
Simplifying Distributed Application Upgrades
with Simultaneous Execution

Mukesh Agrawal Suman Nath
Srinivasan Seshan

November 2005
CMU-CS-05-190

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Developers and operators of distributed systems today face a difficult choice. To provide for the
evolution of their systems, they can either require that the software running on all nodes be inter-
operable, or they can shut down the entire system when an upgrade is required. Requiring in-
teroperability complicates the life of system developers, while shutting down the system annoys
users. We propose simultaneous execution, a middle ground between these approaches: an upgrade
methodology that reduces the extent of support required for interoperability, while also providing
system availability during upgrades. We demonstrate the benefits of our approach by applying it
to two widely different distributed systems: the Cooperative File System [1], and IRISLOG [2].
Our proposal enables easy upgrade of these systems while maintaining system availability, and
requiring only minimal support for interoperability.

This work was supported by the Army Research Office under grant number DAAD19-02-1-0389.



Keywords: Distributed systems, upgrades



1 Introduction
Many networking researchers have bemoaned that the difficulty of upgrading the Internet infras-
tructure has lead to the ossification of both Internet research and Internet functionality [3]. Several
promising technologies, such as IP Multicast, IntServ, DiffServ, RED, and Fair Queuing, have all
failed to be widely deployed at least partly due to the difficulty of changing or upgrading router
functionality.

Recently, researchers have proposed a number of new application-layer infrastructures for dis-
tributed applications [4, 5], distributed storage [1, 6, 7], and sensor systems [2]. However, these
infrastructures may share the Internet’s weakness since few (if any) of these infrastructures ac-
commodate easy upgrades. In this paper, we present techniques that simplify the upgrade of many
distributed applications, including these critical application-layer infrastructures.

With respect to upgradability, the fundamental design choice faced by developers of distributed
applications is whether to require versions to inter-operate directly, or to require that the application
be shut down as part of the upgrade process. However, we believe that a better alternative is
available for many cases: one that maintains system availability, while minimizing the support
required for interoperability.

In our simultaneous execution approach, we execute multiple versions of an application simul-
taneously, on the same hardware. We then treat these different versions as separate deployments.
Two versions of an overlay network service, for example, are treated as separate overlay networks.

To enable multiple application versions to run on the same physical infrastructure, we must
prevent interference between multiple versions on a single node, and carefully manage communi-
cation between nodes. We prevent interference within a node through the use of virtual machines
(VMs). With respect to inter-node communication, we isolate versions, so that only nodes of the
same version communicate with each other. We manage messages between clients and the appli-
cation using application proxies, which mediate client access to the service, masking the existence
of two versions.

In this paper, we argue for the general applicability of our approach, by describing how a pro-
totype implementation of our design, called the Version Manager, supports two recently proposed
distributed infrastructures that differ substantially in their designs: the CFS distributed storage
system [1] and the IRISLOG distributed infrastructure monitoring system [8]. As an example of
their differences, CFS relies on an underlying DHT to organize and store write-once data, whereas
IRISLOG uses an underlying tree-based structure to store read-write sensor data. Our experimental
results with this prototype show that with our parallel execution approach, we are able to upgrade
both applications without disrupting availability.

The Version Manager dramatically reduces, but does not eliminate interoperability require-
ments. The specific components that Version Manager requires are the application proxy, and a
tool to copy state from one version to another. Using a proxy framework which we provide, along
with existing CFS library routines, the application proxy for CFS is about 500 lines of C++ code.
The state copying tool is another 500 lines of C++. For IRISLOG, the application proxy and state
copying tool require 300 lines of C++, and 50 lines of scripts (bash and perl) respectively.

In addition to simplifying the complexity of upgrades and eliminating downtime, the Version
Manager is also able to propagate new versions of software relatively quickly. For example, with

1



Figure 1: Targeted Application Architecture

a 48 MB software update, Version Manager upgrades a 12 node IRISLOG system in 7-8 minutes.
With CFS, and a 6 MB software update, Version Manager completes an upgrade of 48 nodes in
under 6 minutes.

The primary cost of using our system is the additional overhead from the virtual execution
environment, and from inter-positioning on inter-node communication. During normal execution,
when only a single version is running, CFS and IRISLOG incur overheads of up to 300% and 14%

respectively. The overhead for CFS is, admittedly, large. However, we believe this overhead can
be reduced through optimizations or architectural changes to the implementation, as we discuss in
Section 7.

The remainder of this paper is structured as follows: we explain the obstacles to distributed
application upgrades in Section 2. In Section 3, we present the design and implementation of our
system. In Section 4, we describe our experience in applying our methodology to two existing
applications. Section 5 presents experimental results about the performance of our system. Sec-
tion 6 presents related work, and Section 7 discusses the benefits of our system, and possibilities
for performance improvements.

2 Upgrade Obstacles
We consider distributed applications with the architecture depicted in Figure 1. Such applications
consist of a number of servers, possibly widely distributed, which cooperate to implement a ser-
vice. Clients utilize the provided service, but do not concern themselves with the server-to-server
interactions.

Upgrading such applications is difficult due to the numerous hurdles that developers and oper-
ators of such systems must overcome. The most significant of these are: designing and implement-
ing inter-operable software; testing upgrades before deployment; planning for recovery, in case the

2



upgrade fails; and deploying the new software.

Interoperability The state of the art presents a stark choice for distributed application developers
and operators. Either developers must design and implement mechanisms for interoperability, or
the operators must shut down the system completely when upgrades need to be made.

Given only these options, new software is generally designed to inter-operate with old software,
which is replaced in-situ. However, this approach to system evolution suffers from two significant
problems. First, it severely constrains the nature of feasible changes. Second, it imposes a heavy
implementation and maintenance burden on software developers.

With respect to precluded changes, requiring interoperability prohibits changes to important
distributed algorithms such as those that control message routing, load-balancing, and cooperative
caching. With regard to the developers’ burden, it may be possible to make small changes without
significant difficulty. But for large changes, interoperability may essentially require the developer
to implement two very different programs in a single process.

Testing and recovery The essence of the testing problem is coverage. While simulation and
testbed testing may uncover some problems, it is overly optimistic to expect such testing to an-
ticipate problems that will occur “in the wild.” The recovery problem consists of two parts: re-
placement of faulty software with a new version, and “undoing” the consequences, such as data
corruption, of the buggy software. This paper does not focus on these challenges. However, we
briefly discuss how the Version Manager could be used to address these issues in Section 7.

Deployment process Conceptually, the deployment process might be quite simple. An operator
simply logs on to each machine, downloads the new software, and runs some installation script.
For large systems, however, this simple process is complicated by the reality that, at any given
time, some nodes will be offline. Furthermore, given recent studies which show that operator error
is a significant source of outages in Internet services, it is essential to automate the deployment
process [9, 10]. Today, automation is hindered by the complexity of error handling. For example:
what should be done if a new version fails to start, after the old version has been overwritten?

3 Design and Implementation
The key idea behind our design is simultaneous execution. We borrow and adapt the idea from the
deployment of IPv6 (and other protocols) in the Internet. Figure 2 provides a logical view of si-
multaneous execution. The essence of the technique is to allow multiple versions of an application
to run simultaneously on a single server node (without interference), and to route client traffic to
the appropriate version or versions. The arrows in the diagram indicate the server-to-server com-
munication, highlighting the fact that inter-server routing need not be consistent in old and new
versions.

Simultaneous execution addresses the interoperability problem by eliminating the need for
servers to inter-operate amongst versions. This enables more radical changes in server to server

3



Figure 2: Logical View of Simultaneous Execution

designs. Simultaneous execution simplifies deployment as well. Because new versions do not
interfere with old ones, an automated deployment system can simply kill a failed new version,
without needing to provide elaborate recovery mechanisms.

Figure 3 illustrates the realization of simultaneous execution in the Version Manager archi-
tecture. While simultaneous execution simplifies distributed application upgrades, it does require
some application specific components, such as the Application Proxy. Next, we explain the de-
tails of our Version Manager implementation, and the demands it makes of distributed application
developers. We present case studies that quantify the costs of meeting these demands in Section 4.

3.1 Isolating Versions on a Node via Virtual Machines
In order to enable different versions of an application to run on a single physical node, as in
Figure 3, we must prevent different versions of the application from interfering with each other.

To prevent this interference, a number of well-known isolation techniques, ranging from the
use of multiple processes to full-blown hypervisors, might be used. At one extreme, processes
provide the least isolation, with the lowest performance impact. At the other, hypervisors provide
strong isolation, with a greater performance cost.

We believe the more limited isolation techniques such as multiple processes, or chroot()
environments are insufficient. The multiple process approach suffers from the inability to readily
support applications that are themselves structured as multiple processes. Moreover, neither the
use of multiple processes, nor chroot() supports multiple user ids, which might be needed by
applications that employ “privilege separation” to protect against malicious users. They also do
not permit the multiple versions of an application to listen on the same transport protocol (e.g.,
TCP or UDP) port.

A more promising possibility is to use BSD jail() environments, or Linux vservers, as
both of these facilities eliminate the user id and listening port limitations. However, both preclude

4



Figure 3: Version Manager Architecture. Colors designate distinct Virtual Machines.

software upgrades that require new kernels. A new kernel might be desired, for example, due to
improvements in filesystem or virtual memory algorithms.

To support the broadest set of possible changes, we choose the Xen hypervisor as our isolation
environment. The Xen hypervisor runs directly on the hardware, and provides an x86-like interface
to which operating system kernels are ported.

Under Xen, each kernel is executed in a separate domain, consisting of resources such as mem-
ory and (possibly virtualized) disks and network interfaces. The system is partitioned into a root
domain, used for managing the system, and a number of user domains, which host applications.
Typically, physical devices are managed by the root domain, while user domains see virtual disks
and network interfaces.

We run each application version in a separate Xen domain, with a private virtual disk (backed
by storage in the root domain), and a virtual network interface connected to a counterpart in the
root domain. The user domains are configured with unique private IP addresses. They are provided
with access to the public network via the network address translation feature of the root domain.

This approach isolates the application versions by providing near-complete isolation of names-
paces. One remaining resource, however, is not isolated: communication channels used by the
application. Specifically, these are the channels used for inter-server, and client-server commu-
nication. Our inter-node isolation strategy, implemented by the version router (Section 3.2) and
application proxy (Section 3.3), provide isolation for these resources.

3.2 Routing Inter-Server Messages with a Version Router
The need to manage inter-server communication arises from the fact that the server-to-server pro-
tocols for new versions of an application are likely to use the same TCP or UDP port as prior
versions. Thus, when a packet arrives from a remote system for the application’s port, it is not
clear to which version of the application the packet ought to be delivered.

5



To resolve this contention for transport-layer ports, we interpose a transparent proxy, which we
call a version router, on the communication between an application and its peers on other nodes. To
guarantee that application traffic is routed to correct versions at peers, the Version Router prepends
a header to each outbound request, identifying the version number of the sender. This header is
examined and stripped by the proxy on the peer node, which routes the request to the appropriate
application version. To accommodate the fact that the application may also communicate with
services that do not use version management (e.g. public web servers, mail servers, etc.), the
proxy does not interpose on such services.

In order to facilitate this differentiated treatment of managed and unmanaged traffic, we require
the application to register the network ports used to implement the application’s protocols. This is
accomplished with a simple protocol, similar to portmap. We provide a tool that is run as part of
the bootstrap process in the isolation environment, which accepts the application port numbers as
a command-line argument, and registers the application with the version router.

3.3 Mediating Client Access through an Application Proxy
The role of the application proxy is two-fold. First, if the client protocol has changed, the proxy
may need to translate client-to-server and server-to-client messages. Second, the proxy must pro-
vide a unified view of the system to clients, masking the existence of multiple versions.

The translation of requests and responses will necessarily be application specific. We hope
that separating message translation and the implementation of the new server will simplify both.
However, we acknowledge that the requirement for translation will discourage changes to the client
protocols.

The task of making multiple independent systems appear to behave as a single consistent sys-
tem seems, at first blush, to be quite arduous. To provide this illusion, we must solve three sub-
problems. First, any data available in the system at the time the upgrade is initiated must remain
available to all clients during and after the upgrade, regardless of which version of the system they
access. Second, any changes made to the client-visible state must be made to all versions. Third,
despite the fact that state may be changing even during the upgrade, clients of the old and new
versions should be able to agree on what the system state is.

As daunting as all this seems, for the applications we have studied, we have accomplished
these tasks using very simple approaches. To provide access to old data in new versions, we have
written migrators that copy data from old versions to new1. To ensure that clients of new versions
can access this data before migration is complete, we have the application proxy resubmit failed
reads to older versions. To guarantee that all changes are visible in all versions, the application
proxy submits writes to all versions, returning success to the client if (and only if) all running ver-
sions return success. To provide meaningful semantics across clients accessing different versions,
we exploit the self-certifying nature of the results returned by the applications. We discuss the
implementation costs of these solutions in Section 4.

1These are run from the upgrade script described in Section 3.5.

6



typedef int (*data_cb_t)
(vers_t, databuf&, conn_handler&);

struct proxy_callbacks {
data_cb_t handle_request;
data_cb_t handle_reply;

};

Figure 4: Framework/application Interface

3.4 Supporting Application Developers with a Proxy Framework
Developing an application proxy is a non-trivial task, particularly for stream protocols (such as
TCP) that do not preserve message framing. To assist the developer, we provide a proxy frame-
work in C++, which manages network communications and data buffering, calling into application
specific code for message translation and dispatch.

Specifically, the framework manages each client connection, and its associated server connec-
tions, using a connection handler. The connection handler interfaces with the application specific
code via two callbacks: handle_request(), and handle_reply(). The former is called
when a message is received from a client connection, the latter is invoked on receipt of data from a
server connection. The arguments supplied in these callbacks are the version number of the sender,
a buffer containing the data, and a reference to the invoking connection handler. Figure 4 gives the
C++ declaration for this callback interface.

In addition to the standard read and write operations, databuf supports a peek() operation.
This operation returns data from the buffer, without consuming it. Subsequent calls to peek()
will return the data following the peeked data. Peeked data is consumed when the handler returns,
with the return value of the handler indicating the number of bytes to be consumed. The effects of
intermingling read() and peek() calls are undefined.

The motivation for peekable buffers is to support parsers that need to examine arbitrary amounts
of data before they can determine if the message is complete. Without peekable buffers, the parser
would have to support incremental parsing. With peekable buffers, if the message is incomplete,
we can simply discard the parser state, and try again when more data is available. Figure 5 details
the buffer API.

The last argument to the callback is a reference to the connection handler. The connection
handler provides calls for enqueuing data either to a server (by specifying the protocol version
implemented by the server), or to a client. Ownership of enqueued buffers passes to the connection
handler. The connection handler also provides the application code access to a list of running
versions. We list the connection handler interface in Figure 6.

The version list is required so that the application code can decide where to dispatch a request,
and what translation (if any) is necessary (similarly for replies). The versions list provides min(),
and max() methods, which return pointers to the least and greatest available server versions.
vers_list also provides the usual calls (e.g. operator++(), operator--(), etc.) used

7



class databuf {
public:

databuf(const databuf& orig);
databuf(const databuf& orig,

size_t len);

int read(char *buffer, int len);
int peek(char *buffer, int len);
void reset_peek();

void append(char *buffer, int len);
};

Figure 5: Buffer API

class conn_handler {
public:

void enqueue(vers_t version,
databuf *buf);

void enqueue_client(databuf *buf);

vers_list& versions();
};

Figure 6: Connection Handler API

to iterate over lists.

3.5 Upgrade Discovery, Distribution, and Installation
As part of the upgrade process, nodes must learn that a new version is available, and they must
retrieve the software for the new version. We solve the first problem by using the Version Router
to piggyback version advertisement messages on server-to-server communication, and solve the
second problem using the BitTorrent file transfer protocol.

To support upgrade discovery, the Version Router adds a second field to the header it prepends
on outgoing server-to-server messages. Whereas the first field of the header identifies the sending
application version, the second field advertises any one of the other versions (randomly selected)
running on the same host as the sender. This enables the Version Router on other nodes to learn of
new versions from the sender, or to inform the sender that one of its running versions is obsolete.

When a receiving Version Router learns of a new version, it executes an upgrade script. The
script’s arguments include the address of the Version Router that advertised the new version. The
script is responsible for retrieving the new software, and creating a new domain to host the new

8



...
...
D ...F

inode
blockblock

directory

signature

root−block
public key

B1

B2

data block

data block

H(D) H(F) H(B1)

H(B2)

Figure 7: A simple CFS file system structure example. The root-block is identified by a public key and
signed by the corresponding private key. The other blocks are identified by cryptographic hashes of their
contents.

FS

lsd lsd

Gateway
DHash

lsd
DHash, merkle−sync

fingerChord,

CFS Client CFS Server CFS Server

Figure 8: CFS software architecture. Vertical links are local APIs; horizontal links are RPC APIs.

application version. The specific steps taken by the upgrade script are as follows:
Download The script copies a .torrent file from the node advertising the new version, and

starts a BitTorrent client to transfer the file.
Prep FS The script creates a filesystem image for the new application version.
Create VM The script creates a Xen domain to host the new version.
A boot-time script executed in the new VM manages the remaining tasks:
Copy to VM Copies new software from root domain to application domain.
Config app Unpack the software and run any installation procedure.
Running Run the application.

4 Case Studies
In this section, we describe our experience in applying our Version Manager methodology and
tools to two applications: CFS and IRISLOG.

4.1 Cooperative File System (CFS)
4.1.1 Application Overview

CFS implements a distributed filesystem over the Chord DHT. Conceptually, when a user writes a
file into CFS, the file is broken into blocks 2. Each block is stored in the DHT, with the hash of the
block’s content used as the storage key. The filesystem directory is also stored in the DHT.

2Physically, blocks are further broken into fragments, which are actually stored on the DHT nodes. The fragmen-
tation of blocks improves fault tolerance [11].

9



Figure 7 illustrates the structure of the CFS filesystem in more detail. All blocks (whether
belonging to a file or a directory node) are pointed at via content hashes, with the exception of the
root block for a filesystem. A filesystem root is named using a public key from a public/private key
pair. The root block is signed using the private key corresponding to the public key under which the
root block is stored in the DHT. The use of content-hashes and public-key cryptography provides
a self-certifying filesystem. Note that because any modification of a filesystem requires changing
meta-data all the way up to the root block, only a holder of the private-key for a filesystem can
modify the filesystem’s content.

As illustrated in Figure 8, a node participating in CFS typically runs two daemons: the CFS
user-space NFS server, and the CFS block server (lsd). Additionally, the node runs an NFS client,
to mount the filesystem. The operation of the complete system is as follows: when a process
attempts to read a file from CFS, the kernel’s NFS client issues RPCs to the CFS user-space NFS
server. The NFS server, in turn, requests blocks from lsd. lsd issues RPCs to its Chord peers,
to retrieve the requested block from the DHT. After lsd receives the block, it returns the result to
the NFS server, which replies to the NFS client. The kernel then returns the requested data to the
reading process.

Figure 8 diagrams the protocol interactions between lsd and other entities. From this diagram,
we note that lsd communicates with the NFS server using the dhashgateway protocol, which is
implemented as RPCs over either a Unix socket or a TCP socket. lsd communicates with its peers
using the chord, fingers, dhash, and merkle_sync protocols, typically as RPCs over UDP. The
chord and fingers protocols implement Chord routing, while the dhash and merkle_sync protocols
provide block insertion/retrieval and block availability maintenance in the face of node join/leave
3.

With this understanding of CFS in hand, we proceed to describe how we apply our methodology
to CFS.

4.1.2 Applying Version Manager to CFS

For CFS, we choose to provide version management for the protocols implemented by CFS, but
not for the NFS protocol, as it is expected to remain stable over different versions of CFS. Below,
we describe the tasks required to use Version Manager for CFS.

Application Proxy As described earlier, the application developer must provide a proxy which
mediates client access during simultaneous execution. Using our proxy framework, and library
routines from the CFS source code, we have written a proxy which implements the mediation
strategy described in Section 3.3. This proxy is approximately 500 lines of C++ code.

State migration To use Version Manager, a developer must also provide a mechanism for copy-
ing state from old versions to new. To meet this requirement for CFS, we have implemented a
simple program to copy the blocks from one version to another. The program uses the merkle_sync

3In practice, these protocols are encapsulated in CFS’ transport protocol, which multiplex/demultiplex-es messages
between virtual nodes. We omit this detail in further discussion.

10



protocol to query the old version of the application for a list of blocks stored locally. The copy
program then attempts to read the same block from the new version. If the read fails, the copier
reads the block from the current version, and writes the block to the new version. This program is
also about 500 lines of C++ code, making use of the CFS library routines.

Consistency As noted in Section 3.3, clients of old and new versions should be able to agree on
the system state, even though the state may be changing. Given that clients may be modifying the
filesystem at the same time that our state migration tool copies blocks from the old version to the
new, it would seem that inconsistencies might arise.

Fortunately, CFS already has mechanisms for dealing with write conflicts. Namely, the content
of any block written (except a filesystem root block) must hash to the same value as the name
(DHT key) under which the block is written. Thus, two writes to the same block with different
content are highly unlikely. For root block changes, CFS requires that the root block include a
timestamp, and that the timestamp is greater than that of the existing block.

4.2 IRISLOG

4.2.1 Application Overview

IRISLOG is a distributed network and host monitoring service that allows users to efficiently query
the current state of the network and different nodes in an infrastructure. It is built on IRISNET [2],
a wide area sensing service infrastructure. Currently, IRISLOG runs on 310 PlanetLab nodes dis-
tributed across 150 sites (clusters) spanning five continents and provides distributed query on dif-
ferent node- and slice-statistics4 (e.g., CPU load, per node bandwidth usage, per slice memory
usage etc.) of those nodes.

At each PlanetLab node, IRISLOG uses different PlanetLab sensors [12] to collect statistics
about the node and stores the data in a local XML database. IRISLOG organizes the nodes as a
logical hierarchy of country (e.g., USA), region (e.g., USA-East), site (e.g., CMU), and
node (e.g., cmu-node1). A typical query in IRISLOG, expressed in the XPATH language, selects
data from a set of nodes forming a subtree in the hierarchy.

IRISLOG routes the query to the root of the subtree selected by the query. IRISNET, the under-
lying infrastructure, then processes the query using its generic distributed XML query processing
mechanisms. Upon receiving a query, each IRISNET node queries its local database, determines
which parts of the answer cannot be obtained from the local database, and recursively issues ad-
ditional sub-queries to gather the missing data. Finally, the data is combined and the aggregate
answer is sent to the client. IRISNET also uses in-network aggregation and caching to make the
query processing more efficient [13].

Both IRISLOG and IRISNET are written using Java.

4A slice is a horizontal cut of global PlanetLab resources. A slice comprises of a network of virtual machines span-
ning some set of physical nodes, where each virtual machine (VM) is bound to some set of local per-node resources
(e.g., CPU, memory, network, disk).

11



4.2.2 Applying Version Manager to IRISLOG

At a high level, IRISLOG consists of two independent components: the module that implements
the core IRISLOG protocol, and a third-party local XML database. We choose to provide version
management for the first component, since the latter is expected to be stable over different versions
of IRISLOG. In this section, we highlight the changes IRISLOG requires to incorporate our Version
Manager.

Application proxy The IRISLOG application proxy processes queries by submitting them in
parallel to all versions, and returning the longest result. The longest result is chosen in order to
mask data that is missing from a new version during the interval between the new version being
brought online, and the time when all old data has been copied to the new version. Data updates
are processed by issuing the update to all versions, and returning success if and when all versions
return success. The IRISLOG application proxy is approximately 300 lines of C++, making use of
our proxy framework.

State migration IRISLOG uses a database-centric approach, and hence all its persistent state
is stored in its local XML database. Thus, state migration involves transferring the local XML
database of the old version to the new version. IRISLOG provides APIs for an IRISLOG host to
copy or move a portion of the local database to a remote host where it gets merged with the existing
local database (used mainly for replication and load-balancing purpose).

To copy the latest persistent state from an old version, we start the new version with an empty
database and use the IRISLOG command-line client to copy the whole local database of the old
version running on the same host to the new version. The migration tool is implemented with
about 50 lines of shell and perl code that calls the command-line client.

Consistency Unlike CFS, we do not need to handle the consistency issues for IRISLOG. This is
because IRISLOG’s data has single writer (the corresponding sensor), and, thus, there are no write
conflicts.

5 Performance Evaluation
In this section, we examine three key aspects of the performance of our system:

• How long does an upgrade take to complete, and how does this scale with the number of
nodes in the system?

• How much overhead does our system impose during normal execution (i.e., when no upgrade
is in progress)?

• How much disruption is caused during an upgrade?

We first describe our experimental setup, and then answer each question posed.

12



USA−MidUSA

USA−East

Region

UTexas

UIUC

node1

node1

Site Node

node2

node2

Country

USA−West

Figure 9: Part of the data hierarchy used in the IRISLOG evaluation. Subtrees omitted from the diagram are
indicated by dashed lines.

CMU
MIT UTexas

Mid

UIUC

1 22
1

21
21

Root

East West

Wash
Stanford

1 2
1 2

Node0 Node1
Node2

Node3
Node4

Node5
Node6

Node7
Node8 Node9 Node10 Node11

Figure 10: Mapping of IRISLOG data hierarchy to node topology. Bounded regions represent physical
nodes containing the data items (shown as smaller solid circles) within the regions.

5.1 Experimental Setup
We conducted all our experiments on Emulab [14] using a set of 850 MHz Pentium III machines
with 512 MB of RAM, and 100 Mbit Ethernet NICs. The operating system is Fedora Core 2.

Our IRISLOG experiments use a hierarchy of the same depth as the original IRISLOG run-
ning on PlanetLab, but consisting of only a subset of the PlanetLab nodes5. Specifically, our
hierarchy, part of which is shown in Figure 9, represents three regions (USA-East, USA-Mid,
and USA-West) of the USA. Under each region, we have two PlanetLab sites (CMU and MIT in
USA-East, Univ. of Texas and UIUC in USA-Mid, Stanford and Univ of Washington
in USA-West). Finally, each site has two PlanetLab nodes.

We created a topology in Emulab to represent this hierarchy. The latencies of the links in
the topology are assigned according to the expected latencies between the of corresponding real
PlanetLab nodes. The bandwidth of links between nodes in the same site is 100 Mbps, while that
for the wide area links is 5 Mbps. Figure 10 illustrates the mapping of the IRISLOG data hierarchy
to the node topology.

5Since different nodes at the same level of the hierarchy process a query in parallel, response times mostly depend
on the depth of the hierarchy. Therefore, the response times in our simple setup are very similar to those in the original
IRISLOG.

13



Our experiments with CFS focus on a LAN topology of 16 nodes. The links have a bandwidth
of 100 Mb/sec, and a delay of <1 ms. The lsd daemons are configured to run one vserver
each. For file reads and writes, a block size of 2 KB is used.

5.2 Time to Complete Upgrade
In this section, we present the time required for a system-wide upgrade, as well as a break-down of
the costs of the upgrade procedure for a single node. We study the time to upgrade both IRISLOG
and CFS. Both IRISLOG and CFS use a 2 GB filesystem image for the application VMs. The size
of the software download is 48 MB for IRISLOG, and 6 MB for CFS.

IRISLOG. To measure the time required to complete a system-wide upgrade of IRISLOG, we
start a new version of IRISLOG on the root node of the data hierarchy. We then execute a series
of queries and data updates from our client node. Queries that pass through nodes having the new
version cause children of those nodes to initiate upgrades.

We present the time to complete an IRISLOG upgrade in Figure 11. The vertical axis denotes
the steps in the upgrade process, as described in Section 3.5. Each series represents the progress of
a single node through the upgrade process. The progress of the IRISLOG root node, which seeds
the upgrade, is distinguished with a heavy dashed line. A subtlety to note is that, for the seeding
node, the Download stage represents time taken in house-keeping tasks, rather than downloading
the upgrade.

The IRISLOG upgrade experiment was conducted five times, and the result presented is the
worst case amongst these runs. The time to upgrade IRISLOG in this case is 489 seconds. This
compares to a maximum of 434 seconds maximum in the other four runs. Comparison of Figure 11
with graphs for the other experiments (not shown) shows that the difference arises from the large
time spent for the last node in Figure 11 to learn of the availability of a new version. The time
taken in this case, however, is within the expected variation for our benchmark workload.

Across the runs, the preparation of the filesystem for the new version consistently dominates
the upgrade time. Even in the case presented, with a higher than typical time spent waiting to
learn of an upgrade, the filesystem preparation stage accounts for 210 seconds of the 489 second
upgrade process, or about 40%.

The time required to prepare a filesystem for the new version is due to our simplistic approach,
which simply creates a new copy of a baseline filesystem on demand. Should it be necessary to
complete upgrades more quickly, the time spent preparing the new filesystem could be eliminated
through any number of techniques, such as keeping a spare filesystem image around, or by using
copy-on-write, or stackable filesystems.

CFS. To measure the global upgrade time of CFS, we first boot lsd on all the nodes in the
system. We monitor the routing tables of the nodes to determine when all the nodes have joined
the Chord ring. We start a new version of lsd on one of the nodes in the system. We then measure
the time until the new version of lsd has started execution on each node. Throughout the process,

14



0 100 200 300 400

Time (sec)

Discover
upgrade 

Download

Prep
FS 

Create
VM 

Copy
to VM

Config
app 

Running
IrisLog 

Seed Node

IrisLog Upgrade Time

Figure 11: Time required to upgrade IRISLOG. The thick dashed line denotes the progress of the server
seeding the upgrade. Other lines each represent one other node in IRISLOG.

15



0 50 100 150 200 250 300

Time (sec)

Discover
upgrade 

Download

Prep
FS 

Create
VM 

Copy
to VM

Config
app 

Running
CFS 

Seed Node

CFS Upgrade Time

Figure 12: Time required to upgrade CFS. The thick dashed line denotes the progress of the server seeding
the upgrade. Other lines each represent one other node in CFS.

a separate client node writes to CFS using the seed node to access CFS.6

Figure 12 presents the time required to upgrade a sixteen node CFS system. This experiment
was run once. As with IRISLOG, the dominant cost in this upgrade is the time to prepare the
filesystem for the new version.7 The same techniques proposed to accelerate upgrades for IRISLOG
would apply for CFS.

To determine the scaling behavior of upgrades, we have conducted the CFS upgrade with 32,
48, 64, and 80 nodes. The results are shown in Figure 13. We find that the upgrade time is constant
between 16 and 48 nodes, and also between 64 and 80 nodes. The dominant difference between the
smaller and larger experiments is the time taken to download the upgrade. Recent studies [15] have
shown that the mean download time for BitTorrent clients (in a swarm) is dependent only on the
mean upload bandwidth of all the clients, and is independent of the number of clients in the swarm.
This leads us to speculate that the larger experiments (64 and 80) force Emulab to use nodes that
are separated by one or more switches, while the smaller experiments use nodes connected to a
single switch. The bottleneck between the clusters leads to longer transfer times.

6Even when client traffic is absent, CFS nodes communicate with each other periodically to accomplish tasks like
Chord ring maintenance. Thus, the client traffic is not necessary in order to propagate the upgrade. However, we use
the client traffic to measure the performance during an upgrade, which is presented in Section 5.4.

7The difference in time required to prepare the new filesystem between IRISLOG and CFS is due to a slight
change in the procedure for preparing the filesystem. Rather than copying a base filesystem directly, we decompress a

16



16 32 48 64 80

Number of Nodes

0

100

200

300

400

500

C
um

ul
at

iv
e 

T
im

e 
(s

ec
)

Discover upgrade
Download
Prep FS
Create VM
Copy to VM
Config app

CFS Upgrade Time Scaling

Figure 13: CFS Upgrade Scaling

Scaling in number of nodes. Although the results above are based on relatively small deploy-
ments, we argue that our approach has good scaling property and therefore is feasible for large-
scale distributed systems. This is due to the observation that the time required for a system-wide
upgrade is proportional to the diameter (in number of hops) of the system topology,8 and almost
all large distributed systems use small-diameter topology for scalability. For example, diameters
of CFS and DNS (examples of structured topologies) and gossip-based systems (example of a
random topology) are logarithmic to the number of nodes in the system and the diameter of the
Gnutella (example of an unstructured topology) network consisting of around 400,000 nodes has
been measured to be 20 [16]. Our approach can upgrade a large distributed system in a reasonable
amount of time as long as it has a reasonably small diameter.

5.3 Virtualization Overhead
IRISLOG To measure the overhead imposed by our system when running IRISLOG, we bench-
mark the latency to execute update and query operations with and without our system. For queries,
we vary the size of the query, in terms of the number of servers that must be contacted to answer the
query. This number varies from one, for a Node query, to twelve, for a Country query. Update

compressed copy.
8The upgrade time also depends on traffic pattern, but most systems (e.g., CFS) use periodic background traffic

that we can use to trigger a node’s upgrade.

17



(Node)
Update

Node
Query

Site
Query

Region
Query

Country
Query

Operation

0

1000

2000

3000

4000

5000

6000

7000

M
ea

n 
R

es
po

ns
e 

T
im

e 
(m

se
c)

Native
Version Manager

Version Manager Overhead for IrisLog
No Upgrade Active

Figure 14: Overhead of running IRISLOG with our system.

operations, in contrast, always involve only a single node, as IRISLOG permits writes only at leaf
nodes.

Each operation type, such as an update, or Node query, is executed a minimum of 150 times.
Figure 14 presents the averages and 95% confidence intervals of the response times for each oper-
ation. For most operations, we observe a modest increase in latency of 8% or less. However, for
Country queries, this rises to about 14%.

CFS To evaluate the overhead of Version Manager for CFS, we benchmark the read and write
throughput achieved by a single client accessing a CFS service of 16 nodes. In these experiments,
1 MB of data is read from or written to the file system using the dbm program from the CFS
distribution. The data is written in 2KB blocks, with a concurrency level of 0.9 Each operation is
repeated at least 25 times.

To determine the performance and sources of overhead for CFS under Version Manager, we run
our benchmark under five different conditions, as illustrated in Figure 15. In the Native configura-
tion, CFS is running on a standard Linux kernel, with the kernel running directly on the hardware.
In the Xen configuration, we run CFS inside a single Linux domain atop of Xen. Xen 2D in-
troduces a second Linux domain. In this configuration, CFS runs inside the second domain, and
communicates with peer nodes by passing traffic through a NAT running in the root domain. In the

9The concurrency level is the maximum number of outstanding read of write requests.

18



Figure 15: Machine configurations for CFS overhead experiments. Colors designate distinct Virtual Ma-
chines.

Version Router configuration, we replace the NAT with our Version Router. Finally, the Version
Manager configuration includes two Xen domains, the Version Router, and the Application Proxy.
Figure 16 presents the mean and 95% confidence interval for read and write throughput achieved.

We find that running CFS under Xen reduces read throughput by 18% and write throughput by
8%. Introducing another domain reduces read throughput by 50%, and write throughput by 25%,
both relative to native execution. The addition of the version router and application proxy causes
a further 50% reduction in read throughput, and 40% reduction in write throughput. As compared
with native execution, we see a 72% reduction in read throughput, and a 52% reduction in write
throughput. We believe these overheads can be reduced, as we explain in Section 7.

5.4 Performance Degradation During Upgrade
We now examine how the normal operation an application is disrupted by an ongoing upgrade.

IRISLOG To measure the impact of an upgrade on IRISLOG performance, we execute our bench-
mark workload (of Section 5.3) before, during, and after an upgrade.

During an upgrade, the IRISLOG application proxy processes queries by submitting them in
parallel to all versions, and returning the longest result. The longest result is chosen in order to
mask data that is missing from a new version during the interval between the new version being
brought online, and the time when all old data has been copied to the new version. Data updates
are processed by issuing the update to all versions, and returning success if and when all versions
return success. We do not terminate the old version in this experiment. Hence, during the “post
upgrade” period, both versions are executing.

The experiment is repeated 5 times. Figure 17 presents the average query and update latencies
during and after an upgrade. The figure repeats the Native execution and Version Manager (non-
upgrade) data from Figure 14, for ease of comparison. Results for the upgrade period include a
total of 24 country queries, and 72 region queries. All other bars include at least 140 trials10.

As expected, the figure shows that performance does degrade when two versions are running
(i.e., during and post upgrade). The relative overhead during and after upgrade is relatively similar.
The overhead during the post-upgrade period ranges from 15% for updates, to 51% for country

10The difference in number of operations is due to our choice of workload, and the fact that the number of operations
executed during the upgrade period depends on the length of the upgrade process.

19



Read Write

Operation

0

100

200

300

400

500

T
hr

ou
gh

pu
t (

K
B

/s
ec

)

Native
Xen
Xen 2D
Version Router
Version Manager

Version Manager Overhead for CFS
No Upgrade Active

Figure 16: Overhead of running CFS with our system. Configuration in the legend correspond to depictions
in Figure 15.

20



(Node)
Update

Node
Query

Site
Query

Region
Query

Country
Query

0

2000

4000

6000

8000
M

ea
n 

R
es

po
ns

e 
T

im
e 

(m
se

c)
Native
Version Manager
During Upgrade
Post Upgrade

Version Manager Overhead for IrisLog
Overhead During Upgrade

Figure 17: IRISLOG performance during upgrade

queries. We believe that the larger queries incur more overhead for simultaneous queries since
there are fewer idle resources in the system for executing the second instance of the system.

6 Related Work
Several researches have looked at the problem of upgrading large-scale distributed systems. The
most relevant of these are: (a) work on upgrading the Internet routing infrastructure [17], and (b)
work on upgrading classes in object-oriented databases [18].

The Internet routing infrastructure can be viewed as a large distributed application. As many
networking researchers have bemoaned, the difficulty of upgrading or incorporating new function-
ality into the Internet infrastructure has significantly limited the deployment of new techniques.
This difficulty is the result of both a design that does not accommodate automatic deployment of
new functionality and the distributed ownership of the Internet (making it difficult to reach consen-
sus about upgrades). The Active Network [17] community spent many years attempting to address
these shortcomings with, unfortunately, little success. However, we believe some of the important
lessons from this work and the deployment of new protocols in the Internet do carry over to the
area of upgrading distributed applications.

A variety of work has focused on upgrading classes in object-oriented systems. A common ap-
proach to this problem relies on either stopping the system to apply the upgrade [19] or by limiting

21



the types of changes that can be made [20, 21, 22]. More recently, Boyapati et al.’s work [18], on
the Thor system, identifies a key set of properties for object upgrade transforms that allow object
upgrades to be postponed until the object is accessed. Assuming that this object is accessed in-
frequently, such upgrades might be processed in the background without interrupting service. Our
work differs in some important ways. First, we do not require an object-oriented design. Sec-
ond, we try to hide service interruptions regardless of the service’s access pattern. In addition,
while their system places restrictions on the type of upgrades, our system places restrictions on the
type of applications that we can support. However, our system likely incurs higher computation
overhead than Thor since we rely on simultaneous execution. These differences suggest that both
systems are useful in different contexts. The focus of each system might be the result of the fact
that our design was motivated by the challenges of maintaining the distributed systems such as
those deployed on PlanetLab, while Boyapati’s work seems more motivated by the object-oriented
database community.

7 Discussion
In this paper, we have proposed the use of simultaneous execution in order to ease the challenging
task of upgrading a distributed application service. We used our implementation of the concept, the
Version Manager, to upgrade CFS and IrisLog, two distributed applications which are substantially
different in their design.

While we have not tackled testing or recovery from failed upgrades in this paper, simultaneous
execution can ease these tasks as well. Simultaneous execution can improve the coverage of testing
by enabling the testing of new software under field conditions. To do so, the software testing team
would write an application proxy that sends requests to both the current version, and the version to
be tested. The proxy would compare replies from these versions, providing developers feedback
on possible errors. Such a proxy would be similar to recent work for NFS testing [23].

Simultaneous execution also offers a straightforward approach to handling buggy upgrades.
During the simultaneous execution period, any operation modifying the state of the system is
routed to all running versions. If a bug is found in the version before the old version has been
retired, we recover by simply retiring the new version. Note that even if the bug is found only after
the old version has been retired, some recovery is possible by reverting to a “known good” state.

While simultaneous execution promises these benefits, the performance of our prototype imple-
mentation is limiting. In addition to typical profiling and optimization, a number of possibilities
exist for improving the performance of our system. First, we believe our heavy use of a non-
congestion-controlled transport protocol (UDP) for relaying traffic between multiple domains is
unusual, one which Xen is not explicitly tuned for. Second, given the well-defined functionality of
the Version Router, it could be re-written as a kernel module. A third possibility is to run the ap-
plication in the same domain as the Version Router and Application Proxy, eliminating cross-VM
communication costs. Finally, as the Application Proxy is only required when multiple versions
are executing, the proxy could be loaded as part of the upgrade process.

22



8 Conclusion
In this paper, we have described the simultaneous execution approach to upgrading large distributed
systems. This approach relies on: 1) viewing different versions of a distributed application as sep-
arate deployments, and 2) using virtual machine technology to effectively share a common infras-
tructure between the different active versions. We described a prototype implementation of our
design, called the Version Manager. This prototype incorporates a number of techniques to help
developers resolve any application specific processing that must be done as part of using simulta-
neous execution. Finally, to demonstrate the practicality of the simultaneous execution approach
to upgrades, we adapted the Version Manager to support upgrades of both the CFS distributed file
system and the IRISLOG monitoring system. Our experience with these applications indicates that
the Version Manager needs relatively little new code to support new applications and that the Ver-
sion Manager is effective at propagating updates to different nodes in the system. We also observed
that the Version Manager does degrade performance in some scenarios. However, we believe that
the additional functionality provided by the system far outweighs its overhead in most situations.

References
[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative

storage with CFS,” in Proceedings of the 18th Symposium on Operating System Principles,
(Chateau Lake Louise, Banff, Canada), Oct. 2001.

[2] “IrisNet: Internet-scale Resource-Intensive Sensor Network Service.” http://www.intel-
iris.net.

[3] C. S. Committee On Research Horizons in Networking, D. o. E. Telecommunications Board,
and N. R. C. Physical Sciences, Looking Over the Fence at Networks: A Neighbor’s View of
Networking Research. Washington, D.C.: National Academy Press, 2001.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,” in Proceedings of the SIGCOMM ’01 Sym-
posium on Communications Architectures and Protocols, 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-
Addressable Network ,” in Proceedings of the SIGCOMM ’01 Symposium on Communica-
tions Architectures and Protocols, (San Diego, California), Aug. 2001.

[6] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Ivy: A read/write peer-to-peer file
system,” in Proc. of the Fifth Symposium on Operating Systems Design and Implementation,
2002.

[7] P. Druschel and A. Rowstron, “Storage management and caching in past, a large-scale, persis-
tent peer-to-peer storage utility,” in Proceedings of the 18th Symposium on Operating System
Principles, (Chateau Lake Louise, Banff, Canada), Oct. 2001.

23



[8] “IrisLog: A Distributed Syslog.” http://www.intel-iris.net/irislog.php.

[9] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet services fail, and what
can be done about it?,” in USITS2003, 2003.

[10] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen, “Understanding and
dealing with operator mistakes in internet services,” in OSDI2004, 2004.

[11] J. Cates, “Robust and efficient data management for a distributed hash table,” Master’s thesis,
Massachusetts Institute of Technology, 2003.

[12] T. Roscoe, L. Peterson, S. Karlin, , and M. Wawrzoniak, “A simple common sensor interface
for planetlab.” PlanetLab Design Notes PDN-03-010, 2003.

[13] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan, “Cache-and-query for wide area sensor
databases,” in Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2003.

[14] “EmuLab: The Utah Network Emulation Facility.” http://www.emulab.net.

[15] A. Bharambe, C. Herley, and V. Padmanabhan, “Understanding and Deconstructing BitTor-
rent Performance,” Tech. Rep. MSR-TR-2005-03, Microsoft Research.

[16] M. Ripeanu and I. Foster, “Mapping gnutella network,” in IPTPS, 2002.

[17] D. Wetherall, “Active network vision and reality: lessons from a capsule-based system,” in
Proceedings of the 17th Symposium on Operating System Principles, Dec. 1999.

[18] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richmann, “lazy modular upgrades in
persistent object stores,” in OOPSLA2003, 2003.

[19] M. Atkinson, M. Dimitriev, C. Hamilton, and T. Printezis, “Scalable and recoverable imple-
mentation of object evolution for the PJama1 platform,” in POS9, (Lilihammer, Norway),
Springer Verlag, September 2000.

[20] D. J. Penney and J. Stein, “Class modification in the GemStone object-oriented dbms,” in
OOPSLA87, (Orlando, Florida), pp. 111–117, 1987.

[21] B. S. Lerner and A. N. Habermann, “Beyond schema evolution to database reorganization,”
in OOPSLA90, (Ottawa, Canada), pp. 67–76, 1990.

[22] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth, “Semantics and implementation of schema
evolution in object-oritented databases,” in SIGMOD87, (San Francisco, CA), pp. 311–322,
1987.

[23] Y.-L. Tan, T. Wong, J. D. Strunk, and G. R. Ganger, “comparison-based file server verifica-
tion,” in USENIX-ATC05, (Anaheim, CA), April 2005.

24


	Introduction
	Upgrade Obstacles
	Design and Implementation
	Isolating Versions on a Node via Virtual Machines
	Routing Inter-Server Messages with a Version Router
	Mediating Client Access through an Application Proxy
	Supporting Application Developers with a Proxy Framework
	Upgrade Discovery, Distribution, and Installation

	Case Studies
	Cooperative File System (CFS)
	Application Overview
	Applying Version Manager to CFS

	IrisLog
	Application Overview
	Applying Version Manager to IrisLog


	Performance Evaluation
	Experimental Setup
	Time to Complete Upgrade
	Virtualization Overhead
	Performance Degradation During Upgrade

	Related Work
	Discussion
	Conclusion

