inspector Joins, that examines the data in the I/O partitioning phase almost

for free to generate a help structure, and uses it to accelerate the join phase of the algorithm. We describe

how to combine locality optimizations and cache prefetching to achieve good performance with lower

memory bandwidth requirements. Our experimental results compare Inspector Joins against the state-

of-the-art cache-friendly hash join algorithms.

Finally, Chapter 6 contains a summary of the important results in this thesis, and discusses their

implications.
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Chapter 2

Exploiting Cache Prefetching for Main

Memory B+-Trees

2.1 Introduction

Index structures are used extensively throughout database systems, and they are often implemented as

B+-Trees. While database management systems perform several different operations that involve B+-

Tree indices (e.g., selections, joins, etc.), these higher-level operations can be decomposed into two key

lower-level access patterns: (i) searching for a particular key, which involves descending from the root

to a leaf node using binary search within a given node to determine which child pointer to follow; and

(ii) scanning some portion of the index, which involves traversing the leaf nodes through a linked-list

structure for a non-clustered index. (For clustered indices, one can directly scan the database table after

searching for the starting key.) While search time is the key factor in single value selections and nested

loop index joins, scan time is the dominant effect in range selections.

To illustrate the need for improving the cache performance of both search and scan on B+-Tree in-

dices, Figure 2.1 shows a breakdown of their simulated performance on a state-of-the-art machine. For

the sake of concreteness, we pattern the memory subsystem after the Itanium 2 [44]—details are pro-

vided later in Section 2.4. The “search” experiment in Figure 2.1 looks up 10,000 random keys in a

main-memory B+-Tree index after it has been bulkloaded with 10 million keys. The “scan” experiment
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Figure 2.1: Execution time breakdown for index operations (B+ = B+-Trees, CSB+ = CSB+-Trees).

performs 100 range scan operations starting at random keys, each of which scans through 1 million

〈key, tupleID〉 pairs retrieving the tupleID values. (The results for shorter range scans—e.g., 1000

tuple scans—are similar). The B+-Tree node size is equal to the cache line size, which is 64 bytes. Each

bar in Figure 2.1 is broken down into four categories: busy time, data cache stalls, data TLB stalls, and

other stalls. Both search and scan accesses on B+-Tree indices (the bars labeled “B+”—we will explain

the “CSB+” bar later) spend a significant fraction of their time—70% and 90%, respectively—stalled on

data cache misses. Hence there is considerable room for improvement.

2.1.1 Previous Work on Improving the Cache Performance of Indices

In an effort to improve the cache performance of index searches for main-memory databases, Rao and

Ross proposed two new types of index structures: “Cache-Sensitive Search Trees” (CSS-Trees) [83]

and “Cache-Sensitive B+-Trees” (CSB+-Trees) [84]. The premise of their studies is the conventional

wisdom that the optimal tree node size is equal to the natural data transfer size, which corresponds to the

disk page size for disk-resident databases and the cache line size for main-memory databases. Because

cache lines are roughly two orders of magnitude smaller than disk pages (e.g., 64 bytes vs. 4 Kbytes), the

resulting index trees for main-memory databases are considerably deeper. Since the number of expensive

cache misses is roughly proportional to the height of the tree, it would be desirable to somehow increase
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the effective fanout (also called the branching factor) of the tree, without paying the cost of additional

cache misses that this would normally imply.

To accomplish this, Rao and Ross [83, 84] exploited the following insight: By restricting the data

layout such that the location of each child node can be directly computed from the parent node’s address

(or a single pointer), we can eliminate all (or nearly all) of the child pointers. Assuming that keys

and pointers are of the same size, this effectively doubles the fanout of cache-line-sized tree nodes,

thus reducing the height of the tree and the number of cache misses. CSS-Trees [83] eliminate all

child pointers, but do not support incremental updates and therefore are only suitable for read-only

environments. CSB+-Trees [84] do support updates by retaining a single pointer per non-leaf node that

points to a contiguous block of its children. Although CSB+-Trees outperform B+-Trees on searches,

they still perform significantly worse on updates [84] due to the overheads of keeping all children for a

given node in sequential order within contiguous memory, especially during node splits.

Returning to Figure 2.1, the bar labeled “CSB+” shows the execution time of CSB+-Trees (normalized

to that of B+-Trees) for the same index search experiment. As we see in Figure 2.1, CSB+-Trees

eliminate 18% of the data cache stall time, thus resulting in an overall speedup1 of 1.16 for searches.

While this is a significant improvement, over half of the remaining execution time is still being lost to

data cache misses; hence there is significant room for further improvement. In addition, these search-

oriented optimization techniques provide no benefit to scan accesses, which are suffering even more

from data cache misses.

2.1.2 Our Approach: Prefetching B+-Trees

In this chapter, we propose and study Prefetching B+-Trees (pB+-Trees), which use cache prefetching

to reduce the amount of exposed cache miss latency. Tree-based indices such as B+-Trees pose a major

challenge for prefetching search and scan accesses since both access patterns suffer from the pointer-

chasing problem [64]: The data dependencies through pointers make it difficult to prefetch sufficiently

far ahead to limit the exposed miss latency. For index searches, pB+-Trees address this problem by

1Throughout this thesis, we report performance gains as speedup: i.e. the original time divided by the improved time.

19



Chapter 2 Exploiting Cache Prefetching for Main Memory B+-Trees

having wider nodes than the natural data transfer size, e.g., eight vs. one cache lines. These wider nodes

reduce the height of the tree, thereby decreasing the number of expensive misses when going from

parent to child. The key observation is that by using cache prefetching, the wider nodes come almost

for free: all of the cache lines in a wider node can be fetched almost as quickly as the single cache

line of a traditional node. To accelerate index scans, we introduce arrays of pointers to the B+-Tree

leaf nodes which allow us to prefetch arbitrarily far ahead, thereby hiding the normally expensive cache

misses associated with traversing the leaf nodes within the range. Of course, indices may be frequently

updated. Perhaps surprisingly, we demonstrate that update times actually decrease with our techniques,

despite any overheads associated with maintaining the wider nodes and the arrays of pointers.

The remainder of this chapter is organized as follows. Sections 2.2 and 2.3 discuss how prefetching

B+-Trees use cache prefetching to accelerate index searches and scans, respectively. To quantify the

benefits of these techniques, we present experimental results on an Itanium 2 machine and on a simula-

tion platform in Section 2.4. Finally, we discuss further issues and summarize the chapter in Sections 2.5

and 2.6, respectively.

2.2 Index Searches: Using Prefetching to Create Wider Nodes

A B+-Tree search starts from the root. It performs a binary search in each non-leaf node to determine

which child to visit next. Upon reaching a leaf node, a final binary search returns the key position.

Regarding the cache behavior, we expect at least one expensive cache miss to occur each time we move

down a level in the tree. Hence the number of cache misses is roughly proportional to the height of

the tree (minus any nodes that might remain in the cache if the index is reused). Thus, having wider

tree nodes for the sake of reducing the height of the tree might seem like a good idea. Unfortunately,

in the absence of cache prefetching (i.e. when all cache misses are equally expensive and cannot be

overlapped), making the tree nodes wider than the natural data transfer size—i.e. a cache line for main-

memory databases—actually hurts performance rather than helps it, as has been shown in previous

studies [83, 84]. The reason for this is that the number of additional cache misses at each node more

than offsets the benefits of reducing the number of levels in the tree.
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Figure 2.2: Performance of various B+-Tree searches where a cache miss to memory takes 250 cycles,

and a subsequent access can begin 15 cycles later (assuming no TLB misses for simplicity).

As a simple example, consider a main-memory B+-Tree holding 1000 keys where the cache line size

is 64 bytes and the keys, child pointers, and tupleIDs are all four bytes. If we limit the node size to

one cache line, then the B+-Tree will contain at least four levels. Figure 2.2(a) illustrates the resulting

cache behavior. (In this example, we assume for simplicity there is no TLB miss . We will consider TLB

misses in Section 2.2.2.) The four cache misses cost a total of 1000 cycles on our Itanium 2 machine

model. If we double the node width to two cache lines, the height of the B+-Tree can be reduced to

three levels. However, as we see in Figure 2.2(b), this would result in six cache misses, thus increasing

execution time by 50%.
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With cache prefetching, however, it becomes possible to hide the latency of any miss whose ad-

dress can be predicted sufficiently early. Returning to our example, if we prefetch the second half of

each two-cache-line-wide tree node so that it is fetched in parallel with the first half—as illustrated in

Figure 2.2(c)—we can achieve significantly better (rather than worse) performance compared with the

one-cache-line-wide nodes in Figure 2.2(a). The extent to which the misses can be overlapped depends

upon the implementation details of the memory hierarchy, but the trend is toward supporting greater

parallelism. In fact, with multiple cache and memory banks and crossbar interconnects, it is possible to

completely overlap multiple cache misses. Figure 2.2(c) illustrates the timing on our Itanium 2 machine

model, where back-to-back misses to memory can be serviced once every 15 cycles, which is a small

fraction of the overall 250 cycle miss latency. Thus, even without perfect overlap of the misses, we can

still potentially achieve large performance gains (a speedup of 1.26 in this example) by creating wider

than normal B+-Tree nodes.

Therefore, the first aspect of our pB+-Tree design is to use cache prefetching to “create” nodes that

are wider than the natural data transfer size, but where the entire miss penalty for each extra-wide node

is comparable to that of an original B+-Tree node.

2.2.1 Modifications to the B+-Tree Algorithm

We consider a standard B+-Tree node structure: Each non-leaf node is comprised of some number f

( f À 1) of childptr fields, f −1 key fields, and one keynum field that records the number of keys stored

in the node (at most f −1). (All notation is summarized in Table 2.1.) Each leaf node is comprised of

f −1 key fields, f −1 associated tupleID fields, one keynum field, and one next-leaf field that points

to the next leaf node in key order. We consider for simplicity fixed-size keys, tupleIDs, and pointers.

We also assume that tupleIDs and pointers are of the same size in main memory databases. Our first

modification is to store the keynum and all of the keys prior to any of the pointers or tupleIDs in a

node. This simple layout optimization allows the binary search to proceed without waiting to fetch all

the pointers. Our search algorithm is a straightforward extension of the standard B+-Tree algorithm, and

we now describe only the parts that change.
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Table 2.1: Terminology used throughout Chapter 2.

Variable Definition

N number of 〈key, tupleID〉 pairs in an index

w number of cache lines in an index node

m number of child pointers in a one-line-wide node

f number of child pointers in non-leaf node (= w×m)

h number of tree levels

r number of children of the root node

T1 full latency of a cache miss

Tnext latency of an additional pipelined cache miss

Ttlb latency of a data TLB miss

B normalized memory bandwidth
(

B = T1
Tnext

)

d number of nodes to prefetch ahead

c number of cache lines in jump-pointer array chunk

pwB+-Tree plain pB+-Tree with w-line-wide nodes

pw
e B+-Tree pwB+-Tree with external jump-pointer arrays

pw
i B+-Tree pwB+-Tree with internal jump-pointer arrays

Search: Before starting a binary search, we prefetch all of the cache lines that comprise the node.

Insertion: Since an index search is first performed to locate the position for insertion, all of the nodes on

the path from the root to the leaf are already in the cache before the real insertion phase. The only

additional cache misses are caused by newly allocated nodes, which we prefetch in their entirety

before redistributing the keys.

Deletion: We perform lazy deletion as in Rao and Ross [84]. If more than one key is in the node, we

simply delete the key. When the last key in a node is deleted, we try to redistribute keys or delete

the node. Since a search is also performed prior to a deletion, the entire root-to-leaf path is in the

cache, and key redistribution is the only potential cause of additional misses. Therefore, before a

key redistribution operation, we prefetch the sibling node from which keys are to be redistributed.
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Cache prefetching can also be used to accelerate the bulkload of a B+-Tree, which builds a B+-Tree

from scratch given a sorted array of 〈key, tupleID〉 pairs. However, because this operation is expected

to occur infrequently, we focus instead on the more frequent operations of search, insertion and deletion.

2.2.2 Qualitative Analysis

As discussed earlier in this section, we expect search times to improve through our scheme because it

reduces the number of levels in the B+-Tree without significantly increasing the cost of accessing each

level. What about the performance impact on updates? Updates always begin with a search phase,

which will be sped up. The expensive operations only occur either when the node becomes too full

upon an insertion and must be split, or when a node becomes empty upon a deletion and keys must

be redistributed. Although node splits and key redistributions are more costly with larger nodes, the

relative frequency of these expensive events should decrease. Therefore we expect update performance

to be comparable to, or perhaps even better than, B+-Trees with single-line nodes.

The space overhead of the index is strictly reduced with wider nodes. This is primarily due to the

increase in the node fanout. For a full tree, each leaf node contains f − 1 〈key, tupleID〉 pairs. The

number of non-leaf nodes is dominated by the number of nodes in the level immediately above the

leaf nodes, and hence is approximately N
f ( f−1) . As the fanout f increases with wider nodes, the node

size grows linearly but the number of non-leaf nodes decreases quadratically, resulting in a near linear

decrease in the non-leaf space overhead.

Finally, an interesting consideration is to determine the optimal node size, given cache prefetching.

Should nodes simply be as wide as possible? There are four system parameters that affect this answer:

the latency of a full cache miss (T1), the latency of an additional pipelined cache miss (Tnext), the latency

of a data TLB miss (Ttlb), and the size of the cache. As illustrated in Figure 2.3, the number of cache

misses that can be served in parallel in the memory subsystem is equal to the latency of a full cache miss

(T1) divided by the additional time until another pipelined cache miss would also complete (Tnext). We

call this ratio (i.e. T1
Tnext

) the normalized bandwidth (B). For example, in our Itanium 2 machine model,

T1 = 250 cycles, Tnext = 15 cycles, and therefore B = 16.7. The larger the value of B, the greater the
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Figure 2.3: Computing the number of cache misses that can be served in parallel in the memory system.

system’s ability to overlap parallel accesses, and therefore the greater likelihood of benefiting from wider

index nodes. In general, we do not expect the optimal number of cache lines per node (woptimal) to exceed

B, since beyond that point we could have completed a binary search in a smaller node and moved down

to the next level in the tree.

The third system parameter that affects the optimal node size is the latency of a data TLB miss. In

our Itanium 2 machine model, Ttlb = 30 cycles. In the previous example, we ignored TLB misses for the

sake of clearly explaining the wider node idea. In reality, every B+-Tree node access is likely to incur

a data TLB miss, for fetching the page table entry of the node in order to translate its virtual address to

the physical address. The TLB can usually hold a small number of recently used page table entries. For

example, in our Itanium 2 machine model, there is a 128-entry data TLB and the page size is 16KB. In

other words, the TLB can cover at most 2MB memory. Therefore, B+-Trees larger than 2MB are likely

to suffer from TLB misses, even if the indices are used frequently. Moreover, if a B+-Tree has not been

used for a while, a cold search is likely to incur a TLB miss for every node on the path from root to leaf.

Note that TLB misses make it more attractive to use wider nodes. In general, the larger the latency of

TLB misses, the more benefit we can get by reducing the number of tree levels.

The last system parameter that potentially limits the optimal node size is the size of the cache, although

in practice this does not appear to be a limitation given realistic values of B.

Optimal Node Size. Let us now consider a more quantitative analysis of the optimal node width

woptimal. We focus on the cost of memory accesses for computing the optimal node width because (i) this
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is the major cost of an index search, and (ii) the instruction cost of a search is O(logN) regardless of the

node width. A pB+-Tree with N 〈key, tupleID〉 pairs contains at least h levels:

h =

⌈

log f

(

N
f −1

)

+1

⌉

, where f = wm (2.1)

We compute the total cost of a cold search assuming the tree is not used for a while, and no data related

to the tree is cached in either the cache or in the TLB. The total cost of such a cold search is equal to the

sum of the cost of visiting every node from root (level h−1) to leaf (level 0):

Totalcost =
h−1

∑
l=0

cost(l) (2.2)

After reading a childptr, a search can immediately start accessing the node on the next lower level.

Therefore, with our data layout optimization of putting keys before childptrs, the cost of accessing a

node depends on the position of the childptr to follow in the node. Let us denote the number of cache

lines from the beginning of the node to the i-th childptr (or tupleID) as lines(i). Then if the i-th

childptr (or tupleID) is visited, the cost of accessing a node at level l is:

cost(l, i) = Ttlb +T1 +(lines(i)−1) ·Tnext (2.3)

For a full tree, a non-leaf node except the root node holds f childptrs, while a leaf node holds f − 1

tupleIDs. The number of children (r) of the root node is computed as follows:

r =

⌈

N
( f −1) f h−2

⌉

(2.4)

Then, the cost of accessing a node at level l is the average of all cost(l, i) with different childptr

positions:

cost(l) =



















1
r ∑r

i=1 cost(l, i), l = h−1

1
f ∑ f

i=1 cost(l, i), l = 1, . . . ,h−2

1
f−1 ∑ f−1

i=1 cost(l, i), l = 0

(2.5)

or

cost(l) =



















Ttlb +T1 +(1
r ∑r

i=1 lines(i)−1) ·Tnext, l = h−1

Ttlb +T1 +( 1
f ∑ f

i=1 lines(i)−1) ·Tnext, l = 1, . . . ,h−2

Ttlb +T1 +( 1
f−1 ∑ f−1

i=1 lines(i)−1) ·Tnext, l = 0

(2.6)
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If keys and pointers are of the same size, then the average of the childptr positions of a full node is

approximately 3
4 of the node. Therefore, the following equation holds approximately:

cost(l)' Ttlb +T1 +(
3
4

w−1) ·Tnext, l < h−1 (2.7)

By using the above equations, we can compute the total cost of a cold search given the number of index

entries and the width of a node. By computing the value of w that minimizes totalcost, we can find

woptimal. For example, in our simulations where m = 8, T1 = 250, Tnext = 15, and Ttlb = 30, woptimal = 8

for trees with 10 million keys.

In summary, comparing our pB+-Trees with conventional B+-Trees, we expect better search perfor-

mance, comparable or somewhat better update performance, and lower space overhead. Having ad-

dressed index search performance, we now turn our attention to index range scans.

2.3 Index Scans: Prefetching Ahead Using Jump-Pointer Arrays

Given starting and ending keys as arguments, an index range scan returns a list of either the tupleIDs

or the tuples themselves with keys that fall within this range. First the starting key is searched in the

B+-Tree to locate the starting leaf node. Then the scan follows the next-leaf pointers, visiting the leaf

nodes in key order. As the scan proceeds, the tupleIDs (or tuples) are copied into a return buffer. This

process stops when either the ending key is found or the return buffer fills up. In the latter case, the scan

procedure pauses and returns the buffer to the caller (often a join node in a query execution plan), which

then consumes the data and resumes the scan where it left off. Hence a range selection involves one key

search and often multiple leaf node scan calls. Throughout this section, we will focus on range selections

that return tupleIDs, although returning the tuples themselves (or other variations) is a straightforward

extension of our algorithm, as we will discuss later in Section 2.5.

As we saw already in Figure 2.1, the cache performance of range scans is abysmal: 90% of execution

time is being lost to data cache misses in that experiment. Figure 2.4(a) illustrates the problem: A full

cache miss latency is suffered for each leaf node. A partial solution is to use the technique described in

Section 2.2: If we make the leaf nodes multiple cache lines wide and prefetch each component of a leaf
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Figure 2.4: Cache behaviors of index range scans (assuming no TLB misses for simplicity).

node in parallel, we can reduce the frequency of expensive cache misses, as illustrated in Figure 2.4(b).

While this is helpful, our goal is to fully hide the cache miss latencies to the extent permitted by the

memory system, as illustrated in Figure 2.4(c). In order to achieve this goal, we must first overcome the

pointer-chasing problem.

2.3.1 Solving the Pointer-Chasing Problem

Figure 2.5(a) illustrates the pointer-chasing problem, which was observed by Luk and Mowry [64, 65] in

the context of prefetching pointer-linked data structures (i.e. linked-lists, trees, etc.) in general-purpose

applications. Assuming that three nodes worth of computation are needed to hide the miss latency, then

when node ni in Figure 2.5(a) is visited, we would like to be launching a prefetch of node ni+3. To

compute the address of node ni+3, we would normally follow the pointer chain through nodes ni+1 and

ni+2. However, this would incur the full miss latency to fetch ni+1 and then to fetch ni+2, before the

prefetch of ni+3 could be launched, thereby defeating our goal of hiding the miss latency of ni+3.

Luk and Mowry proposed two solutions to the pointer-chasing problem that are applicable to linked
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Figure 2.5: Addressing the pointer-chasing problem.

lists [64, 65]. The first scheme (data-linearization prefetching) involves arranging the nodes in memory

such that their addresses can be trivially calculated without dereferencing any pointers. For example, if

the leaf nodes of the B+-Tree are arranged sequentially in contiguous memory, they would be trivial to

prefetch. However, this will only work in read-only situations, and we would like to support frequent

updates. The second scheme (history-pointer prefetching) involves creating new pointers—called jump

pointers—which point from a node to the node that it should prefetch. For example, Figure 2.5(b) shows

how node ni could directly prefetch node ni+3 using three-ahead jump pointers.

In our study, we will build upon the concept of jump pointers, but customize them to the specific

needs of B+-Tree indices. Rather than storing jump pointers directly in the leaf nodes, we instead pull
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them out into a separate array, which we call the jump-pointer array, as illustrated in Figure 2.5(c). To

initiate prefetching, a back-pointer in the starting leaf node is used to locate the leaf’s position within

the jump-pointer array; then based on the desired prefetching distance, an array offset is adjusted to find

the address of the appropriate leaf node to prefetch. As the scan proceeds, the prefetching task simply

continues to walk ahead in the jump-pointer array (which itself is also prefetched) without having to

dereference the actual leaf nodes again.

Jump-pointer arrays are more flexible than jump pointers stored directly in the leaf nodes. We can

adjust the prefetching distance by simply changing the offset used within the array. This allows dynamic

adaptation to changing performance conditions on a given machine, or if the code migrates to different

machines. However, jump-pointer arrays do introduce additional space overhead. In Section 2.3.4, we

will show that the space overhead is small. Then in Section 2.3.5, we propose to reuse internal B+-Tree

nodes to further reduce the overhead.

From an abstract perspective, one might think of the jump-pointer array as a single large, contiguous

array, as illustrated in Figure 2.6(a). This would be efficient in read-only situations, but in such cases we

could simply arrange the leaf nodes themselves contiguously and use data-linearization prefetching [64,

65]. Therefore a key issue in implementing jump-pointer arrays is to handle updates gracefully.

2.3.2 Implementing Jump-Pointer Arrays to Support Efficient Updates

Let us briefly consider the problems created by updates if we attempted to maintain the jump-pointer

array as a single contiguous array as shown in Figure 2.6(a). When a leaf node is deleted, we can simply

leave an empty slot in the array. However, insertions can be very expensive. When a new leaf node is

inserted, an empty slot needs to be created in the appropriate position for the new jump pointer. If no

nearby empty slots could be located, this could potentially involve copying a very large amount of data

within the array in order to create the empty slot. In addition, for each jump-pointer that is moved within

the array, the corresponding back-pointer from the leaf node into the array also needs to be updated,

which could be very costly too. Clearly, we would not want to pay such a high cost upon insertions.

We improve upon the naı̈ve contiguous array implementation in the following three ways. First, we
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Figure 2.6: External jump-pointer arrays.

break the contiguous array into a chunked linked list—as illustrated in Figure 2.6(b)—which allows us

to limit the impact of an insertion to its corresponding chunk. (We will discuss the chunk size selection

later in Section 2.3.4).

Second, we actively attempt to interleave empty slots within the jump-pointer array so that insertions

can proceed quickly. During bulkload or when a chunk splits, the jump pointers are stored such that

empty slots are evenly distributed to maximize the chance of finding a nearby empty slot for insertion.

When a jump pointer is deleted, we simply leave an empty slot in the chunk.

Finally, we alter the meaning of the back-pointer in a leaf node to its position in the jump-pointer

array such that it is merely a hint. The pointer should point to the correct chunk, but the position within

that chunk may be imprecise. Therefore, when moving jump pointers in a chunk for inserting a new leaf

address, we do not need to update the hints for the moved jump pointers. We only update a hint field

when: (i) the precise position in the jump-pointer array is looked up during range scan or insertion, in

which case the leaf node should be already in cache and updating the hint is almost free; and (ii) when
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a chunk splits and addresses are redistributed, in which case we are forced to update the hints to point

to the new chunk. The cost of using hints, of course, is that we need to search for the correct location

within the chunk in some cases. In practice, however, the hints appear to be good approximations of the

true positions, and searching for the precise location is not a costly operation (e.g., it should not incur

any cache misses).

In summary, the net effect of these three enhancements is that nothing moves during deletions, typi-

cally only a small number of jump pointers (between the insertion position and the nearest empty slot)

move during insertions, and in neither case do we normally update the hints within the leaf nodes. Thus

we expect jump-pointer arrays to perform well during updates.

2.3.3 Prefetching Algorithm

Having described the data structure to facilitate prefetching, we now describe our prefetching algorithm.

The basic range scan algorithm consists of a loop that visits a leaf node on each iteration by following a

next-leaf pointer. To support jump-pointer array prefetching, we add prefetches both prior to this loop

(for the startup phase), and inside the loop (for the steady-state phase). Let d be the desired prefetching

distance, in units of leaf nodes (we discuss below how to select d). During the startup phase, we issue

prefetches for the first d leaf nodes.2 These prefetches proceed in parallel, exploiting the available

memory hierarchy bandwidth. During each loop iteration (i.e. in the steady-state phase), prior to visiting

the current leaf node in the range scan, we prefetch the leaf node that is d nodes after the current leaf

node. The goal is to ensure that by the time the basic range scan loop is ready to visit a leaf node, that

node is already prefetched into the cache. With this framework in mind, we now describe further details

of our algorithm.

First, in the startup phase, we must locate the jump pointer of the starting leaf node within the jump-

pointer array. To do this, we follow the hint pointer from the starting leaf node to the chunk in the

2Note that the buffer area to hold the resulting tupleIDs needs also to be prefetched; to simplify presentation, when we

refer to “prefetching a leaf node” in the range scan algorithm, we mean prefetching the cache lines for both the leaf node and

the buffer area where the tupleIDs are to be stored.
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chunked linked list and check to see whether the hint is precise—i.e. whether the hint points to a

pointer back to the starting leaf node. If not, then we start searching within the chunk in both directions

relative to the hint position until the matching position is found. As discussed earlier, the distance

between the hint and the actual position appears to be small in practice.

Second, we need to prefetch the jump-pointer chunks as well as the leaf nodes, and handle empty

slots in the chunks. During the startup phase, both the current chunk and the next chunk are prefetched.

When looking for a jump pointer, we test for and skip all empty slots. If the end of the current chunk

is reached, we will go to the next chunk to get the first non-empty jump pointer (there is at least one

non-empty jump pointer or the chunk should have been deleted). We then prefetch the next chunk ahead

in the jump-pointer array. Because we always prefetch the next chunk before prefetching any leaf nodes

pointed to by the current chunk, we expect the next chunk to be in the cache by the time we access it.

Third, although the actual number of tupleIDs in the leaf node is unknown when we do range

prefetching, we will assume that the leaf node is full and prefetch the return buffer area accordingly.

Thus the return buffer will always be prefetched sufficiently early.

2.3.4 Qualitative Analysis

We now discuss how to select the prefetching distance and the chunk size.

Selecting the Prefetching Distance d. The prefetching distance (d, in units of nodes to prefetch

ahead) is selected as follows. Normally this quantity is derived by dividing the expected worst-case

miss latency by the computation time spent on one leaf node (similar to what has been done in other

contexts [73]). However, because the computation time associated with visiting a leaf node during a

range scan is quite small relative to the miss latency, we will assume that the limiting factor is the

memory bandwidth. Roughly speaking, we can estimate this bandwidth-limited prefetching distance as

d =

⌈

B
w

⌉

, (2.8)

where B is the normalized memory bandwidth and w is the number of cache lines per leaf node, as

defined in Table 2.1. In practice, there is no problem with increasing d a bit to create some extra
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slack, because any prefetches that cannot proceed are simply buffered within the memory system. (Our

sensitivity analysis in Section 2.4 will show that selecting a slightly larger prefetching distance results

in similar range scan performance.)

Selecting the Chunk Size c. Chunks must be sufficiently large to ensure that we only need to

prefetch one chunk ahead to hide the miss latency of accessing the chunks themselves. Recall that

during the steady-state phase of a range scan, when we get to a new chunk, we immediately prefetch the

next chunk ahead so that we can overlap its fetch time with the time it takes to prefetch the leaf nodes

associated with the current chunk. Since the memory system only has enough bandwidth to initiate B

cache misses during the time it takes one cache miss to complete, the chunks would clearly be large

enough to hide the latency of fetching the next chunk if they contained at least B leaf pointers (there is at

least one cache line access for every leaf visit). Each cache line of a full chunk can hold 2m leaf pointers

(since there are only pointers and no keys). Chunks will be 50% full immediately after chunk splits, and

each cache line of a chunk will hold m leaf pointers on average. In order to perform efficiently even in

such situations, we estimate the minimum chunk size in units of cache lines as

c =

⌈

B
m

⌉

. (2.9)

Another factor that could (in theory) dictate the minimum chunk size is that each chunk should contain

at least d leaf pointers so that our prefetching algorithm can get sufficiently far ahead. However, since

d ≤ B from equation (2.8), the chunk size in equation (2.9) should be sufficient. Increasing c beyond

this minimum value to create some extra slack for more empty chunk slots does not hurt performance in

practice, as our experimental results demonstrate later in Section 2.4.

Remarks. Given sufficient memory system bandwidth, our prefetching scheme hides the full mem-

ory latency experienced at every leaf node during range scan operations. With the data structure

improvements in Section 2.3.2, we also expect good performance on updates.

However, there is a space overhead associated with the jump-pointer array. Because the jump-pointer

array only contains one pointer per leaf node, the space overhead is relatively small. If keys and pointers

are of the same size, a leaf node is as large as 2 f pointers ( f is defined in Table 2.1). Therefore, the
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Figure 2.7: Internal jump-pointer arrays.

jump-pointer array only takes 1
2 f as much space as all the leaf nodes. Given our technique described

earlier in Section 2.2 for creating wider B+-Tree nodes, the resulting increase in the fanout f will help

reduce this overhead. However, if this space overhead is still a concern, we now describe how it can be

reduced further.

2.3.5 Internal Jump-Pointer Arrays

So far we have described how a jump-pointer array can be implemented by creating a new external

structure to store the jump pointers (as illustrated earlier in Figure 2.6). However, there is an existing

structure within a B+-Tree that already contains pointers to the leaf nodes, namely, the parents of the

leaf nodes. The child pointers within a leaf parent node correspond to the jump pointers within a chunk

of the external jump-pointer array described in Section 2.3.2. A key difference, however, is that there

is no easy way to traverse these leaf parent nodes quickly enough to perform prefetching. A potential

solution is to connect these leaf parent nodes together in leaf key order using linked-list pointers. (Note

that this is sometimes done already for concurrency control purposes [56].)

Figure 2.7 illustrates the internal jump-pointer array. Note that leaf nodes do not contain back-pointers

to their positions within their parents. It turns out that such pointers are not necessary for this internal

implementation, because the position will be determined during the search for the starting key. If we

simply retain the result of the leaf parent node’s binary search, we will have the position to initiate the

prefetching appropriately.

Maintaining a next pointer for a leaf parent node is fairly similar to maintaining a next pointer for a

leaf node. Therefore, the bulkload, insertion and deletion algorithms can be easily obtained by extending

35



Chapter 2 Exploiting Cache Prefetching for Main Memory B+-Trees

the existing B+-Tree algorithms. The search algorithm is the same, with the only difference being that

the maximum number of pointers in a leaf parent node is reduced by one. The prefetching algorithm

for range scan is similar to the one described earlier for external jump-pointer arrays, though we do not

need to locate the starting leaf node within the jump-pointer array (because the position has already been

recorded, as discussed above).

This approach is attractive with respect to space overhead, since the only overhead is one additional

pointer per leaf parent node. The overhead of updating this pointer should be insignificant, because it

only needs to be changed in the rare event that a leaf parent node splits or is deleted. Another benefit

of this approach is that internal jump-pointer arrays are relatively easy to implement compared to ex-

ternal jump-pointer arrays because most of the maintenance work of the jump-pointer arrays is already

supported through the B+-Tree code.

One potential limitation of this approach, however, is that the length of a “chunk” in this jump-

pointer array is dictated by the B+-Tree structure, and may not be easily adjusted to satisfy large prefetch

distance requirements.

In the remainder of this chapter, we will use the notations “peB+-Tree” and “piB+-Tree” to refer to

pB+-Trees with external and internal jump-pointer arrays, respectively.

2.4 Experimental Results

In this section, we present experimental results on an Itanium 2 machine and on a simulation platform.

The simulation platform helps us better understand the cache behavior of our prefetching techniques

for the following four reasons: (i) The simulator has extensive instrumentations and reports a large

amount of useful information about the processor pipeline and the cache hierarchy; (ii) We have a clear

understanding of how prefetch instructions are implemented in the simulator; (iii) We can easily flush

caches in the simulator and study the cold cache behavior of a single search; (iv) It is easy to vary

configuration parameters, such as the memory latency, to study the behavior of various techniques under

potential settings in the future.
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To facilitate comparisons with CSB+-Trees, we present our experimental results in a main-memory

database environment. We begin by describing the Itanium 2 machine configuration and our performance

simulator. We then explain the implementation details of the index structures that we compare. The four

subsections that follow present our experimental results for index searches, index range scans, updates,

and operations on mature trees. Next, we present sensitivity analysis and a detailed cache performance

study for a few of our earlier experiments. Finally, we study the impact of larger memory latency on our

prefetching techniques.

2.4.1 Itanium 2 Machine Configuration

Throughout this thesis, we perform real machine experiments on an Itanium 2 machine unless otherwise

noted. Table 2.2 lists the machine configuration parameters. Most of the information is readily available

from the Linux operating system by checking the files on the “/proc” file system (e.g., “/proc/cpuinfo”,

“/proc/pal/cpu0/cache info”, “/proc/pal/cpu0/vm info”, and “/proc/meminfo”) and by displaying version

information of various commands. The machine has two 900MHz Itanium 2 processors, each with three

levels of caches and two levels of TLBs. They share an 8 GB main memory. However, we only use a

single CPU in our experiments unless otherwise noted. Itanium 2 supports both faulting and non-faulting

prefetches [45], as described previously in Section 1.3. Since faulting prefetches will still succeed when

incurring TLB misses, we use faulting prefetches (l f etch. f ault) in our experiments.

The machine is running Linux 2.4.18 kernel with 16 KB virtual pages. There are two compilers avail-

able in the system: gcc [27] and icc [42]. (We will study the properties of the compilers through experi-

ments and determine which compiler to use for evaluating B+-Trees.) For gcc, we use its inline assembly

support to insert prefetch assembly instructions into the source code. icc supports a special interface for

prefetches in the form of a set of function calls; the compiler identifies such a call, and replaces it with

a prefetch instruction. We use this interface for inserting prefetches. We obtain performance measure-

ments through the perfmon library [79], which supports accesses to Itanium 2 performance counters.

The measurements are for user-mode executions. We perform 30 runs for every measurement and report

the average of the runs (except for measuring the latency and bandwidth parameters, which we explain
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Table 2.2: Itanium 2 machine configuration.

CPU dual-processor 900MHz Itanium 2 (McKinley, B3)

L1 Data Cache 16 KB, 64B lines, 4-way set-assoc., load lat. 1 cycle

L1 Instruction Cache 16 KB, 64B lines, 4-way set-assoc., load lat. 1 cycle

L2 Unified Cache 256 KB, 128B lines, 8-way set-assoc., load lat. 5 cycles

L3 Unified Cache 1.5 MB, 128B lines, 6-way set-assoc., load lat. 12 cycles

TLB DTLB 1: 32 entries, fully-assoc.; ITLB 1: 32 entries, fully-assoc.
DTLB 2: 128 entries, fully-assoc.; ITLB 2:128 entries, fully-assoc.

Level 2 Data TLB Miss Latency 32 cycles

Main Memory 8GB

Memory Latency (T1) 189 cycles

Main Memory Bandwidth (1/Tnext) 1 access per 24 cycles

Operating System Linux 2.4.18 (Red Hat Linux Advanced Workstation release 2.1AW)

Page Size 16KB

Compiler gcc: GNU project C and C++ Compiler Version 2.96
icc: Intel C++ Itanium Compiler Version 8.1

Performance Monitor Tool kernel perfmon version: 1.0, pfmon version: 2.0

below). For the experiments in this section, all the standard deviations are within 5% of the averages. In

fact, 90% of the experiments have their standard deviations within 1% of the averages.

For the rest of the configuration parameters that are not directly available, we determined their values

through experimental measurements. Specifically, we measured the main memory latency, the main

memory bandwidth, and the level 2 data TLB miss latency through experiments. To measure the main

memory latency (T1), we build a linked list, whose nodes are one-cache-line large and aligned on cache

line boundaries. Then we perform a linked list traversal, and divide the total execution time by the

number of nodes in the list to obtain a full cache miss latency (T1). To make this measurement accurate,

we perform the following three operations before an experiment: (i) randomly shuffling the nodes so

that the CPU cannot easily guess the location of the next node and does experience a full cache miss at

every node; (ii) flushing the CPU cache by reading a large piece of memory so that nodes are not cached;
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and (iii) for each virtual memory page containing nodes of the list, keeping at least one cache line not

allocated to the list and reading this cache line to warm up the TLB. (All the nodes are allocated from

64 pages so that the TLB capacity is not exceeded.)

To measure the TLB miss latency, we perform the same experiment except for the third operation in

the above. Here, every node is allocated from a different virtual memory page and we do not warm up

the TLB before the experiment. Therefore, every node access incurs a TLB miss and a full cache miss.

By subtracting the full cache miss from the experimental result, we obtain the TLB miss latency. The

measured TLB miss latency confirms the penalty listed in the Itanium 2 manual for a TLB miss that

finds its page table entry in the L3 cache [44].

We will describe our experiment for measuring the memory bandwidth in Section 2.4.4 because it

provides insights into the prefetching behaviors.

For the experiments that measure configuration parameters, we perform 30 runs, and take the minimum

of the runs because a measurement can only be equal to or greater than the true latency value due to

contentions (while we take average for B+-Tree measurements to account for cache interference due to

normal operating system activities).

2.4.2 Simulation Machine Model

Throughout this thesis, we use the same set of simulation parameters for our simulation study, as shown

in Table 2.3. The memory hierarchy of the simulator is based on the Itanium 2 processor [44], while

the simulator processor core pipeline is out-of-order dynamically scheduled, which models the design in

most other modern processors, such as Intel Pentium 4 [12], IBM Power 5 [50], and Sun UltraSPARC

IV [96]. The processor clock rate is 1.5 GHz. The simulator performs a cycle-by-cycle simulation,

modeling the rich details of the processor including the pipeline, register renaming, the reorder buffer,

branch prediction, and branching penalties, etc. The native integer size for the processor pipeline is

32 bits or 4 bytes. We set the integer divide latency based on our real measurement on the Itanium 2

machine. The simulator supports MIPS instructions. We generate fully-functional MIPS executables

using version 2.95.2 of the gcc compiler with the “-O2” optimization flag and evaluate the CPU cache
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Table 2.3: Simulation parameters.

Pipeline Parameters

Clock Rate 1.5 GHz Integer Multiply/Divide 4/50 cycles

Issue Width 4 instructions/cycle All Other Integer 1 cycle

Reorder Buffer Size 128 instructions Branch Prediction Scheme gshare [69]

Functional Units 2 Integer, 1 Integer Divide, 2 Memory, 1 Branch, 2 FP

Memory Parameters

L1 Instruction Cache 16 KB, 4-way set-assoc. Line Size 64 bytes

L1 Data Cache 16 KB, 4-way set-assoc. Page Size 16 KB

Miss Handlers 32 for data, 2 for instruction L1 Cache Access Latency 1 cycle

DTLB 128 entries, fully-assoc. L2 Cache Access Latency 5 cycles

L2 Unified Cache 256 KB, 8-way set assoc. L3 Cache Access Latency 12 cycles

L3 Unified Cache 2 MB, 8-way set assoc. DTLB Miss Latency 30 cycles

L1-to-Memory Latency 250 cycles (plus any delays due to contention) (T1 = 250)

Memory Bandwidth 1 access per 15 cycles (Tnext = 15)

performance of user mode executions of all the algorithms that we study through detailed cycle-by-

cycle simulations. Note that the simulator delivers system calls such as read and write directly to the

underlying operating system without simulating the system calls. Therefore, we are able to run programs

that perform I/O operations on the simulator and observe their performance of user mode executions.

Most of the memory parameters (e.g., cache sizes, associativities, cache access latencies) follow the

configurations in the Itanium 2 processor, as described previously in Section 2.4.1. However, the sim-

ulator only supports a uniform cache line size across all levels of caches, while the Itanium 2 machine

has two cache line sizes: 64 bytes for level 1 caches and 128 bytes for level 2 and 3 caches. We choose

64 bytes as the cache line size in our simulator.

The main memory latency parameter is based on our measurement on the Itanium 2 machine. Because

the memory latency (T1) is the number of clock cycles for loading an entire cache line, we set this value

considering the processor clock rate and the cache line size in the simulator. To compute the main
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memory bandwidth parameter, we use the memory bandwidth supported by the Itanium 2 processor

(6.4 GB/sec) [44] and take into account the clock rate and the cache line size. Moreover, the TLB miss

latency is also based on our measurement on the real machine.

The simulator provides good support for cache prefetching. The simulator does not drop a prefetch

when miss handlers are all busy and/or if it incurs a DTLB miss. This models the behavior of the faulting

prefetch instruction (l f etch. f ault) of Itanium 2 processor. Moreover, the simulator also supports special

streaming prefetch instructions, which indicate that the prefetched data will be used only once and

therefore should be loaded in a way to reduce cache pollution. We add prefetches to source code by

hand, using the gcc ASM inline assembly macro to translate these directly into valid prefetch instructions.

2.4.3 B+-Trees Studied and Implementation Details

Our experimental study compares pB+-Trees of various node widths w with B+-Trees and CSB+-

Trees. We consider both pw
e B+-Trees and pw

i B+-Trees (described earlier in Sections 2.3.2–2.3.4 and

Section 2.3.5, respectively). We also consider the combination of both pB+-Tree and CSB+-Tree tech-

niques, which we denote as a pCSB+-Tree.

Implementation Details for Simulation Study. We implemented bulkload, search, insertion, dele-

tion, and range scan operations for: (i) standard B+-Trees; (ii) pwB+-Trees for node widths w =

2,3, . . . ,16; (iii) pw
e B+-Trees; and (iv) pw

i B+-Trees. For these latter two cases, the node width w = 8 was

selected in the simulation study because our experiments showed that this choice resulted in the best

search performance (consistent with the analytical computation in Section 2.2). We also implemented

bulkload and search for CSB+-Trees and pCSB+-Trees. Although we did not implement insertion or

deletion for CSB+-Trees, we conduct similar experiments as in Rao and Ross [84] (albeit in a different

memory hierarchy) to facilitate a comparison of the results. Although Rao and Ross present techniques

to improve CSB+-Tree search performance within a node [84], we only implemented standard binary

search for all the trees studied because our focus is on memory performance (which is the primary

bottleneck, as shown earlier in Figure 2.1).
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Our pB+-Tree techniques improve performance over a range of key, childptr, and tupleID sizes.

For concreteness, we report experimental results where the keys, childptrs, and tupleIDs are 4 bytes

each, as was done in previous studies [83, 84]. As discussed in Section 2.2, we use a standard B+-Tree

node structure, consistent with previous studies. For the B+-Tree, each node is one cache line wide (i.e.

64 bytes). Each non-leaf node contains a keynum field, 7 key fields and 8 childptr fields, while each

leaf node contains a keynum field, 7 key fields, 7 associated tupleID fields, and a next-leaf pointer.

The nodes of the pB+-Trees are the same as the B+-Trees, except that they are wider. So for eight-

cache-line-wide nodes, each non-leaf node is 512 bytes and contains a keynum field, 63 key fields, and

64 childptr fields, while each leaf node contains a keynum field, 63 key fields, 63 associated tupleID

fields, and a next-leaf pointer. For the p8
eB+-Tree, non-leaf nodes have the same structure as for the

pB+-Tree, while each leaf node has a hint field and one fewer key and tupleID fields. The only

difference with a p8
i B+-Tree compared to a pB+-Tree is that each leaf parent node has a next-sibling

pointer, and one fewer key and childptr fields. For the CSB+-Tree and the pCSB+-Tree, each non-leaf

node has only one childptr field. For example, a CSB+-Tree non-leaf node has a keynum field, 14 key

fields, and a childptr field. All tree nodes are aligned on a 64 byte boundary when allocated.

Given the parameters in Table 2.3, one can see that the normalized memory bandwidth (B)—i.e. the

number of cache misses to memory that can be serviced simultaneously—is:

B =
T1

Tnext

=
250
15

= 16.7 (2.10)

For the p8
eB+-Tree and p8

i B+-Tree experiments, we need to select the prefetching distance (for both)

and the chunk size (for the former). According to Equations (2.8) and (2.10), we select d =
⌈

B
w

⌉

=
⌈16.7

8

⌉

= 3. As for the chunk size, according to Equation (2.9), we select c to be
⌈

B
m

⌉

=
⌈16.7

8

⌉

= 3.

(Our sensitivity analysis in Section 2.4.9 will show that selecting a slightly larger prefetching distance or

chunk size to create extra slacks results in similar range scan performance.) Moreover, when bulkloading

p8
eB+-Trees, we limit the external jump-pointer chunks to be at most 80% full in order to reduce the

number of chunk splits due to insertions. That is, the chunks are filled with leaf node pointers up to t%

full, where t is the smaller of the bulkload fill factor and 80%. (We will show insertion performance with

100% full chunks in Section 2.4.7.)
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Figure 2.8: Measuring the latency of loading an additional independent cache line (Tnext) on the Itanium

2 machine by using cache prefetching.

Implementation Details for Itanium 2 Experiments. The index implementations are the same as

in the simulation study except for the following two differences. First, the Itanium 2 machine is a 64-bit

system, therefore instead of using 4-byte keys and pointers as in the simulation study, we use 8-byte keys

and pointers. However, since the L3 cache line size is 128 bytes instead of 64 bytes, the number of child

pointers in a one-line-wide node stays the same (m = 8), and therefore the node structures are the same

as those in the simulation. Given the same tree size and node occupancy, the tree structures (except the

external jump-pointer array) will be the same. Second, the pB+-Tree algorithm parameters are different.

The optimal node width for pwB+-Trees is 4 (w = 4). The other parameters are computed as follows:

B =
T1

Tnext
=

189
24

= 7.9, d =

⌈

B
w

⌉

=

⌈

7.9
4

⌉

= 2, c =

⌈

B
m

⌉

=

⌈

7.9
8

⌉

= 1 (2.11)

2.4.4 A Simple Cache Prefetching Experiment: Measuring Memory Bandwidth

on the Itanium 2 Machine

Figure 2.8 shows the results of a simple experiment that measures the memory bandwidth with the help

of cache prefetching. This experiment verifies the cache prefetching support on the Itanium 2 machine,

and provides insights into the interactions between cache prefetching and compiler optimizations.

Like the experiment for measuring the memory latency (as described in Section 2.4.1), we allocate
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nodes of one-cache-line size and access them. However, rather than traversing the nodes through a linked

list, we build a pointer array to point to all the nodes, and read all the nodes using the pointer array. In this

way, we can perform prefetching with this pointer array, which is similar to jump-pointer array prefetch-

ing. Because the execution time is minimal when prefetching fully exploits the memory bandwidth, we

can obtain the Tnext, which is the inverse of the memory bandwidth, by measuring this minimal execution

time varying the number of lines to prefetch ahead. To ensure accuracy of the measurement, we perform

the same three operations before an experiment as in the memory latency experiment. Moreover, we stop

prefetching by the end of the array so that there is no overshooting cost, and we make sure the pointer

array is in cache.

Figure 2.8(a) varies the number of nodes to prefetch ahead and reports the measured latency per cache

line access for three combinations of compilers and optimization flags: “gcc -O2”, “icc -O2”, and “icc

-O3”. The Itanium 2 system bus control logic has an 18-entry out of order queue, which allows for a

maximum of 19 memory requests to be outstanding from a single Itanium 2 processor [44]. Therefore,

we vary the prefetching distance from 0 to 20 to cover all cases. Figure 2.8(b) enlarges a portion of the

whole figure to show the differences of the curves more clearly. From the figures, we see that in general

all the curves decrease as the program prefetches farther ahead, thus demonstrating the effectiveness of

the cache prefetching support on the Itanium 2 processor. The minimum of each curve is roughly 24

cycles. Therefore, the measured Tnext is 24.

However, there are several large differences between the curves. The “icc -O3” curve is much closer to

the minimum at the very beginning than the other two curves. However, it suddenly becomes worse when

the prefetching distance is above 10, while the other two curves continue to approach the minimum. The

“gcc -O2” curve jumps up when the program prefetches one node ahead.

These differences can be explained by considering the characteristics of the compilers. The icc com-

piler automatically inserts prefetches into its generated code. In the “-O3” level, icc performs more

aggressive optimizations than in the “-O2” level. The good performance for “icc -O3” when the prefetch-

ing distance is 0 shows that the “icc -O3” handles array based accesses containing one-level indirections

quite well. However, when the program prefetches more aggressively with larger prefetching distances,
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Figure 2.9: Optimal performance of the B+-Tree and the pwB+-Tree (w = 1, . . . ,20) on Itanium 2 while

compiled with different compilers and optimization flags.

the prefetches inserted by the compiler interferes with the prefetches generated in the program, thus con-

tributing to the degradation for large prefetching distances. For the gcc compiler, we insert prefetches

as inline assembly instructions, which are treated as black boxes by the compiler. Therefore, a possible

reason for the jump at the beginning of the “gcc -O2” curve is that the gcc compiler on Itanium 2 does

not handle inline assembly instructions well. Compiler optimizations are disturbed by the inserted as-

sembly instructions, resulting in noticeable overhead. However, as prefetches become more and more

effective, the benefit from prefetching more than offsets this overhead. Therefore, the “gcc -O2” curve

still approaches the same minimum value. Because of these differences, we first choose the compiler for

B+-Tree evaluations on the Itanium 2 machine through experiments in the following.

2.4.5 Search Performance

Choosing the Compiler for B+-Tree Experiments on the Itanium 2 Machine. Figure 2.9 shows the

execution time for 10,000 back-to-back random searches after bulkloading 10 million keys into trees

with a 100% fill factor. The programs are compiled with three different combinations of compilers and

optimization flags. We vary the node size of pwB+-Trees from one cache line (which is the B+-Tree) to

20 cache lines. Every bar in Figure 2.9 shows the minimal execution time among all node size choices

for the corresponding compiler and optimization flag. Surprisingly, the optimal performance achieved
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Figure 2.10: Determining the optimal node size on the Itanium 2 machine (one-cache-line points corre-

spond to the B+-Tree and the CSB+-Tree).

by using “gcc -O2” is better than those by using the icc compiler. The automatically inserted prefetches

by icc may interfere with our prefetching algorithm. (Unfortunately, the command line options of icc

do not support disabling the insertions of prefetches on Itanium 2 machines.) Therefore, we use “gcc

-O2” in all our experiments on Itanium 2 in the remaining of this section. (Note that as described in

Section 2.4.2, “gcc -O2” is used for our simulation study throughout the thesis.)

Determining the Optimal Node Width on the Itanium 2 Machine. Figure 2.10 shows the exe-

cution time for the same experiment as in Figure 2.9 while varying the node width of pB+-Trees and

pCSB+-Trees from 1 to 20 cache lines to determine their optimal node widths. From the figure, we

see that the optimal width for pB+-Trees is four cache lines, which is the same as computed according

to Equations 2.1-2.6. However, the optimal node width (four cache lines) for pCSB+-Trees is differ-

ent from its computed value (two cache lines). Like the “gcc -O2” curve in Figure 2.8, the curves in

Figure 2.10 all jump up at the beginning, which may result from the overhead of using inline assem-

bly instructions in gcc. This behavior is not taken into account by the theoretical computation. When

the node size increases, the benefit of prefetching more than offsets this overhead and pCSB+-Trees

achieves the best performance when w = 4. Therefore, we conclude that our theoretical computation

accurately predicts the optimal node width except for two-cache-line cases on the Itanium 2 machine.

If the computed value is two cache lines, we need to measure the experimental performance for nearby

width choices in order to determine the optimal node width.

46



Section 2.4 Experimental Results

1 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

number of cache lines per node

ex
ec

ut
io

n 
tim

e 
(X

10
00

 c
yc

le
s)

experiment
theory

1 2 4 5 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

number of cache lines per node

ex
ec

ut
io

n 
tim

e 
(X

10
00

 c
yc

le
s)

experiment
theory

(a) pB+-Trees (w=1 is B+-Tree) (b) pCSB+-Trees (w=1 is CSB+-Tree)

Figure 2.11: Comparing experimental results through simulations with theoretical costs for cold searches

in trees bulkloaded 100% full with 10 million keys.

Table 2.4: The number of levels in trees with different node widths.

number of cache lines per node (w) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of levels of pB+-Trees 8 6 6 5 5 5 5 4 4 4 4 4 4 4 4 4

number of levels of pCSB+-Trees 7 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4

Determining the Optimal Node Width on the Simulation Platform. Figure 2.11 shows the execu-

tion time for a single cold search after bulkloading 10 million keys into trees with a 100% fill factor. As

discussed in Section 2.2.2, the optimal node width is not larger than B, which is 16.7 on the simulation

platform. Therefore, we vary the node width of pB+-Trees and pCSB+-Trees from 1 to 16 cache lines

to determine their optimal node widths. When running the experiments, we flush the CPU caches and

the TLB in the simulator before every search. We factor out the differences of search paths by reporting

for every point in the figure the average execution time of 10,000 random searches.

Because Equations 2.1-2.6 compute the cost for a single search operation, this cold cache experiment

enables a side-by-side comparison between the experimental and the theoretical costs in Figure 2.11. The

theoretical costs of searches in pCSB+-Trees can be obtained in a similar fashion as in Equations 2.1-2.6.

Figure 2.11 shows that the theoretical results match the experimental results very well, thus verifying
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(a) Varying tree size (b) Varying number of searches (c) Varying node occupancy

Figure 2.12: Search performance on Itanium 2 (warm cache).

the correctness of our theoretical models. The curves provide insight into the index search performance.

All the curves have step-like shapes, and within the same step they are tilted upwards. The large steps

for a curve occur when the number of levels in the tree decreases. This can be verified by examining

Table 2.4, which lists the number of levels in the tree for each data point plotted in Figure 2.11. Within a

step, the search cost increases as the node size. Therefore, the minimum point occurs among the points

at the beginning of the steps. From the figure, we see that the optimal width for pB+-Trees is eight cache

lines, and the optimal width for pCSB+-Trees is five cache lines.

In the following, we vary the tree size, the node occupancy, and the number of back-to-back searches

to show the performance of the optimal trees under a large varieties of settings.

Search Performance Varying the Tree Size. Figure 2.12(a), Figures 2.13(a) and (b) show the

execution time of 10,000 random searches after bulkloading 1e5, 3e5, 1e6, 3e6, and 1e7 keys into the

trees (nodes are 100% full except the root). In the experiments shown in Figure 2.13(a), the cache and

the TLB are cleared between each search (the “cold cache” case); whereas in the experiments shown

in Figure 2.12(a) and Figure 2.13(b), search operations are performed one immediately after another

(the “warm cache” case). Depending on the operations performed between the searches, the real-world

performance of an index search would lie in between the two extremes: closer to the warm cache case for

index joins, while often closer to the cold cache case for single value selections. From these experiments,
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Figure 2.13: Search performance through simulations.

we see that: (i) Figure 2.13(b) shows trends similar to Figure 2.12(a), which verifies our simulator model;

(ii) B+-Trees are the slowest; and (iii) The trees with wider nodes and prefetching support (pB+-Tree,

pCSB+-Tree) both perform better than their non-prefetching counterparts (B+-Tree, CSB+-Tree).

On Itanium 2, the pB+-Tree achieves 1.16-1.31X speedups over B+-Tree and 1.05-1.20X speedups

over CSB+-Tree. Combining our prefetching scheme with the CSB+-Tree scheme, the pCSB+-Tree

achieves even better performance (1.18-1.40X speedups over B+-Tree). On the simulation platform,

for cold cache experiments, the speedup of the pB+-Tree over the B+-Tree is between a factor of 1.43

to 1.64. The cold cache speedup of the pB+-Tree over the CSB+-Tree is between a factor of 1.08 to

1.44. Likewise, the warm cache speedups are 1.53 to 1.63 and 1.34 to 1.53, respectively. Note that the
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Table 2.5: The number of levels in trees for Figure 2.13(a) and (b).

Tree Type
Number of Keys

1e5 3e5 1e6 3e6 1e7

B+-Tree 6 7 7 8 8

CSB+-Tree 5 5 6 6 7

p8B+-Tree 3 4 4 4 4

p5CSB+-Tree 3 4 4 4 4

speedups are larger on the simulation platform. This is because the simulator has faster clock rate and

larger memory latency, resulting in larger benefits of cache optimizations.

The trend of every single curve is clearly shown in the cold cache experiment: The curves all increase

in discrete large steps, and within the same step they increase only slightly. Similar to Figure 2.11, the

large steps for a curve occur when the number of levels in the tree changes. Table 2.5 shows the number

of levels in the tree for each data point plotted in Figure 2.13(a) and (b). Within a step, additional leaf

nodes result in more keys in the root node (the other nodes in the tree remain full), which in turn increases

the cost to search the root. The step-up trend is blurred in the warm cache curves because the top levels

of the tree may remain in the cache. Moreover, because the number of levels are the same, the p8B+-Tree

and the p5CSB+-Tree have very similar performance. (On the Itanium 2 machine, the number of levels

of p4B+-Tree and p4CSB+-Tree differs, leading to the different performance.) Therefore, we conclude

that the performance gains for wider nodes stem mainly from the resulting decrease in tree height.

Search Performance Varying the Number of Back-to-Back Searches. Figure 2.12(b) and Fig-

ure 2.13(c) show the benefit of our scheme across a wide range of possible usage patterns of index

searches in the warm cache case. All the trees are bulkloaded with 10 million 〈key, tupleID〉 pairs to

be 100% full (except for the root nodes). We vary the number of random searches from 1 to 100,000, and

report the execution times normalized to those of B+-Trees. From Figure 2.12(b) and Figure 2.13(c), we

see that the trees with wider nodes and prefetching support all perform better than their non-prefetching

counterparts. On Itanium 2, the pB+-Tree achieves 1.17-1.38X speedups over the B+-Tree and 1.04-
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Figure 2.14: Comparing the search performance of p4B+-Trees, p4
eB+-Trees, and p4

i B+-Trees on the

Itanium 2 machine.

1.17X speedups over the CSB+-Tree. On the simulation platform, the pB+-Tree achieves 1.20-1.70X

speedups over the B+-Tree and 1.10-1.41X speedups over the CSB+-Tree.

Search Performance Varying the Node Occupancy. Figure 2.12(c) and Figure 2.13(d) show the

effect on search performance of varying the bulkload fill factor. All the trees are bulkloaded with 10

million 〈key, tupleID〉 pairs, with bulkload fill factors of 60%, 70%, 80%, 90%, and 100%. Note that

the actual number of used entries in leaf nodes in an experiment is the product of the bulkload fill factor

and the maximum number of slots (truncated to obtain an integer). Interestingly, the 60% and 70% fill

factors result in the same number of leaf index entries for one-cache-line-node B+-Trees. Therefore, the

corresponding points are the same. As in the previous experiments, Figure 2.12(c) and Figure 2.13(d)

shows that: (i) the B+-Tree has the worst performance; (ii) the trees with wider nodes and prefetching

support all perform better than their non-prefetching counterparts. On Itanium 2, the pB+-Tree achieves

1.27-1.48X speedups over the B+-Tree and 1.09-1.14X speedups over the CSB+-Tree. On the simulation

platform, the pB+-Tree achieves 1.56-1.84X speedups over the B+-Tree and 1.34-1.43X speedups over

the CSB+-Tree.

Searches on Trees with Jump-Pointer Arrays. Our next experiments determine whether the differ-

ent structures for speeding up range scans have an impact on search performance. We use the optimal
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Figure 2.15: Comparing the search performance of p8B+-Trees, p8
eB+-Trees, and p8

i B+-Trees on the

simulation platform.

node width for these experiments. Figure 2.14 and Figure 2.15 compare the search performance of the

pwB+-Tree, the pw
e B+-Tree, and the pw

i B+-Tree, where w = 4 on Itanium 2 and w = 8 on the simula-

tion platform. The same experiments as in Figure 2.12 and Figure 2.13 were performed. As described

previously in Section 2.3, both the pw
e B+-Tree and the pw

i B+-Tree consume space in the tree structures

relative to the pwB+-Tree: The maximum number of keys in leaf nodes is one fewer for the pw
e B+-Tree,

and the maximum number of keys in leaf parent nodes is one fewer for the pw
i B+-Tree. Figure 2.12 and

Figure 2.15 show that these differences have a negligible impact on search performance.
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Figure 2.16: Range scan performance on the Itanium 2 machine.

2.4.6 Range Scan Performance

In our next set of experiments, we evaluate the effectiveness of our techniques for improving range scan

performance. We compare B+-Trees, pwB+-Trees, pw
e B+-Trees, and pw

i B+-Trees, where w is the optimal

node width for searches, which are presumed to occur more frequently than range scans. As discussed

in Section 2.4.2, we set the prefetching distance d to 2 nodes and the chunk size c to 1 cache line on

Itanium 2. On the simulation platform, we set d = 3 and c = 3.

Varying the Range Size. Figures 2.16 (a) and (b), and Figures 2.17(a) and (b) show the execution

time of range scans while varying the number of tupleIDs to scan per request (i.e. the size of the range).

Because of the large performance gains for pB+-Trees, the execution time is shown on a logarithmic

scale in Figure 2.16 (a) and Figure 2.17(a). Figure 2.16 (b) and Figure 2.17(b) show the execution times

normalized to those of B+-Trees. The trees are bulkloaded with 10 million 〈key, tupleID〉 pairs, using

a 100% bulkload fill factor. Then 100 random starting keys are selected, and a range scan is requested

for s tupleIDs starting at that starting key value, for s = 1e1, 1e2, 1e3, 1e4, 1e5, and 1e6. The execution

time plotted for each s is the total of the 100 range scans. Before a range scan request, the caches

are cleared to more accurately reflect scenarios in which range scan requests are interleaved with other
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Figure 2.17: Range scan performance through simulations.

database operations or application programs (which would tend to evict any cache-resident nodes).3

Like the search experiments, the Itanium 2 curves and the simulation curves in the range scan ex-

periments have similar shapes. This verifies our simulation model. As we see in Figures 2.17(a) and

(b), peB+-Trees and piB+-Trees achieve a factor of 8.8X to 13.8X speedups over standard B+-Trees for

ranges containing 1,000 to 1 million tupleIDs. The figures show the contribution of both aspects of our

pB+-Tree design to overall performance. First, extending the node size and simultaneously prefetching

all cache lines within a node while scanning (and performing the initial search)—similar to what was

illustrated earlier in Figure 2.4(b)—results in a speedup of 4.8 to 5.0, as shown by the difference between

pB+-Trees and B+-Trees in Figure 2.17 (a) and (b). Second, by using jump-pointer arrays to prefetch

ahead across the (extra-wide) leaf nodes, we see an additional speedup of roughly 2 in this case, as

shown by the improvement of both peB+-Trees and piB+-Trees over pB+-Trees. Since both peB+-Trees

and piB+-Trees achieve nearly identical performance, there does not appear to be a compelling need to

build an external (rather than an internal) jump-pointer array, at least for these system parameters.

When scanning far fewer than 1,000 tupleIDs, however, the startup cost of our prefetching schemes

3The code calls a function to flush caches on the Itanium 2 machine. The function allocates a chunk of memory much

larger than the CPU cache. Then it scans the memory to evict previous data from the caches and the TLBs. Note that our

measurements do not include the cache flushing function.
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becomes noticeable. For example, when scanning only 10 tupleIDs, pB+-Trees are only slightly faster

than B+-Trees, and prefetching with jump-pointer arrays is actually slower than prefetching only the

extra-wide nodes. This suggests a scheme where jump-pointer arrays are only exploited for prefetching

if the expected number of tupleIDs within the range is significant (e.g., 100 or more). This estimate

of the range size could be computed either by using standard query optimization techniques such as

histograms, or else by searching for both the starting and ending keys to see how far apart they are.

On the Itanium 2 machine, prefetching wider nodes achieves 1.39-1.81X speedups over the B+-Tree.

Jump-pointer array prefetching overlaps cache misses across leaf node accesses and achieves 2.26-2.91X

speedups when there are at least 1000 tupleIDs in the range. For ranges containing 100 or fewer

tupleIDs, the piB+-Tree and peB+-Tree achieve 1.15-1.89X speedups. The Itanium 2 speedups are

smaller than the simulation for two reasons: (i) As mentioned previously, the simulation platform has

larger memory latency, thus leading to larger benefits for cache optimizations; (ii) In the experiments, the

leaf nodes are actually contiguous in memory after bulkloading, and therefore hardware-based prefetch-

ing mechanisms may improve the performance of B+-Trees. When the nodes are not contiguous in

memory, which is the typical case, the range scan speedups are much larger, as will be described in our

experiments on mature trees in Section 2.4.8.

Varying the Node Occupancy. Figure 2.16 (c) and Figure 2.17(c) show the execution time of range

scans while varying the bulkload fill factor. The trees are bulkloaded with 10 million 〈key, tupleID〉

pairs, with bulkload fill factors of 60%, 70%, 80%, 90%, and 100%. We report the total time of 100

random range scans each for 100,000 tupleIDs. As the bulkload fill factor decreases, the number of leaf

nodes to be scanned increases (since we must skip an increasing number of empty slots), and hence our

prefetching schemes achieve larger speedups. Our jump-pointer array prefetching achieves 11.1-18.3X

speedups over B+-Trees on the simulation platform, and 2.31-3.77X speedups on the Itanium 2 machine.

2.4.7 Update Performance

In addition to improving search and scan performance, another one of our goals is to achieve good

performance on updates, especially since this had been a problem with earlier cache-sensitive index
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Figure 2.18: Insertion performance on the Itanium 2 machine (warm cache).
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Figure 2.19: Insertion performance through simulations (warm cache).

structures [83, 84]. To quantify the impact of pB+-Trees on insertion and deletion performance, Fig-

ure 2.18 and Figure 2.19 show insertion performance varying the node occupancy, the tree size, and the

number of random insertions, and Figure 2.22 show deletion performance varying the node occupancy

and the tree size.

Insertion Performance Varying the Node Occupancy. Figure 2.18(a) and Figure 2.19(a) show

the execution time for 10,000 random insertions into trees containing 10 million 〈key, tupleID〉 pairs
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with bulkload factors ranging from 60% to 100%, and with warm caches. As we see in the figure, all

three pB+-Tree schemes (i.e. pB+-Trees, peB+-Trees, and piB+-Trees) perform roughly the same, and

all are significantly faster than the B+-Tree when the bulkload fill factor is less than 100%; they achieve

1.44-1.71X speedups over B+-Trees on the simulation platform, and 1.17-1.38X speedups on Itanium

2. When the trees are not full, insertions often find empty slots in leaf nodes, and there are very few

expensive node splits. Because data movement inside a leaf node does not incur cache misses, the search

operation at the beginning of a insertion dominates insertion cost. Therefore, faster search operations of

pB+-Trees lead to significantly better insertion performance when trees are not full.

When trees are 100% full (which is the worst case and typically the less common case for insertions),

the insertion performance of pB+-Trees is still comparable or slightly better than B+-Trees. In the fol-

lowing, we describe the results of two sets of experiments to better understand the insertion performance

when trees are 100% full.

Insertion Performance When Trees Are 100% Full. Figure 2.18(b) and Figure 2.19(b) show the

execution time for 10,000 random insertions into trees bulkloaded with 1e5, 3e5, 1e6, 3e6, and 1e7 〈key,

tupleID〉 pairs 100% full. Figure 2.18(c) and Figure 2.19(c) show the normalized execution time for i

random insertions into trees bulkloaded with 10 million 〈key, tupleID〉 pairs 100% full, where i = 1e1,

1e2, 1e3, 1e4, 1e5. Note that the “1e7” points in Figure 2.18(b) and Figure 2.19(b) and the “1e4” points

in Figure 2.18(c) and Figure 2.19(c) show the results of the same experiments as the “100%” points in

Figure 2.18(a) and Figure 2.19(a). From the figures, we see that all three pB+-Tree schemes achieve

comparable performance as B+-Trees across a wide range of settings.

To further understand the performance, we depict in Figure 2.20 the percentage of insertions causing

expensive node splits for the experiments in Figure 2.19(b) and (c). Comparing the performance curves

with the node split curves, we can clearly see the determining effect of node splits on insertion perfor-

mance when trees are 100% full. The number of node splits is affected by two major factors: the number

of leaf nodes and the number of insertions. As insertions proceed, more and more leaf nodes will have

splitted. Since the resulting leaf nodes from a node split have 50% empty slots, later insertions will have

a larger probability of reaching a leaf node with empty slot, thus not incurring node splits. With the same
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Figure 2.20: Analyzing percentage of insertions causing node splits to understand the performance of

inserting into 100% full trees.

1e5 3e5 1e6 3e6 1e7
0

5

10

15

20

25

number of index entries

ex
ec

ut
io

n 
tim

e 
(M

 c
yc

le
s) B+tree

p8e 100%
p8e 80%

1e5 3e5 1e6 3e6 1e7
10

0

10
1

10
2

10
3

10
4

number of index entries

nu
m

be
r 

of
 c

hu
nk

 s
pl

its

 B+tree pe8_100% pe8_80%
0

50

100

150

200

ex
ec

ut
io

n 
tim

e 
(M

 c
yc

le
s)

(a) Varying tree size (b) Number of chunk splits for (a) (c) 1e5 insertions into trees
(1e4 insertions) with 1e7 keys 100% full

Figure 2.21: Insertions to p8
eB+-Trees with 80% full chunks and 100% full chunks (warm cache).

number of insertions, the smaller the number of the leaf nodes, the more likely that later insertions find

empty slots. From another angle, if the number of leaf nodes is fixed, the larger the number of insertions,

the larger fraction of them will benefit from empty slots in leaf nodes.

Compared to B+-Trees, our prefetching schemes have wider nodes, and thus fewer leaf nodes. There-

fore, they incur significantly fewer number of node splits than B+-Trees, as shown in Figure 2.20. The

reduction is especially dramatic for the smaller trees or the larger number of insertions. For example,
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when trees contain 1e5 index entries, our prefetching schemes reduce roughly 80% node splits compared

to B+-Trees, thus achieving over 1.50X speedups. When the number of insertions are 1e5, even for the

largest tree size (with 1e7 entries) in our experiment, our prefetching schemes reduce roughly 20% node

splits compared to B+-Trees, resulting in a 1.17X speedup for the pB+-Trees and the piB+-Trees, and

a 1.08X speedup for the peB+-Trees. The peB+-Trees is slightly slower than the other two prefetching

schemes because of chunk splits, which we quantify in the following.

Impact of Chunk Splits on Insertion Performance. Figure 2.21 studies the impact of external

jump-pointer array chunk splits on insertion performance. As described in implementation details in

Section 2.4.3, peB+-Trees limit the chunks to be at most 80% full upon bulkloading. Here, we compare

the performance of peB+-Trees with 100% full chunks (with label “p8e 100%”) and the normal peB+-

Trees with 80% full chunks (with label “p8e 80%”).

Figure 2.21(a) performs the same experiments as in Figure 2.19(b). Figure 2.21(b) depicts the number

of chunk splits for the experiments in Figure 2.21(a). We can see that when the tree size is large, peB+-

Trees with 100% full chunks incur several orders of magnitude more chunk splits than peB+-Trees with

80% full chunks. This results from two effects: (i) For the former, the larger number of node splits result

in more insertions into external jump-pointer arrays, thus increasing the number of chunk splits; (ii) For

the latter, the larger number of leaf nodes require larger number of chunks, which in turn leads to larger

number of empty chunk slots collectively, thus decreasing the number of chunk splits.

Figure 2.21(c) shows the performance of inserting a larger number (1e5) of keys into the peB+-Trees

with 100% full chunks and the peB+-Trees with 80% full chunks. Rather than slowing down because

of chunk splits, the peB+-Trees with 100% full chunks achieves better performance than B+-Trees: The

chunk split overhead is amortized across a large number of insertions.

Summarizing the findings from Figure 2.21, we conclude that it is a good idea to limit the chunks to be

80% full upon bulkloading. This avoids a large number of node splits and a large number of chunk splits

to occur at the same time, thus achieving the amortizing effect with even small number of insertions.

Deletion Performance. Figure 2.22(a) and Figure 2.22(c) show the execution time of deleting 10,000

random keys from trees containing 10 million 〈key, tupleID〉 pairs with bulkload factors ranging from
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Figure 2.22: Deletion performance on the Itanium 2 machine and through simulations (warm cache).

60% to 100%, and with warm caches. Figure 2.22(b) and Figure 2.22(d) show the execution time

for 10,000 random deletions from trees bulkloaded with 1e5, 3e5, 1e6, 3e6, and 1e7 〈key, tupleID〉

pairs 100% full. Since both pB+-Trees and B+-Trees use lazy deletion, very few deletions result in a

deleted node or a key redistribution. Hence, the deletion performance is dominated by the initial search

operation. Our prefetching schemes achieve 1.40-1.77X speedups over B+-Trees on the simulation

platform, and 1.05-1.41X speedups on the Itanium 2 machine.
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Figure 2.23: Operations on mature trees on the Itanium 2 machine (warm cache).

2.4.8 Operations on Mature Trees

Our next set of experiments show the performance of index operations on mature trees [84]. To obtain a

mature tree containing N index entries, we use the same method as Rao and Ross [84]: We first bulkload

a tree with 10% ·N index entries, and then insert 90% ·N index entries. We compare the B+-Tree,

the pB+-Tree, the peB+-Tree, and the piB+-Tree. Figures 2.23(a)-(c) and Figures 2.24(a)-(c) show the

execution time for performing 10,000 random searches, insertions, or deletions in trees containing 1e5,

3e5, 1e6, 3e6, and 1e7 index entries. Figures 2.23(d) and Figure 2.24(d) show the execution time for

range scans on matures trees with 10 million index entries starting from 100 random locations to retrieve

1e1, 1e2, 1e3, 1e4, 1e5, and 1e6 tupleIDs.
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Figure 2.24: Operations on mature trees through simulations (warm cache).

We find similar performance for mature trees as in previous experiments for trees immediately af-

ter bulkloads. On the simulation platform, our prefetching schemes achieve 1.70-1.85X speedups for

searches, 1.53-1.71X speedups for insertions, 1.62-1.75X speedups for deletions. Our jump-pointer

array prefetching achieve 8.2-15.2X speedups for scans over ranges larger than 1,000 tupleIDs, and

1.5-4.5X speedups for smaller ranges. On the Itanium 2 machine, our prefetching schemes achieve

1.22-1.42X speedups over the B+-Tree for search, 1.04-1.30X speedups for insertion, and 1.19-1.31X

speedups for deletion. For range scan, our external and internal jump-pointer array prefetching schemes

achieve 1.22-2.58X speedups for smaller ranges, and 3.87-4.73X speedups when there are at least 1000

tupleIDs in the range. Note that the speedups for range scans on mature trees are larger than those after

bulkloading because the leaf nodes are no longer contiguous in memory.
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Figure 2.25: Sensitivity analysis.

We can now compare the insertion performance of pB+-Trees versus the CSB+-Tree. In [84], exper-

iments on mature trees showed that the CSB+-Tree could be 25% worse than the B+-Tree in insertion

performance. This is because the CSB+-Tree requires the sibling nodes to be moved when a node splits.

The pB+-Trees achieve comparable of better insertion performance than the B+-Tree, which is better

than the CSB+-Tree. Thus for modern memory systems, all three pB+-Trees are significantly faster than

the CSB+-Tree, for all the main operations of an index structure.

2.4.9 Sensitivity Analysis

In our next set of experiments, we study the sensitivity of the peB+-Tree performance gains to variations

in (i) the prefetching distance d used, and (ii) the chunk size c used. Specifically, we study the sensitivity

of scan performance to d and c, and the sensitivity of insertion performance to c. (Note that d and c,

which are parameters for the prefetching scan, do not affect pB+-Tree search performance.) In our

previous experiments, d = 3, and c = 3 on the simulation platform.

Varying the Prefetching Distance. Figure 2.25(a) shows the effect on scan performance when the

prefetching distance d varies from 1 to 5. The experiments are the same as in Figure 2.17(a). Clearly,

d = 1 cannot efficiently exploit the parallelism in the memory system, and results in sub-optimal perfor-

63



Chapter 2 Exploiting Cache Prefetching for Main Memory B+-Trees

mance. d = 2 is actually very close to the computed value of d before applying the ceiling function, i.e.

B
w = 16.7

8 . It achieves similar performance as d = 3, which is the computed value. Moreover, increas-

ing d to 5 does not have adverse effects on range scan performance. Therefore, we conclude that the

performance is not particularly sensitive to moderate increases in the prefetching distance.

Varying the Chunk Size. Figure 2.25(b) shows the effect on scan performance when the chunk

size c varies from 3 to 6. Figure 2.25(c) shows the effect of the chunk size on insertion performance.

Figure 2.25(b) reports the same experiments as in Figure 2.17(a), while Figure 2.25(c) reports the same

experiments as in Figure 2.19(b). We still limit the chunks in the external jump-pointer arrays to be at

most 80% full upon bulkloading. From the figures, we see that increasing chunk size slightly to create

some extra slacks does not incur performance degradation.

2.4.10 Cache Performance Breakdowns

Our next set of experiments present a more detailed cache performance study, using two representative

experiments: one for index search and one for index range scan. A central claim of this chapter is that

the demonstrated speedups for pB+-Trees are obtained by effectively limiting the exposed miss latency

of previous approaches. In these experiments, we confirm this claim.

Our starting point is the experiments presented earlier in Figure 2.1 which illustrated the poor cache

performance of existing B+-Trees on index search and scan. We reproduce those results now in Fig-

ure 2.26, along with several variations of our pB+-Trees. Figure 2.26(a) corresponds to the experiment

shown earlier in Figure 2.13(b) with 10 million 〈key, tupleID〉 pairs bulk-loaded, and Figure 2.26(b)

corresponds to the experiment shown earlier in Figure 2.17(a) with 1 million tupleIDs scanned.

Each bar in Figure 2.26 represents execution time normalized to a B+-Tree, and is broken down into

four categories that explain what happened during all potential graduation slots (in the simulator). The

number of graduation slots is the issue width (4 in our simulated architecture) multiplied by the number

of cycles. We focus on graduation slots rather than issue slots to avoid counting speculative operations

that are squashed. The bottom section (busy) of each bar is the number of slots where instructions actu-
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Figure 2.26: Impact of various pB+-Trees on the cache performance of index search and range scan.

ally graduate. The other three sections are the number of slots where there is no graduating instruction,

broken down into data cache stalls, data TLB stalls, and other stalls. Specifically, the top section (dcache

stalls) is the number of such slots that are immediately caused by the oldest instruction suffering a data

cache miss, the second section (dtlb) is the number of slots that are caused by the oldest instruction

waiting for a data TLB miss, and the third section (other stalls) is all other slots where instructions do

not graduate. Note that the effects of L2 and L3 cache misses are included in the dcache stalls section.

Moreover, the dcache stalls section is only a first-order approximation of the performance loss due to

data cache misses: These delays also exacerbate subsequent data dependence stalls, thereby increasing

the number of other stalls.

The cache performance breakdowns are generated based on our simulation results because the sim-

ulator has fine-grained instrumentations to categorize every idle graduation slot into a stall type. Note

that it is difficult to generate accurate cache performance breakdowns on the Itanium 2 machine for two

reasons: (i) The processor does not provide detailed information about graduation slots; (ii) Estimating

the breakdowns using the number of cache misses and other event counts does not take into account the

overlapping effect of these events.

As we see in Figure 2.26, pB+-Trees significantly reduce the amount of exposed miss latency (i.e.

the dcache stalls component of each bar). For the index search experiments, we see that while CSB+-

Trees eliminated 18% of the data cache stall time that existed with B+-Trees, pB+-Trees eliminate 41%
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Figure 2.27: Impact of increased memory latency on the performance of index search and range scan.

of this stall time. Moreover, shallower trees because of wider nodes significantly reduce the number

of data TLB misses experienced for node accesses. These two effects combined together result in an

overall speedup of 1.56 (compared with 1.16 for CSB+-Trees). A significant amount of data cache stall

time still remains for index searches, since we still experience the full miss latency each time we move

down a level in the tree (unless the node is already in the cache due to previous operations). Eliminating

this remaining latency appears to be difficult, as we will discuss in the next section. In contrast, we

achieve nearly ideal performance for the index range scan experiments shown in Figure 2.26(b), where

both peB+-Trees and piB+-Trees eliminate 98% of the original data cache stall time, resulting in an

impressive thirteen-fold overall speedup. These results demonstrate that the pB+-Tree speedups are

indeed achieved primarily through a significant reduction in the exposed miss latency.

2.4.11 Impact of Larger Memory Latency

Finally, our last set of experiments investigate the impact of larger memory latency (T1 = 1000) on

the performance of index search and range scan. Figures 2.27(a) and (b) report the same experiments

as in Figure 2.26 while varying the memory latency. We can see that the performance of B+-Trees

degrades dramatically as memory latency increases. In contrast, our pB+-Trees exploit cache prefetching

to successfully hide cache miss latencies within every node access for search, and within and across leaf
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node accesses for range scan, thus resulting in a more graceful performance degradation. As shown in

Figure 2.27, the pB+-Trees achieves a 1.89X speedup for search, and both peB+-Trees and piB+-Trees

achieve over 19-fold speedups when the memory latency is increased to 1000 cycles.

2.5 Discussion and Related Work

We now discuss several issues related to prefetching B+-Trees and the related work of prefetching B+-

Trees addressing these issues. Most of these studies occurred after our publication that proposed and

evaluated prefetching B+-Trees [18].

While our approach uses prefetching to create wider nodes for better search performance under any

query and index conditions, we still suffer a full cache miss latency at each level of the tree. Unfor-

tunately, it is very difficult to hide this cache miss latency without stronger assumptions about query

patterns because of : (i) the data dependence through the child pointer; (ii) the relatively large fanout of

the tree nodes; and (iii) the fact that it is equally likely that any child will be visited (assuming uniformly

distributed random search keys). While one might consider prefetching the children or even the grand-

children of a node in parallel with accessing the node, there is a duality between this and simply creating

wider nodes. Compared with our approach, prefetching children or grandchildren suffers from addi-

tional storage overhead for the children and grandchildren pointers. With stronger assumptions about

query patterns, it may be possible to further optimize the cache performance of index searches. For

example, Zhou and Ross [102] focused on situations where a large number of searches are performed in

a batch and response times for the searches are less important than throughput. They proposed to buffer

searches at non-root nodes so that multiple searches can share the cache misses of a single node.

Hankins and Patel [37] studied the node size of CSB+-Trees on a Pentium III machine and concluded

that it is desirable to use larger node size to reduce the number of tree levels because every level of the

tree experiences a TLB miss and a fixed instruction overhead. Their findings corroborate our proposal

for wider nodes.4

4Our experiments on the Itanium 2 machine, however, find that the optimal node size of CSB+-Trees without cache

prefetching is still one cache line. This may be because the Itanium 2 machine has quite different characteristics from the
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The idea of increasing B+-Tree node sizes was studied in the context of traditional disk-oriented

databases. Lomet [63] proposed a technique, called elastic buckets, that allows disk-oriented B+-Trees

to use nodes of different sizes for better space utilization, which is orthogonal to our scheme of prefetch-

ing for wider nodes. Litwin and Lomet [60] proposed an access method, called bounded disorder, that

increases leaf node sizes for disk-oriented B+-Trees and builds hash tables for fast exact-match searches

inside leaf nodes. While our prefetching B+-Trees make only slight modifications to B+-Tree algo-

rithms, bounded disorder has to deal with complexities, such as hash bucket overflows, in leaf nodes.

Moreover, searches in non-leaf nodes are not exact-matches, therefore cannot employ hash tables. In

contrast, our prefetching B+-Trees increase the size of both leaf and non-leaf nodes, thus capable of

achieving larger reduction of tree heights. Furthermore, the scheme of bounded disorder can be com-

bined with prefetching B+-Trees for better performance.

Although we have described our range scan algorithm for the case when the tupleIDs are copied

into a return buffer, other variations are only slightly more complex. For example, returning tuples

instead of tupleIDs involves only the additional step of prefetching the tuple once a tupleID has been

identified. Moreover, if the index store tupleIDs with duplicate keys by using separate lists for the

multiple tupleIDs, our prefetching approach could be used to retrieve the addresses to the tupleID

lists, then the tupleIDs, and finally the tuples themselves.

Extending the idea of adding pointers to the leaf parent nodes, it is possible to use no additional

pointers at all. Potentially, we could retain all the pointers from the root to the leaf during the search,

and then keep moving this set of pointers, sweeping through the entire range for prefetching the leaf

nodes. Note that with wider nodes, trees are shallower and this scheme may be feasible.

Concurrency control is also a significant issue. Cha et al. [15] proposed a concurrency control scheme

for main memory B+-Trees by exploiting an optimistic strategy. Since latches are typically stored in

the B+-Tree nodes, latching a node even for read-only access during a search operation involves writing

to the node. This incurs expensive coherence cache misses when multiple readers are executing con-

currently in a multiprocessor system. Their proposed scheme instead keeps a version number for every

Pentium III machine used in Hankins and Patel’s study.
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node. A read access remembers the version numbers of all the nodes it visits, and verifies whether the

version numbers stay the same after the tree traversal. In this way, read accesses no longer need to

perform memory writes in most cases, avoiding the coherence cache misses.

2.6 Chapter Summary

While eliminating child pointers through data layout techniques has been shown to significantly improve

main memory B+-Tree search performance, a large fraction of the execution time for a search is still

spent in data cache stalls, and index insertion performance is hurt by these techniques. Moreover, the

cache performance of index scan (another important B+-Tree operation) has not been studied.

In this chapter, we explored how prefetching could be used to improve the cache performance of

index search, update, and scan operations. We proposed the Prefetching B+-Tree (pB+-Tree) and eval-

uated its effectiveness both through simulations and on an Itanium 2 machine. Our experimental results

demonstrate:

• The optimal main memory B+-Tree node size is often wider than a cache line on a modern machine

(e.g., eight lines), when prefetching is used to retrieve the pieces of a node, effectively overlapping

multiple cache misses.

• Compared to the one-cache-line-node main memory B+-Tree, our scheme of prefetching for wider

nodes achieves 1.16-1.85X speedups for searches, and comparable or better update performance

(up to 1.77X speedups).

• Compared to the CSB+-Tree, our scheme achieves 1.08-1.53X speedups for searches because we

can increase the fanout by more than the factor of two that CSB+-Trees provide (e.g., by a factor

of eight). Moreover, pCSB+-Trees achieve even better performance on the Itanium 2 machine.

Therefore, our scheme and CSB+-Trees are complementary.

• For range scans, our jump-pointer array prefetching can effectively hide 98% of the cache miss

latency suffered by one-cache-line-node main memory B+-Trees, thus achieving a factor of up to
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18.7X speedup over B+-Trees.

• The techniques will still be effective even when the latency gap between processors and memory

increases significantly in the future (e.g., by a factor of four).

In summary, the cache performance of main memory B+-Tree indices can be greatly improved by ex-

ploiting the prefetching capabilities of state-of-the-art computer systems.
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Chapter 3

Optimizing Both Cache and Disk Performance

for B+-Trees

3.1 Introduction

In Chapter 2, we have studied prefetching B+-Trees for improving the CPU cache performance of

main memory indices. Several recent studies[13, 84] have also considered B+-Tree variants for in-

dexing memory-resident data, and presented new types of B+-Trees—cache-sensitive B+-Trees [84],

partial-key B+-Trees [13]—that optimize for CPU cache performance by minimizing the impact of

cache misses. These “cache-optimized” B+-Trees are composed of nodes the size of a cache line1 —

i.e., the natural transfer size for reading from or writing to main memory. In contrast, to optimize I/O

performance for indexing disk-resident data, traditional “disk-optimized” B+-Trees are composed of

nodes the size of a disk page—i.e., the natural transfer size for reading from or writing to disk.

Unfortunately, B+-Trees optimized for disk suffer from poor CPU cache performance, and B+-Trees

optimized for cache suffer from poor I/O performance. This is primarily because of the large discrepancy

in node sizes: Disk pages are typically 4KB–64KB while cache lines are often 32B–128B, depending

on the system. Thus existing disk-optimized B+-Trees suffer an excessive number of cache misses to

1In the case of prefetching B+-Trees , the nodes are several cache lines wide.
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Figure 3.1: Self-similar “tree within a tree” structure.

search in a (large) node, wasting time and forcing the eviction of useful data from the cache. Likewise,

existing cache-optimized B+-Trees, in searching from the root to the desired leaf, may fetch a distinct

page for each node on this path. This is a significant performance penalty, for the smaller nodes of cache-

optimized B+-Trees imply much deeper trees than in the disk-optimized cases (e.g., twice as deep). The

I/O penalty for range scans on non-clustered indices of cache-optimized trees is even worse: A distinct

page may be fetched for each leaf node in the range, increasing the number of disk accesses by the ratio

of the node sizes (e.g., a factor of 500).

3.1.1 Our Approach: Fractal Prefetching B+-Trees

In this chapter, we propose and evaluate Fractal Prefetching B+-Trees (fpB+-Trees), which are a new

type of B+-Tree that optimizes both cache and I/O performance. In a nutshell, an fpB+-Tree is a single

index structure that can be viewed at two different granularities: At a coarse granularity, it contains

disk-optimized nodes that are roughly the size of a disk page, and at a fine granularity, it contains cache-

optimized nodes that are roughly the size of a cache line. We refer to a fpB+-Tree as being “fractal”

because of its self-similar “tree within a tree” structure, as illustrated in Figure 3.1. The cache-optimized

aspect is modeled after the prefetching B+-Trees that we proposed in Chapter 2, which were shown

to have the best main memory performance for fixed-size keys. (We note, however, that this general

approach can be applied to any cache-optimized B+-Tree.) In a prefetching B+-Tree, nodes are several

cache lines wide (e.g., 8—the exact number is tuned according to various memory system parameters),

and cache prefetching is used so that the time to fetch a node is not much longer than the delay for a

single cache miss.
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We design and evaluate two approaches to implementing fpB+-Trees: (i) disk-first and (ii) cache-

first. In the disk-first approach, we start with a disk-optimized B+-Tree, but then organize the keys and

pointers within each page-sized node as a small tree. This in-page tree is a variant of the prefetching

B+-Tree. To pack more keys and pointers into an in-page tree, we use short in-page offsets rather

than full pointers in all but the leaf nodes of an in-page tree. We also show the advantages of using

different sizes for leaf versus non-leaf nodes in an in-page tree. In contrast, the cache-first approach

starts with a cache-optimized prefetching B+-Tree (ignoring disk page boundaries), and then attempts

to group together these smaller nodes into page-sized nodes to optimize disk performance. Specifically,

the cache-first approach seeks to place a parent and its children on the same page, and to place adjacent

leaf nodes on the same page. Maintaining both structures as new keys are added and nodes split poses

particular challenges. We will show how to process insertions and deletions efficiently in both disk-

first and cache-first fpB+-Trees. We select the optimal node sizes in both disk-first and cache-first

approaches to maximize the number of entry slots in a leaf page while analytically achieving search

cache performance within 10% of the best.

Ideally, both the disk-first and the cache-first approaches would achieve identical data layouts, and

hence equivalent cache and I/O performance. In practice, however, the mismatch that almost always

occurs between the size of a cache-optimized subtree and the size of a disk page (in addition to other

implementation details such as full pointers versus page offsets) causes the disk-first and cache-first

approaches to be slightly biased in favor of disk and cache performance, respectively. Despite these

slight disparities, both implementations of fpB+-Trees achieve dramatically better cache performance

than disk-optimized B+-Trees.

To accelerate range scans, fpB+-Trees employ the jump-pointer array scheme as described previously

in Section 2.3. A jump-pointer array contains the leaf node addresses of a tree, which are used in range

scans to prefetch the leaf nodes, thus speeding up the scans. In Chapter 2, we have showed that this

approach significantly improves CPU cache performance. In this chapter, we show it is also beneficial

for I/O, by demonstrating a factor of 2.5–5 improvement in the range scan I/O performance for IBM’s

DB2 running on a multi-disk platform.
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The remainder of this chapter is organized as follows. Section 3.2 describes how fpB+-Trees enhance

I/O performance. Then Section 3.3 describes how they enhance cache performance while preserving

I/O performance. Section 3.4, 3.5, and 3.6 present experimental results through simulations and on real

machines validating the effectiveness of fpB+-Trees in optimizing both cache and disk performance.

Section 3.7 and Section 3.8 discuss related work and issues related to fpB+-Trees. Finally, Section 3.9

summarizes the findings in this chapter.

3.2 Optimizing I/O Performance

Fractal Prefetching B+-Trees combine features of disk-optimized B+-Trees and cache-optimized B+-

Trees to achieve the best of both structures. In this section, we describe how fpB+-Trees improve I/O

performance for modern database servers. In a nutshell, we consider applying to disk-resident data

each of the techniques in Chapter 2 for improving the CPU cache performance for memory-resident

data, which provides insight on the similarities and differences between the disk-to-memory gap and

the memory-to-cache gap. We argue that while the techniques are not advantageous for search I/O

performance, they can significantly improve range scan I/O performance.

Modern database servers are composed of multiple disks per processor. For example, many database

TPC benchmark reports are for multiprocessor servers with 10-30 disks per processor, and hundreds of

disks in all [98]. To help exploit this raw I/O parallelism, commercial database buffer managers use

techniques such as sequential I/O prefetching and delayed write-back. While sequential I/O prefetching

helps accelerate range scans on clustered indices, where the leaf nodes are contiguous on disk, it offers

little or no benefit for range scans on non-clustered indices or for searches, which may visit random disk

blocks. Our goal is to effectively exploit I/O parallelism by explicitly prefetching disk pages even when

the access patterns are not sequential.

In Chapter 2, we proposed and evaluated prefetching B+-Trees (pB+-Trees) as a technique for enhanc-

ing CPU cache performance for index searches and range scans on memory-resident data. The question

that we address now is whether those same techniques can be applied to accelerating I/O performance
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for disk-resident data. Since the relationship between main memory and disk for a disk-optimized tree

is somewhat analogous to the relationship between CPU cache and main memory for a cache-optimized

tree, one might reasonably expect the benefit of a technique to translate in at least some form across

these different granularities [31]. However, because of the significant differences between these two

granularities (e.g., disks are larger and slower, main memory is better suited to random access, etc.),

we must carefully examine the actual effectiveness of a technique at a different granularity. In Sec-

tions 3.2.1 and 3.2.2, we consider the two aspects of pB+-Trees which accelerate searches and range

scans, respectively.

3.2.1 Searches: Prefetching and Node Sizes

To accelerate search performance, our pB+-Tree design increased the size of a B+-Tree node size to be

multiple cache lines wide and prefetched all cache lines within a node before accessing it. In this way,

the multiple cache misses of a single node are serviced in parallel, thereby resulting in an overall miss

penalty that is only slightly larger than that of a single cache miss. The net result is that searches become

faster because nodes are larger and hence trees are shallower.

For disk-resident data, the page-granularity counterpart is to increase the B+-Tree node size to be

a multiple of the disk page size and prefetch all pages of a node when accessing it. By placing the

pages that make up a node on different disks, the multiple page requests can be serviced in parallel. For

example, a 64KB node could be striped across 4 disks with 16KB page size, and read in parallel. As in

the cache scenario, faster searches may result.2

However, there are drawbacks to applying this approach to disks. While the I/O latency is likely to

improve for a single search, the I/O throughput may become worse because of the extra seeks for a node.

In an OLTP (OnLine Transaction Processing) environment, multiple transactions can overlap their disk

accesses, and the I/O throughput is often dominated by disk seek times; hence additional disk seeks

because of multiple pages per node may degrade performance. Note that this is not a problem for cache

2Larger nodes can also be obtained by using multiple contiguous disk pages per node. However, this can be regarded as

using larger disk pages, therefore it has already been considered in choosing optimal disk page sizes [32, 61].
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Tree

parents of leaf nodes

leaf nodes

Figure 3.2: Internal jump-pointer array.

performance since only the currently executing thread can exploit its cache hierarchy bandwidth.

In a DSS (Decision Support System) environment, a server is often dedicated to a single query at a

time, and hence latency determines throughput. Thus multipage-sized nodes spanning multiple disks

may improve search performance. However, search times may be less important to overall DSS query

times, which are often dominated by operations such as range scans, hash joins, etc. Moreover, “random”

searches are often deliberately avoided by the optimizer. An indexed nested loop join may be performed

by first sorting the outer relation on the join key [40, 30]. Thus each key lookup in the inner relation is

usually adjacent to the last lookup, leading to an I/O access pattern that essentially traverses the tree leaf

nodes in order (similar to range scans).

For these reasons, we do not advocate using multipage-sized nodes. Hence throughout this chapter,

our target node size for optimizing the disk performance of fpB+-Trees will be a single disk page.

3.2.2 Range Scans: Prefetching via Jump-Pointer Arrays

For range scan performance, we proposed a jump-pointer array structure in Section 2.3 that permits

the leaf nodes in the range scan to be effectively prefetched. A range scan is performed by searching

for the starting key of the range, then reading consecutive leaf nodes in the tree (following the sibling

links between the leaf nodes) until the end key for the range is encountered. One implementation of the

jump-pointer array is shown in Figure 3.2: An internal jump-pointer array is obtained by adding sibling

pointers to each node that is a parent of leaf nodes. These leaf parents collectively contain the addresses

for all leaf nodes, facilitating leaf node prefetching. By issuing a prefetch for each leaf node sufficiently

far ahead of when the range scan needs the node, the cache misses for these leaf nodes are overlapped.
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The same technique can be applied at page granularity to improve range scan I/O performance, by

overlapping leaf page misses. It is particularly helpful in non-clustered indices and when leaf pages

are not sequential on disks, a common scenario for frequently updated indices.3 Note that the original

technique prefetched past the end key. This overshooting cost is not a major concern at cache granularity;

however, it can incur a large penalty at page granularity both because each page is more expensive to

prefetch and because we must prefetch farther ahead in order to hide the larger disk latencies. To solve

this problem, fpB+-Trees begin by searching for both the start key and the end key, remembering the

range end page. Then when prefetching using the leaf parents, we can avoid overshooting. Also note that

because all the prefetched leaf pages would have also been accessed in a plain range scan, this technique

does not decrease throughput.

This approach is applicable for improving the I/O performance of standard B+-Trees, not just fractal

ones, and as our experimental results will show, can lead to a five-fold or more speedup for large scans.

3.3 Optimizing CPU Cache Performance

In this section, we describe how fpB+-Trees optimize CPU cache performance without sacrificing their

I/O performance. We begin by analyzing the cache behavior for searches in traditional B+-Trees in

Section 3.3.1. Then we discuss the problems with previous cache-friendly approaches for traditional

B+-Trees in Section 3.3.2. We propose to break disk-optimized pages into cache-optimized trees and

describe two approaches: disk-first and cache-first. Section 3.3.3 describes the disk-first approach, while

Section 3.3.4 describes the cache-first approach, both focusing on searches and updates. Finally, in

Section 3.3.5, we discuss range scans for both approaches.

3.3.1 Why Traditional B+-Trees Suffer from Poor Cache Performance?

In traditional disk-optimized B+-Trees, each tree node is a page (typically 4KB–64KB), as depicted in

Figure 3.3(a). Figures 3.3(b) and (c) illustrate two page organization schemes for disk-optimized B+-

3For clustered indices or when leaf pages are sequential on disks, sequential I/O prefetching can be employed instead.
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Figure 3.3: Disk-Optimized B+-Tree page organizations. (An index entry is a pair of key and tupleID

for leaf pages, and a pair of key and pageID for non-leaf pages.)

Trees. A small part of a page contains page control information. The two schemes differ in how the

index entries are stored in the bulk of the page. In the first scheme, the bulk of the page contains a

sorted array of keys, together with either the pageID for its child node (if the node is a non-leaf) or the

tupleID for a tuple (if the node is a leaf), assuming fixed length keys.4 We will refer to a key and

either its pageID or tupleID as an entry. The second scheme avoids the contiguous array organization

by using an offset array at the end of the page to point to index entries in the page. In this way, index

entries can be in arbitrary locations in a page, thus reducing data movements for updates. Because of

this, the slotted page organization is more common in practice. We use the first page organization in this

chapter mainly for better understanding and explaining the cache behavior of other schemes.

We first examine the cache behavior of the simpler page organization with arrays to obtain insights for

better understanding the cache behavior of the slotted page organization. During a search, each page on

the path to the key is visited, and a binary search is performed on the very large contiguous array in the

page. This binary search is quite costly in terms of cache misses. A simple example helps to illustrate

this point. If the key size, pageID size, and tupleID size are all 4 bytes, an 8KB page can hold over

1000 entries. If the cache line size is 64 bytes, then a cache line can only hold 8 entries. Imagine a

certain page has 1023 entries numbered 1 through 1023. To locate a key matching entry 71, a binary

search will perform ten probes, for entries 512, 256, 128, 64, 96, 80, 72, 68, 70, and 71, respectively.

4The issues and solutions for fixed length keys are also important for variable length keys, which have their own added

complications in trying to obtain good cache performance [13]. We will discuss variable length keys in Section 3.8.
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Assuming that the eight entries from 65 to 72 fall within a single cache line, the first seven probes are

all likely to suffer cache misses. The first six of the seven misses are especially wasteful, since each of

them brings in a 64B cache line but uses only 4B of that line. Only when the binary search finally gets

down to within a cache line are more data in a cache line used. This lack of spatial locality makes binary

search on a very large array suffer from poor cache performance.

This poor spatial locality is further aggravated in the slotted page organization for two reasons. First,

suppose for a moment the index entries in a slotted page are stored in key order. Then a binary search

in the slotted page essentially visits two arrays, the slot offset array and the index entry “array”, ex-

periencing poor spatial localities at both arrays. Second, if the index entries are out of order, then the

spacial locality within a cache line disappears. Even if the previous step tests a key immediately next

to the current key in key order, their actual locations in the page can be far apart. Therefore, every key

comparison is likely to incur an expensive cache miss.

Figure 3.4 compares the performance of disk-optimized B+-Trees with cache-optimized prefetching

B+-Trees for searches. The figure shows the simulated execution time for performing 10,000 random

searches after each tree has been bulkloaded with 10 million keys on a memory system similar to Itanium

2. (The simulator is described previously in Section 2.4.2.) Execution time is broken down into busy

time, data cache stalls, data TLB stalls, and other stalls. As we see in Figure 3.4, disk-optimized B+-
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Figure 3.5: Illustration of micro-indexing.

Trees spend significantly more time stalled on data cache misses than prefetching B+-Trees.5 Moreover,

the cache performance of the slotted page organization is significantly worse than that of the array page

organization. Interestingly, TLB stalls have little impact on the performance of disk-optimized B+-Trees

because index entries are stored in pages.

3.3.2 Previous Approach to Improving B+-Tree Cache Performance

One approach that was briefly mentioned by Lomet [62] is micro-indexing, which is illustrated in Fig-

ure 3.5. The idea behind micro-indexing is that the first key of every cache line in the array can be copied

into a smaller array, such as keys 1,9,17, . . . ,1017 in the example above. These 128 keys are searched

first to find the cache line that completes the search (thus reducing the number of cache misses to five

in the example). Unfortunately this approach has to use a contiguous array to store index entries. Like

disk-optimized B+-Trees with index entry arrays, it suffers poor update performance. In order to insert

an entry into a sorted array, half of the page (on average) must be copied to make room for the new en-

try. To make matters worse, the optimal disk page size for B+-Trees is increasing with disk technology

trends [32, 61], making the above problems even more serious in the future.

To realize good cache performance for all B+-Tree operations, we look to cache-optimized B+-Trees

as a model and propose to break disk-sized pages into cache-optimized nodes. This is the guiding

principle behind fpB+-Trees. In the following, we propose and evaluate two approaches for embedding

cache-optimized trees into disk-optimized B+-Tree pages: disk-first and cache-first.

5The extra “busy” time for disk-optimized B +-Trees is due to the instruction overhead associated with buffer pool man-

agement.
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Figure 3.6: Disk-First fpB+-Tree: a cache-optimized tree inside each page.

3.3.3 Disk-First fpB+-Trees

Disk-First fpB+-Trees start with a disk-optimized B+-Tree, but then organize the keys and pointers in

each page-sized node into a cache-optimized tree, which we call an in-page tree, as shown in Figure 3.6.

Our in-page trees are modeled after pB+-Trees, because they were shown to have the best cache perfor-

mance for memory-resident data with fixed-length keys. The approach, however, can be applied to any

cache-optimized tree.

As in a pB+-Tree, an fpB+-Tree in-page tree has nodes that are aligned on cache line boundaries.

Each in-page node is several cache lines wide. When an in-page node is to be visited as part of a search,

all the cache lines comprising the node are prefetched. That is, the prefetch requests for these lines are

issued one after another without waiting for the earlier ones to complete. Let T1 denote the full latency of

a cache miss and Tnext denote the latency of an additional pipelined cache miss. Then T1 +(w−1) ·Tnext is

the cost for servicing all the cache misses for a node with w cache lines. Because on modern processors,

Tnext is much less than T1, this cost is only modestly larger than the cost for fetching one cache line.

On the other hand, having multiple cache lines per node increases its fan-out, and hence can reduce the

height of the in-page tree, resulting in better overall performance, as detailed previously in Chapter 2.

Disk-First fpB+-Trees have two kinds of in-page nodes: leaf nodes and non-leaf nodes. Their roles

in the overall tree (the disk-optimized view) are very different. While in-page non-leaf nodes contain

pointers to other in-page nodes within the same page, in-page leaf nodes contain pointers to nodes

external to their in-page tree. Thus, for in-page non-leaf nodes, we pack more entries into each node

by using short in-page offsets instead of full pointers. Because all in-page nodes are aligned on cache

line boundaries, the offsets can be implemented as a node’s starting cache line number in the page. For
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Figure 3.7: The node size mismatch problem.

example, if the cache line is 64 bytes, then a 2 byte offset can support page sizes up to 4MB. On the

other hand, in-page leaf nodes contain child pageIDs if the page is not a leaf in the overall tree, and

tupleIDs if the page is a leaf.

The Node Size Mismatch Problem. Considering cache performance only, there is an optimal in-

page node size, determined by memory system parameters and key and pointer sizes. Ideally, in-page

trees based on this optimal size fit tightly within a page. However, the optimal page size is determined

by I/O parameters and disk and memory prices [32, 61]. Thus there is likely a mismatch between the two

sizes, as depicted in Figure 3.7. Figure 3.7(a) shows an overflow scenario in which a two-level tree with

cache-optimal node sizes fails to fit within the page. Figure 3.7(b) shows an underflow scenario in which

a two-level tree with cache-optimal node sizes occupies only a small portion of a page, but a three-level

tree, as depicted in Figure 3.7(c), overflows the page. Note that because the fanout of a cache-optimized

node is on the order of 10s, the unused space in the underflow scenario can be over 90% of the entire

page. Thus, in most cases, we must give up on having trees with cache-optimal node sizes, in order to fit

within the page. (Section 3.3.4 describes an alternative “cache-first” approach that instead gives up on

having the cache-optimized trees fit nicely within page boundaries.)

Determining Optimal In-page Node Sizes. Our goals are to optimize search performance and to
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Figure 3.8: Fitting cache-optimized trees in a page.

maximize page fan-out for I/O performance. To solve the node size mismatch problem, we give up using

cache-optimal node sizes in disk-first fpB+-Trees. In addition, we propose to allow different node sizes

for different levels of the in-page tree. As shown in Figure 3.8, to combat overflow, we can reduce the

root node (or restrict its fan-out) as in Figure 3.8(a). Similarly, to combat underflow, we can extend the

root node so that it can have more children, as in Figure 3.8(b).

However, allowing arbitrarily many sizes in the same tree will make index operations too complicated.

To keep operations manageable, noting that we already have to deal with different non-leaf and leaf node

structures, we instead develop an approach that permits two node sizes for in-page trees: one for leaf

nodes and one for non-leaf nodes. As we shall see, this flexibility is sufficient to achieve our goals.

At a high-level, there are three variables that we can adjust to achieve the goals: the number of levels

in the in-page tree (denoted L), the number of cache lines of the non-leaf nodes (denoted w) and the

number of cache lines of the leaf nodes (denoted x). Here we determine the optimal node sizes for an

in-page tree, given the hardware parameters and the page size. Assume we know T1 is the full latency of

a cache miss, and Tnext is the latency of an additional pipelined (prefetched) cache miss. Then the cost of

searching through an L level in-page tree is

cost = (L−1)[T1 +(w−1)Tnext]+T1 +(x−1)Tnext (3.1)

We want to select L, w, and x so as to minimize cost while maximizing page fan-out.

However, these two goals are conflicting. Moreover, we observed experimentally that because of fixed

costs such as instruction overhead, small variations in cost resulted in similar search performance. Thus,

we combine the two optimization goals into one goal G : maximize the page fan-out while maintaining

the analytical search cost to be within 10% of the optimal.
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Now we simply enumerate all the reasonable combinations of w and x (e.g., 1-32 lines, thus 322 =

1024 combinations). For each combination, we compute the maximum L that utilizes the most space

in the page, which in turn allows cost and fan-out to be computed. Then we can apply G and find the

optimal node widths. Table 3.1 in Section 3.4 and Table 3.2 in Section 3.5 depict the optimal node

widths used in our experiments. Note that the optimal decision is made only once when creating an

index. Therefore, the cost of enumeration is small.

Modifications to Index Operations.

Bulkload. Bulkloading a tree now has operations at two granularities. At a page granularity, we

follow the common B+-Tree bulkload algorithm with the maximum fan-out computed by our previous

computations. Inside each page, we bulkload an in-page tree using a similar bulkload algorithm. For

in-page trees of leaf pages, we try to distribute entries across all in-page leaf nodes so that insertions are

more likely to find empty slots. But for non-leaf pages, we simply pack entries into one in-page leaf

node after another. We maintain a linked list of all in-page leaf nodes of leaf pages in the tree, in order.

Search. Two granularities, but straightforward.

Insertion. Insertion is also composed of operations at two granularities. If there are empty slots in

the in-page leaf node, we insert the entry into the sorted array for the node, by copying the array entries

with larger key values to make room for the new entry. Otherwise, we need to split the leaf node into

two. We first try to allocate new nodes in the page. If there is no space for splitting up the in-page

tree, but the total number of entries in the page is still far fewer than the page maximum fan-out, we

reorganize the in-page tree and insert the entry to avoid expensive page splits. But if the total number of

entries is quite close to the maximum fan-out (fewer than an empty slot per in-page leaf node), we split

the page by copying half of the in-page leaf nodes to a new page and then rebuilding the two in-page

trees in their respective pages.

Deletion. Deletion is simply a search followed by a lazy deletion of an entry in a leaf node, in which

we copy the array entries with larger key values to keep the array contiguous, but we do not merge leaf

nodes that become half empty.
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3.3.4 Cache-First fpB+-Trees

Cache-First fpB+-Trees start with a cache-optimized B+-Tree, ignoring page boundaries, and then try to

intelligently place the cache-optimized nodes into disk pages. The tree node has the common structure

of a cache-optimized B+-Tree node: A leaf node contains an array of keys and tupleIDs, while a non-

leaf node contains an array of keys and pointers. However, the pointers in non-leaf nodes are different.

Since the nodes are to be put into disk pages, a pointer is a combination of a pageID and an offset in the

page, which allows us to follow the pageID to retrieve a disk page and then visit a node in the page by

its offset. Nodes are aligned on cache line boundaries, so the in-page offset is the node’s starting cache

line number in the page

We begin by describing how to place nodes into disk pages in a way that will minimize the struc-

ture’s impact on disk I/O performance. Then we present our bulkload, insertion, search, and deletion

algorithms for cache-first fpB+-Trees.

Node Placement. There are two goals in node placement: (i) group sibling leaf nodes together

into the same page so that range scans incur fewer disk operations, and (ii) place a parent node and its

children into the same page so that searches only need one disk operation for a parent and its child.

To satisfy the first goal, we designate certain pages as leaf pages, which contain only leaf nodes. The

leaf nodes in the same leaf page are siblings. This design ensures good range scan I/O performance.

Clearly, the second goal cannot be satisfied for all nodes, because only a limited number of nodes fit

within a page. Moreover, the node size mismatch problem (recall Figure 3.7) means that placing a parent

and its children in a page usually results in either an overflow or an underflow for that page. We can

often transform a large underflow into an overflow by placing the grandchildren, the great grandchildren,

and so on in the same page, until we incur either only a modest underflow (in which case we are satisfied

with the placement) or an overflow (see Figures 3.7(b) and (c)).

There are two approaches for dealing with the overflow. First, an overflowed child can be placed into

its own page to become the top-level node in that page. We then seek to place its children in the same

page. This aggressive placement helps minimize disk accesses on searches. Second, an overflowed child
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Figure 3.9: Cache-First fpB+-Tree design.

can be stored in special overflow pages. This is the only reasonable solution for overflowed leaf parent

nodes, because their children are stored in leaf pages.

Our node placement scheme is summarized in Figure 3.9. For non-leaf nodes, we use the aggressive

node placement for good search performance, except for leaf parents, which use overflow pages. Leaf

nodes are stored in leaf-only pages, for good range scan performance.

Algorithms. When creating the index, we determine the optimal node widths for cache perfor-

mance by applying the same optimization goal G used in the disk-first approach. The search cost can

be computed similar to prefetching B+-Trees, which is described previously in Section 2.2.2. The only

difference is that searches in cache-first fpB+-Trees incur fewer number of TLB misses due to the ag-

gressive placement of nodes into pages. The average number of page accesses can be estimated given

the tree structure. Table 3.1 in Section 3.4 depicts the optimal node widths used in our experiments.

We now consider each of the index operations.

• Bulkload. We focus on how to achieve the node placement depicted in Figure 3.9. Leaf nodes are

simply placed consecutively in leaf pages, and linked together with sibling links, as shown in the

figure. Non-leaf nodes are placed according to the aggressive placement scheme, as follows.

First, we compute (i) the maximum number of levels of a full subtree that fit within a page, and

(ii) the resulting underflow for such a subtree, i.e., how many additional nodes fit within the page.

For example, if each node in the full subtree has 69 children, but a page can hold only 23 nodes,
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then only one level fits completely and the resulting underflow is 22 nodes. We create a bitmap

with one bit for each child (69 bits in our example), and set a bit for each child that is to be placed

with the parent (22 bits in our example, if we are bulkloading 100% full). We spread these set bits

as evenly as possible within the bitmap.

As we bulkload nodes into a page, we keep track of each node’s relative level in the page, denoted

its in-page level. The in-page level is stored in the node header. The top level node in the page has

in-page level 0. To place a non-leaf node, we increment its parent’s in-page level. If the resulting

level is less than the maximum number of in-page levels, the non-leaf node is placed in the same

page as its parent, as it is part of the full subtree. If the resulting level is equal to the maximum

number of in-page levels, the node is placed in the same page if the corresponding bit in the bit

mask is set. If it is not set, the non-leaf node is allocated as the top level node in a new page, unless

the node is a leaf parent node, in which case it is placed into an overflow page.

• Insertion. For insertion, if there are empty slots in the leaf node, the new entry is simply inserted.

Otherwise, the leaf node needs to be split into two. If the leaf page still has spare node space,

the new leaf node is allocated within the same page. Otherwise, we split the leaf page by moving

the second half of the leaf nodes to a new page and updating the corresponding child pointers in

their parents. (To do this, we maintain in every leaf page a back pointer to the parent node of the

first leaf node in the page, and we connect all leaf parent nodes through sibling links.) Having

performed the page granularity split, we now perform the cache granularity split, by splitting the

leaf node within its page.

After a leaf node split, we need to insert an entry into its parent node. If the parent is full, it

must first be split. For leaf parent nodes, the new node may be allocated from overflow pages.

But if further splits up the tree are necessary, each new node must be allocated according to our

aggressive placement scheme.

Figure 3.10 helps illustrate the challenges. We need to split node A, a non-leaf node whose children

are non-leaf nodes, into two nodes A1 and A2, but there is no space in A’s page for the additional

node. As shown in Figure 3.10(b), a naı̈ve approach is to allocate a new page for A2. However,
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Figure 3.10: Non-leaf node splits.

A2’s children are half of A’s children, which are all top level nodes in other pages. Thus either

A2 is the only node in the new page, which is bad for I/O performance and space utilization, or

we must move A2’s children up into A2’s page, which necessitates promoting A2’s grandchildren

to top level nodes on their own pages, and so on. Instead, to avoid the drawbacks of both these

options, we split A’s page into two, as shown in Figure 3.10(c).

• Search. Search is quite straightforward. One detail is worth noting. Each time the search proceeds

from a parent to one of its children, we compare the pageID of the child pointer with that of the

parent page. If the child is in the same page, we can directly access the node in the page without

retrieving the page from the buffer manager.

• Deletion. Similar to disk-first fpB+-Trees.

3.3.5 Improving Range Scan Cache Performance

For range scans, we employ jump-pointer array prefetching, as described in Section 3.2.2, for both I/O

and cache performance. We now highlight some of the details.

In disk-first fpB+-Trees, both leaf pages and leaf parent pages have in-page trees. For I/O prefetching,

we build an internal jump-pointer array by adding sibling links between all in-page leaf nodes that are

in leaf parent pages, because collectively these nodes point to all the leaf pages. For cache prefetching,
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Figure 3.11: External jump-pointer array.

we build a second internal jump-pointer array by adding sibling links between all in-page leaf parent

nodes that are in leaf pages, because collectively these nodes point to all the leaf nodes of the overall

tree (i.e., all in-page nodes containing tupleIDs). In both jump-pointer arrays, sibling links within a

page are implemented as page offsets and stored in the nodes, while sibling links across page boundaries

are implemented as pageIDs and stored in the page headers.

In cache-first fpB+-Trees, leaf pages contain only leaf nodes, while leaf parent pages can be either

in the aggressive placement area or in overflow pages. Thus at both the page and cache granularities,

sibling links between leaf parents may frequently cross page boundaries (e.g., a sequence of consecutive

leaf parents may be in distinct overlap pages). Thus the internal jump-pointer array approach is not

well suited for cache-first fpB+-Trees. Instead, as shown in Figure 3.11, we maintain an external jump-

pointer array that contains the page IDs for all the leaf pages, in order to perform I/O prefetching.

Similarly, for cache prefetching, we could maintain in each leaf page header an external jump-pointer

array, which contains the addresses of all nodes within the page. Instead, we observe that our in-page

space management structure indicates which slots within a page contain nodes, and hence we can use it

to prefetch all the leaf nodes in a page before doing a range scan inside the page.

3.4 Cache Performance through Simulations

In Chapter 2, we have verified our simulation model by comparing the simulation results with real

machine results on the Itanium 2 machine. Since the simulation platform provides more instrumentations
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and mechanisms for us to better understand the cache behavior of a program, we take a different approach

to presenting the results in this chapter. We first perform detailed cycle-by-cycle simulations to evaluate

and understand the cache performance of fpB+-Trees in Section 3.4. Then in Section 3.5, we verify our

findings on the Itanium 2 machine. Section 3.6 evaluates the I/O performance of fpB+-Trees.

3.4.1 Experimental Setup

We evaluate the CPU cache performance of fpB+-Trees through detailed simulations of fully-functional

executables running on a state-of-the-art machine. The simulator is described previously in Section 2.4.2.

The memory hierarchy of the simulator is based on the Itanium 2 processor [44].

We implemented five index structures: (i) disk-optimized B+-Trees with slotted pages, (ii) disk-

optimized B+-Trees with arrays in pages, (iii) micro-indexing, (iv) disk-first fpB+-Trees, and (v) cache-

first fpB+-Trees. For disk-optimized B+-Trees, our two implementations differ in their page structures.

In disk-optimized B+-Trees with slotted pages, a page contains a slot offset array at the end, which points

to every index entry (a key and a pageID or tupleID) in the page. Index entries are not necessarily con-

tiguous in a page. In contrast, the second implementation of disk-optimized B+-Trees contains a large

contiguous key array, and a contiguous array of pageIDs or tupleIDs in every page. Our experiments

will show that while the former implementation has lower update cost, it has worse search performance.

Since the slotted page organization is more common in practice, we use this tree structure as the baseline

for all our comparisons. We study the implementation with arrays in pages mainly for the purpose of

better understanding the behavior of the slotted page implementation and micro-indexing.

We implemented bulkload, search, insertion, deletion, and range scan operations for all the trees

(range scans for micro-indexing was not explicitly implemented because its behavior is similar to that

of disk-optimized B+-Trees with arrays in pages). We implemented the index structures on top of our

buffer manager, which uses the CLOCK algorithm to do page replacement.

We use 4 byte keys (except in Section 3.4.7, where we use 20 byte keys), 4 byte pageIDs, 4 byte

tupleIDs, and 2 byte in-page offsets. We partitioned keys and pointers into separate arrays in all tree

nodes (except for disk-optimized B+-Trees with slotted pages) for better cache performance [31, 62].
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Table 3.1: Optimal width selections (4 byte keys, T1 = 250, Tnext = 15).

Disk-First fpB+-Trees Cache-First fpB+-Trees Micro-Indexing

page
size

non-leaf
node

leaf
node

page
fan-out

cost
optimal

node
size

page
fan-out

cost
optimal

subarray
size

page
fan-out

cost
optimal

4KB 64 384 470 1.00 576 497 1.01 128 496 1.01

8KB 192 256 961 1.01 576 994 1.01 192 1008 1.01

16KB 128 768 1995 1.05 960 2023 1.00 320 2032 1.02

32KB 256 832 4017 1.02 960 4046 1.00 320 4064 1.01

Disk-First fpB+-Trees have 2 byte in-page pointers in non-leaf nodes and 4 byte pointers in leaf nodes,

while cache-first fpB+-Trees have 6 byte pointers combining pageIDs and in-page offsets in non-leaf

nodes. We performed experiments for page sizes of 4KB, 8KB, 16KB, and 32KB, which covers the

range of page sizes in most of today’s database systems. As shown in Table 3.1, we computed optimal

node widths for fpB+-Trees using T1 = 250 and Tnext = 15 when key size is 4 bytes. The slowdowns

relative to the optimal performance show the measurements in our experiments, as will be described in

Section 3.4.2. We can see that the optimal width selections all satisfy our optimization criterion G , i.e.

maximizing leaf page fan-out while achieving within 10% of the best search performance.

In our micro-indexing implementation, a tree page contains a header, a micro-index, a key array, and

a pointer array. The micro-index is formed by dividing the key array into sub-arrays of the same size

and copying the first keys of the sub-arrays into the micro-index. A search in a page first looks up the

micro-index to decide which sub-array to go to and then searches that sub-array. For better performance,

we require the sub-array size to be a multiple of the cache line size (if applicable) and align the key array

at cache line boundaries. To improve the performance of micro-indexing, we employ pB+-Tree-like

prefetching for micro-indices, key sub-arrays, and pointer sub-arrays. Insertion and deletion follow the

algorithms of disk-optimized B+-Trees, but then rebuild the affected parts of the micro-index. As shown

in Table 3.1, we computed the optimal sub-array sizes for micro-indexing based on the same optimal

criterion G as advocated for fpB+-Trees.

We try to avoid conflict cache misses in the buffer manager between buffer control structures and
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Figure 3.12: 10,000 random searches in trees that are 100% full.

buffer pool pages. The control structures are allocated from the buffer pool itself, and only those buffer

pages that do not conflict with the control structures will be used. In fpB+-Trees, putting top-level in-

page nodes at the same in-page position would cause cache conflicts among them. So we instead place

them at different locations determined by a function of the pageIDs.

3.4.2 Search Cache Performance through Simulations

Varying the Number of Entries in Leaf Pages. Figures 3.12 and 3.13 show the execution times of

10,000 random searches after bulkloading 1e5, 3e5, 1e6, 3e6, and 1e7 keys into the trees (nodes are
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100% full except the root). All caches are cleared before the first search, and then the searches are per-

formed one immediately after another. The four plots in Figure 3.12 show search performance when the

database page sizes are 4KB, 8KB, 16KB, and 32KB, respectively. The fpB+-Trees and micro-indexing

use the corresponding optimal widths in Table 3.1. From the figures, we see that the cache-sensitive

schemes, fpB+-Trees and micro-indexing, all perform significantly better than disk-optimized B+-Trees.

Compared to disk-optimized B+-Trees with slotted nodes, the cache-sensitive schemes achieve speedups

between 1.38 and 4.49 at all points and between 2.22 and 4.49 when the trees contain at least 1 million

entries. Moreover, comparing the two disk-optimized B+-Tree implementations, the slotted page orga-

nization is significantly worse because searches incur cache misses at both slot offset arrays and index

entries. Furthermore, comparing the three cache-sensitive schemes, we find their performance more or

less similar. The two fpB+-Tree schemes are slightly better than micro-indexing, and the cache-first

fpB+-Tree is the best of all three cache-sensitive schemes in most experiments.

When the page size increases from 4KB to 32KB, the performance of disk-optimized B+-Trees be-

comes slightly worse. While larger leaf pages cause more cache misses at the leaf level, this cost is

partially compensated by the savings at the non-leaf levels: Trees become shallower and/or root nodes

have fewer entries. At the same time, fpB+-Trees and micro-indexing perform better because larger

page sizes leave more room for optimization. With the two trends, we see larger speedups over disk-

optimized B+-Trees with slotted nodes: over 2.81 for 16KB pages, and over 3.41 for 32KB pages, when

trees contain at least 1 million entries.

Varying Node Width. Figure 3.13 compares the performance of different node widths for fpB+-

Trees and micro-indexing when the page size is 16KB. Our optimal criterion is to maximize leaf page

fan-out while keeping analytical search performance within 10% of the best. Figure 3.13 confirms that

our selected trees indeed achieve search performance very close to the best among the node choices.

The experiments reported here correspond to the experiments in Figure 3.12(c) with 10 million keys in

trees. Figures 3.13(a)–(c) show the node sizes for minimal execution times, the optimal widths selected,

and all the other node sizes that have analytical search performance within 10% of the best. As shown

in Figure 3.13, our selected optimal trees all perform within 5% of the best. (Table 3.1 also reports the
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Figure 3.13: Optimal width selection when page size is 16 KB. (“min”: the width achieving the minimal

execution time; “opt” : the selected optimal width given the optimal criterion.)
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Figure 3.14: Search varying node occupancy (10 million keys, 16KB pages, 10,000 searches).
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search cost of the selected optimal trees over the best search performance when the database page size is

4KB, 8KB, and 32KB.) Therefore, in the experiments that follow, we use the optimal node sizes given

in Table 3.1.

Varying Node Occupancy. In Figure 3.14, we varied the 1e7-entry experiments in Figure 3.12(c)

with bulkload fill factors ranging from 60% to 100%. Compared with disk-optimized B+-Trees with

slotted pages, fpB+-Trees and micro-indexing achieve speedups between 2.62 and 3.23.

3.4.3 Insertion Cache Performance through Simulations

Figure 3.15 shows the insertion performance in three different settings. The experiments all measured the

execution times for inserting 10,000 random keys after bulkloads, while varying the bulkload fill factor,

the numbers of entries in leaf pages, and the page size. The fpB+-Trees achieve up to a 3.83 speedup over

disk-optimized B+-Trees with slotted pages, and up to a 20-fold speedup over disk-optimized B+-Trees

with index entry arrays, while micro-indexing performs almost as poorly as disk-optimized B+-Trees

with index entry arrays.

Figure 3.15(a) compares insertion performance of trees from 60% to 100% full containing 10 million

keys. Compared to the two schemes that store large contiguous arrays of index entries in pages (disk-

optimized B+-Trees with index entry arrays and micro-indexing), the other schemes avoid the large data

movement cost for updates and perform dramatically better when trees are between 60% and 90% full.

The fpB+-Trees achieve 13 to 20-fold speedups over disk-optimized B+-Trees with index entry arrays

between 60% and 90%, while for 100% full trees, they are over 2.0 times better.

Interestingly, the curves have extremely different shapes: Those of disk-optimized B+-Trees with

index entry arrays and micro-indexing increase from 60% to 90% but drop at the 100% point, while

the curves of fpB+-Trees and disk-optimized B+-Trees with slotted pages stay flat at first but jump

dramatically at the 100% point. These effects can be explained by the combination of two factors: data

movement and page splits. When trees are 60% to 90% full, insertions usually find empty slots and

the major operation after searching where the key belongs is to move the key and pointer arrays in
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Figure 3.15: Insertion cache performance (default parameters: 10 million keys, 100% full, 16 KB pages,

10,000 insertions).

order to insert the new entry. When large contiguous arrays are stored in pages, this data movement

is by far the dominant cost. As the occupied portions of the arrays grow from 60% to 90%, this cost

increases, resulting in slower insertion times. In fpB+-Trees, we reduced the data movement cost by

using smaller cache-optimized nodes, resulting in 13 to 20-fold speedups. Data movement has become

much less costly than search, leading to the flat curves up through 90% full. Similarly, the curve of

slotted page organization is also flat until 90% full because it reduces data movement by using one level

of indirection through the slot offset arrays. However, the use of slot offset arrays results in poor CPU

cache performance for search. Compared to disk-optimized B+-Trees with slotted pages, fpB+-Trees

achieve a speedup of over 2.46 because of faster searches.

When the trees are 100% full, insertions cause frequent page splits. In disk-optimized B+-Trees with

slotted pages and fpB+-Trees, the cost of a page split is far more than the previous data movement cost,

resulting in the large jump seen in the curves. In schemes that store large contiguous arrays in pages,

however, the page split cost is comparable to copying half of a page, which is the average data movement

cost for inserting into an almost full page. But later insertions may hit half empty pages (just split) and
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hence incur less data movement, resulting in faster insertion times at the 100% point. Moreover, disk-

optimized B+-Trees with slotted pages have to access each index entry through the slot offset array,

while the other schemes all directly move a number of index entries at a time. This additional cost of

indirection makes the performance of the slotted page organization even worse than the index entry array

page organization for inserting into 100% full trees.

Figure 3.15(b) shows insertion performance on full trees of different sizes. Compared to disk-optimized

B+-Trees with slotted pages, fpB+-Trees achieve speedups up to 2.90 when the number of entries in leaf

pages is increased from 1e5 to 1e7. Compared to disk-optimized B+-Trees with index entry arrays,

fpB+-Trees achieve speedups from 8.16 to 2.07. This decrease in speedup is caused by the increasing

number of page splits (from 48 to 1631 leaf page splits for disk-optimized B+-Trees with index entry

arrays, and similar trends for other indices). As argued above, larger number of page splits have a much

greater performance impact on fpB+-Trees than on indices using large contiguous arrays, leading to the

speedup decrease.

Figure 3.15(c) compares the insertion performance varying page sizes when trees are 100% full. As

the page size grows, the execution times of disk-optimized B+-Trees and micro-indexing degrade dra-

matically because of the combined effects of larger data movement and larger page split costs. In fpB+-

Trees, though page split costs also increase, search and data movement costs only change slightly, be-

cause with larger page sizes comes the advantages of larger optimal node widths. Therefore, the curves

of fpB+-Trees increase only slightly in Figure 3.15(c). In Figure 3.15(c), fpB+-Trees achieve 1.12–3.83

speedups over the two disk-optimized B+-Trees.

Comparing the two fpB+-Trees, we see they have similar insertion performance. Sometimes cache-

first fpB+-Trees perform worse than disk-first fpB+-Trees. This is primarily because of the more com-

plicated node/page split operations in cache-first fpB+-Trees, as discussed in Section 3.3.4.

3.4.4 Deletion Cache Performance through Simulations

Deletions are implemented as lazy deletions in all the indices. A search is followed by a data movement

operation to remove the deleted entry, but we do not merge underflowed pages or nodes. Figure 3.16
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Figure 3.16: Deletion cache performance (default parameters: 10 million keys, 100% full, 16 KB pages,

10,000 deletions).

evaluates deletion performance (for 10,000 random deletions) in three settings: (a) varying the bulkload

fill factor when the page size is 16KB, (b) varying the number of index entries when trees are 100%

full, and (c) varying the page sizes when the trees are 100% full. The dominant cost in disk-optimized

B+-Trees with index entry arrays and micro-indexing is the data movement cost, which increases as

the bulkload factor increases, the page size grows, and the tree height or root page occupancy grows

as the tree size increases. For disk-optimized B+-Trees with slotted pages, slot offset arrays must be

kept contiguous. The size of the slot offset arrays increases as the page size, leading to increasing data

movement cost for deletions. However, the search and data movement costs of fpB+-Trees only change

slightly. So the fpB+-Trees achieve 3.2–24.2 fold speedups over disk-optimized B+-Trees with index

entry arrays, and 2.8–15.3 fold speedups over disk-optimized B+-Trees with slotted pages.

3.4.5 Range Scan Cache Performance through Simulations

Figures 3.17(a) and (b) compare the range scan cache performance of fpB+-Trees and disk-optimized

B+-Trees in two settings: (a) varying the range size from 10 to 1 million index entries, and (b) varying
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Figure 3.17: Range scan performance (default parameters: 10 million keys in trees, 100% full, 16 KB

pages, scanning 1 million keys).

the bulkload fill factor from 60% to 100%. The trees are bulkloaded with 10 million keys. We generate

100 random start keys, for each computing an end key such that the range spans precisely the specified

number of index entries, and then perform these 100 range scans one after another. From the figures, we

see that the two disk-optimized B+-Tree curves are very different: The slotted page organization is up

to 2.8-fold slower than the array page organization. This is because the slotted page organization pays

the indirection cost when retrieving index entries within a page during a range scan. Compared to the

disk-optimized B+-Trees with slotted pages, the disk-first and cache-first fpB+-Trees achieve speedups

between 1.9 and 20.0.

3.4.6 Mature Tree Cache Performance

We performed a set of experiments with mature trees created by bulkloading 10% of index entries and

then inserting the remaining 90%. We vary the number of index entries in the mature trees from 1e5 to

1e7 for the search, insertion, and deletion experiments, as shown in Figures 3.18(a)-(c). For range scans,

we vary the range size from 10 index entries to 1 million index entries, as shown in Figure 3.18(d).

From the figures, we find performance gains similar to those shown in our previous experiments with

bulkloaded trees. Compared to disk-optimized B+-Trees with slotted pages, fpB+-Trees improve search
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Figure 3.18: Mature tree cache performance.

performance by a factor of 1.7–3.1, insertion performance by a factor up to 2.83, deletion performance

by a factor of 4.2–6.9, and range scan performance by a factor of 2.2–20.1.

3.4.7 Results with Larger Key Size

Finally, we present our experimental results with larger keys. Figures 3.19(a)-(d) show the index cache

performance when 20-byte keys are used, and the experiments correspond to those (with 4-byte keys)

shown previously in Figure 3.12(c), Figure 3.15(a), Figure 3.16(a), and Figure 3.17(a), respectively.

Comparing the corresponding figures, we see that experiments with larger keys show similar perfor-
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Figure 3.19: Operations with 20B keys and 16KB pages. (Disk-First fpB+-Tree: non-leaf node=64B,

leaf node=384B; Cache-First fpB+-Tree: node size=576B; Micro-Indexing: subarray size = 128B)

mance gains to our previous experiments. Compared to disk-optimized B+-Trees with slotted pages,

fpB+-Trees improve search by a factor of 2.1–3.3, insertion by a factor of 1.5–2.6, deletion by a factor

of 2.9–4.3, and range scan by a factor of 2.2–32.5.

3.5 Cache Performance on an Itanium 2 Machine

After analyzing the experimental results through simulations, in this section, we present our experimental

results on the Itanium 2 machine to verify the findings in the previous section. We begin by describing
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our experimental setup. Then we present the results on search, insertion, deletion, range scan, and

mature tree operations. Finally, we compare the simulation and Itanium 2 results.

3.5.1 Experimental Setup

We use the same Itanium 2 machine for real machine experiments as in Chapter 2. (Its configuration

parameters are detailed previously in Section 2.4.1.) We study three index structures in the real machine

experiments: (i) disk-optimized B+-Trees with slotted pages, (ii) micro-indexing, and (iii) disk-first

fpB+-Trees. Note that in the simulation study, we use disk-optimized B+-Trees with index entry arrays

to better understand the performance of the other schemes. However, our major purpose in this section is

to verify the performance benefits of our schemes. Therefore, we only compare with the most common

implementation of disk-optimized B+-Trees. Moreover, we also do not show the performance of cache-

first fpB+-Trees because their cache performance has been shown to be similar to that of disk-optimized

B+-Trees. (Cache-First fpB+-Trees may incur large I/O overhead and therefore less attractive, as will

be described in Section 3.6.)

In our experiments, we use eight-byte keys for easy comparison with our previous experiments with

prefetching B+-Trees. However, unlike experiments for main memory indices, we use four-byte pageIDs

or tupleIDs instead of eight-byte pointers. The index structures discussed in this chapter do not directly

contain memory addresses as pointers. Instead, they contain ID values determined by the database stor-

age manager. Ideally, these physical IDs are kept unchanged when a database is ported across different

platforms. Therefore, their sizes should not be affected by the memory address size of the Itanium 2

machine. The other aspects of the index structures follow the descriptions in the simulation experiments

in Section 3.4.1.

Table 3.2 shows the computed optimal node widths for disk-first fpB+-Trees and micro-indexing us-

ing T1 = 189 and Tnext = 24 when key size is 8 bytes. The slowdowns relative to the optimal performance

show the measurements in our experiments. We can see that like our simulation experiments, the op-

timal width selections all satisfy our optimization criterion G , i.e. maximizing leaf page fan-out while

achieving within 10% of the best search performance.
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Table 3.2: Optimal width selections on the Itanium 2 machine (8 byte keys, T1 = 189, Tnext = 24).

Disk-First fpB+-Trees Micro-Indexing

page
size

non-leaf
node

leaf
node

page
fan-out

cost
optimal

subarray
size

page
fan-out

cost
optimal

4KB 128 384 310 1.00 128 320 1.00

8KB 128 640 636 1.01 384 672 1.01

16KB 256 640 1325 1.00 384 1344 1.01

32KB 384 896 2664 1.00 768 2704 1.00

Since data movement operations occur frequently in all the indices, we examined a few choices of

implementing them on the Itanium 2 machine. There are three types of data movements in the indices:

(i) moving data to a different page during page splits; (ii) moving data for a few bytes toward lower

memory addresses; and (iii) moving data for a few bytes to-wards higher memory addresses. The latter

two cases occur when removing an entry from or inserting an entry into an array. Since the in-page

offsets (for both disk-optimized B+-Trees with slotted pages and disk-first fpB+-Trees) are two-bytes,

we would like to support data movements with a granularity of at least 2 bytes (if not 1 byte). We

decide to use the library function “memcpy” because it is even faster than copying with 2-byte integers.

However, “memcpy” can only deal with the first two types of data movements. Although the third type

can be handled by “memmove”, its performance is significantly worse than “memcpy”. Surprisingly, it

is more efficient to copy the source data to a temporary buffer and then copy it to the destination using

two “memcpy” calls. Therefore, we decide to use this simple implementation of two “memcpy” calls

for the third type of data movements. However, this choice result in an additional “memcpy” call for

inserting keys into disk-first fpB+-Trees but deleting keys from disk-optimized B+-Trees with slotted

pages (the slots are in reverse key order). As a result, the insertion speedups of our schemes are smaller

than those of deletion under similar settings, as will be described further in Section 3.5.4 and 3.5.6.

For each of the point in the figures that follow, we performed 30 runs and measured the user-mode

execution times in cycles using the perfmon library. Note that the instruction overhead of buffer man-

agement is included in all the measurements. We compute and report the average of the 30 runs for each
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Figure 3.20: Search cache performance on the Itanium 2 machine (default parameters: 10 million keys,

100% full, 16 KB pages, 10,000 searches).

experiment. The standard deviations of the experiments are all within 5% of the averages, and over 90%

of the experiments have their standard deviations within 1% of the averages.

3.5.2 Search Performance on Itanium 2

Figures 3.20(a)–(c) show the cache performance of 10,000 random searches varying the node occupancy

from 60% to 100% for trees with 10 million keys, varying the tree size from 1e5 to 1e7 with trees that

are 100% full, and varying the page size from 4KB to 32KB for trees with 10 million keys. The default

parameters describe trees that are common across the three sets of experiments. From the figures, we see

that the cache-sensitive schemes, disk-first fpB+-Trees and micro-indexing, perform significantly better

than disk-optimized B+-Trees. Compared to disk-optimized B+-Trees with slotted nodes, our disk-first

fpB+-Trees achieve speedups between 1.20 and 1.79 at all points.

3.5.3 Insertion Performance on Itanium 2

Figures 3.21(a)–(c) show the performance of inserting 10,000 random keys into the indices while varying

node occupancy, tree size, and page size. The experiments correspond to those in the simulation experi-
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Figure 3.21: Insertion cache performance on the Itanium 2 machine (default parameters: 10 million

keys, 100% full, 16 KB pages, 10,000 insertions).
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Figure 3.22: Deletion cache performance on the Itanium 2 machine (default parameters: 10 million keys,

100% full, 16 KB pages, 10,000 deletions).
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ments as shown in Figures 3.15(a)–(c). Comparing the real machine results with the simulation results,

we see that the real machine curves follow similar trends except that the gap between micro-indexing

and disk-first fpB+-Trees is smaller. This means that the data movement cost for a large contiguous

array is less significant on the Itanium 2 machine. We used “memcpy” for moving large chunks of data

in our implementations. A possible explanation is that because the data movement has sequential ac-

cess patterns, either hardware or software prefetches (by the “memcpy” implementation) can be easily

employed for improving its performance.

When the trees are between 60% and 90% full, the performance of disk-optimized B+-Trees and

disk-first fpB+-Trees are similar. However, when the trees are 100% full, disk-optimized B+-Trees with

slotted pages suffer from the overhead of indirection through the slot offset arrays during page splits.

Compared to disk-optimized B+-Trees with slotted pages, our disk-first fpB+-Trees achieve 1.14–1.17X

speedups when trees are at most 90% full, and up to 4.36X speedups when trees are full.

3.5.4 Deletion Performance on Itanium 2

Figures 3.22(a) and (b) show the execution times of deleting 10,000 random keys from the indices

varying the bulkload fill factor from 60% to 100%, and varying the page size from 4KB to 32KB.

The trees are built in the same way as for Figures 3.16(a) and (c) in the simulation study. As we can

see from the figures, the curves all follow trends similar to those in the simulation study. Compared

to disk-optimized B+-Trees with slotted pages, our disk-first fpB+-Trees achieve 1.16–1.70X speedups.

Moreover, compared to the insertion performance with trees that are at most 90% full, we can see that the

speedups for deletion are larger than those for insertions. This is mainly because of the implementation

of data movement operations, as described previously in Section 3.5.1.

3.5.5 Range Scan Performance on Itanium 2

Figures 3.23(a) and (b) show the real machine range scan performance varying the range size and the

node occupancy. The figures report the same experiments as shown in Figures 3.17(a) and (b) in the
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Figure 3.23: Range scan cache performance on the Itanium 2 machine (default parameters: 10 million

keys in trees, 100% full, 16 KB pages, scanning 1 million keys).

simulation study. Compared to disk-optimized B+-Trees with slotted pages, our disk-first fpB+-Trees

achieve 1.03–1.25X speedups for ranges up to 100 entries, and 1.78–3.38X speedups for larger ranges

containing 1000 or more index entries.

3.5.6 Operations on Mature Trees

Next, we present the experimental results for operations on mature trees. Figures 3.24(a)–(c) show

the execution times normalized to those of disk-optimized B+-Trees for search, insertion, and deletion

operations while varying the number of operations from 1e2 to 1e5. The indices are created by bulk-

loading 1 million index entries and then inserting 9 million index entries. Compared to disk-optimized

B+-Trees with slotted pages, our disk-first fpB+-Trees improve search by a factor of 1.25–1.41, achieve

similar insertion performance, and improve deletion by a factor of 1.28–1.44. (We see the impact of

the implementation of data movement operations again. Given an implementation that has equally good

performance for moving data toward both directions, the insertion performance would be better.)

Figure 3.24(d) shows the execution times of scanning 100 random ranges while varying the range

size from 10 index entries to 1 million index entries. The experiments correspond to those shown in

Figure 3.23(a). Compared to disk-optimized B+-Trees with slotted pages, our disk-first fpB+-Trees
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Figure 3.24: Operations on mature trees on the Itanium 2 machine (default parameters: 10 million keys

in trees and 16 KB pages).

achieve 1.09–1.24X speedups for smaller ranges that contain up to 100 index entries, and 1.82–2.71X

speedups for larger ranges that contain 1000 or more index entries.

3.5.7 Comparing Simulation and Itanium 2 Results

Finally, we compare the simulation and Itanium 2 results. Comparing Figure 3.12 and Figure 3.14 with

Figure 3.20 for search performance, comparing Figure 3.15 with Figure 3.21 for insertion performance,

comparing Figure 3.16 with Figure 3.22 for deletion performance, and comparing Figure 3.17 with

Figure 3.23 for range scan performance, we see that the Itanium 2 curves all show similar trends to
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the simulation curves, which verifies the simulation results. (The speedups on the Itanium 2 machine

are comparable or smaller than the speedups in the simulation study. This is mainly because of the

larger memory latency in the simulator setting, which leads to larger benefits for cache optimizations.)

Therefore, we conclude that our experimental results on both the simulation platform and the Itanium 2

machine demonstrate significant benefits of the fpB+-Trees.

3.6 I/O Performance and Space Overhead

We evaluate the I/O performance of the fpB+-Trees through experiments on real machines. To study the

I/O performance of searches, we executed random searches, and then counted the number of I/O accesses

(i.e., the number of buffer pool misses). For searches, the I/O time is dominated by the number of I/Os,

because there is little overlap in accessing the pages in a search. To study the I/O performance of range

scans, we executed random range scans on the Itanium 2 machine using up to 8 disks. Furthermore, we

evaluate the I/O performance of range scans in a commercial DBMS: We implemented our jump-pointer

array scheme for disk-optimized B+-Trees within IBM DB2, and executed range scan queries on DB2.

3.6.1 Space Overhead

Figure 3.25 shows the space overhead6 of the fpB+-Trees compared to disk-optimized B+-Trees for a

range of page sizes, depicting two (extreme) scenarios: (i) immediately after bulkloading the trees 100%

full, and (ii) after inserting 9 million keys into trees bulkloaded with 1 million keys. We see that in

each of these scenarios, disk-first fpB+-Trees incur less than a 9% overhead. In cache-first fpB+-Trees,

the space overhead is less than 5% under scenario (a), even better than disk-first fpB+-Trees. This is

because the leaf pages in cache-first fpB+-Trees only contain in-page leaf nodes, while disk-first fpB+-

Trees build in-page trees (containing non-leaf and leaf nodes) in leaf pages. However, for the mature tree

scenarios, the space overheads of the cache-first fpB+-Tree can grow to 36%, because of the difficulties

in maintaining effective placement of nodes within pages over many insertions.

6Space Overhead =
number of pages in the index

number of pages in a disk-optimized B+-Tree
−1
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Figure 3.25: Space overhead.
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Figure 3.26: Number of disk accesses for searches.

Figure 3.25 also shows that as the page size grows, the space overhead of disk-first fpB+-Trees de-

creases because larger pages allow more freedom when optimizing in-page node widths.

3.6.2 Search Disk Performance

Figure 3.26 shows the search I/O performance of fpB+-Trees. The figure reports the number of I/O page

reads that miss the buffer pool when searching 10,000 random keys in trees containing 10 million keys.

The buffer pool was cleared before every experiment. We see that for all page sizes, disk-first fpB+-Trees
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perform close to that of disk-optimized B+-Trees, accessing less than 3% more pages. However, cache-

first fpB+-Trees may access up to 11% more pages. After looking into the experiments, we determined

that the extra cost is incurred mainly when accessing leaf parent nodes in overflow pages. For example

in the 4KB case in Figure 3.26(a), the fan-out of a non-leaf node is 57 and a page can contain part of a

two-level tree. But only 6 out of the 57 children can reside on the same page as a node itself. Therefore

even if all the parents of the leaf parent nodes are top-level nodes, 51 out of every 57 leaf parent nodes

will still be placed in overflow pages, leading to many more page reads than disk-optimized B+-Trees.

However, as page sizes grow, this problem is alleviated and the performance of cache-first fpB+-Trees

gets better, as can be seen for the 32KB points.

3.6.3 Range Scan Disk Performance

Unlike our search experiments, which counted the number of I/O accesses, our range scan I/O perfor-

mance experiments measure running times on the Itanium 2 machine (described earlier in Section 2.4.1)

using up to 8 disks. Each of the eight disks is a 15,000 rpm Seagate Cheetah 15K ST336754LW with an

average seek time of 3.6 ms, a track-to-track seek time of 0.2 ms, and an average rotational latency of 2

ms. These values give us a rough idea of the cost of a random disk access, the dominating operation of

range scans in non-clustered indices (which are the focus of this study).

We implemented a buffer pool manager using the POSIX thread (pthread) library. We imitate raw

disk partitions by allocating a large file on each disk used in an experiment and managing the mapping

from pageIDs to file offsets ourselves. The buffer manager has a dedicated worker thread for each of the

disks, which obtains I/O requests from a per-disk request queue and performs I/O operations on behalf

of the main thread. To perform an I/O operation, the main thread computes the target disk based on the

pageID, and puts an I/O request into the corresponding request queue. For synchronous I/O operations

(e.g., reading an index page), the main thread blocks until it receives a completion notification from the

appropriate worker thread. For prefetch requests, the main thread continues execution immediately after

enqueueing the request. The worker thread, however, performs a synchronous I/O read system call and

blocks on behalf of the main thread in the background. Later when the main thread attempts to access
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Figure 3.27: Range scan disk performance.

the prefetched page, it checks whether the valid flag of the destination buffer has been set by the worker

thread. If not, then the I/O prefetch has not yet completed, and therefore the main thread will block until

it receives the I/O completion notification from the worker thread.

We performed the following three operations to ensure that both the operating system file cache and

the caches on disk are cold before every run in our experiments: (i) we restricted the Linux operating

system to use only the lower 1GB of main memory by setting a boot flag; (ii) we allocated a 1GB

memory buffer that was written and then read; and (iii) we read separate 128MB files from each of the

eight disks.

We measure elapsed real times via gettimeofday. Each reported data point is the average of 30

runs; the standard deviation is less than 3% of the average in all cases. Moreover, for smaller ranges

containing 10,000 or fewer entries, we perform 100 disjoint range scans in every run in order to reduce

measurement variances. The reported points are computed by dividing the total execution times by 100.

To set up the experiments in this subsection, we bulkloaded the trees 100% full with 45 million (8-

byte) keys and then inserted 5 million keys to make the trees mature. Index pages are 16KB large. We

striped the index pages of a tree across 1-8 disks depending on the experiment.

Figure 3.27 compares the range scan I/O performance of disk-first fpB+-Trees and disk-optimized
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B+-Trees. Figure 3.27(a) shows the execution time in milliseconds for range scans using 8 disks, where

the starting keys are selected at random and the size of the resulting range varies from 10 index entries

to 10 million index entries. For small ranges (10-1000 entries), the execution times for the two trees are

indistinguishable because the ranges often fit within a single disk page. For larger ranges (10,000 entries

and up), which spans multiple pages, the disk-first fpB+-Tree with jump-pointer array I/O prefetching

provides a significant improvement over the disk-optimized B+-Tree. Even for the 10,000-entry case,

which scans only about 10 pages, the fpB+-Tree achieves a speedup of 2.41 over the disk-optimized B+-

Tree. Better still, for large scans of 1 million and 10 million entries, the disk-first fpB+-Tree is 6.52-6.58

times faster than the disk-optimized B+-Tree.

In our implementation of jump pointer array I/O prefetching, we avoid overshooting the end of a

range by searching for the end key and recording the end leaf pageID. From the small range results in

Figure 3.27(a), we see that this technique is quite effective. Note that this technique potentially incurs an

additional I/O for loading the end leaf page. This is not a problem for two reasons: (i) for large ranges,

this additional I/O overhead is negligible; (ii) for small ranges, the end leaf page tends to still be in the

buffer pool so that the range scan operation does not load the end leaf page again when accessing it.

Figure 3.27(b) shows the execution time in seconds for scanning 10 million entries, varying the num-

ber of disks. Figure 3.27(c) shows the speedups corresponding to the experiments in Figure 3.27(b).

Because of the data dependence in following the sibling links, disk-optimized B+-Trees read only one

leaf page at a time, and the I/Os for leaf pages are not overlapped. In contrast, jump pointer array

prefetching enables the disk-first fpB+-Trees to prefetch leaf pages sufficiently early. This ability leads

to significant benefits: a 6.58-fold speedup with 8 disks. Note that the speedup almost doubles when

doubling the number of disks. Since the I/O bandwidth used in the 8-disk experiments is only 33.3 MB/s

out of the 320MB/s maximum bandwidth supported by a single SCSI controller, the speedup is likely to

increase if more disks are added to the system.
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Figure 3.28: Impact of jump-pointer array prefetching on the range scan performance of DB2.

3.6.4 Range Scan Disk Performance on a Commercial DBMS

Finally, we evaluate the impact of jump-pointer array prefetching for range scans on a commercial

DBMS. We implemented our jump-pointer array scheme for disk-optimized B+-Trees within IBM’s

DB2 Universal Database7 . Because DB2’s index structures support reverse scans and SMP scan paral-

lelism, we added links in both directions, and at all levels of the tree. These links are adjusted at every

non-leaf page split and page merge.

We performed experiments on an IBM 7015-R30 machine (from the RS/6000 line) with 8 processors,

80 SSA disks, and 2GB of memory, running the AIX operating system. We populated a 12.8 GB table

across 80 raw partitions (i.e., 160 MB per partition) using 10 concurrent processes to insert a total of

roughly 50 million rows of random data of the form (int,int,char(20),int,char(512)). An index

was created using the three integer columns; its initial size was less than 1 GB, but it grows through

page splits. We used the query SELECT COUNT(*) FROM DATA, which is answered using the index.

Figure 3.28 shows the results of these experiments.

7Notices, Trademarks, Service Marks and Disclaimers: The information contained in this publication does not include

any product warranties, and any statements provided in this document should not be interpreted as such. The following terms

are trademarks or registered trademarks of the IBM Corporation in the United States and/or other countries: IBM, DB2, DB2

Universal Database. Other company, product or service names may be the trademarks or service marks of others.
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As we see in Figure 3.28, our results on an industrial-strength DBMS are surprisingly good (2.5-5.0

speedups). The top curves in both figures are for the plain range scan implementation without jump-

pointer array prefetching. The bottom curves show the situation when the leaf pages to be scanned

are already in memory; this provides a limit to the possible performance improvements. Figure 3.28(a)

shows that the performance of jump-pointer array prefetching increases with the number of I/O prefetch-

ers, until the maximum performance is nearly reached. Figure 3.28(b) shows that increasing the degree

of parallelism increases the query performance, which again tracks the maximum performance curve.

3.7 Related Work

A number of recent studies have demonstrated the importance of optimizing the cache performance

of a DBMS [1, 2, 5]. B+-Trees have been discussed in this regard, including several recent survey

papers [31, 62]. This thesis, however, is the first to propose a B+-Tree index structure that effectively

optimizes both CPU cache and disk performance on modern processors, for each of the basic B+-Tree

operations: searches, range scans, insertions, and deletions.

Lomet [61] presented techniques for selecting the optimal page size for B+-Trees when considering

buffer pool performance for disk-resident data. To achieve both good disk and good cache performance,

we propose to fit a cache-optimized tree into every disk-optimal B+-Tree page. However, this usually

results in an overflow or a large underflow of a page, as described in Section 3.3. We presented a

disk-first solution and a cache-first solution to solve this node size mismatch problem in this chapter.

Lomet’s recent survey of B+-Tree techniques [62] mentioned the idea of intra-node micro-indexing:

i.e., placing a small array in a few cache lines of the page that indices the remaining keys in the page.

While it appears that this idea had not been pursued in any detail before, we compare its performance

against fpB+-Trees later in our experimental results. We observe that while micro-indexing achieves

good search performance (often comparable to fpB+-Trees), it suffers from poor update performance. As

part of future directions, Lomet [62] has independently advocated breaking up B+-Tree disk pages into

cache-friendly units, pointing out the challenges of finding an organization that strikes a good balance

115



Chapter 3 Optimizing Both Cache and Disk Performance for B+-Trees

between search and insertion performance, storage utilization, and simplicity. We believe that fpB+-

Trees achieve this balance.

Graefe and Larson [31] presented a survey of techniques for improving the CPU cache performance

of B+-Tree indices. They discussed a number of techniques, such as order-preserving compressions,

and prefix and suffix truncation that stores the common prefix and suffix of all the keys in a node only

once,that are complementary to our study, and could be incorporated into fpB+-Trees. Bender et al. [9]

present a recursive B+-Tree structure that is asymptotically optimal, regardless of the cache line sizes

and disk page sizes, but assuming no prefetching.

3.8 Discussion

Variable Length Keys. We have focused on improving performance for B+-Trees with fixed length

keys. For variable length keys, the common index structure employs the slotted page organization.

However, as shown in our experiments, disk-optimized B+-Trees with slotted pages have poor search

cache performance and range scan cache performance. The structure shown in Figure 3.29 has been

suggested to have better cache performance in [31, 62]. The main idea is to extract fixed length prefixes

of the variable length keys to form a prefix array along with byte offsets pointing to the rest of index

entries, which includes the rest of the keys and pageIDs or tupleIDs. If the prefixes distinguish keys

well (e.g., after applying common prefix extraction), key comparison will mostly use the prefixes without

accessing the rest of the keys. And we essentially get back to the contiguous array structure. Better

performance results from the savings in key comparison and the spatial locality of the key prefix array.

We can employ fpB+-Trees to improve the performance of B+-Trees with variable length keys. Since

prefetching allows cache optimized nodes to be much larger than a cache line, we will be able to put large

variable length index entries in cache optimized nodes and then embed the nodes into disk-optimized

B+-Trees in the disk-first way, as shown conceptually in Figure 3.30. The actual fan-out of a node

varies due to the variable sizes of its index entries. Alternatively, we can replace the key prefix array in

Figure 3.29 with an in-page cache-optimized tree to further improve search and update performance.
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Rest of the key
Page ID/Tuple ID

Prefix
Key

Prefix
Key

page control info

Figure 3.29: Extracting key prefixes into an offset array.

Figure 3.30: fpB+-Trees for variable length keys.

Prefetching for Range Scans. For I/O range scan prefetching, we build jump-pointer arrays. An

alternative approach traverses the non-leaf pages of a tree, retrieving leaf pageIDs for prefetching. The

path from root page to the current leaf parent page can be recorded temporarily and with the help of the

child pointers in non-leaf pages, one can sweep the path across the tree from the beginning to the end

of the range. Although this approach saves the effort of building additional data structures, it becomes

complicated when there are more than three levels in trees.

Concurrency Control. Our disk-first fpB+-Trees can be viewed as a page organization scheme.

All the modifications are within a page. Therefore, the original concurrency control scheme for disk-

optimized B+-Trees can be still employed for disk-first fpB+-Trees. Moreover, the sibling links for

implementing jump-pointer arrays have already been advocated for concurrency control purposes [56].
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3.9 Chapter Summary

Previous studies on improving index performance have focused either on optimizing the cache perfor-

mance of memory-resident databases, or else optimizing the I/O performance of disk-resident databases.

What has been lacking prior to this study is an index structure that achieves good performance for both

of these important levels of the memory hierarchy. Our experimental results demonstrate that Fractal

Prefetching B+-Trees are such a solution:

• Compared with disk-optimized B+-Trees with slotted pages, Fractal Prefetching B+-Trees achieve

1.20-4.49X speedups for search cache performance, up to a factor of 20-fold speedup for range

scan cache performance, and up to a 15-fold speedup for update cache performance.

• Compared with disk-optimized B+-Trees with slotted pages, disk-first fpB+-Trees have low space

overhead (less than 9%) and low I/O overhead (less than 3%) for searches. Because cache-first

fpB+-Trees may have some large I/O overhead, we recommend in general the disk-first approach.

• Jump pointer array I/O prefetching achieves up to a five-fold improvement in the I/O performance

of range scans on a commercial DBMS (DB2).

In summary, by effectively addressing the complete memory hierarchy, fpB+-Trees are a practical solu-

tion for improving DBMS performance.
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Chapter 4

Improving Hash Join Performance through

Prefetching

4.1 Introduction

Hash join [54, 59, 74, 89, 101] has been studied extensively over the past two decades, and it is com-

monly used in today’s commercial database systems to implement equijoins efficiently. In its simplest

form, the algorithm first builds a hash table on the smaller (build) relation, and then probes this hash

table using tuples of the larger (probe) relation to find matches. However, the random access patterns in-

herent in the hashing operation have little spatial or temporal locality. When the main memory available

to a hash join is too small to hold the build relation and the hash table, the simplistic algorithm suffers

excessive random disk accesses. To avoid this problem, the GRACE hash join algorithm [54] begins by

partitioning the two joining relations such that each build partition and its hash table can fit within mem-

ory; pairs of build and probe partitions are then joined separately as in the simple algorithm. This I/O

partitioning technique limits the random accesses to objects that fit within main memory and results in

nice predictable I/Os for every source relation and intermediate partition. Because it is straightforward

to predict the next disk address for individual relation and partition, I/O prefetching can be exploited

effectively to hide I/O latencies. As a result, the I/O costs no longer dominate. For example, our exper-

iments on an Itanium 2 machine show that a hash join of two several GB relations is CPU-bound with
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Figure 4.1: User-mode execution time breakdown for hash join.

five or seven disks depending on whether output tuples are consumed in memory or written to disk, and

it becomes increasingly CPU-bound with each additional disk, as will be shown in Section 4.7.

4.1.1 Hash Joins Suffer from CPU Cache Stalls

So where do hash joins spend most of their time? Previous studies have demonstrated that hash joins

can suffer from excessive CPU cache stalls [14, 66, 90]. The lack of spatial or temporal locality means

the GRACE hash join algorithm cannot take advantage of the multiple levels of CPU cache in modern

processors, and hence it repeatedly suffers the full latency to main memory during building and probing.

Figure 4.1 provides a breakdown of the simulated user-level performance on our simulation platform.

The memory hierarchy of the simulator is modeled after the Itanium 2 machine [44], as described in

Section 2.4.2. The “partition” experiment divides a 200MB build relation and a 400MB probe relation

into 800 partitions, while the “join” experiment joins a 50MB build partition with a 100MB probe

partition. Each bar is broken down into four categories: busy time, data cache stalls, data TLB miss

stalls, and other stalls. As we see in Figure 4.1, both the partition and join phases spend a significant

fraction of their time—80% and 81%, respectively—stalled on data cache misses!

Given the success of I/O partitioning in avoiding random disk accesses, the obvious question is

whether a similar technique can be used to avoid random memory accesses. Cache partitioning, in

which the joining relations are partitioned such that each build partition and its hash table can fit within

120



Section 4.1 Introduction

the (largest) CPU cache, has been shown to be effective in improving performance in memory-resident

and main-memory databases [14, 66, 90]. However, cache partitioning suffers from two important prac-

tical limitations. First, for traditional disk-oriented databases, generating cache-sized partitions while

scanning from disk requires a large number of concurrently active partitions. Experiences with the IBM

DB2 have shown that storage managers can handle only hundreds of active partitions per join [59].

Given a 2 MB CPU cache and (optimistically) 1000 partitions, the maximum relation size that can be

handled is only 2 GB. Beyond that hard limit, any cache partitioning must be done using additional

passes through the data — as will be shown in Section 4.7, this results in up to 89% slowdown compared

to the techniques we propose. Second, cache partitioning assumes exclusive use of the cache, but this

assumption is unlikely to be valid in an environment with multiple ongoing activities. Once the cache is

too busy with other requests to effectively retain its partition, the performance may degrade significantly

(up to 78% in the experiments in Section 4.7). Hence, we would like to explore an alternative technique

that does not suffer from these limitations.

4.1.2 Our Approach: Cache Prefetching

Rather than trying to avoid CPU cache misses by building tiny (cache-sized) hash tables, we instead

propose to exploit cache prefetching to hide the cache miss latency associated with accessing normal

(memory-sized) hash tables, by overlapping these cache misses with computation.

Challenges in Applying Prefetching to Hash Join. A naı̈ve approach to prefetching for hash join

might simply try to hide the latency within the processing of a single tuple. For example, to improve

hash table probing performance, one might try to prefetch hash bucket headers, hash buckets, build

tuples, etc. Unfortunately, such an approach would have little benefit because later memory references

often depend upon previous ones (via pointer dereferences). Existing techniques for overcoming this

pointer-chasing problem [64] will not work because the randomness of hashing makes it impossible to

predict the memory locations to be prefetched.

The good news is that although there are many dependencies within the processing of a single tuple,

dependencies are less common across subsequent tuples due to the random nature of hashing. Hence
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our approach is to exploit inter-tuple parallelism to overlap the cache misses of one tuple with the

computation and cache misses associated with other tuples.

A natural question is whether either the hardware or the compiler could accomplish this inter-tuple

cache prefetching automatically; if so, we would not need to modify the hash join software. Unfortu-

nately, the answer is no. As described in Section 1.2.2, hardware-based prefetching techniques [4] rely

upon recognizing regular and predictable (e.g., strided) patterns in the data address stream, but the inter-

tuple hash table probes do not exhibit such behavior. In many modern processors, the hardware also

attempts to overlap cache misses by speculating ahead in the instruction stream. However, as described

in Section 1.2.2, although this approach is useful for hiding the latency of primary data cache misses that

hit in the secondary cache, the instruction window size is often a magnitude smaller than the instructions

wasted due to a cache miss to main memory, and is even smaller compared with the amount of pro-

cessing required for a single tuple. While our prefetching approaches (described below) are inspired by

compiler-based scheduling techniques, existing compiler techniques for scheduling prefetches [64, 73]

cannot handle the ambiguous data dependencies present in the hash join code (as will be discussed in

detail in Sections 4.4.4 and 4.5.3).

Overcoming these Challenges. To effectively hide the cache miss latencies in hash join, we propose

and evaluate two new prefetching techniques: group prefetching and software-pipelined prefetching.

For group prefetching, we apply modified forms of compiler transformations called strip mining and

loop distribution (illustrated later in Section 4.4) to restructure the code such that hash probe accesses

resulting from groups of G consecutive probe tuples can be pipelined.1 The potential drawback of group

prefetching is that cache miss stalls can still occur during the transition between groups. Hence our

second prefetching scheme leverages a compiler scheduling technique called software pipelining [55] to

avoid these intermittent stalls.

A key challenge that required us to extend existing compiler-based techniques in both cases is that

although we expect dependencies across tuples to be unlikely, they are still possible, and we must take

them into account to preserve correctness. If we did this conservatively (as the compiler would), it would

1In our experimental set-up in Section 4.7, G = 25 is optimal for hash table probing.
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severely limit our potential performance gain. Hence we optimistically schedule the code assuming that

there are no inter-tuple dependencies, but we perform some extra bookkeeping at runtime to check

whether dependencies actually occur. If so, we temporarily stall the consumer of the dependence until it

can be safely resolved. Additional challenges arose from the multiple levels of indirection and multiple

code paths in hash table probing.

A surprising result in our study is that contrary to the conventional wisdom in the compiler optimiza-

tion community that software pipelining outperforms strip mining, group prefetching appears to be more

attractive than software-pipelined prefetching for hash joins. A key reason for this difference is that the

code in the hash join loop is far more complex than the typical loop body of a numeric application (where

software pipelining is more commonly used [55]).

The chapter is organized as follows. Section 4.2 discusses the related work in greater detail. Sec-

tion 4.3 analyzes the dependencies in the join phase, the more complicated of the two phases, while

Sections 4.4 and 4.5 use group prefetching and software-pipelined prefetching to improve the join phase

performance. Section 4.6 discusses prefetching for the partition phase. Experimental results appear in

Section 4.7. Finally, Section 4.8 summarizes this chapter.

4.2 Related Work

Since the GRACE hash join algorithm was first introduced [54], many refinements of this algorithm have

been proposed for the sake of avoiding I/O by keeping as many intermediate partitions in memory as

possible [29, 59, 74, 89, 101]. All of these hash join algorithms, however, share two common building

blocks: (i) partitioning and (ii) joining with in-memory hash tables. To cleanly separate these two

phases, we use GRACE as our baseline algorithm throughout this chapter. We point out, however, that

our techniques should be directly applicable to the other hash join algorithms.

Several papers have developed techniques to improve the cache performance of hash joins [14, 66, 90].

Shatdal et al. showed that cache partitioning achieved 6-10% improvement for joining memory-resident

relations with 100B tuples [90]. Boncz, Manegold and Kersten proposed using multiple passes in cache
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partitioning to avoid cache and TLB thrashing [14, 66]. They showed large performance improvements

on real machines for joining vertically-partitioned relations in the Monet main memory database, un-

der exclusive use of the CPU caches. They considered neither disk-oriented databases, more traditional

physical layouts, multiple activities trashing the cache, nor the use of prefetching. They also proposed

a variety of code optimizations (e.g., using shift-based hash functions) to reduce CPU time; these opti-

mizations may be beneficial for our techniques as well.

As mentioned earlier, software prefetching has been used successfully in other scenarios [18, 19, 64,

73]. While software pipelining has been used to schedule prefetches in array-based programs [73], we

have extended that approach to deal with more complex data structures, multiple code paths, and the

read-write conflicts present in hash join.

Previous work demonstrated that TLB misses may degrade performance [14, 66], particularly when

TLB misses are handled by software. However, the vast majority of modern processors (including Intel

Pentium 4 [12] and Itanium 2 [44]) handle TLB misses in hardware. Moreover, TLB prefetching [85]

can be supported by treating TLB misses caused by prefetches as normal TLB misses. For example,

Intel Itanium 2 supports faulting prefetch instructions (lfetch.fault [44]), which can incur TLB misses

and automatically load TLB entries. Hence, using our prefetching techniques, we can overlap TLB

misses with computation, minimizing TLB stall time.

4.3 Dependencies in the Join Phase

In this section, we analyze the dependencies in a hash table visit in the join phase. Our purpose is to show

why a naı̈ve prefetching algorithm would fail. We study a concrete implementation of the in-memory

hash table, as shown in Figure 4.2. The hash table consists of an array of hash buckets, each composed

of a header and (possibly) an array of hash cells pointed to by the header. A hash cell represents a

build tuple hashed to the bucket. It contains the tuple pointer and a fixed-length (e.g., 4 byte) hash code

computed from the join key, which serves as a filter for the actual key comparisons. When a hash bucket

contains only a single entry, the single hash cell is stored directly in the bucket header. When two or
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A Hash Cell in the Header

Empty Bucket
Headers
Bucket
Hash Hash Cell Array

Figure 4.2: An in-memory hash table structure.

more tuples are hashed to the bucket, a hash cell array is allocated. When the array is full and a new

tuple is to be hashed to the same bucket, a new array doubling the capacity is allocated and existing cells

are copied to the new array.

A naı̈ve prefetching algorithm would try to hide cache miss latencies within a single hash table visit

by prefetching for potential cache misses, including hash bucket headers, hash cell arrays, and/or build

tuples. However, this approach would fail because there are a lot of dependencies in a hash table visit.

For example, the memory address of the bucket header is determined by the hashing computation. The

address of the hash cell array is stored in the bucket header. The memory reference for a build tuple is

dependent on the corresponding hash cell (in a probe). These dependencies essentially form a critical

path; a previous computation or memory reference generates the memory address of the next reference,

and must finish before the next one can start. Addresses would be generated too late for prefetching to

hide miss latencies. Moreover, the randomness of hashing makes it almost impossible to predict memory

addresses for hash table visits. These arguments are true for all hash-based structures.2 Therefore,

applying prefetching to the join phase algorithm is not a straightforward task.

4.4 Group Prefetching

Although dependencies within a hash table visit prevent effective prefetching, the join phase algorithm

processes a large number of tuples and dependencies are less common across subsequent tuples due to

2The structure in Figure 4.2 improves upon chained bucket hashing, which uses a linked list of hash cells in a bucket. It

avoids the pointer chasing problem of linked lists [65, 18].
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the randomness of hashing. Therefore, our approach is to exploit inter-tuple parallelism to overlap cache

miss latencies of one tuple with computations and miss latencies of other tuples. To ensure correctness,

we must systematically intermix multiple hash table visits, reorder their memory references, and issue

prefetches early enough. In this section, we propose group prefetching to achieve these goals.

4.4.1 Group Prefetching for a Simplified Probing Algorithm

We use a simplified probing algorithm to describe the idea of group prefetching. As shown in Fig-

ure 4.3(a), the algorithm assumes that all hash buckets have hash cell arrays and every probe tuple

matches exactly one build tuple. It performs a probe per loop iteration.

As shown in Figure 4.3(b), the group prefetching algorithm combines multiple iterations of the origi-

nal loop into a single loop body, and rearranges the probe operations into stages3 . Each stage performs

one computation or memory reference on the critical path for all the tuples in the group and then issues

prefetch instructions for the memory references of the next stage. For example, the first stage computes

the hash bucket number for every tuple and issues prefetch instructions for the hash bucket headers,

which will be visited in the second stage. In this way, the cache miss to read the hash bucket header of

a probe will be overlapped with hashing computations and cache misses for other probes. Prefetching

is used similarly in the other stages except the last stage. Note that the dependent memory operations

of the same probe are still performed one after another as before. However, the memory operations of

different probes are now overlapped.

4.4.2 Understanding Group Prefetching

To better understand group prefetching, we generalize the previous algorithms of Figure 4.3(a) and (b) in

Figure 4.3(c) and (d). Suppose we need to process N independent elements. For each element i, we need

to make k dependent memory references, m1
i ,m

2
i , · · · ,m

k
i . As shown in Figure 4.3(c), a straightforward

algorithm processes an element per loop iteration. The loop body is naturally divided into k + 1 stages

3 Technically, what we do are modified forms of compiler transformations called strip-mining and loop distribution [52].
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foreach tuple in probe partition
{

compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;
visit the matching build tuple to

compare keys and produce output tuple;
}

for i=0 to N-1 do
{

code 0;
visit (m1

i ); code 1;
visit (m2

i ); code 2;
· · · · · ·
visit (mk

i ); code k;
}

(a) A simplified probing algorithm (c) Processing an element per iteration

foreach group of tuples in probe partition
{

foreach tuple in the group {

compute hash bucket number;
prefetch the target bucket header;

}

foreach tuple in the group {

visit the hash bucket header;
prefetch the hash cell array;

}

foreach tuple in the group {

visit the hash cell array;
prefetch the matching build tuple;

}

foreach tuple in the group {

visit the matching build tuple to
compare keys and produce output tuple;

}
}

for j=0 to N-1 step G do
{

for i=j to j+G-1 do {

code 0;
prefetch (m1

i );
}

for i=j to j+G-1 do {

visit (m1
i ); code 1;

prefetch (m2
i );

}

for i=j to j+G-1 do {

visit (m2
i ); code 2;

prefetch (m3
i );

}

· · · · · ·
for i=j to j+G-1 do {

visit (mk
i ); code k;

}
}

(b) Group prefetching for simplified probing (d) General group prefetching algorithm

Figure 4.3: Group prefetching.
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Table 4.1: Terminology used throughout Chapter 4.
Name Definition

k # of dependent memory references for an element

G group size in group prefetching

D prefetch distance in software-pipelined prefetching

T1 full latency of a cache miss

Tnext latency of an additional pipelined cache miss

Cl execution time for code l, l = 0,1, . . . ,k

by the k memory references. Code 0 (if exists) computes the first memory address m1
i . Code 1 uses the

contents in m1
i to compute the second memory address m2

i . Generally code l uses the contents in ml
i to

compute the memory address ml+1
i , where l = 1, · · · ,k− 1. Finally, code k performs some processing

using the contents in mk
i . If every memory reference ml

i incurs a cache miss, the algorithm will suffer

from kN expensive, fully exposed cache misses.

Since the elements are independent of each other, we can use group prefetching to overlap cache

miss latencies across multiple elements, as shown in Figure 4.3(d). The group prefetching algorithm

combines the processing of G elements into a single loop body. It processes code l for all the elements

in the group before moving on to code l +1. As soon as an address is computed, the algorithm issues a

prefetch for the corresponding memory location in order to overlap the reference across the processing

of other elements.

Now we determine the condition for fully hiding all cache miss latencies. Suppose the execution time

of code l is Cl , the full latency of fetching a cache line from main memory is T1, and the additional

latency of fetching the next cache line in parallel is Tnext , which is the inverse of memory bandwidth.

(Table 4.1 shows the terminology used throughout the chapter.) Assume every ml
i incurs a cache miss

and there are no cache conflicts. Note that we use these assumptions only to simplify the derivation of

the conditions. Our experimental evaluations include all the possible effects of locality and conflicts in

hash joins. Then, the sufficient condition for fully hiding all cache miss latencies is as follows:






(G−1) ·C0 ≥ T1

(G−1) ·max{Cl,Tnext} ≥ T1, l = 1,2, · · · ,k
(4.1)
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We will give the proof for the condition in the next subsection. For an intuitive explanation, let us

focus on the first element in a group, element j. The prefetch for m1
j is overlapped with the processing

of the remaining G− 1 elements at code stage 0. The first inequality ensures that the processing of

the remaining G− 1 elements takes longer time than a single memory reference so that the prefetched

memory reference will complete before the visit operation for m1
j in code stage 1. Similarly, the prefetch

for ml+1
j is overlapped with the processing of the remaining G−1 elements at code stage l. The second

inequality ensures that the memory reference latency is fully hidden. Note that Tnext corresponds to the

memory bandwidth consumption of the visit operations of the remaining G− 1 elements. In the proof,

we also show that memory access latencies for other elements are fully hidden by simple combinations

of the inequalities.

We can always choose a G large enough to satisfy the second inequality since Tnext is always greater

than 0. However, when code 0 is empty, m1
j can not be fully hidden. Fortunately, in the previous

simplified probing algorithm, code 0 computes the hash bucket number and is not empty. Therefore, we

can choose a G to hide all the cache miss penalties.

In the above, cache conflict misses are ignored for simplicity of analysis. However, we will show

in Section 4.7 that conflict miss is a problem when G is too large. Therefore, among all possible G’s

that satisfy the above inequalities, we should choose the smallest to minimize the number of concurrent

prefetches and conflict miss penalty.

4.4.3 Critical Path Analysis for Group Prefetching

In the following, we use critical path analysis to study the processing of a group, i.e. an iteration of the

outer loop in Figure 4.3(d). For simplicity of analysis, we assume that every ml
i incurs a cache miss and

there are no cache conflicts among the memory references in a group. Figure 4.4 shows the graph for

critical path analysis. A vertex represents an event. An edge from vertex A to B indicates that event B

depends on event A and the weight of the edge is the minimal delay. (For simplicity, zero weights are

not shown in the graph.) The run time of a loop iteration corresponds to the length of the critical path in

the graph, i.e. the longest weighted path from the start to the end.
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The graph is constructed as follows. We use three kinds of vertices:

• P vertex: the execution of a prefetch instruction

• C vertex: the start of code 0

• VC vertex: the start of a visit and code l (l = 1,2, · · · ,k)

Vertex subscripts indicate the elements being processed. Their superscripts correspond to the memory

addresses in the program for P vertices, and to the code stage for C and VC vertices. In Figure 4.4, a

row of vertices corresponds to an inner loop that executes a code stage for all the elements in a group.

We use three kinds of edges:

• Instruction flow edges: They go from left to right in every row and from top to bottom across

rows. For example, code 0 for element j (vertex C0
j ) and the prefetch for m1

j (vertex P1
j ) are

executed before code 0 for element j+1 (vertex C0
j+1) and prefetch for m1

j+1 (vertex P1
j+1). The

second inner loop (the second row) starts after the first inner loop finishes. We assume that code

l takes a fixed amount of time Cl to execute, which is shown as weights of outgoing edges from

C and VC vertices. The instruction overhead of the visit and the following prefetch instruction is

also included in it. So the other instruction flow edges have zero weights.

• Latency edges: an edge from a P vertex to the corresponding VC vertex represents the prefetched

memory reference with full latency T as its weight.

• Bandwidth edges: an edge between VC vertices represents memory bandwidth. Usually an addi-

tional (independent) cache miss can not be fully overlapped with the previous one. It takes Tnext

more time to finish, which is the inverse of memory bandwidth. 4

Now we consider the critical path of the graph. If we ignore for a moment all latency edges, the graph

becomes clear and simple: All paths go from left to right in a row and from top to bottom from the start

4The bandwidth edges are not between the P vertices because prefetch instructions only put requests into a buffer and it

is the actual memory visits that wait for the operations to finish.
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Figure 4.4: Critical path analysis for an iteration of the outer loop body in Figure 4.3(d).

to the end; alternative paths are all local between instruction flow edges and bandwidth edges. Since

the critical path is the longest path, we can ignore an edge if there is a longer path connecting the same

vertices. Intuitively, we can choose a large G so that latency edges are shorter than the paths along rows

and they can be ignored. In this situation, the critical path of the graph is the longest path along the rows.

We would like to derive the condition to fully hide all cache miss latencies. If all cache miss latencies

are hidden, all latency edges will not be on the critical path, vice versa. Therefore, it is equivalent to

derive the condition to ensure that all latency edges are shorter than paths along rows. We have the

following theorem.

Theorem 1. The following condition is sufficient for fully hiding all cache miss latencies in the general

group prefetching algorithm:






(G−1) ·C0 ≥ T

(G−1) ·max{Cl,Tnext} ≥ T, l = 1,2, · · · ,k

Proof. The first inequality ensures that the first latency edge from row 0, i.e. the edge from vertex P1
j to

vertex VC1
j in the graph, is shorter than the path along row 0. The second inequality ensures that the first

latency edge from row l in the graph, i.e. the edge from vertex Pl+1
j to vertex VCl+1

j , is shorter than the
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corresponding path along row l, where l = 1,2, · · · ,k− 1. Note that the inequality when l = k is used

only in the proof below.

For the other latency edges, we can prove they are shorter than the paths along rows with a simple

combination of the two inequalities. For the x-th latency edge from row 0, i.e. the edge from vertex

P1
j+x−1 to vertex VC1

j+x−1, the length of the path along the row is as follows:

Path Length = (G− x) ·C0 +(x−1) ·max{C1,Tnext}

= [(G− x) · (G−1) ·C0 +(x−1) · (G−1) ·max{C1,Tnext}]/(G−1)

≥ [(G− x) ·T +(x−1) ·T ]/(G−1)

= T

For the x-th latency edge from row l, i.e. the edge from vertex Pl+1
j+x−1 to vertex VCl+1

j+x−1, where l =

1,2, · · · ,k−1, the length of the path along the row is as follows:

Path Length = (G− x) ·max{Cl,Tnext}+(x−1) ·max{Cl+1,Tnext}

= [(G− x) · (G−1) ·max{Cl,Tnext}+(x−1) · (G−1) ·max{Cl+1,Tnext}]/(G−1)

≥ [(G− x) ·T +(x−1) ·T ]/(G−1)

= T

Therefore, when the two inequalities are satisfied, all latency edges are shorter than the corresponding

paths along rows and all cache miss latencies are fully hidden.

4.4.4 Dealing with Complexities

Previous research showed how to prefetch for two dependent memory references for array-based codes [72].

Our group prefetching algorithm solves the problem of prefetching for an arbitrary fixed number k of

dependent memory references.

We have implemented group prefetching for both hash table building and probing. In contrast to the

simplified probing algorithm, the actual probing algorithm contains multiple code paths: There could

be zero or multiple matches, hash buckets could be empty, and there may not be a hash cell array in a

bucket. To cope with this complexity, we keep state information for the G tuples of a group. We divide
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each possible code path into code pieces on the boundaries of dependent memory references. Then we

combine the code pieces at the same position of different code paths into a single stage using conditional

tests on the tuple states. Figure 4.5 illustrates the idea of this process. Note that the common starting

point of all code paths is in code 0. The first code piece including a branch sets the state of an element.

Then subsequent code stages test the state and execute the code pieces for the corresponding code paths.

The total number of stages (k +1) is the largest number of code pieces along any original code path.

When multiple independent cache lines are visited at a stage (e.g., to visit multiple build tuples), our

algorithm issues multiple independent prefetches in the previous stage.

The group prefetching algorithm must also cope with read-write conflicts. Though quite unlikely, it is

possible that two build tuples in a group may be hashed into the same bucket, as illustrated in Figure 4.6.

However, in our algorithm, hash table visits are interleaved and no longer atomic. Therefore, a race

condition could arise; the second tuple might see an inconsistent hash bucket being changed by the first

one. Note that this complexity occurs because of the read-write nature of hash table building. To cope
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Figure 4.7: Intuitive pictures of the prefetching schemes.

with this problem, we set a busy flag in a hash bucket header before inserting a tuple. If a tuple is

to be inserted into a busy bucket, we delay its processing until the end of the group prefetching loop

body. At this natural group boundary, the previous access to the busy hash bucket must have finished.

Interestingly, the previous access has also warmed up the cache for the bucket header and hash cell array,

so we insert the delayed tuple without prefetching. Note that the algorithm can deal with any number of

delayed tuples (to tolerate skews in the key distribution).

4.5 Software-Pipelined Prefetching

In this section, we describe our technique of exploiting software pipelining to schedule prefetches for

hash joins. We then compare our two prefetching schemes.

Figure 4.7 illustrates the difference between group prefetching and software-pipelined prefetching

intuitively. Group prefetching hides cache miss latencies within a group of elements and there is no

overlapping memory operation between groups. In contrast, software-pipelined prefetching combines

different code stages of different elements into an iteration and hides latencies across iterations. It keeps

running without gaps and therefore may potentially achieve better performance.
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prologue;
for j=0 to N-3D-1 do
{

tuple j+3D:
compute hash bucket number;
prefetch the target bucket header;

tuple j+2D:
visit the hash bucket header;
prefetch the hash cell array;

tuple j+D:
visit the hash cell array;
prefetch the matching build tuple;

tuple j:
visit the matching build tuple to

compare keys and produce output tuple;

}

epilogue;

prologue;
for j=0 to N-kD-1 do
{

i=j+kD;
code 0 for element i;
prefetch (m1

i );

i=j+(k-1)D;
visit (m1

i ); code 1 for element i;
prefetch (m2

i );

i=j+(k-2)D;
visit (m2

i ); code 2 for element i;
prefetch (m3

i );

· · · · · ·

i=j;
visit (mk

i ); code k for element i;
}

epilogue;

(a) Software-pipelined prefetching for simplified probing (b) General software-pipelined prefetching

Figure 4.8: Software-pipelined prefetching.

4.5.1 Understanding Software-pipelined Prefetching

Figure 4.8(a) shows the software-pipelined prefetching for the simplified probing algorithm. The sub-

sequent stages for a particular tuple are processed D iterations away. (D is called the prefetch dis-

tance [72].) Figure 4.7(b) depicts the intuitive picture when D = 1. Suppose the left-most line in the

dotted rectangle corresponds to tuple j. Then, an iteration combines the processing of stage 0 for tuple

j +3D, stage 1 for tuple j +2D, stage 2 for tuple j +D, and stage 3 for tuple j.

Figure 4.8(b) shows the generalized algorithm for software-pipelined prefetching. In the steady state,

the pipeline has k + 1 stages. The loop body processes a different element for every stage. The sub-

sequent stages for a particular element are processed D iterations away. Intuitively, if we make the

intervals between code stages for the same element sufficiently large, we will be able to hide cache miss
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Figure 4.9: Critical path analysis for software-pipelined prefetching (steady state).

latencies. Under the same assumption as in Section 4.4.2, the sufficient condition for hiding all cache

miss latencies in the steady state is as follows. (We will derive this condition in the next subsection.)

D · (max{C0 +Ck,Tnext}+
k−1

∑
l=1

max{Cl,Tnext})≥ T (4.2)

We can always choose a D sufficiently large to satisfy this condition. In our experiments in Section 4.7,

we will show that conflict miss is a problem when D is too large. Therefore, similar to group prefetching,

we should choose the smallest D to minimize the number of concurrent prefetches.

4.5.2 Critical Path Analysis for Software-pipelined Prefetching

We perform critical path analysis using Figure 4.9. The graph is constructed in the same way as Fig-

ure 4.4, though a row here corresponds to a single loop iteration in the general software-pipelined

prefetching algorithm. Instruction flow edges are still from left to right in a row and from top to bottom

across rows. Focusing on the latency edges, we can see the processing of the subsequent stages of an

element. Two subsequent stages of the same element are processed in two separate rows that are D

iterations away.

If the paths along the rows are longer, the latency edges can be ignored because they are not on the

136



Section 4.5 Software-Pipelined Prefetching

critical path and the cache miss latencies are fully hidden. The sufficient condition for hiding all cache

miss latencies is given in the following theorem.

Theorem 2. The following condition is sufficient for fully hiding all cache miss latencies in the general

software-pipelined prefetching algorithm:

D · (max{C0 +Ck,Tnext}+
k−1

∑
l=1

max{Cl,Tnext})≥ T

Proof. The left-hand side of the inequality is the total path length of D rows in Figure 4.9. Clearly,

when this length is greater than or equal to the weight of a latency edge, latency edges can be ignored in

critical path analysis and all cache miss latencies are fully hidden.

4.5.3 Dealing with Complexities

We have implemented software-pipelined prefetching by modifying our group prefetching algorithm.

The code stages are kept almost unchanged. To apply the general model in Figure 4.8(b), we use a

circular array for state information; the index j in the general model is implemented as the array index.

We choose the array size to be a power of 2 and use bit mask operation for modular index computation

to reduce overhead. Moreover, since code 0 and code k of the same element is processed kD iterations

away, we ensure the array size is at least kD+1.

The read-write conflict problem in hash table building is solved in a more sophisticated way. Since

there is no place (like the end of a group in group prefetching) to conveniently process all the conflicts,

we have to deal with the conflicts in the pipeline stages themselves. We build a waiting queue for each

busy hash bucket. The hash bucket header contains the array index of the tuple updating the bucket. The

state information of a tuple contains a pointer to the next tuple waiting for the same bucket. When a

tuple is to be inserted into a busy bucket, it is appended to the waiting queue. When we finish hashing

a tuple, we check its waiting queue. If the queue is not empty, we record the array index of the first

waiting tuple in the bucket header, and perform the previous code stages for it. When this tuple gets to

the last stage, it will handle the next tuple in the waiting queue if it exists.

137



Chapter 4 Improving Hash Join Performance through Prefetching

4.5.4 Group vs. Software-pipelined Prefetching

Both prefetching schemes try to increase the interval between a prefetch and the corresponding visit, in

order to hide cache miss latency. According to the sufficient conditions, software-pipelined prefetching

can always hide all miss latencies, while group prefetching achieves this only when code 0 is not empty

(as is the case of the join phase). When code 0 is empty, the first cache miss cannot be hidden. However,

with a large group of elements, the amortized performance impact can be small.

In practice, group prefetching is easier to implement. The natural group boundary provides a place

to do any necessary “clean-up” processing (e.g., for read-write conflicts). Moreover, the join phase can

pause at group boundaries and send outputs to the parent operator to support pipelined query process-

ing. Although a software pipeline may also be paused, the restart costs will diminish its performance

advantage. Furthermore, software-pipelined prefetching has larger bookkeeping overhead because it

uses modular index operations and because it maintains larger amount of state information (such as the

waiting queue for handling read-write conflicts).

4.6 Prefetching for the Partition Phase

Having studied how to prefetch for the join phase of the hash join algorithm, in this section, we discuss

prefetching for the partition phase. In the partition phase, an input relation is divided into multiple output

partitions by hashing on the join keys. Typically, the algorithm keeps in main memory an input page

for the input relation and an output page for every intermediate partition. The algorithm processes every

input page, and examines every input tuple in an input page. It computes the partition number from the

tuple join key. Then it extracts (projects) the columns of the input tuple relevant to the database query

performing the hash join operation and copies them to the target output buffer page. When an output

buffer page is full, the algorithm writes it out to the corresponding partition and allocates a new page.

While partitioning tables for a hash join, commercial database systems often construct a filter to

quickly discard probe tuples that do not have any matches [59]. Such filters may improve join perfor-

mance significantly when a large number of probe tuples do not match any tuples in the build relation
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(e.g., there is a predicate on the build relation in a foreign-key join). Typically, a join key is mapped to

several bit positions in the filter. While partitioning the build relation, the algorithm sets the bit positions

for every build tuple in the filter. Then the algorithm checks the bit positions for every probe tuple.

If some bits are not set, the probe join key does not match any existing build join keys. (Filters will

be discussed in more detail in Chapter 5, where we extend the existing filter scheme to collect more

information for better join performance.)

Like the join phase, the I/O partitioning phase employs hashing: It computes the partition number and

the bit positions in the filter of a tuple by hashing on the tuple’s join key. Because of the randomness

of hashing, the resulting memory addresses are difficult to predict. Moreover, the processing of a tuple

also needs to make several dependent memory references, whereas the processing of subsequent tuples

are mostly independent due to the randomness of hashing. Therefore, we employ group prefetching and

software-pipelined prefetching for the I/O partitioning phase.

There are read-write conflicts in visiting the output buffers. Imagine that two tuples are hashed to the

same partition. When processing the second tuple, the algorithm may find that the output buffer has no

space and needs to be written out. However, it is possible that the data from the first tuple has not been

copied into the output buffer yet because of the reorganization of processing. To solve this problem,

in group prefetching, we wait until the end of the loop body to write out the buffer and process the

second tuple. In software-pipelined prefetching, we use waiting queues similar to those for hash table

building in the join phase. Note that setting bits in the filter does not incur read-write conflicts because

the operations are idempotent.

4.7 Experimental Results

In this section, we present experimental results to quantify the benefits of our cache prefetching tech-

niques. We begin by describing the experimental setups. Next, we show that hash join is CPU bound

with reasonable I/O bandwidth. After that, we focus on the user-mode CPU cache performance of hash

joins. Similar to Chapter 3, we perform both simulations and Itanium 2 experiments to understand the
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user-mode cache behaviors of the prefetching techniques. Finally, we evaluate the impact of our cache

prefetching techniques on the elapsed real times of hash joins with disk I/Os.

4.7.1 Experimental Setup

Implementation Details. We have implemented our own hash join engine. For real machine I/O

experiments, we implemented a buffer manager that stripes pages across multiple disks and performs I/O

prefetching with background worker threads. For CPU cache performance studies, we store relations and

intermediate partitions as disk files for simplicity. We employ the slotted page structure and support fixed

length and variable length attributes in tuples. Schemas and statistics are kept in separate description files

for simplicity, the latter of which are used to compute hash table sizes and numbers of partitions.

Our baseline algorithm is the GRACE hash join algorithm [54]. The in-memory hash table structure

follows Figure 4.2 in Section 4.3. A simple XOR and shift based hash function is used to convert join

keys of any length to 4-byte hash codes. Typically the same hash codes are used in both the partition

and the join phase. Partition numbers in the partition phase are the hash codes modulo the total number

of partitions. Hash bucket numbers in the join phase are the hash codes modulo the hash table size. Our

algorithms ensure that the hash table size is a relative prime to the number of partitions. Because the

same hash codes are used in both phases, we avoid the memory access and computational overheads of

reading the join keys and hashing them a second time, by storing hash codes in the page slot area in

the intermediate partitions and reusing them in the join phase. Note that changing the page structure of

intermediate partitions is relatively easy because the partitions are only used in hash joins.

We implemented three prefetching schemes for both the partition phase and the join phase algorithm:

simple prefetching, group prefetching, and software-pipelined prefetching. As suggested by the name,

simple prefetching uses straightforward prefetching techniques, such as prefetching an entire input page

after a disk read. In our simulation study, we use simple prefetching as an enhanced baseline in order

to show the additional benefit achieved using our more sophisticated prefetching schemes. We use

gcc and insert prefetch instructions into C++ source code using inline ASM macros. In our cache

performance study on the Itanium 2 machine, we compare the performance of both gcc and icc generated
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executables. As will be shown in Section 4.7.6, executables generated by icc are significantly faster for

all techniques (including the baseline and cache partitioning), and the best performance is achieved with

“icc -O3”. Therefore, we compile with “icc -O3” for our Itanium 2 experiments. Note that “icc -O3”

already enhances a program by automatically (aggressively) inserting prefetches. In fact, we find that the

icc generated baseline achieves even slightly better performance than the simple prefetching approach.

Therefore, we omit the simple prefetching curves when presenting Itanium 2 results.

Cache Partitioning. Cache partitioning generates cache-sized build partitions so that every build

partition and its hash table can fit in cache, greatly reducing the cache misses in the join phase. It has been

shown to be effective in main-memory and memory-resident database environments [14, 90]. We have

implemented the cache partitioning algorithm for disk-oriented database environments. The algorithm

partitions twice: The I/O partition phase generates memory-sized partitions, which are subsequently

partitioned again in memory as a preprocessing step for the join phase.

Experimental Design. In our experiments, we assume a fixed amount of memory (50 MB) is allo-

cated for joining a pair of build and probe partitions in the join phase and the partition phase generates

partitions that will tightly fit in this memory 5 . That is, in the baseline and our prefetching schemes, a

build partition and its hash table fit tightly in the available memory. In the cache partitioning scheme, the

partition sizes are also computed to satisfy the algorithm constraints and best utilize available memory.

Build relations and probe relations have the same schemas: A tuple consists of a 4-byte join key and

a fixed-length payload. We believe that selection and projection are orthogonal issues to our study and

we do not perform these operations in our experiments. An output tuple contains all the fields of the

matching build and probe tuples. The join keys are randomly generated. A build tuple may match zero

or more probe tuples and a probe tuple may match zero or one build tuple. In our experiments, we vary

the tuple size, the number of probe tuples matching a build tuple, and the percentage of tuples that have

matches, in order to show the benefits of our solutions in various situations.

5 The memory to cache size ratio is 50:2 for the simulation study, and it is 50:1.5 for the Itanium 2 machine. This ratio

corresponds to the ratio of the hash table size (including build tuples) over the cache size, which is large enough to reflect the

typical hash join cache behavior.
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Measurement Methodology. We first measure GRACE hash join performance on the Itanium 2 ma-

chine with multiple disks to show that hash join is CPU-bound with reasonable I/O bandwidth. There-

fore, it is important to study hash join cache performance.

We then evaluate the CPU cache performance (of user mode executions) of all the schemes through

cycle-by-cycle simulations in order to better understand their cache behaviors. As described previously

in Section 2.4.2, the memory hierarchy of the simulator is based on the Itanium 2 processor [44].

Finally, we verify the findings from the simulation study by running experiments on the Itanium

2 machine. The machine configuration is described previously in Section 2.4.1. We first focus on

the CPU cache performance and measure the user mode execution times of all the schemes with the

perfmon library on the Itanium 2 machine. Then we measure elapsed times to show the benefits of our

prefetching algorithms while I/O operations are also in the picture. We measure the total elapsed time of

an operation with a single gettimeofday system call. Since the resolution of the gettimeofday system

call is 1 micro second on the Itanium 2 machine, we are able to measure the waiting time of an individual

I/O request with the gettimeofday system call. We sum up the individual stall time measurements to

obtain the reported I/O stall times. Because of this measurement methodology, the standard deviations

of the I/O stall times are larger compared to the user-mode cache performance and the total elapsed time.

For every Itanium 2 experiment, we perform 30 runs and report the averages. For the user-mode cache

performance measurements, the standard deviations are within 1% of the averages in all cases. For the

total elapsed real time measurements, the standard deviations are within 5% of the averages in all cases.

For the I/O stall times, the standard deviations are either within 10% of the averages or less than 1 second

in all but one case where the standard deviation is 16.6% of the average.6 Note that our performance

comparisons are based on the more stable measurements of user-mode cache performance and elapsed

real times.

6This is an experiment using 8 disks on the Itanium 2 machine. Since the eighth disk contains the root partition and the

swap partition, the measurements with 8 disks tend to have larger variances than those with 1-7 disks.
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4.7.2 Is Hash Join I/O-Bound or CPU-Bound?

Our first set of experiments study whether hash joins are I/O-bound or CPU-bound. We measure the

performance of GRACE hash joins on an Itanium 2 machine using up to 8 SCSI disks. The machine

configuration and the buffer pool manager implementation are described previously in Section 3.6.3. In

addition, the following two details of our buffer manager implementation are also relevant to these hash

join experiments: (i) relations are striped across all of the disks used in an experiment in 256KB stripe

units;7 and (ii) worker threads perform background writing on behalf of the main thread. A worker

thread calls fdatasync to flush any pages that may be cached in the file system cache after every k write

operations (k = 128 in our experiments).

To be conservative, we would like to focus on the worst-case scenario where no intermediate partitions

are cached in the main memory, thereby resulting in the maximum I/O demand for hash joins. Hence

we measure the performance of the partition phase and the join phase in separate runs, and we ensure

that the file system and disk caches are cold before every run using the techniques described earlier in

Section 3.6.3. Depending on the queries, the join output tuples may either be written to disk or consumed

in main memory by the parent operator; we perform experiments to evaluate both of these cases.

Figure 4.10 shows the performance of the partition phase and the join phase of joining a 2GB build re-

lation with a 4GB probe relation varying the number of disks used. Tuples are 100 bytes. The algorithm

generates 57 intermediate partitions so that a build partition and its hash table consume up to 50 MB of

memory in the join phase. To better understand the elapsed times, we show four curves in every figure.

The main total time is the elapsed real time of an algorithm phase. It is broken down into the main busy

time and the main io stall time. The main io stall time is the time that the main thread spends either

(i) waiting for an I/O completion notification from a worker thread, or (ii) waiting for an empty queue

slot to enqueue an I/O request. The main busy time is computed by subtracting the main io stall time

from the main total time; it is an approximation of the user-mode execution time. The worker io stall

time is the maximum of the I/O stall times of individual worker threads.

7This models the typical data layout in commercial database systems. For example, the size of a stripe unit (a.k.a. extent)

in IBM DB2 is between 8KB and 8MB [40]. By default, an extent in IBM DB2 contains 32 pages. Depending on the page

size, the default extent can be 128KB, 256KB, 512KB, or 1MB large.
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Figure 4.10: Hash join is CPU-bound with reasonable I/O bandwidth.

As shown in Figure 4.10, the worker io stall time decreases dramatically as the number of disks

increases, since this in turn decreases the number of I/O operations per disk. In contrast, the main busy

time stays roughly the same across all of the experiments. This is because the memory and computational

operations in the hash join do not depend on the number of disks. Combining the two trends, we see that

hash joins are I/O-bound with a small number of disks (e.g. up to four disks). As more and more disks

are added, hash joins gradually become CPU-bound.

As shown in Figure 4.10(a) and Figure 4.10(b), the partition phase and the join phase with outputs

consumed in memory are CPU-bound with five or more disks: The main busy time is significantly larger

than the worker io stall time, and the main total time becomes flat. As shown in Figure 4.10(c), the

join phase with outputs written to disk becomes CPU-bound when seven disks are used.8 Note that it

is reasonable to use five or seven disks on the Itanium 2 machine because there are typically 10 disks

per processor on a balanced DB server [98]. Therefore, we conclude that on the Itanium 2 machine,

hash joins are CPU-bound with reasonable I/O bandwidth. The gap between the main busy time and the

worker io stall time highlights the opportunity for reducing the total time by improving the hash join

CPU performance.

8Although the curve markers seem to overlap, this claim is supported by experimental results in Section 4.7.7, which

demonstrate that cache prefetching improves the performance in this case.
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Figure 4.11: Join phase performance.

4.7.3 Join Phase Performance through Simulations

Figure 4.11 shows the join phase performance through simulations of the baseline and the prefetching

schemes while varying the tuple size, the ratio of probe relation size to build relation size, and the per-

centage of tuples that have matches. The experiments model the processing of a pair of partitions in the

join phase. In all experiments, the build partition fits tightly in the 50MB memory. By default, tuples are

100 bytes and every build tuple matches two probe tuples. As shown in the figure, group and software-

pipelined prefetching achieve 3.02-4.04X speedups over the GRACE hash join. Because the central part

of the join phase algorithm is hash table visiting, simple prefetching only obtains marginal benefit, a

1.06-1.24X speedup over the baseline. By exploiting the inter-tuple parallelism, group and software-

pipelined prefetching achieve additional 2.65-3.40X speedups over the simple prefetching scheme.

In Figure 4.11(a), as we increase the tuple size from 20 bytes to 140 bytes, the number of tuples in

the fixed sized partition decreases, leading to the decreasing trend of the curves. In Figure 4.11(b) and

(c), the total number of matches increases as we increase the number of matches per build tuple or the

percentage of tuples having matches. This explains the upward trends. Moreover, the probe partition size

also increases in Figure 4.11(b), contributing to the much steeper curves than those in Figure 4.11(c).
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Figure 4.12: Execution time breakdown for join phase performance (Figure 4.11(a), 100B tuples).

Figure 4.12 shows the execution time breakdowns for the 100-byte points in Figure 4.11(a). The

GRACE bar is shown as the “join” bar previously in Figure 4.1. Group prefetching and software-

pipelined prefetching indeed successfully hide most of the data cache miss latencies. The simulator

outputs confirm that the remaining data cache misses are mostly L1 cache misses but L2 hits or L1 and

L2 misses but L3 hits. The (transformation, bookkeeping, and prefetching) overheads of the techniques

lead to larger portions of busy times. The busy portion of the software-pipelined prefetching bar is larger

than that of the group prefetching bar because of its more complicated implementation. Interestingly,

other stalls also increase. A possible reason is that some secondary causes of stalls show up when the

data cache stalls are reduced.

Join Performance Varying Algorithm Parameters. Figures 4.13(a) and (b) show the relationship

between the cache performance and the parameters of our prefetching algorithms. We perform the same

experiment as in Figure 4.11(a) when tuples are 100 bytes. We show the tuning results for only the

hash table probing loop here but the curves for the hash table building loop have similar shapes. The

optimal values for the hash table probing loop are G = 25 and D = 1, which are used in all simulation

experiments unless otherwise noted.

From Figures 4.13(a) and (b), we see that both curves have large flat segments: A lot of parameter

choices achieve near-optimal performance. In other words, our prefetching algorithms are quite robust

against parameter choices. Therefore, the algorithm parameters can be pre-set for a range of machine

configurations, and do not necessarily require tuning on every machine.
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Figure 4.13: Tuning parameters of cache prefetching schemes for hash table probing in the join phase.
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Figure 4.14: Analyzing prefetched memory references that still incur data cache misses to understand

the tuning curves of the join phase.

From Figures 4.13(a) and (b), we see that performance becomes worse when the parameters are ex-

tremely small or extremely large. According to our models, the group size and the prefetch distance must

be large enough to hide cache miss latencies. This explains the poor performance with small parameters.

To verify this point and to understand the cases with large parameters, we analyze the breakdowns of

prefetched memory references that still incur L1 data cache misses in Figure 4.14. We obtain the infor-

mation from the statistics of the simulator, which tracks prefetches and memory references visiting the

same cache lines9 . As shown in Figures 4.14(a) and (b), the prefetched references that are still missing

9The simulator only matches a prefetch with the first reference after the prefetch visiting the same cache line. Therefore,
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Figure 4.15: Join phase performance varying memory latency.

from the L1 data cache can be divided into two categories: references that are prefetched too late to hide

all cache miss latencies, and references that are prefetched too early and already replaced from the data

cache. The sum of the two curves show the total prefetched references that still incur data cache misses.

From the figures, we can clearly see the trend: As group size increases, fewer and fewer references are

prefetched too late, but more and more references are prefetched too early and already replaced. This

trend explains the curve shapes in Figures 4.13(a) and (b). The poor performance when D = 16 is mainly

due to prefetching too early, while the poor performance for small G values is mainly because prefetches

are issued too late to hide cache miss latencies.

Join Performance Varying Memory Latency. Figure 4.15 shows the join phase performance when

the memory latency T1 is set to 250 cycles (default value) and 1000 cycles in the simulator. The optimal

parameters are G = 25 and D = 5 for hash table probing when the memory latency is 1000 cycles.

As shown in the figure, the execution time of GRACE hash join increases dramatically as the memory

latency increases. In contrast, the execution times of both group and software-pipelined prefetching

only increase slightly, thus achieving 8.3-9.6X speedups over GRACE hash join. This means that the

prefetching algorithms will still keep up when the processor/memory speed gap increases even more (4

times in our experiments) as expected to happen in the future by the technology trend.

later references to the same cache line are not counted as prefetched references in the simulator statistics and not included in

Figure 4.14. Nevertheless, the curves should show the correct trends

148



Section 4.7 Experimental Results

25 50 100 200 400 800
0

1

2

3

4

5

6

7

8

number of partitions

ex
ec

ut
io

n 
tim

e 
(G

 c
yc

le
s)

GRACE
simple prefetching
group prefetching
s/w pipelined prefetching

Figure 4.16: Partition phase performance.
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Figure 4.17: Execution time breakdown for Figure 4.16 with 800 partitions.

4.7.4 Partition Phase Performance through Simulations

Figure 4.16 shows the partition phase performance partitioning a 200MB build relation and a 400MB

probe relation through simulations. We vary the number of partitions from 25 to 800, and the tuple size

is 100 bytes. (Unlike all the other experiments, the generated partitions may be much smaller than 50

MB.) As shown in the figure, we see that as the number of partitions increases, the simple approach of

prefetching all input and output pages and assume they stay in the CPU cache is less and less effective,

while our two prefetching schemes maintain the same level of performance. Compared to the GRACE

baseline, our prefetching schemes achieve 1.96-2.71X speedups for the partition phase.

Figure 4.17 shows the execution time breakdown for Figure 4.16 where 800 partitions are generated.
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Figure 4.18: Impact of cache flushing on the different techniques.

Group prefetching and software-pipelined prefetching successfully hide most of the data cache miss

latencies. Similar to Figure 4.12, the busy portion of the group prefetching bar is larger than that of the

GRACE bar, and the busy portion of the software-pipelined prefetching bar is even larger, showing the

instruction overhead of the prefetching schemes.

4.7.5 Comparison with Cache Partitioning

Robustness. Cache partitioning assumes exclusive use of the cache, which is unlikely to be valid

in a dynamic environment with multiple concurrent activities. Although a smaller “effective” cache

size can be used, cache conflicts may still be a big problem and cause poor performance. Figure 4.18

shows the performance degradation of all the schemes when the cache is periodically flushed, which

is the worst case interference. We vary the period to flush the cache from 2 ms to 10 ms. A reported

point of an algorithm is the execution time of the algorithm with cache flush over the execution time

of the same algorithm without cache flush. Therefore, “100” corresponds to the join phase execution

time when there is no cache flush. As shown in Figure 4.18, cache partitioning suffers from 11-78%

performance degradation. Although the figure shows the worst-case cache interference, it certainly

reflects the robustness problem of cache partitioning. In contrast, our prefetching schemes do not assume

hash tables and build partitions remain in the cache. As shown in the figure, they are very robust against

even frequent cache flushes.
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Figure 4.19: Re-partitioning cost of cache partitioning. (Default parameters: 200 MB build relation, 400

MB probe relation, 100 B tuples, every build tuple matches two probe tuples.)

Re-partitioning Cost. The number of I/O partitions is upper bounded by the available memory of

the partition phase and by the requirements of the storage manager. Experiences with the IBM DB2

have shown that storage managers can handle only hundreds of active partitions per hash join [59].

Given a 2 MB CPU cache and (optimistically) 1000 partitions, the maximum relation size that can be

handled through a single partition pass to generate cache-sized partitions is 2 GB. Beyond this limit,

it is necessary to employ an additional partition pass to produce cache-sized partitions. We study this

re-partitioning cost with several sets of experiments as shown in Figures 4.19(a)-(c).

Figures 4.19(a)-(c) compare the join phase performance of our prefetching schemes with cache par-

titioning. Note that the re-partitioning step is usually performed immediately before the join phase in

main memory, and therefore we can regard it as a preprocessing step in the join phase. Moreover, we

employ simple prefetching in the join phase to enhance the cache partitioning scheme wherever possible.

Figure 4.19(a) shows the join phase execution times of joining a 200 MB build relation with a 400

MB probe relation through simulations. Every build tuple matches two probe tuples. We increase the

tuple size from 20 bytes to 140 bytes, which results in decreasing numbers of tuples in the relations
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and therefore the downward trends of the curves. Figure 4.19(b) varies the number of matches per

build tuple from 1 match to 4 matches for the 100-byte experiments in Figure 4.19(a). Figure 4.19(c)

varies the percentage of build and probe tuples having matches from 100% to 40%. The “100%” points

correspond to the 100-byte points in Figure 4.19(a). As shown in the figures, the re-partitioning overhead

makes cache partitioning 36–77% slower than the prefetching schemes. Therefore, we conclude that

the re-partitioning step significantly slows down cache partitioning compared to group prefetching and

software-pipelined prefetching.

4.7.6 User Mode CPU Cache Performance on an Itanium 2 Machine

In this subsection, we present our experimental results for hash join cache performance on the Itanium 2

machine. We first determine the compiler and optimization levels to use for our hash join experiments.

Figure 4.20 shows the execution times of joining a 50 MB build partition and a 100 MB probe partition

in memory for all the schemes compiled with different compilers and optimization flags. The tuples

are 100 bytes, and every build tuple matches two probe tuples. The group prefetching and software-

pipelined prefetching bars show the execution times with the optimal parameters tuned for the particular

compiler and optimization levels.

From Figure 4.20, we can see that executables generated by icc are significantly faster than those

generated by gcc. Moreover, the two optimization levels of icc achieve similar performance. Because

the best performance of all schemes is achieved with “icc -O3”, we choose “icc -O3” to compile our code

in the experiments that follow. Note that “icc -O3” automatically inserts prefetches into the generated

executables, thus enhancing the GRACE and cache partitioning schemes. Our prefetching schemes

achieve significantly better performance even compared with the compiler-enhanced GRACE and cache

partitioning schemes.

Join Phase Performance. Figures 4.21(a)-(c) show the join phase user mode cache performance of

all the schemes while varying the tuple size, the ratio of probe relation size to build relation size, and the

percentage of tuples that have matches. These experiments correspond to Figures 4.11(a)-(c) in the sim-

ulation study. In order to perform cache partitioning, we relax the limitation of 50 MB available memory,
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Figure 4.20: Choosing the compiler and optimization levels for hash join cache performance study on

the Itanium 2 machine.

and allocate more memory to hold the probe partition as well as the build partition in memory. However,

even with this favorable treatment for cache partitioning, our prefetching schemes are still significantly

better. As shown in Figures 4.21(a)-(c), group prefetching and software-pipelined prefetching achieve

1.65-2.18X and 1.29-1.69X speedups over the GRACE hash join. Compared to cache partitioning, group

prefetching and software-pipelined prefetching achieve 1.52-1.89X and 1.18-1.47X speedups.

Comparing Figures 4.21(a)-(c) and Figures 4.11(a)-(c) in the simulation study, we can see a major dif-

ference: Software-pipelined prefetching is significantly worse than group prefetching. A possible reason

is that the instruction overhead of implementing software-pipelined prefetching shows up. To verify this

point, we compare the number of retired instructions of all the schemes in Figure 4.22. Clearly, both

group prefetching and software-pipelined prefetching execute more instructions for code transforma-

tion and prefetching than GRACE hash join. Software-pipelined prefetching incurs more instruction

overhead, executing 12–15% more instructions than group prefetching. Moreover, cache partitioning

executes 43–53% more instructions than GRACE hash join because of the additional partitioning step.

Figures 4.23(a) and (b) show the relationship between the cache performance and the parameters of

our prefetching algorithms. We perform the same experiment as in Figure 4.21(a) when tuples are 100

bytes. The optimal values for probing are G = 14 and D = 1. These values are used in all the experiments
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Figure 4.21: Join phase cache performance on Itanium 2.
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Figure 4.22: Number of retired IA64 instructions for Figure 4.21(a).

shown in Figure 4.21. Similar to what we find in simulation study, we can see large flat segments for both

tuning curves, demonstrating the robustness of our prefetching algorithm against parameter choices.

Partition Phase Performance. Figure 4.24(a) shows the user mode execution times of partitioning

a 2 GB build relation and a 4 GB probe relation into 57, 100, 150, 200, and 250 partitions.10 The tuple

size is 100 bytes. We see that the GRACE hash join degrades significantly as the number of partitions

1057 is selected to ensure that partitions fit in main memory. The others are chosen arbitrarily for understanding the effects

of larger number of partitions.
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Figure 4.23: Tuning parameters of group and software-pipelined prefetching for hash table probing in

the join phase on the Itanium 2 machine.
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Figure 4.24: Partition phase performance on the Itanium 2 machine.

increases. As shown in Figure 4.24(b), this degradation is mainly resulted from the increasing number

of L3 cache misses. Note that the number of memory references per tuple does not change. However,

because the number of output buffers increases, the memory references are more likely to miss the CPU

cache. Automatically inserted prefetches by the icc compiler do not solve the problem. In contrast, our

prefetching algorithms exploit the inter-tuple parallelism to overlap cache misses across the processing of

multiple tuples. The performance of our schemes almost stays the same. Compared to the GRACE join,

group prefetching and software-pipelined prefetching achieve 1.37-1.62X and 1.43-1.46X speedups.
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4.7.7 Execution Times on the Itanium 2 Machine with Disk I/Os

In this subsection, we study the impact of our cache prefetching techniques on the elapsed real times

of hash join operations running on the Itanium 2 machine with disk I/Os. We perform the same set of

experiments as in Section 4.7.2 (joining a 2GB build relation and a 4GB probe relation) while varying

the tuple size and the number of intermediate partitions. We use seven disks in these experiments.11

Figures 4.25-4.27 compare our two cache prefetching techniques with the GRACE hash join. The

figures show a group of four bars for each experiment. These bars correspond to the four curves described

previously in Section 4.7.2. The points for the GRACE join with 100B tuples correspond to the seven

disk points shown previously in Figure 4.10. Note that in Figure 4.27, the numbers of partitions, 57 and

113, are chosen automatically by the hash join algorithm (as described earlier in Section 4.7.1) so that

a build partition and its hash table consume up to 50 MB of main memory in the join phase. We also

measure the performance of generating 250 partitions to better understand the results.

As shown in Figure 4.25-4.27, our group prefetching scheme achieves 1.12-1.84X speedups for the

join phase and 1.06-1.60X speedups for the partition phase over the GRACE join algorithm. Our

software-pipelined prefetching achieves 1.12-1.45X speedups for the join phase and 1.06-1.51X speedups

for the partition phase.

For the experiments, we break down the times in the same way as in Section 4.7.2. Comparing the

three groups of bars in each figure, we see that as expected, the worker io stall times stay roughly the

same, while our cache prefetching techniques successfully reduce the main busy times, thus leading to

the reduction of the elapsed real times. Note that our implementation of the buffer pool manager is

straightforward and without extensive performance tuning. As a result, in some experiments the main

io stall times increase rather than staying the same, partially offsetting the benefits of reduced main

busy time. Despite using this relatively simple buffer manager implementation, however, our cache

prefetching techniques still achieve non-trivial performance gains.

Comparing the overall speedups as the tuple sizes and the numbers of partitions vary, we see that the

11The eighth disk contains the root partition and swap partition. We find that using seven disks instead of eight reduces the

variance of the measurements.
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Figure 4.25: Join phase performance with I/Os when output tuples are consumed in main memory.
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Figure 4.26: Join phase performance with I/Os when output tuples are written to disk.
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Figure 4.27: I/O partitioning phase performance with I/Os.

speedups are larger for the join operations that use 20B tuples or produce larger number of partitions.

This is because hash joins are more CPU-intensive in these situations. Compared with 100B tuples,

there are roughly five times as many 20B tuples to be processed per disk page by hash joins. Larger

numbers of partitions require more output buffer space in the I/O partitioning phase, thus incurring more

cache misses. Hence as we see in Figures 4.25-4.27, the gap between the main busy time and the worker

io stall time is larger in these experiments, thus leading to a larger potential benefit for CPU cache

optimizations.
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In summary, we observe that our cache prefetching techniques successfully reduce the elapsed real

times of hash joins on the Itanium 2 machine with disk I/Os.

4.8 Chapter Summary

While prefetching is a promising technique for improving CPU cache performance, applying it to the

hash join algorithm is not straightforward due to the dependencies within the processing of a single tuple

and the randomness of hashing. In this chapter, we have explored the potential for exploiting inter-tuple

parallelism to schedule prefetches effectively.

Our prefetching techniques—group prefetching and software-pipelined prefetching—systematically

reorder the memory references of hash joins and schedule prefetches so that cache miss latencies in the

processing of a tuple can be overlapped with computation and miss latencies of other tuples. We devel-

oped generalized models to better understand these techniques and successfully overcame the complexi-

ties involved with prefetching the hash join algorithm. Our experimental results both through simulations

and on an Itanium 2 machine demonstrate:

• Compared with GRACE and simple prefetching approaches, our cache prefetching techniques

achieve 1.29-4.04X speedups for the join phase cache performance and 1.37-3.49X speedups for

the partition phase cache performance. Comparing the elapsed real times when I/Os are in the

picture, our cache prefetching techniques achieve 1.12-1.84X speedups for the join phase and

1.06-1.60X speedups for the partition phase.

• Compared with cache partitioning, our cache prefetching schemes do not suffer from the large

re-partitioning cost, which makes cache partitioning 36-77% slower than our schemes.

• Unlike cache partitioning, our cache prefetching schemes are robust against even the worst-case

cache interference.

• Our prefetching schemes achieve good performance for a large varieties of joining conditions.
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• The techniques will still be effective even when the latency gap between processors and memory

increases significantly in the future (e.g., by a factor of four).

In summary, our group prefetching and software-pipelined prefetching techniques can effectively im-

prove the CPU cache performance of the join phase and the partition phase of hash joins. Moreover, we

believe that our techniques can improve other hash-based algorithms such as hash-based group-by and

aggregation algorithms, and other algorithms that have inter-element parallelism.
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Inspector Joins

5.1 Introduction

Our ability to minimize the execution time of queries often depends upon the quality of the information

we have about the underlying data and the existence of suitable indices on that data. Thus, database

management systems (DBMS) maintain various statistics and indices on each relation, which fuel all

of the optimizer’s decisions. Because it is not feasible to maintain statistics and indices specific to

every query, the DBMS must rely on general statistics and indices on the relations in order to optimize

and process specific queries, often resulting in incorrect decisions and ineffective access methods. This

problem is particularly acute for join queries, where (i) characteristics of the join result often must be

inferred from statistics on the individual input relations and (ii) it is impractical to maintain indices

suitable for all join query and predicate combinations. In this chapter, we address this problem in the

context of hash joins, one of the most frequent join algorithms.

Our key observation is that because hash-based join algorithms visit all the data in the I/O partitioning

phase before they produce their first output tuple, we have the opportunity to inspect the data during

this earlier pass and then use this knowledge to optimize the subsequent join phase of the algorithm.

In particular, we show how statistics and specialized indices, specific to the given query on the given

data, can be used to significantly reduce the primary performance bottleneck in hash joins, namely,
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the poor CPU cache performance caused by the random memory accesses when building and probing

hash tables [14, 16, 66, 90]. We show that our approach in this chapter, which we call Inspector Joins,

matches or exceeds the performance of state-of-the-art cache-friendly hash join algorithms, including

cache partitioning [14, 66, 90], and cache prefetching algorithms that we propose and evaluate in Chapter

4. Inspector joins are specially targeted at shared-bus multi-processor systems. When run on eight or

more processors, Inspector Joins offer significant (1.09–1.75X) speedups over the previous algorithms.

Moreover, the specialized indices created by inspector joins are particularly well-suited to two common

join scenarios: foreign key joins and joins between two nearly-sorted relations.1

5.1.1 Previous Cache-Friendly Approaches

There are two state-of-the-art cache friendly approaches for hash joins: cache partitioning and cache

prefetching. Given a pair of build and probe partitions in the join phase, cache partitioning [14, 66, 90]

recursively divides the two memory-sized partitions into cache-sized sub-partitions so that a build sub-

partition and its hash table fit into the CPU cache, thus reducing the number of cache misses caused by

hash table visits. However, the re-partition cost is so significant that cache partitioning is up to 89%

worse than cache prefetching for foreign key joins, as described in Chapter 4. Moreover, cache parti-

tioning is sensitive to cache interference by other concurrent activities in the system because it assumes

exclusive use of the cache. Cache prefetching exploits memory system parallelism in today’s processors

and uses software prefetch instructions to overlap cache misses with computation. The cache prefetching

techniques are effective only when there is sufficient memory bandwidth. However, modern database

servers typically run on multiprocessor systems. In an SMP (symmetric multiprocessing) system, the en-

tire memory bandwidth is shared across all the processors. Because cache prefetching essentially trades

off bandwidth for reduced execution time, its benefit gradually disappears as more and more processors

eagerly compete for the limited memory bandwidth.

Figure 5.1 shows the join phase performance of joining a 500MB build relation with a 2GB probe

1Joins between nearly-sorted relations arise, for example, in the TPC-H benchmark, where the lineitem table and the or-

ders table are nearly sorted on the (joining) order keys. We also observe joins between nearly-sorted relations in a commercial

workload.
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Figure 5.1: Impact of memory bandwidth sharing on join phase performance in an SMP system.

relation, varying the number of CPUs used in the join phase. In each experiment, the number of I/O

partitions generated is a multiple of the number of CPUs. Then the same join phase algorithm is run

on every CPU to process different partitions in parallel. (Please see Section 5.6.1 for setup details.) As

shown in Figure 5.1(a), both cache partitioning and cache prefetching perform significantly better than

the original GRACE hash join. Cache partitioning is worse than cache prefetching because of the re-

partition cost. The effect of memory bandwidth sharing is more clearly shown in Figure 5.1(b), which

reports the total aggregate time of all CPUs for the join phase for the same experiment. We can see that

the benefit of cache prefetching gradually disappears as more and more processors are competing for

the memory bandwidth. Cache prefetching becomes even worse than the GRACE hash join when there

are 16 processors or more. Interestingly, the GRACE hash join also suffers from memory bandwidth

sharing when there are 32 processors.

5.1.2 The Inspector Join Approach

To achieve good performance even when memory bandwidth is limited, we need to reduce the number

of cache misses of the join phase algorithm, in addition to applying prefetching techniques to hide cache

miss latencies. Our approach exploits the multi-pass structure of the hash join algorithm. During the I/O

partitioning phase, inspector joins create a special multi-filter-based index with little overhead; this index
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will enable us to have “in-place” cache-sized sub-partitions of the build table. Unlike cache partitioning

our approach reduces the number of cache misses without moving tuples around. The join phase, which

we refer to as a cache-stationary join phase because of its in-place nature, is performed using the index.

Our cache-stationary join phase is specially designed for joins with nearly unique build join keys,

which include primary-foreign key joins, the majority of all the real-world joins. On the other hand,

if probe tuples frequently match multiple build tuples in a given join query, the cache-stationary join

phase is not the best choice. An inspector join can detect this condition during its inspection and switch

to use a different join phase algorithm (see Section 5.6.5 for details). Moreover, as mentioned above,

inspector joins can detect nearly-sorted relations (after any predicates being applied before the join).

Our initial intuition was that a sort-merge based join phase algorithm should be applied in this case.

However, surprisingly, the cache-stationary join phase performs equally well, due to the effectiveness of

its multi-filter-based index.

The chapter is organized as follows. Section 5.2 discusses related work. Section 5.3 illustrates the

high level ideas in our solution. Section 5.4 and 5.5 describe our algorithms in detail. Section 5.6

presents our experimental results. Finally, Section 5.7 summarizes the chapter.

5.2 Related Work

Hash join cache performance. Hash join has been studied extensively over the past two decades [29,

54, 59, 89]. Recent studies focus on the CPU cache performance of hash joins. Shatdal et al. show

that cache partitioning achieves 6-10% improvement for joining memory-resident relations with 100B

tuples [90]. Boncz, Manegold and Kersten propose using multiple passes in cache partitioning to

avoid cache and TLB thrashing when joining vertically-partitioned relations (essentially joining two

8B columns) [14, 66]. However, we show in Chapter 4 that when the tuple size is 20B or larger, the

re-partition cost of cache partitioning is so significant that cache partitioning is up to 89% worse than

cache prefetching. In Chapter 4, we exploit the inter-tuple parallelism to overlap the cache misses of a

tuple with the processing of multiple tuples. We propose and evaluate two prefetching algorithms, group
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prefetching and software-pipelined prefetching. However, as shown in Figure 5.1, the performance of

cache prefetching degrades significantly when more and more CPUs are eagerly competing for the mem-

ory bandwidth in a multiprocessor system. Therefore, in this chapter, we exploit information collected

in the I/O partitioning phase to fit address-range-based sub-partitions in cache, thus reducing the number

of cache misses without incurring additional copying cost. Our approach is effective for tuples that are

20B or more. For smaller tuples, we revert to cache partitioning.

Inspection concept. Several studies exploit information collected while processing queries previ-

ously submitted to the DBMS: reusing partial query results in multi-query optimization [86], maintain-

ing and using materialized views [10], creating and using join indices [100], and collecting up-to-date

statistics for future query optimizations [94]. Unlike these studies the inspection and use of the infor-

mation in our approach are specific to a single query. Therefore, we avoid the complexities of deciding

what information to keep and how to reuse data across multiple related queries. Moreover, our approach

is effective for any join query and predicate combinations.

Dynamic re-optimization techniques augment query plans with special operators that collect statistics

about the actual data during the execution of a query [49, 68]. If the operator detects that the actual

statistics deviate considerably from the optimizer’s estimates, the current execution plan is stopped and

a new plan is used for the remainder of the query. Compared to the global re-optimization of query

plans, our inspection approach can be regarded as a complementary, local optimization technique inside

the hash join operator. When hash joins are used in the execution plan, our inspection approach creates

specialized indices to enable the novel cache-stationary optimization and allows informed choice of join

phase algorithms. Because the indices and informed choice account for which tuples will actually join

as well as their physical layout within the intermediate partitions, this functionality cannot be achieved

by operators outside the join operator.

5.3 Inspector Joins: Overview

In this section, we describe (i) how we create the multi-filters as a result of data inspection, (ii) how

we minimize the number of cache misses without moving any tuples around, (iii) how we exploit cache
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Figure 5.2: Using multiple filters to inspect the data.

prefetching to hide the remaining cache misses and to improve robustness against cache interference,

and (iv) how we choose join phase algorithms based on obtained information about the data.

5.3.1 Inspecting the Data: Multi-Filters

While partitioning tables for a hash join, commercial database systems often construct a filter to quickly

discard probe tuples that do not have any matches [59]. Such filters may improve join performance

significantly when a large number of probe tuples do not match any tuples in the build relation (e.g.,

there is a predicate on the build relation in a foreign-key join). As shown in Figure 5.2(a), a single

filter is computed from all the build tuples to approximately represent all the join attribute values in the

build relation. Testing a value against the filter is conservative: While a negative answer means that

the value is not in the filter, false positives may occur with a low probability. (Bloom filters, detailed in

Section 5.4, are a typical example.) When partitioning the probe relation, the algorithm tests every probe

tuple against the filter. If the test result is negative for a tuple, the algorithm simply drops the tuple, thus

saving the cost of writing it to disk and processing it in the join phase.

Instead of using a single large filter that represents the entire build relation, the inspector join creates

multiple shorter filters (illustrated in Figure 5.2(b)), each representing a disjoint subset of build tuples.
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Testing a probe tuple against the filters will (conservatively) show which subsets the probe tuple has

matches in. The build relation subsets are address-range-based sub-partitions; that is, a subset represents

all build tuples in K consecutive pages in a build partition. K is chosen to make the sub-partition fit in

the cache in the join phase, as will be described in Section 5.3.2.

The inspector join builds the set of small filters by inspecting the build relation during the partitioning

phase. To keep track of the sub-partition boundaries, we use a page counter for every partition. Then,

every build tuple is used to compute the filter corresponding to the sub-partition the tuple belongs to.

Note that the multi-filter scheme tests filters differently than the single-filter scheme. For every probe

tuple, after computing its destination partition, the algorithm checks the join attribute value in the tuple

against all the filters in the partition. The algorithm drops the probe tuple only if all filter tests for all sub-

partitions are negative. The positive tests show which sub-partition(s) may contain matching build tuples

of the probe tuple, and this information is used in the join phase of the inspector algorithm. Section 5.4

demonstrates that our multi-filter scheme incurs the same number of cache misses as the single-filter

scheme during the inspection and filter-construction phase, and it can achieve the same aggregate false

positive rate with moderate memory space requirements.

5.3.2 Improving Locality for Stationary Tuples

During the join phase, the inspector join algorithm knows which probe tuples match every address-range-

based sub-partition of the build relation, and therefore processes tuples one sub-partition at a time. For

every sub-partition, the algorithm builds a cache-resident hash table on the build tuples, and probes it

with all the probe tuples associated with this sub-partition. We ensure that the build tuples of a sub-

partition and its hash table fit into the cache by choosing the number of pages per build sub-partition, K,

as follows:

K ·P+K ·n ·H ≤C (5.1)

The variables used above and throughout the chapter are summarized in Table 5.1.

2Note that we usually set C to be a fraction (e.g., 0.5) of the total cache size so that call stacks and other frequently used

data structures can stay in the cache as well.
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Table 5.1: Terminology used throughout Chapter 5.

Name Definition

P page size (in bytes)

N number of build tuples in build relation

n number of build tuples per partition page

H number of bytes in hash table for every key

C effective cache size (in bytes)2

L cache line size (in bytes)

K number of build pages per sub-partition

S number of sub-partitions per build partition

bpk number of bits per key for a single Bloom filter

f pr Bloom filter false positive rate

Figure 5.3 compares the cache behaviors of all the join-phase algorithms that we are considering. As

shown in Figure 5.3(a), the GRACE algorithm joins memory-sized partitions. It builds an in-memory

hash table on all the build tuples, then probes this hash table using every tuple in the probe partition

to find matches. Because of the inherent randomness of hashing, accesses to the hash table have little

temporal or spatial locality. Since the build partition and its hash table are typically much larger than

the CPU cache size, these random accesses often incur expensive cache misses, resulting in poor CPU

cache performance.

Figure 5.3(a) shows that the cache prefetching algorithms perform the join in the same way as the

GRACE algorithm [54]. The prefetching algorithms do not reduce the number of cache misses; rather,

they use prefetch instructions to hide the latency of cache misses when repeatedly visiting the hash table.

To achieve this, they rely on sufficient memory bandwidth to quickly service cache misses and prefetch

requests. When multiple processors aggressively compete for the limited main memory bandwidth,

however, the performance of the prefetching algorithms is likely to degrade significantly, as shown

previously in Figure 5.1.

Figure 5.3(b) illustrates how cache partitioning joins pairs of cache-sized partitions to avoid excessive

cache misses because of hash table visits. The algorithm recursively partitions memory-sized partitions
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Figure 5.3: Comparing the cache behaviors of different join phase algorithms.

into cache-sized sub-partitions, and then joins the sub-partitions using cache-resident hash tables. Es-

sentially, cache partitioning visits every tuple at least once more than the GRACE algorithm, thereby

incurring significant re-partition cost, as shown previously in Figure 5.1.

Figure 5.3(c) shows the cache behavior of the cache-stationary join phase of inspector join. It reads

memory-sized partitions into memory and processes one cache-sized partition at a time, avoiding the

cache misses caused by hash table visits. It simply visits the consecutive pages of a build sub-partition

to build a hash table. Random memory accesses are avoided while building the hash table because the

build sub-partition and the hash table fit into the cache. Since the algorithm already knows which probe
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tuples may have matches in the given build sub-partition, it can directly visit these probe tuples in place

without moving them. Compared to cache partitioning, inspector joins eliminate unnecessary cache

misses without moving any tuples, thereby avoid the excessive re-partitioning overhead. The algorithm

almost never revisits probe tuples when join attribute values in the build relation are unique (or almost

unique). Values in the build relation are unique, for instance, in foreign-key joins, which constitute most

of the real-world joins. (As detailed below, the inspector join verifies the assumption and selects one of

the other join phase algorithms when the assumption does not hold.) Moreover, the algorithm utilizes

cache prefetching to further hide the latency for the probe tuples, as we describe below.

5.3.3 Exploiting Cache Prefetching

We exploit cache prefetching techniques in addition to using cache-sized sub-partitions for two reasons.

First, cache prefetching can hide the latency of the remaining cache misses, such as the cold cache

misses that bring a build sub-partition and its hash table into the CPU cache, and the cache misses for

accessing the probe tuples. Second, cache prefetching can improve the robustness of our algorithm when

there is interference with other processes running concurrently in the system. As shown previously in

Section 4.7.5, cache partitioning performance degrades significantly when the CPU cache is flushed

every 2-10 ms, which is comparable to typical thread scheduling time. To cope with this problem, we

issue prefetch instructions as a safety net for important data items that should be kept in the cache, such

as the build tuples in a build sub-partition. If the data item is in cache, there is no noticeable penalty. On

the other hand, if the data item has been evicted from cache, the prefetch instruction brings it back into

the cache significantly earlier, making this approach worthwhile. In a sense, we use double measures to

maximize cache performance when accessing important data items.

5.3.4 Choosing the Best Join Phase Algorithm

Based on the statistics collected from the actual data in the partition and inspection phase, inspector joins

can choose the join phase algorithm best suited to the given query. For example, we detect duplicate build
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keys by counting the number of sub-partitions each probe tuple matches. Since a probe tuple must be

tested against all the possible matching sub-partitions for correctness, the execution time of the cache-

stationary join phase of the inspector join increases with the number of duplicate build keys. When the

number of sub-partitions a probe tuple matches on average is above a threshold, inspector joins select a

different join phase algorithm, as will be shown in Section 5.6.5.

Our inspection approach can also detect relations that are nearly-sorted on the join key. Our initial

intuition is that a sort-merge based join phase should be applied in this case. To verify our intuition, we

implemented an inspection mechanism to detect nearly-sorted tuples. The basic idea is to keep tuples

that are out of order in a memory buffer when partitioning an input relation. The input is nearly sorted

if the memory buffer does not overflow when all the tuples are read. At this point, all the intermediate

partitions contain in-order tuples. We then partition the (small number of) out-of-order tuples and store

them separately from the in-order tuples. In the join phase, given four inputs per partition (out-of-order

and in-order build and probe inputs), the sort-merge algorithm first sorts the out-of-order inputs and then

merges all four inputs to find matching tuples. Surprisingly, we find in our experiments (in Section 5.6.5)

that the cache-stationary join phase performs as well as the sort-merge implementation.

5.4 I/O Partition and Inspection Phase

In this section, we begin by introducing a typical filter implementation: Bloom filters. Then, we discuss

the memory space requirement of our multi-filter scheme, and we illustrate how our scheme achieves the

same number of cache misses as the single-filter scheme. Finally, we describe the I/O partition and in-

spection algorithm that uses the multi-filter scheme to determine the matching sub-partition information

for probe tuples.

5.4.1 Bloom Filters: Background

A Bloom filter represents a set of keys and supports membership tests [11]. As shown in Figure 5.4,

a Bloom filter consists of a bit vector and d independent hash functions, h0,h1, . . . ,hd−1 (d = 3 in the
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1 1 1

h (key)=b0 0 h (key)=b1 1 h (key)=b2 2

Figure 5.4: A Bloom filter with three hash functions.

Table 5.2: Number of Bloom filter bits per key (d = 3).

false positive rate ( f pr) 0.1 0.05 0.01 0.005 0.001 0.0005

number of bits per key (bpk) 4.808 6.529 12.364 15.997 28.474 36.277

figure). To represent a set of keys, we first initialize all the bits in the bit vector to be 0. Then, for every

key, we compute d bit positions using the hash functions and set the bits to 1 in the bit vector. (A bit

may be set multiple times by multiple keys.)

To check whether a test key exists in the set of known keys, we compute d bit positions for the test

key using the hash functions and check the bits in the bit vector. If some of the d bits are 0, the set of

known keys can not contain the test key. If all of the d bits are 1, the test key may or may not exist in

the set of known keys. Therefore, Bloom filter tests may generate false positives but may never generate

false negative results.

Intuitively, the larger the Bloom filter vector size, the smaller the probability that a test generates a

false positive, which is called the false positive rate. In fact, the false positive rate f pr and the number

of bits per key bpk of the bit vector are closely related to each other [11]:

f pr ≈ (1− e−d/bpk)d,when bit vector sizeÀ 1 (5.2)

Table 5.2 shows the bpk values for various f pr. In this chapter, we only consider Bloom filters with

d = 3.3 We point out, however, that our algorithm works for any choice of d.

3Previous studies computed the optimal d for the purpose of minimizing filter sizes [23, 88, 93]. The computed optimal

size (e.g., 11 when bpk = 16) can be much larger than 3. However, the major concern in hash join algorithms is to reduce the

hashing cost and the number of memory references for setting and testing filters. Therefore, commercial hash join algorithms

often choose a small d [59]. Section 5.4.2 shows that the resulting space overhead is still relatively modest.
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Table 5.3: Total filter size varying tuple size (1 GB build relation, f pr = 0.05, S = 50).

tuple size 20B 60B 100B 140B

number of build tuples 50M 16.7M 10M 7.1M

single-filter 40.8MB 13.6MB 8.2MB 5.8MB

multi-filter 178.0MB 59.4MB 35.6MB 25.3MB

5.4.2 Memory Space Requirement

In a single filter scheme, the total size of the filter in bytes can be computed as follows, where N is the

total number of build tuples (assuming that keys are unique):

total f ilter sizesingle = bpk ·N/8 (5.3)

Our multi-filter scheme constructs a filter per sub-partition in every build partition. However, the filters

represent disjoint subsets of build tuples; every build tuple belongs to one and only one sub-partition.

Therefore, every build tuple is still represented by a single filter. Let bpk′ be the number of bits per key

for an individual filter. Then the total filter size of the multi-filter scheme is:

total f ilter sizemulti = bpk′ ·N/8 (5.4)

We can quantify the increase in memory space by using the ratio between the filter sizes of the multi-filter

and the single-filter schemes:

space increase ratio =
total f ilter sizemulti

total f ilter sizesingle
=

bpk′

bpk
(5.5)

To obtain bpk′, we need to first compute the false positive rate f pr′ for an individual filter in the multi-

filter scheme. Suppose there are S sub-partitions per build partition. Then, a probe tuple will be checked

against all the S filters in the partition to which the probe tuple is hashed. If any filter test is positive, the

join phase algorithm has to join the probe tuple with the corresponding build sub-partition for matches.

In order to keep the number of additional probes caused by false positives the same as the single-filter

scheme, the single-filter scheme f pr and the individual f pr′ of the multi-filter scheme should satisfy:

f pr′ = f pr/S (5.6)
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For example, if the single-filter scheme’s f pr is 0.05, we can compute the space increase ratio as

follows. Since f pr′ = f pr/S, f pr′ = 0.001 if S = 50. Then, bpk = 6.529 and bpk′ = 28.474, accord-

ing to Table 5.2. Therefore, space increase ratio is 4.4. Similarly, if S = 100, we can compute that

space increase ratio is 5.6.

Table 5.3 compares the filter size of the multi-filter scheme with the single-filter scheme when the

aggregate false positive rate is 0.05 and there are 50 sub-partitions per partition.4 The build relation

is 1GB large, and we vary the tuple size from 20 to 140 bytes. We can see that the space requirement

is moderate when the tuple size is greater than or equal to 100B, which is typical in most real-world

applications. Even if the tuple size is as small as 20B, the memory requirement of 178MB can still be

satisfied easily in today’s database servers.5

5.4.3 Minimizing the Number of Cache Misses

The single-filter scheme writes three bits in the Bloom filter for every build tuple. For every probe tuple,

it reads three bits in the Bloom filter. Since the bit positions are random because of the independent

hash functions, the single-filter scheme potentially incurs three cache misses for every build tuple and

for every probe tuple, assuming the total filter size is larger than the CPU cache size. (We do not use

our algorithm if the relation is so small that the computed single filter size is smaller than cache, but the

total size of the multiple filters may be larger than cache.)

In the multi-filter scheme, a build tuple is still represented by a single filter corresponding to its sub-

partition. Therefore, the multi-filter scheme still writes three bits for every build tuple, incurring the

same number of cache misses as the multi-filter scheme.

However, the multi-filter scheme checks S filters for every probe tuple, where S is the number of

sub-partitions per partition. We ensure that the filters are of the same size. Given a probe tuple, the

4S = 50 is a reasonable choice. Even if the cache size is as small as 1MB, and the I/O partition phase can produce up to

500 partitions (limited by the capability of the storage manager), it allows the build relation size to be as large as 25GB.
5 Hash join may choose to hold intermediate partition pages in memory. Therefore, the above additional memory space

requirement may result in extra I/Os. However, hash join is CPU bound with reasonable I/O bandwidth (as shown previously

in Chapter 4), and this is a minor effect.
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Figure 5.5: Layouts of multiple Bloom filters.

multi-filter scheme still computes the same number of bit positions as the single-filter scheme, then it

simply checks the same bit positions for all S filters. However, the filter tests may incur 3S cache misses,

which is much more than the single-filter scheme.

This problem can be solved by laying out the filters vertically for every partition. The idea was

proposed previously in the context of searching text databases with bit-sliced signature files on disk [24].

In the following, we employ this idea in testing main-memory-based filters. Moreover, we describe how

we get around the problem of creating vertical filters when the number of filters (thus the number of bits

per row) is unknown.

As shown in Figure 5.5(a), the bits at the same bit position in all the filters of a partition are consecutive

in memory. That is, the first bits of all the filters are stored together, which are followed by the second

bits of all the filters, so on so forth. Note that the cache line size is typically 32B to 128B, or 256-1024

bits, which is much larger than the number of filters per partition S. Therefore, under the vertical layout,

we can read the bits of a given position from all the filters while incurring only a single cache miss.

In this way, the multi-filter scheme can keep the number of cache misses the same as the single-filter

scheme for testing a probe tuple.

Figure 5.5(a) shows that we can test all the filters for a given probe tuple using a bit operation under

the vertical layout. We simply compute a bit-wise AND operation of the b0 bits, the b1 bits, and the b2

bits. A 1 in the result means all three bits for the corresponding filter are 1. Therefore, a 1/0 resulting bit

means a positive/negative test result for the corresponding filter.
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Figure 5.6: Horizontal to vertical layout conversion.

A new problem occurs when we lay out the filters vertically: New filters can not be easily allocated

and the number of filters in a partition must be determined before allocating the memory space for the

vertical filters. Since the actual partition size may vary due to data skew, using the maximal possible

number of sub-partitions may waste a lot of memory space.

We solve this dynamic allocation problem by using horizontal layout when partitioning the build

relations and generating the filters, as shown in Figure 5.5(b). Then, we convert the horizontal layout

into an equivalent vertical layout before partitioning the probe relation.

Figure 5.6 illustrates the conversion algorithm. Horizontal filters are allocated at cache line bound-

aries. We transpose the filters one block at a time. Every block consists of a cache line (8L bits) for

all the filters. The source cache lines of different filters in the horizontal layout are not contiguous in

memory, while the destination block is a continuous chunk of memory. Every outer-loop iteration of the

algorithm prefetches the next source and destination blocks in addition to converting the current block.

In this way, we hide most of the cache miss latency of accessing the source and destination filters.

5.4.4 Partition and Inspection Phase Algorithm

The algorithm consists of the following three steps:

1. Partition build relation and compute horizontal filters;

2. Convert horizontal filters to vertical layout;

3. Partition probe relation and test vertical filters.
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Figure 5.7: I/O partition and inspection phase algorithm.

In the above, we have described the algorithm for step 2. This subsection focuses on the other two steps

in the algorithm.

As shown in Figure 5.7(a), step 1 allocates an input buffer for the build relation and an output buffer

for every intermediate partition. It uses horizontal filters. Each partition keeps a page counter for the

outgoing pages. When the counter equals to K, the number of pages per sub-partition, a new filter is

allocated from a memory pool and the counter is reset to 0. For every build tuple, the algorithm extracts

the join attribute to compute a 32-bit hash code. It determines the partition number by using the hash

code and copies the tuple (with projection if needed) to the output buffer. The algorithm also computes

and sets the three bit positions of the current horizontal filter. For better cache performance, we employ

group prefetching as described in Chapter 4. The only difference is the addition of prefetching for the

Bloom filter positions. Moreover, a tuple’s hash code is stored in the page slot area to save hash code

computation in the join phase (as described in Chapter 4).6

As shown in Figure 5.7(b), Step 3 is similar to Step 1 with the following differences. First, the

algorithm tests every probe tuple against the set of vertical filters in the tuple’s partition. A tuple is

dropped when all the resulting bits are 0. Second, positive results show which sub-partitions may contain

matching tuples for the given probe tuple. The sub-partition ID(s) is recorded in the slot area of the same

6A build partition page slot consists of a 4B hash code and a 2B tuple offset. Every two slots are combined together to

align the hash codes at 4B boundaries.
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output page containing the tuple.7 In most cases, a single sub-partition ID is found. Note that slots may

be of variable size now. This is not a problem since the probe slots will only be visited sequentially (in

the counting sort step) in the join phase algorithm, as will be described in Section 5.5. Third, the number

of probe tuples associated with each sub-partition is counted, which is used (in the counting sort step) in

the join phase algorithm.

5.5 Cache-Stationary Join Phase

The join phase algorithm consists of the following steps:

1. Read build and probe partitions into main memory;

2. Extract per-sub-partition probe tuple pointers;

3. Join each pair of build and probe sub-partitions.

By using the sub-partition information collected in the partition and inspection phase, the algorithm

achieves good cache performance without copying any tuples. The sub-partition information is stored

in the order of probe tuples in the probe intermediate partitions. However, Step 3 visits all the probe

tuples of a single sub-partition and then moves on to the next sub-partition. It requires the sub-partition

information in the order of sub-partition IDs. Therefore, probe tuple sub-partition information has to be

sorted before use. In the following, we first describe how Step 2 performs counting sort, then discuss the

use of prefetching to improve performance and robustness in Step 3.

5.5.1 Counting Sort

The algorithm knows the number of sub-partitions and the number of probe tuples associated with each

sub-partition; the latter is collected in the I/O partition phase. Therefore, we can use counting sort, which

7From high address to low address, a probe partition page slot consists of a 4B hash code, a 2B tuple offset, a 1B number

of sub-partitions, a sequence of sub-partition IDs each taking 1B. We align slots on 4B boundaries and a slot takes 8B when

there is a single sub-partition ID.
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Figure 5.8: Extracting probe tuple information for every sub-partition using counting sort.

is a fast O(N) algorithm, for extracting probe tuple information (the probe tuple pointers and hash codes)

for every sub-partition.

As shown in Figure 5.8, for every sub-partition, we allocate an array, whose size is equal to the number

of probe tuples associated with the sub-partition. The algorithm visits the slot area of all the probe

partition pages sequentially. For every slot, it computes the tuple address using the tuple offset. Then the

algorithm copies the tuple address and the hash code to the destination array(s) that are specified by the

sub-partition ID(s) recorded in the page slot. Assuming the build join attribute values are mostly unique,

there is often a single sub-partition ID for a probe tuple, and the tuple address and hash code are only

copied once. After processing all the probe page slots, the algorithm obtains an array of (tuple pointer,

hash code) pairs for every sub-partition. Note that the tuples themselves are not visited nor copied in the

counting sort.

We use cache prefetching to hide the cache miss latency of reading page slots and writing to the

destination arrays. We keep a pointer to the next probe page and issue prefetches for the next page slot

area while processing the slot area of the current page. Similarly, for every destination array, we keep

a pointer to the next cache line starting address. We issue a prefetch instruction for the next cache line

before we start using the current cache line in the array.

5.5.2 Exploiting Prefetching in the Join Step

For every pair of build and probe sub-partitions, the algorithm first constructs a hash table. (We assume

the same hash table structure as in Chapter 4.) Since the hash codes are stored in the build page slot area,
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the algorithm does not need to access the actual build tuples for creating the hash table. However, we

expect the build tuples to be used frequently during probing. Therefore, we issue prefetch instructions

for all build tuples of the sub-partition to bring them into cache, as shown in Figure 5.9.

After building the hash table, the algorithm visits the array containing the probe tuple pointers and

hash codes of the sub-partition, as shown in Figure 5.9. It probes the hash table with hash codes in the

array. If a probe is successful, the algorithm visits the probe tuple and the build tuple to verify that their

join attributes are actually equal. It produces an output tuple for a true match.

We issue prefetches for the probe tuples and for the array containing probe tuple information. Here,

we use a special kind of prefetch instruction, non-temporal prefetches, which are supported by Intel

Itanium 2 and Pentium 4 architectures [43, 45]. Non-temporal prefetches are used to read cache lines

that do not have temporal locality; the cache lines are supposed to be used only once. Therefore, cache

lines read by non-temporal prefetches ignore the LRU states in the cache, and they go to a particular

location in the corresponding cache set, thus minimizing cache pollution by the prefetched line. Since

we aim to keep the build sub-partition and the hash table in cache, minimizing the cache pollution caused

by visiting other structures is exactly what we want.

To prefetch the array containing probe tuple pointers and probe hash codes, we keep a pointer p to the

cache line in the array that are dist lines ahead of the current cache line (dist = 20 in our implementation).

Suppose there are m pairs of pointers and hash codes in every cache line. The algorithm first issues

prefetches for the first dist lines and then sets p to the beginning of dist +1 line. Whenever the algorithm
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finishes processing m probe tuples, it issues a prefetch for the cache line pointed by p and increases p

by a cache line. The algorithm checks p against the end of the array to stop prefetching. To prefetch for

the probe tuples, we use a buffer to temporarily store the pairs of pointers pointing to the build and probe

tuples that correspond to successful hash table probes. When this buffer is full, we visit these tuple pairs

using software-pipelined prefetching.

Finally, we improve the robustness of our algorithm by issuing prefetches for the build tuples while

prefetching for the probe tuples. In most cases, the build tuples are already in cache, and these prefetches

do not have effects. However, if the build tuples are replaced somehow, the prefetches can bring the build

tuples back into the cache quickly. We do not prefetch the hash table for the same purpose because it

requires larger changes to the algorithm and therefore may incur significant run-time cost.

5.6 Experimental Results

In this section, we evaluate the CPU cache performance of our inspector joins against the cache prefetch-

ing and cache partitioning algorithms. Moreover, in Section 5.6.5, we exploit the inspection approach

to detect situations where there are duplicate build keys or where relations are nearly sorted, and choose

the best join phase algorithm.

5.6.1 Experimental Setup

Implementation Details. We implemented five hash join algorithms: group prefetching, software-

pipelined prefetching, cache partitioning, enhanced cache partitioning with advanced prefetching sup-

port, and our inspector join algorithm. We store relations and intermediate partitions as disk files, and

the join algorithms are implemented as stand-alone programs that read and write relations in disk files.

We keep schemas and statistics in separate description files for simplicity. Statistics on the relations

about the number of pages and the number of tuples are used to compute hash table sizes, numbers of

partitions, and Bloom filter sizes.
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Our cache prefetching implementations extend the cache prefetching algorithms described in Chapter

4 with Bloom filter support. The algorithms utilize a single Bloom filter for removing probe tuples hav-

ing no matches. We add prefetches for the Bloom filter to the group and software-pipelined prefetching

algorithm in the I/O partition phase. In our experiments, we find that the performance results of the two

prefetching algorithms are very similar. To simplify presentation, we only show the group prefetching

curves, which are labeled as “cache prefetching”.

The two cache partitioning algorithms both use the group prefetching implementation for the I/O parti-

tion phase; they perform re-partition and join cache-sized sub-partitions in the join phase. The enhanced

cache partitioning performs advanced prefetching similar to that of the inspector join for joining a pair

of cache-sized sub-partitions. It also performs advanced prefetching to reduce the re-partition cost. This

algorithm serves as a stronger competitor to our algorithm. In the figures that follow, enhanced cache

partitioning is labeled as “enhanced cpart”.

In every experiment, the number of I/O partitions generated is a multiple of the number of CPUs.

Then the same join phase algorithm is run on every CPU to process different partitions in parallel. The

partition phase algorithms take advantage of multiple CPUs by conceptually cutting input relations into

equal-sized chunks and partitioning one chunk on every CPU. Every processor generates the same

number of partition outputs. The i-th build partition will conceptually consist of the i-th build output

generated by every processor. The probe partitions are generated similarly. Every CPU will build its

own filter(s) based on the build tuples it sees. After partitioning the build relation, the generated filters

are merged. For the single-filter scheme, all filters are OR-ed together to get a single filter. For the multi-

filter scheme, different CPUs actually generate horizontal filters for different sub-partitions. Therefore,

the algorithm can directly perform horizontal to vertical filter conversion. Then, the same filter(s) is

shared across all the CPUs for testing probe tuples.

Finally, we report speedups when we compare inspector joins with another algorithm running on the

same number of CPUs. Note that the speedups do not compare our algorithm running on multiple CPUs

(e.g., 8 CPUs) with another algorithm running on a single CPU, and therefore should not be interpreted

as the entire benefits of using multiple CPUs. Rather, the speedups show the additional benefits over
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advanced baseline algorithms that already run on multiple CPUs, while the entire benefits of using

multiple CPUs can be obtained easily by examining the figures and noting that the wall-clock time is

roughly equal to the aggregate time divided by the number of CPUs.

Experimental Design. We use the same relation schema as in Chapter 4: A tuple consists of a 4-byte

randomly generated join key and a fixed-length payload. An output tuple contains all the fields of the

matching build and probe tuples. In all the experiments except those in Section 5.6.5, a probe tuple

can match zero or one build tuple, and a build tuple may match one or more probe tuples. We test the

performance of our solution in various situations by varying the tuple size, the number of probe tuples

matching a build tuple (which is the ratio between probe and build relation sizes), and the percentage of

probe tuples that have matches. We vary the latter from 5% to 100% to model the effects of a selection

on a build attribute different from the join attribute.

In all our experiments, we assume the available memory size for the join phase is 50MB and the cache

size is 2MB, which follow the settings in Chapter 4. Note that when multiple join instances are running

on multiple processors, the actual memory allocated is 50MB multiplied by the number of instances. For

example, in the case of 32 CPUs, the total memory used for the join phase is 1600MB. The Bloom filter

false positive rate ( f pr) for the cache prefetching algorithm, and the two cache partitioning algorithms

is set to be 0.05. The individual Bloom filter false positive rate ( f pr′) for our inspector join algorithm is

set to be 0.001.

Measurement Methodology. We evaluate the CPU cache performance (of user mode executions) of

the algorithms on a dual-processor Itanium 2 machine and through detailed cycle-by-cycle simulations.

The Itanium 2 machine configuration is described previously in Section 2.4.1. We compile the algorithms

with “icc -O3” and measure user-mode cache performance with the perfmon library. Each reported data

point is the average of 30 runs; the standard deviation is less than 1% of the average in all cases.

The simulation parameters are described previously in Section 2.4.2. The only difference is that we

simulate a single thread of execution in Chapter 2-4, while we simulate multiple (up to 32) execution

streams on multiple processors sharing the same memory bus and main memory in this section.

As will be shown in Section 5.6.2, the main memory bandwidth is sufficient for the algorithms when
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Figure 5.10: Join phase user-mode time varying the number of CPUs used on the Itanium 2 machine.

only two processors are used on both the Itanium 2 machine and our simulated machine model. However,

previous cache-friendly algorithms degrade significantly when eight or more CPUs are used. Therefore,

the majority of the experimental results in this section are obtained through simulations modeling more

than two CPUs.

5.6.2 Varying the Number of CPUs

Figure 5.10 and Figure 5.11 compare the performance of the algorithms while varying the number of

CPUs. The experiments join a 500MB build relation and a 2GB probe relation. The tuple size is 100B.

50% of the probe tuples have no matches and every build tuple matches 2 probe tuples.

Figure 5.10 shows the user-mode cache performance while we use one or two CPUs on the dual-

processor Itanium 2 machine. We see that all the algorithms achieve near linear speedup when doubling

the CPUs used; there is little impact of memory bandwidth sharing on the performance of the algorithms.

By using simulations, we are able to model computer systems with larger number of CPUs. As shown in

Figure 5.11, our simulation results support similar observations when less than 4 CPUs are used. How-

ever, when 8 or more CPUs are used, both cache prefetching and cache partitioning degrade significantly

due to the sharing of the memory bandwidth. Because of this capability of simulating a large number of

processors, we will focus on simulation results in the rest of Section 5.6.
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Figure 5.11: Varying the number of CPUs used through simulations.

Figure 5.11(a) shows the partition phase wall-clock time, and Figure 5.11(b) shows the aggregate

execution time on all CPUs used in the partition phase. We see that all the partition phase curves are

very similar. Compared to the other schemes, the inspector join incurs a slight overhead. (The ratio

between the partition phase execution times of the best algorithm and the inspector join is 0.86-0.97.)

This is mainly because of the computational cost of converting horizontal filters into vertical filters and

testing a set of filters. The most costly operation is extracting the bit positions of 1’s from a bit vector in

both conversion and filter testing. This overhead will become less significant as processors are getting

faster. As shown in Figure 5.11(a), all the curves become flat after the 4-CPU case. Therefore, all the

following experiments use up to 4 CPUs in the partition phase. (If the join phase uses p CPUs, then the

partition phase uses p CPUs when p≤ 4, and uses 4 CPUs when p > 4.)
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Figure 5.11(c) shows the aggregate time on all CPUs for the join phase. The cache prefetching and

cache partitioning curves are the same as in Figure 5.1(b). Our inspector join is the best. Because of

the memory bandwidth sharing effect, the cache prefetching curve degrades significantly when there are

8 or more CPUs. Since our algorithm combines locality optimizations and cache prefetching, it is less

sensitive to bandwidth contention. Compared to the cache prefetching algorithms, our inspector join

algorithm achieves 1.86-2.35X speedups when 8 or more CPUs are used in the join phase.

As shown in Figure 5.11(c), the two cache partitioning algorithms are worse than the cache prefetching

algorithm and our inspector join when there are less than 4 CPUs. This is mainly because of the large re-

partition overhead, which consists of more than 36% of their join phase execution times. The enhanced

algorithm is always better than the original algorithm, which verifies the effectiveness of the applied

prefetching techniques. As the number of CPUs increase, the enhanced algorithm becomes significantly

better than the cache prefetching algorithms because it utilizes cache-sized sub-partitions to reduce the

number of cache misses. However, it still degrades quickly beyond 4 CPUs. This is mainly because

the re-partition step is quite sensitive to memory bandwidth sharing. Compared to the enhanced cache

partitioning algorithm, our inspector join achieves 1.50-1.79X speedups with 1-32 CPUs.

Figure 5.11(d) shows the aggregate performance of both phases using up to 4 CPUs in the partition

phase. When there are 8 or more CPUs, inspector join achieves 1.26-1.75X speedups over the cache

prefetching algorithm and the enhanced cache partitioning algorithm.8

Figure 5.12 shows the CPU time breakdowns for the join phase of the algorithms. The breakdowns

are for the tasks running on CPU 0 in the system. The Y axis shows the execution time. Every bar is

broken down into four categories: CPU busy time, stalls due to data cache misses (including the effect

of L2 misses), stalls due to data TLB misses, and other resource stalls. Comparing Figure 5.12(a) and

(b), we can see that the fractions of data cache stalls for the three left bars increase dramatically. This

clearly shows the impact of memory bandwidth sharing on the performance. In contrast, our cache-

8 Because we compare inspector joins against cache prefetching and cache partitioning algorithms, the above figures omit

the GRACE hash join curves for clarity. Compared to the GRACE hash join algorithm, our inspector join achieves 1.62-

4.14X speedups for the join phase and 1.75-2.83X speedups for the entire hash join with 1-32 CPUs. The speedups at 32

CPUs are 1.62X and 1.75X, respectively.
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Figure 5.12: Join phase CPU time breakdowns for CPU 0.

stationary algorithm (of the inspector join) achieves quite good cache performance. At 32 CPUs, cache

stalls dominate all bars, as shown in Figure 5.12(c). Even in this case, our cache-stationary algorithm is

better than the other algorithms.

5.6.3 Varying Other Parameters

Figure 5.13 shows the benefits of our inspector join algorithm over cache prefetching and cache par-

titioning while varying the number of probe tuples matching a build tuple (which is the ratio between

probe and build relation sizes), the percentage of probe tuples that have matches, and the tuple size. All
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Figure 5.13: Aggregate execution time varying three parameters when 8 CPUs are used in the join phase.

the experiments use 8 CPUs in the join phase. The three figures share a common set of experiments,

which correspond to the 8-CPU points in Figure 5.11.

Figure 5.11(a) varies the number of probe tuples matching every build tuple from 1 to 8 (while keeping

the build relation size fixed). Essentially, we vary the ratio of probe relation size to build relation size

from 1 to 8. Figure 5.11(b) varies the percentage of probe tuples having matches (while keeping the

probe relation size fixed). Figure 5.11(c) varies the tuple size from 20B to 140B (while keeping the

build relation size fixed). Note that the number of tuples decreases as the size of the tuple increases.

Therefore, all the curves have the downward shape. Note that in the 20B experiments, a cache line of

64B contains multiple probe tuples. Since the cache-stationary join visits probe tuples non-sequentially,

it may incur multiple cache misses for every cache line in the probe partition. However, our inspector

join with cache-stationary join phase is still the best even for the 20B experiments.

In all the experiments, we can see that our inspector join algorithm is the best. For all the experiments

except the 5% points in Figure 5.11(b)9 , our inspector join achieves 1.09–1.44X speedups compared to

the cache prefetching algorithm and the enhanced cache partitioning algorithm.

9When there are only 5% probe tuples having matches, the aggregate join phase execution time only consists of 9–23%

of the total aggregate execution time. Therefore, the difference is small among all the algorithms optimizing the join phase

performance.
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Figure 5.14: Robustness against cache interference (join phase performance self-normalized to the per-

formance of the same algorithm without cache flushing, num CPUs used=1).

5.6.4 Robustness of the Algorithms

Figure 5.14 shows the performance degradation of all the algorithms when the cache is periodically

flushed, which is the worst case interference. We vary the period to flush the cache from 2 ms to 10 ms,

and report the execution times self normalized to the no flush case. That is, “100” corresponds to the

join phase execution time when there is no cache flush.

The cache prefetching algorithm sees at most 2% performance degradation because of cache flushes.

It is very robust because it does not assume that any large data structures stay in the cache. In contrast,

the original cache partitioning algorithm assumes the exclusive use of the cache, and suffers from a 7-

43% performance degradation for the cache flushes. Like the original cache partitioning, our inspector

join algorithm and the enhanced cache partitioning algorithm both try to keep a build sub-partition and

its hash table in the cache. To improve robustness, both of the algorithms perform prefetching for build

tuples.10 As shown in Figure 5.14, this technique effectively reduces the performance degradation to

2-14%, which is a 2-4X improvement compared to the original cache partitioning.

10As we do not prefetch for the hash table, we expect to pay higher cost than pure prefetching schemes when the cache is

flushed. Prefetching for the hash table is much more complicated than prefetching only for build tuples, and may incur more

run-time overhead for normal execution.
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Figure 5.15: Exploiting the inspection mechanism.

5.6.5 Choosing the Best Join Phase Algorithm

By default, our inspector join algorithm uses the cache-stationary join phase. However, our inspection

approach can detect situations where cache-stationary join phase is not the best algorithm and choose a

different one. Figure 5.15(a) varies the number of duplicate build tuples per build join attribute value.

The duplicate-free points correspond to the 8-CPU points in Figure 5.11(c). We see that the default

cache-stationary join phase of the inspector algorithm is still the best until 3 duplicates per key. However,

when there are 4 duplicates per key, enhanced cache partitioning gets better. The prefetching algorithm

needs to visit multiple build tuples for every probe tuple in the duplicate key cases. Since the visits are

all cache misses, the performance of the prefetching algorithm suffers significantly.

As discussed in Section 5.3.4, our inspection approach detects duplicate keys by counting the average

number of sub-partitions matching every probe tuple. To compute this value, we sum up the number of

matching probe tuples of every sub-partition (which has already been maintained to enable the counting

sort). We then divide this value by the total number of probe tuples in the partition to obtain the average.

Therefore, the additional overhead for this computation is only S integer additions plus 1 integer division,

where S is the number of sub-partitions in the partition. Compared to the partition aggregate time,

which is on the order of 109 cycles, this additional overhead is almost zero. When a probe tuple on

average matches 4 or more sub-partitions in a partition, our inspection approach chooses enhanced cache
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partitioning as the join phase algorithm. Thus the actual inspector join performance tracks the best of

the inspector join and enhanced cpart curves in the figure. The speedup increases as the number of

duplicates. For the case with 8 duplicate keys, our inspection approach achieves 1.16X speedups over

the cache-stationary join phase.

Figure 5.15(b) shows the performance when the source relations are nearly sorted. We vary the per-

centage of tuples out of order from 0% (fully sorted) to 5%. For the fully sorted case, we sort the

input relations for the 8-CPU points in Figure 5.11(c). Then we randomly choose 1%–5% of tuples and

randomly change their locations to generate the other test cases.

As shown in Figure 5.15(b), the sort-merge algorithm performs the best as expected for the fully

sorted case. However, to our surprise, the inspector join performs equally well. The reason is that for the

fully sorted case, the build tuples in a build sub-partition are sorted, and the corresponding probe tuples

are contiguous in the probe partition. Therefore, the cache-stationary join phase essentially visits both

the build and the probe partitions sequentially. Since the hash table is kept in cache, the cache behavior

of the cache-stationary join phase is the same as the sort merge join, which only merges two in-order

inputs. However, when more and more tuples are out of order, the sort merge join pays increasingly

more cost to sort out-of-order tuples. In contrast, the inspector algorithm pays only a slight overhead

to visit some probe tuples non-sequentially. Therefore, the inspector join becomes better than the sort

merge join when 3% or more tuples are out of order.

5.7 Chapter Summary

In this chapter, we have proposed and evaluated inspector joins, which exploit the fact that during the

I/O partitioning phase of a hash-based join, we have an almost free opportunity to inspect the actual

properties of the data that will be revisited later during the join phase. We use this “inspection” informa-

tion in two ways. First, we use this information to accelerate a new type of cache-optimized join phase

algorithm. The cache-stationary join phase algorithm is especially useful when the join is run in par-

allel on a multiprocessor, since it consumes less of the precious main memory bandwidth than existing
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state-of-the-art schemes. Second, information obtained through inspection can be used to choose a join

phase algorithm that is best suited to the data. For example, inspector joins can choose enhanced cache

partitioning as the join phase algorithm when a probe tuple on average matches 4 or more sub-partitions.

Our experimental results demonstrate:

• Inspector joins offer speedups of 1.09–1.75X over the best existing cache-friendly hash join algo-

rithms (i.e. cache prefetching and cache partitioning) when running on 8, 16, or 32 processors,

with the advantage growing with the number of processors.

• Inspector joins are effective under a large range of joining conditions (e.g., various tuple sizes,

various fractions of tuples with matches, etc.).

• Cache prefetching improves the robustness of inspector joins against cache interference.

• The inspection mechanism can be used to select among multiple join phase algorithms for the

given query and data.

In summary, Inspector Joins are well-suited for modern multi-processor database servers. Moreover,

we believe the inspection concept can be potentially exploited in other multi-pass algorithms (such as

external sorting [29]).
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Conclusions

Widening exponentially, the cache-to-memory latency gap has become one of the major performance

bottlenecks for database systems. While a great many recent database studies focused on reducing the

number of cache misses for database algorithms, little research effort has exploited cache prefetching

for reducing the impact of cache misses for database systems. In this thesis, we present the first sys-

tematic study of cache prefetching for improving database CPU cache performance. Combining cache

prefetching and data locality optimization techniques, we redesigned the B+-Tree index structure as a

representative tree structure and the hash join algorithm as a representative algorithm employing hash

tables. Both our simulation studies and real machine experiments support the following conclusions:

• Exploiting Cache Prefetching for Main Memory B+-Trees. For index search operations, we

find that contrary to conventional wisdom, the optimal B+-Tree node size on a modern machine

is often wider than the natural data transfer size (i.e. a cache line), since we can use prefetching

to fetch each piece of a node simultaneously. Prefetching wider nodes offers the following advan-

tages relative to B+-Trees and CSB+-Trees: (i) better search performance (1.16-1.85X speedups

over B+-Trees and 1.08-1.53X speedups over CSB+-Trees) because wider nodes effectively re-

duce the height of the trees and this scheme can increase the fanout by more than the factor of

two that CSB+-Trees provide (e.g., by a factor of eight); (ii) comparable or better performance

on updates (up to 1.77X speedups over B+-Trees) because of the improved search speed and the
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decreased frequency of node splits due to wider nodes; (iii) no fundamental changes to the original

B+-Tree data structures or algorithms. In addition, we find that our scheme is complementary to

CSB+-Trees. For (non-clustered) index range scan operations, our results demonstrate that jump-

pointer array prefetching can effectively hide 98% of the cache miss latency suffered by range

scans, thus resulting in a factor of up to 18.7X speedup over a range of scan lengths.

• Optimizing Both Cache and Disk Performance for B+-Trees in Commercial DBMSs. We

find that Fractal Prefetching B+-Trees, which embed cache-optimized trees into disk pages, is an

effective solution for simultaneously achieving both good cache and good disk performance for

B+-Trees. Because directly combining the trees of the two granularities often result in the node

size mismatch problem, we developed two solutions for solving this problem: the disk-first and the

cache-first implementations of fpB+-Trees. Since the cache-first implementation may incur large

disk overhead, we recommend in general the disk-first implementation. Compared with disk-

optimized B+-Trees with slotted pages, disk-first fpB+-Trees achieve the following advantages

with only a slight I/O overhead: (i) 1.20-4.49X speedups for search because of the improved spatial

locality inside each disk page; (ii) up to a factor of 20-fold improvement for range scans because

of prefetching; and (iii) up to a 15-fold improvement for updates by avoiding slot indirection

cost and large data movement with cache-optimized nodes. Moreover, our detailed analyses of

applying the cache prefetching techniques of pB+-Trees to the memory-to-disk gap show that

while prefetching wider nodes may be less attractive because of the increased number of disk

seek operations, jump-pointer array I/O prefetching leads to large performance gains for (non-

clustered) index range scans. In particular, we demonstrate a 2-5X improvement for index range

scans in an industrial-strength commercial DBMS (IBM’s DB2).

• Improving Hash Join Performance through Prefetching. We find that while it is difficult to

prefetch within the processing of a single tuple because of the random accesses to the hash ta-

ble and because of the dependences between consecutive memory references, it is a good idea to

exploit inter-tuple parallelism to overlap cache miss latencies across the processing of multiple tu-

ples. Our proposals, group prefetching and software-pipelined prefetching, present two systematic
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ways to reorganize the hash join program to effectively attain this goal. Compared with GRACE

and simple prefetching approaches, our prefetching techniques achieve 1.29-4.04X speedups for

the join phase and 1.37-3.49X speedups for the partition phase for user mode cache performance.

Comparing the elapsed real times on an Itanium 2 machine with multiple disks, the two cache

prefetching techniques achieve 1.12-1.84X speedups for the join phase and 1.06-1.60X speedups

for the partition phase. Moreover, they are 36-77% faster than cache partitioning on large rela-

tions and do not require exclusive use of the cache to be effective. Finally, extensive comparisons

between group prefetching and software-pipelined prefetching demonstrate that contrary to the

conventional wisdom in the compiler optimization community, group prefetching can be signifi-

cantly faster (1.23-1.30X speedups for the join phase performance on the Itanium 2 machine) than

software-pipelined prefetching because of less instruction overhead.

• Inspector Joins. We find that it is an effective approach to exploit the free information obtained

from one pass of the hash join algorithm to improve the performance of a later pass. Our multi-

filter scheme allows the extraction of approximate matching information between the two joining

relations almost for free during the I/O partitioning phase. Later, this information is used in

the join phase to generate cache-sized sub-partitions without tuple copying. This optimization

scheme both addresses the memory sharing problem in a shared-bus multi-processor system and

eliminates the re-partitioning cost of the cache partitioning technique. Moreover, we demonstrate

that cache prefetching can effectively improve the robustness of inspector joins in the face of

cache interference. Furthermore, we present illustrative examples of how inspector joins can use

its collected statistics to select among multiple join phase algorithms for the given query and

data. Finally, our experiments demonstrate that as we run on 8 or more processors, inspector

joins achieve 1.09–1.75X speedups over previous state-of-the-art cache prefetching and cache

partitioning algorithms, with the speedup increasing as the number of processors increases.

Summarizing the above specific findings from our B+-Tree and hash join studies, we draw the fol-

lowing general conclusions:

• Cache prefetching is an effective optimization technique that reduces the impact of cache misses

195



Chapter 6 Conclusions

for improving the CPU cache performance of B+-Trees and hash joins.

• Combined with data locality optimizations, cache prefetching provides larger freedom in redesign-

ing data structures and algorithms, thus leading to better performance, as demonstrated in fractal

prefetching B+-Trees and inspector joins.

• Cache prefetching techniques are robust against cache interference, and they can be employed to

improve the robustness of an algorithm, as demonstrated in both pieces of our hash join work.

Finally, the techniques we developed for B+-Trees and hash joins are potentially applicable to other

tree-based index structures (e.g., spatial indices [33, 87]) and other hash-based algorithms (e.g., hash-

based group-by and aggregation algorithms [29]).
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