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Abstract

In this thesis, we present new approximation algorithms as well as hardness of approximation

results for several planning and partitioning problems. In planning problems, one is typically given

a set of locations to visit, along with timing constraints, such as deadlines for visiting them; The goal

is to visit a large number of locations as efficiently as possible. We give the first approximation al-

gorithms for problems such as ORIENTEERING, DEADLINES-TSP, and TIME-WINDOWS-TSP, as

well as results for planning in stochastic graphs (Markov decision processes). The goal in partition-

ing problems is to partition a set of objects into clusters while satisfying “split” or “combine” con-

straints on pairs of objects. We consider three kinds of partitioning problems, viz. CORRELATION-

CLUSTERING, SPARSEST-CUT, and MULTICUT. We give approximation algorithms for the first

two, and improved hardness of approximation results for SPARSEST-CUT and MULTICUT.
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Chapter 1

Introduction

We study two classes of optimization problems on graphs, namely, planning and partitioning, and

present improved approximations and hardness of approximation results for them. Broadly, the goal

in these problems is to find structure in a set of objects, satisfying some constraints, such that the

value of the structure is maximized (or its cost is minimized). In planning problems, the objects

are tasks to be performed, and the structure is an ordering of these tasks satisfying scheduling

constraints; The goal is to perform a large subset of the tasks in the most efficient manner. In

partitioning problems, the structure is a grouping of the objects into classes based on their similarity

or closeness.

Planning and partitioning are fundamental combinatorial problems and capture a wide-variety

of natural optimization problems; Examples arise in transportation problems, supply chain man-

agement, document classification in machine learning, and reconstructing phylogenies in computa-

tional genomics. Unfortunately most of these problems are NP-hard. Therefore, a natural approach

to solving them is to look for approximate solutions that can be computed in polynomial time.

In this thesis, we study the approximability of several partitioning and planning problems. We

provide the first approximation algorithms for some of the problems, and improve upon previously

known approximations for others. For some of these problems, we provide hardness of approxima-

tion results showing that these problems are NP-hard to approximate better than a certain factor.

We begin with some basic definitions.

Approximation algorithms and hardness of approximation

As mentioned earlier, most of the problems we consider in this thesis are NP-hard. We therefore

aim to approximate the objectives in polynomial time. In particular, let S be the set of all feasible

solutions to a problem, and let f(S) denote the objective that is to be maximized. Suppose that the

optimal solution is given by S∗ = argmaxS∈Sf(S). Then, an α-approximation to the problem is a

solution S ∈ S such that

f(S) ≥ 1

α
f(S∗) (1.1)

1
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Likewise, if the problem is a minimization problem, then an α-approximation to the problem is a

solution S ∈ S such that

f(S) ≤ αf(S∗) (1.2)

Note that in both the cases α ≥ 1. The smaller the value of α, the better the solution is. An

α-approximation algorithm is a polynomial-time algorithm that produces a solution that is an α-

approximation to the optimal solution for the problem.

A problem is said to be hard to approximate to within a factor of α, if constructing an α-

approximation algorithm for it implies that P=NP.

1.1 Path-planning problems

Consider a repair service that receives requests for repair; Each request may be accompanied with

a (monetary) value, a resource(time)-requirement for servicing it, and a time-window within which

it may be serviced. The goal of the repair service is to maximize its profit, that is, the total value

it accrues by serving a subset of the requests according to their requirements. In order to do so,

the service must decide which requests to accept as well as in what order to schedule them in a

conflict-free manner. A related problem is that of a delivery-service, that needs to deliver various

packages to different locations within their time-windows. Again the goal of the delivery-man is

to deliver the packages in the most efficient manner—minimizing his fuel cost, maximizing the

number delivered, minimizing the amount of time taken, etc.—while satisfying constraints such as

the capacity of the carrying vehicle, or picking the packages from a warehouse before delivering

them. These are examples of typical path-planning problems.

Path-planning problems arise in such diverse fields as robotics, assembly analysis, virtual proto-

typing, pharmaceutical drug design, manufacturing, and computer animation, and have been studied

extensively in Operations Research; We review some of this work towards the end of this section.

Typically in these problems we are given a number of tasks to perform; Performing a task or switch-

ing from one task to another takes time; We are allowed to perform a subset of the tasks and reject

the remaining; Our goal is to perform a large number of tasks as efficiently as possible. We model

these tasks as locations on a map (graph) that are to be visited. The problems then involve comput-

ing a subgraph on the locations (such as a path or sequence of locations) while respecting certain

constraints (for example, fixed start and terminal locations). Informally, the objective is to construct

a small subgraph that contains many locations (or a set of locations of high total value).

A simple example is the TRAVELING SALESMAN PROBLEM or the TSP — here one is given a

set of locations to be visited with distances between them; the goal is to visit all the locations as fast

as possible. This is a fundamental combinatorial problem, and work on it dates as far back as the

1930s [2]. Several approximations are known for the problem in general, as well as for the special

cases when the distances between locations form a Euclidean or planar metric [9, 11]. There has
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also been a large amount of work on developing heuristics for solving the problem nearly optimally

(see [2] for a bibliography).

An algorithm for the TSP is indeed a useful tool in many planning applications. Consider,

however, a situation where the salesman has a limited amount of time to visit locations and may not

be able to visit all of them. A natural goal in that case would be to maximize the number of locations

visited (or their total “value”) before a certain deadline. This is known as the ORIENTEERING

problem. The name “Orienteering” is derived from an outdoor sport where each player is given a

map of the terrain and a set of sites to be visited, each amounting to a score; the goal is to accumulate

the largest score in a limited amount of time. The ORIENTEERING problem has been studied in

approximation algorithms literature for a long time, but unlike the TSP, no approximations were

known for this problem with general distance metrics prior to our work. In this dissertation, we

present the first approximation, a 3-approximation, to this problem.

Each of the problems we consider explores a trade-off between two objective functions: the

cost of the constructed subgraph (a function of its length), and the total value spanned by it. From

the point of view of exact algorithms, we need simply to specify the cost we are willing to tolerate

and the value we wish to span. Most of these problems, however, are NP-hard, so we focus on

approximation algorithms. We must then specify our willingness to approximate the two distinct

objectives. A problem is called a budget problem when our goal is to approximately maximize the

value collected subject to a budget on the cost (such as a fixed upper bound on the total length of the

path). Thus ORIENTEERING is a budget problem. Conversely, a quota problem is one where our

goal is to approximately minimize the cost of our solution subject to a fixed quota (lower bound) on

the value collected (thus value is a feasibility constraint, while our approximated objective is cost).

The TSP is an example of a quota problem, where the quota on value is the total value of all the

locations. Another example is the k-TSP. Here our goal is to visit at least k (unspecified) locations

and minimize the time taken to do so.

There are several algorithms known for approximating quota problems, the first of these be-

ing a 1.5 approximation to the TSP due to Christofides [44]. For the k-TSP, in particular, a se-

ries of constant-factor approximations have been developed starting with a 17-approximation due

to Blum et al. [32] (where n is the total number of locations), and culminating in the recent 2-

approximation due to Garg [69]. In contrast, for budget problems such as ORIENTEERING, where

we are given fixed deadlines and other timing constraints on performing the tasks, no approxima-

tions were known prior to our work. Our work presents new techniques for handling such fixed

timing constraints, leading to the first approximations for budget planning problems, and adding a

new tool to the repertoire of the algorithm designer. We demonstrate the use of these techniques in

planning problems with multiple salesmen (or delivery-men), as well as for variants where the value

collected is a decreasing function of the time taken.

Path-planning problems have also been studied extensively in Operations Research (see, for

example, [1]) and are known as Vehicle Routing problems in that literature. Several approaches
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have been studied for solving these problems, including heuristics such as local search, Simulated

Annealing and Genetic algorithms, as well as techniques for linear programming that output optimal

solutions, such as cutting plane and branch and bound methods [135, 104, 94]. These approaches,

however, do not simultaneously give a guarantee on the quality of the solution produced as well as

the time taken to find the solution.

A classification of path-planning problems

Depending on the constraints on the solution, or the objective to be optimized, planning problems

can be classified according to various features as follows:

Cost-Value trade-off: As described earlier, depending on whether we want to approximate

the cost of the solution or the value collected by it, the problem is a quota or budget problem respec-

tively. We also consider a third class of problems, bicriteria approximations, where we approximate

both the cost as well as the value of the solution, or a combination of the two.

Unrooted, rooted or point-to-point: In a rooted problem, the path (subgraph) must start at

a specified vertex, the start. In the point-to-point variant, an end point (terminal) is also specified.

No such constraints are placed on the subgraph in unrooted problems. Unrooted problems can be

trivially reduced to their rooted counterparts (by trying all possible roots or starts), which can in

turn be reduced to the point-to-point version of the problem. The latter is therefore the hardest of

the three.

Timing constraints: The cost of a solution is typically defined in terms of the time that it

takes to visit various locations. For example, in min-length problems, we ask for a solution of

minimum length, or place a bound on the maximum length allowed. These can be generalized to

deadline problems, where different locations have different deadlines for visiting them. In a further

generalization, different locations have different time-windows, specified by a release time1 and a

deadline, and in order to collect value, the locations must be visited within their respective time-

windows. We also consider a new objective for the point-to-point problems, known as min-excess.

The excess of a path is its length minus the shortest distance between the start and terminal locations.

The importance of this objective will be clarified in Chapter 2.

Path or tour: In the tour version of the problem, the objective is to construct a tour that starts

and ends at the same vertex.

1This terminology is borrowed from scheduling literature, where the release time of a task refers to the time that the

task is released and available to work upon.
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Single or multiple vehicles: In the multi-vehicle version of these problems, the solution may

contain a pre-specified number of paths (tours), with the distance to each vertex measured along the

path (tour) on which that vertex lies. In min-vehicle problems, we ask for the minimum number of

paths (tours) that satisfy timing and value constraints.

Undirected or directed: In undirected problems, the distance function between locations is

symmetric—the time taken to go from a location u to another location v is the same as the time

taken to go from v to u. In directed problems, the distance function is asymmetric2.

We use a uniform naming convention for the problems. Each problem is either a min-cost or

max-value or a bicriteria problem. We also specify the cost function used—excess, length, dead-

lines, or time-windows, and the subgraph output.

1.1.1 Overview of our results

The main contributions of our work are as follows:

• The first approximation algorithm, a 3-approximation, for the rooted max-value D-length

path or the ORIENTEERING problem in general graphs, solving an open problem of [8, 19].

• The first approximation, a min{3 log2 n,O(logDmax)} approximation, for the max-value

time-windows problem or TIME-WINDOWS-TSP, where the goal is to maximize the total

values of locations visited within their time-windows, and Dmax is the maximum deadline in

the graph.

• A bicriteria approximation for TIME-WINDOWS-TSP—for any constant c > 0, if we allow

our path to exceed the deadlines of locations by a factor of (1 + 2−c), then the path obtains

an O(c)-approximation to the optimal value.

• A constant-factor approximation for a new problem that we call the DISCOUNTED-REWARD-

TSP, where the value at each location is discounted exponentially with time. This is a natural

model for searching for a trapped individual and is the most common objective used in MDP

problems (see Section 1.1.2).

• Introducing the concept of the excess of a path, and developing a constant-factor approxima-

tion for the new min-excess k-value path or MIN-EXCESS-PATH problem. This approxima-

tion forms a key component in all the algorithms described above.

We summarize our results on deterministic undirected path-planning problems in Figure 1.1

below. Several of our algorithms reflect a series of reductions from one approximation problem to

2Asymmetric distance functions arise, for example, when the travel time depends on the traffic in the two directions.
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another. We therefore also report reductions between the approximation factors of various problems.

Improvements in the approximations for various problems will propagate through. Note that for the

MIN-EXCESS-PATH problem, the general reduction only implies an approximation of 2.5. See

Section 2.2.3 for the analysis behind the improved approximation factor.

All the approximations reported in Figure 1.1 are for point-to-point, single-vehicle, path prob-

lems. The reported results hold also for the rooted, unrooted and tour variants. For the max-value

problems, the same algorithms can be modified to obtain approximations for the multi-vehicle vari-

ants, increasing the factor of approximation by 1 (that is, an α-approximation becomes an (α+ 1)-

approximation).

Problem Best approx. Reduction Hardness

min-length k-value path 2 [69] αkTSP 220/219

(k-TSP) [118]

min-excess k-value path 2 + ε αex = 3
2αkTSP − 1

2 220/219

(MIN-EXCESS-PATH)

max-value D-length path 3 αOrient = dαexe 1481/1480

(ORIENTEERING)

max-value deadlines path 3 log n αDTSP = αOrient log n 1481/1480

(DEADLINES-TSP)

max-value time-windows path 3 log2 n αTW = αOrient log
2 n 1481/1480

(TIME-WINDOWS-TSP)

bicriteria time-windows path (1 + 2−c) for deadlines

O(c) for value

max-discounted-reward path 6.75 + ε αDisc =

(DISCOUNTED-REWARD-TSP) (1 + αex)(1 + 1
αex

)αex

Figure 1.1: Approximation factors and references for a few path-planning problems. Prior results are accompa-

nied by references.

1.1.2 Planning under uncertainty

Often in planning problems, and optimization problems in general, the input to the problem may be

revealed over time (instead of being entirely known at the start), or the outcomes of the algorithm’s

decisions, instead of being fixed, may be governed by random (stochastic) processes. In such a

situation, the performance or cost of a solution cannot be predicted precisely beforehand, but is

rather a variable depending on the actual turn of events. For example, in the case of a delivery-man,

the time taken to go from one location to another may be governed by the traffic on the roads, and
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therefore cannot be estimated precisely before the delivery-man actually travels between the two

locations, and moreover differs every time the delivery-man takes this route. In this case, it would

be desirable to obtain a solution that works well most of the time. More precisely, assuming that we

can model the process that governs the random aspects of the problem, one goal may be to design

an algorithm that optimizes the performance of the solution in expectation over the randomness in

the input.

We consider some planning problems in this stochastic optimization framework in Chapter 3.

In particular, we generalize the concept of a graph or map to a Markov decision process (MDP).

An MDP consists of a set of states (or locations) and actions to move from one location to another.

Each action has a probability distribution on locations associated with it; on taking an action, the

agent ends up at a location picked from the distribution associated with that action. The actions,

therefore, model the uncertainty and randomness in the input to the problem. The goal of a stochastic

planning problem is to navigate through the MDP with the same constraints and objectives as in the

deterministic case. For example, the goal may be to visit all the locations, or at least k of them,

while minimizing the expected time taken to do so.

Planning problems over MDPs arise in the field of robot navigation in AI, and therefore have

been studied extensively in that literature. Certain objectives, such as reaching a goal state as quickly

as possible, or frequently visiting “good” states while avoiding “bad” states, can be optimized effi-

ciently over MDPs using techniques such as linear programming and dynamic programming. These

objectives have the property that the best strategy for the agent (or robot) for optimizing these ob-

jectives depends solely on its current location and is independent of its history. In contrast, for a

problem such as the TSP on a Markov decision process, the next action taken by the agent may

depend on the states that have already been visited in the past, as there is no benefit gained from

visiting the same state more than once. In AI terminology, such MDPs are called time-dependent,

as the “reward” obtained by visiting a state or action changes over time (in the case of the TSP, it

disappears after the first visit). This makes the solution space much richer and complex, making

the problem harder to optimize. Prior to our work, no approximations were known for optimizing

planning problems over these time-dependent MDPs.

In Chapter 3, we study the approximability of the STOCHASTIC-TSP, or the TSP over MDPs.

We give an n-approximation to this problem, as well as a weakerO(n3 log n)-approximation using a

“static” solution—one that picks actions independently of the time and history of execution. To our

knowledge, these are the first approximations to this problem. We also show that the STOCHASTIC-

TSP can be “iteratively-computed” in PSPACE (that is, at any step, the next best action can be

computed in PSPACE).

We also consider the well-studied infinite horizon discounted reward [91, 120, 131] objective,

where the reward at every location decreases exponentially with time, and the goal of the agent

is to obtain as much reward as possible. Note that in this problem, there is no time-constraint

on the length of the path taken, however, shorter paths face lesser discounting than longer paths,
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and so this produces what in practice turns out to be good behavior on part of the agent. As for the

STOCHASTIC-TSP, we consider the version of the problem in which the reward at a node disappears

after the first time the node is visited. In the context of deterministic undirected graphs, we provide

the first approximation—a 6.75+ε approximation—for this DISCOUNTED-REWARD-TSP problem.

1.2 Graph Partitioning

Breaking a graph into two or more large pieces while minimizing the interface between them, or

grouping a set of objects into clusters based on the similarities between them, are classic exam-

ples of partitioning problems. Such problems arise in numerous applications, such as data mining,

document classification, routing in communication networks, divide-and-conquer algorithms, VLSI

layout problems, and image segmentation.

We consider partitioning problems with pairwise constraints. In particular, we are given a set of

objects with “join” or “split” constraints on pairs of the objects. The goal is to divide the objects into

clusters, such that pairs with a join constraint between them are clustered together, whereas those

with a split constraint between them are in different clusters. There may, of course, be instances

where it is not possible to produce a partition satisfying all the constraints. In such a case, the

partition is allowed to violate some of the constraints while paying a cost.

A variety of partitioning problems can be cast into this framework of partitioning with pair-

wise constraints, each exploring a different trade-off between violating join or split constraints and

displaying a different behavior in their approximability. Consider, for example, the min-bisection

problem, where the goal is to partition a given weighted graph into two equal-sized components,

minimizing the total weight of edges between the two components. In this case, we can place a split

constraint between every pair of nodes, and a join constraint between pairs that are connected by an

edge. Our goal would be to satisfy at least n2/4 split constraints, while minimizing the number of

join constraints violated.

In this thesis, we consider three kinds of partitioning problems with pairwise constraints. In the

CORRELATION-CLUSTERING problem, each join and split constraint has a weight associated with

it. The cost of any partition is the total weight of the constraints that it violates. This problem is NP-

hard even for the case when there is a split or join constraint between each pair of objects, and each

weight is 1. From the point of view of approximation, we can ask for a solution that approximately

minimizes the total weight of all violated constraints, or one that approximately maximizes the total

weight of all satisfied constraints. We present the first constant factor approximations for both these

objectives.

A special case of the CORRELATION-CLUSTERING problem is the MULTICUT problem, where

each split constraint has an infinite weight. In other words, a feasible partition must satisfy all the

split constraints, and the goal is to minimize the total weight of the violated join constraints. It is

immediate that the CORRELATION-CLUSTERING problem is at least as hard as MULTICUT, but in
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fact, it is known [37, 54] that the two problems are equally hard.

A related problem is the SPARSEST-CUT problem. Here the solution is allowed to violate split

constraints as well—the goal is to minimize the average cost of violating join constraints for every

split constraint satisfied, or simply put, to get the most bang for the buck. More formally, the

objective function is given by the total weight of the violated join constraints divided by the total

weight of satisfied split constraints.

MULTICUT and SPARSEST-CUT are related to several fundamental problems in graphs includ-

ing multicommodity flow, expansion, and metric embeddings. Algorithms for the SPARSEST-CUT

problem in particular are used as subroutines in approximating several other problems such as min-

bisection and min-linear-arrangement, as well as in divide-and-conquer algorithms. Both these

problems have been known to be approximable to within O(log n) factors through linear program-

ming relaxations for over a decade [109, 70, 18, 111] (n is the number of objects in the input). For

the MULTICUT problem, it was recently shown that it is not possible to beat the O(log n) bound via

linear programming techniques. Furthermore, the problem is known to be APX-hard, or NP-hard

to approximate better than a certain small constant factor. No such hardness result was known for

the SPARSEST-CUT problem. We present the first hardness results for the SPARSEST-CUT problem,

and improved hardness results for MULTICUT.

On the positive side, we improve upon the decade-old O(log n) approximation to SPARSEST-

CUT obtaining an O(log3/4 n) approximation. Our result also implies an improved low-distortion

embedding from negative-type metrics into Manhattan metrics. Low-distortion metric embeddings

are an important algorithmic tool in several optimization problems such as graph partitioning and

nearest-neighbor problems (see [87] for a survey). The problem of embedding negative-type metrics

into Manhattan metrics, in particular, is closely related to the SPARSEST-CUT problem — the best

approximation achievable for the latter is exactly equal to the best distortion achievable for the for-

mer. Algorithms for embedding general metrics into the Manhattan metric with distortion O(log n)

have been known for almost two decades. It is also known that this is the best possible result for

general metrics. Our work is the first to obtain a better distortion for negative-type metrics than that

implied by the general result.

The CORRELATION-CLUSTERING problem arises in machine learning applications such as doc-

ument classification, coreference analysis in natural language processing, and image segmentation,

as well as in computational biology applications such as the reconstruction of phylogenies. Our

work was the first to study the approximability of this problem. We presented constant factor

approximations for this problem, as well as results for a random-noise version of the problem.

Our work has been followed up extensively in approximation algorithms literature. We review this

follow-up work in Chapter 4.

An interesting feature of the partitioning problems we consider here is that unlike most cluster-

ing formulations, we do not need to specify the number of clusters k as a separate parameter. For

example, in k-median [36, 88] or min-sum clustering [127] or min-max clustering [85], one can
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always get a perfect score by putting each object into its own cluster — the question is how well one

can do with only k clusters. In our partitioning formulations, the optimal partition may have few or

many clusters: it all depends on the join and split constraints, and their weights.

1.2.1 Overview of our results

We consider a “complete-unweighted” graph version of the CORRELATION-CLUSTERING problem—

here every pair of objects has either a split or a join constraint between them, and each constraint

has a weight of 1. Even in this simpler case, finding the partition with the minimum cost is NP-hard.

From the point of view of approximation, two natural objectives arise: minimize the weight of vio-

lated constraints (disagreements), or, maximize the weight of satisfied constraints (agreements). We

give the first approximation algorithms for both these objectives: a combinatorial constant factor

approximation for the min-disagreements objective, and a polynomial time approximation scheme

(PTAS) for the max-agreements objective, which, for any constant ε > 0, outputs a (1 + ε) approx-

imation in O(eO( 1
ε
)n2) time.

For weighted graphs, we show, via a reduction from the min-multiway cut problem, that the

min-disagreements problem is APX-hard. That is, there is some constant α > 1, such that it is

not possible to approximate the problem to within a factor less than α. On the other hand, for the

max-agreements on weighted graphs, we give evidence that the problem is APX-hard, as this would

lead to an improved algorithm for the long-open problem of graph coloring. We also give results

for the random case, where there is a true optimal clustering, but the function f is a noisy version

of this clustering, with some small noise added independently to each edge.

For the SPARSEST-CUT problem, we present an O(log3/4 n) approximation, where n is the

number of vertices in the graph. Our result improves upon the previously known O(log n) approx-

imation for the problem, and is essentially based on an improved low-distortion embedding from

negative-type metrics into `1 metrics. Our result also implies that n-point subsets of the Euclidean

metrics (`2) embed into `1 with distortion at most O(log3/4 n).

Finally, we present the first hardness of approximation result for the SPARSEST-CUT problem.

In particular, we show that assuming the Unique Games conjecture of Khot [101], the SPARSEST-

CUT problem is NP-hard to approximate within any constant factor. Assuming a stronger, yet plau-

sible, version of the conjecture, our reduction implies an Ω(
√

log log n) hardness of approximation

for SPARSEST-CUT. The result also extends to the MULTICUT problem and the min-disagreements

CORRELATION-CLUSTERING problem on weighted graphs.

Subsequent to our work, several improved approximations have been developed, both for CORRELATION-

CLUSTERING as well as SPARSEST-CUT. We discuss this work in detail in Chapters 4 and 5.



Chapter 2

Planning with Time Constraints

2.1 Introduction

Consider a FedEx delivery-man with a map of the city that needs to deliver a number of packages

to various locations in the city as efficiently as possible. One classic model of such a scenario is the

TRAVELING SALESMAN PROBLEM, in which we ask for the tour that visits all the sites and whose

length is as short as possible. However, what if the delivery-man cannot deliver everything? For

example, he may not be able to make deliveries after 7:00 p.m. In that case, a natural question to

ask is for the tour that visits the maximum total reward of sites (where reward might correspond to

the value of a package being delivered), subject to a constraint that the total length is at most some

given bound D. This is called the (rooted) ORIENTEERING [19, 75] problem (“rooted”, because

we are fixing the starting location of the robot). Interestingly, while there have been a number of

algorithms that given a desired reward can approximately minimize the distance traveled (which

yield approximations to the unrooted ORIENTEERING problem), approximating the reward for the

case of a fixed starting location and fixed hard length limit has been an open problem.

More generally, suppose that each location v has a time-window [R(v), D(v)] within which it

must be visited. The delivery-man obtains a reward for a location if he visits the location within

its time-window. The goal of the delivery-man, as before, is to collect as much reward as possible,

while respecting the time-windows. This so-called TIME-WINDOWS-TSP, classically known as

the Vehicle Routing Problem with Time Windows, has been studied extensively in the Operations

Research literature (see [1, 56] for a survey), but no approximations for general graphs were known

prior to our work.

We also consider a special version of the TIME-WINDOWS-TSP, in which the release-time

R(v) of every vertex is zero. That is, there is no lower limit on when a location must be visited in

order to obtain reward, but each location still has a deadline that must be respected. We call this

special case the DEADLINES-TSP. The DEADLINES-TSP objective is natural for scheduling-type

problems with sites representing jobs to be completed and distances representing job-dependent

setup times. This connection is further described in Section 2.1.1.

11
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In this chapter, we provide the first constant-factor approximations to the ORIENTEERING and

TIME-WINDOWS-TSP problems, and well as a number of other path-planning that we discuss

below. We also prove that these problems are APX-hard, or NP-hard to approximate within an

arbitrarily small constant factor.

A key contribution of our work is the introduction of the min-excess objective. This excess of

a path is the length of the path minus the shortest distance between its end-points. Informally, any

path must spend a minimum amount of time equal to the distance between the its end-points, just

to get to the destination; The excess of the path is the extra time spent by it to gather value along

the way. Approximating the excess of a path turns out to be a crucial component in our algorithms

for ORIENTEERING and TIME-WINDOWS-TSP, as well as for the DISCOUNTED-REWARD-TSP

considered in Chapter 3. We provide a 2 + ε approximation for this problem.

2.1.1 Related work

Prize-collecting traveling salesman problems

ORIENTEERING belongs to the family of the prize-collecting traveling salesman problems (PC-

TSP) [19, 20, 72, 75]. Given a set of cities with non-negative values associated with them and a

table of pairwise distances, a salesman needs to pick a subset of the cities to visit so as to minimize

the total distance traveled while maximizing the total amount of value collected. Note that there

is a trade-off between the cost of a tour and how much value it spans. The original version of the

PC-TSP introduced by Balas [20] deals with these two conflicting objectives by combining them:

one seeks a tour that minimizes the sum of the total distance traveled and the penalties (values) on

cities skipped, while collecting at least a given quota amount of value. Goemans and Williamson

subsequently focused on a special case of this problem in which the quota requirement is dropped,

and provided a primal-dual 2-approximation algorithm for it [74].

An alternative approach to the bicriteria optimization is to optimize just one of the objectives

while enforcing a fixed bound on the other. For example, in a quota-driven version of the PC-TSP,

called k-TSP, every node has a value of one unit and the goal is to minimize the total length of the

tour, while visiting at least k nodes. Similarly, ORIENTEERING can be viewed as a budget-driven

version of the PC-TSP, since we are maximizing total amount of value collected, while keeping the

distance traveled below a certain threshold.

There are several constant-factor approximations known for the k-TSP problem [12, 19, 32,

39]—the best being a recent 2-approximation due to Garg [69]—as well as for other quota-driven

problems such as Steiner-tree [125], and Min-Latency [30, 39, 71]. Most of these results are based

on a classic primal-dual algorithm for the Prize Collecting Steiner Tree problem, due to Goemans

and Williamson [74].

The algorithms for k-TSP extend easily to the unrooted version of the ORIENTEERING problem

in which we do not fix the starting location [19]. In particular, given a tour (cycle) of value Π whose
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length is cD for some c > 1, we can just break the cycle into c pieces of length at most D, and then

take the best one, whose total value will be at least Π/c. Noting that an optimal cycle of length 2D

must span at least as much value as an optimal path of length D (since one could just traverse the

path forward and then back), we get a 2c-approximation guarantee on the amount of value contained

in a segment we pick. However, this does not work for the rooted problem because the “best piece”

in the above reduction might be far from the start. In contrast, there is no previously known O(1)

approximation algorithm for the rooted ORIENTEERING Problem in general graphs. Arkin et al. [8]

give a constant-factor approximation to the rooted ORIENTEERING problem for the special case of

points in the plane.

Vehicle routing problems with time-windows

Vehicle routing problems have been studied extensively in Operations Research over the past several

decades. For the vehicle routing problem with time-windows, various heuristics [55, 126, 134, 133],

such as local search, Simulated Annealing and Genetic algorithms, as well as cutting plane and

branch and bound methods [135, 104, 94] have been studied for solving this problem optimally.

Optimal algorithms for stochastic inputs have also been proposed. In the approximation algorithms

literature, there has been work on geometric versions of this problem. Several constant factor ap-

proximations [21, 137, 95] have been proposed for the case of points on a line. For general graphs,

Chekuri and Kumar [41] give a constant-factor approximation when there are a constant number of

different deadlines (or time windows). Our work is the first to give approximation guarantees for

the general case with arbitrary deadlines or arbitrary time-windows.

Another generalization of the ORIENTEERING problem, the time-dependent ORIENTEERING

problem, deals with a stochastic network topology. In this problem, the lengths of edges in the

graph are known functions of time. The version in which the ratio of the maximum length to the

minimum length over all edges and times is bounded by a constant, is approximable [65] within a

factor of 2. Nothing is known for the general version of the problem.

The Scheduling Perspective: Another motivation for path-planning problems comes from a

classic scheduling problem known as scheduling with sequence dependent setup times [5, 35, 142,

143]. In this problem we are given several jobs released at time zero, each having a production

duration pj and a delivery date Dj . In addition, for each pair of jobs, there is a setup time sij , which

is incurred when job j is undertaken following job i. The goal is to schedule jobs as efficiently

as possible on a single machine. If we assume the sij are symmetric (e.g., they depend on some

notion of similarity between the jobs), then this can be modeled as an undirected graph problem by

assigning a length of sij to the edge between i and j. Production durations can also be incorporated

by adding pj/2 to every edge incident on the node j, and subtracting the same from the deadline

Dj .
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The scheduling setting is fairly general and models many problems. For example, one objective

may be to minimize the makespan, which is equivalent to the TRAVELING SALESMAN PROBLEM

problem. The objective of minimizing the completion-time of jobs is equivalent to the min-latency

problem. Likewise, the objective of completing as many jobs as possible by their delivery dates

is equivalent to the DEADLINES-TSP problem. Interestingly, meeting target delivery dates has

been declared as the most important scheduling objective for production planners by Wisner and

Siferd [142]. Several heuristics [77, 90] have been proposed for this (and other related problems),

however, no approximations were known prior to our work.

2.1.2 Notation and definitions

In path-planning problems, we are given a weighted undirected graph G = (V,E) that represents

a map of the locations to be visited. Vertices v ∈ V denote locations, and a length function ` :

E → R
+ on edges denotes the time taken (or distance traveled) to go from one location to another.

In addition, each location is equipped with a value or reward, π : V → R
+. Let s ∈ V denote a

special node called the start or root, and t ∈ V denote the terminal vertex.

Our goal is to construct a path in the graph that starts at s, terminates at t, and efficiently visits

many locations in between. In particular, each of our problems explore a trade-off between two

objective functions: the cost of the constructed subgraph (a function of its total length), and the

total value spanned by it. From the point of view of exact algorithms, we need simply to specify

the cost we are willing to tolerate and the value we wish to span. Most of these problem, however,

are NP-hard, so we focus on approximation algorithms. We must then specify our willingness to

approximate the two distinct objectives.

A problem is called a quota problem when our goal is to approximately minimize the cost of

our solution subject to a fixed quota (lower bound) on the value collected (thus value is a feasibility

constraint, while our approximated objective is cost). Conversely, a budget problem is one where

our goal is to approximately maximize the value collected subject to a budget on the cost (such as

a fixed upper bound on the total length of the path). We also consider bicriteria approximations

where we approximate both the cost as well as the value of the solution.

For example, if we define the cost of a solution to be the total length of the edges contained in it,

then the corresponding quota problem is the min-length k-value path problem, or the k-TSP: here

the goal is to construct a path covering k value and minimize the cost of doing so. Likewise the

corresponding budget problem is the max-value D-length path problem or ORIENTEERING, where

the goal is to construct a path of length at most D that collects the maximum possible reward. We

consider these problems in the first part of this chapter.

In the second part of the chapter, we consider path-planning problems with different timing

constraints on visiting different locations. In particular, each vertex in the graph is equipped with a

release time R : V → R
+ and a deadline D : V → R

+. The goal is to visit a large amount of value
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within the appropriate time-windows defined by the release times and deadlines. Accordingly, the

value collected by a path is the total value of vertices v visited within the time interval [R(v), D(v)].

The corresponding budget problem, or the TIME-WINDOWS-TSP problem, aims to maximize the

reward collected while obeying all time-windows exactly. In the corresponding quota and bicriteria

problems, the cost of the solution is measured by the factor by which the solution exceeds deadlines.

We now introduce some more notation, to be used throughout this chapter. For a path P visiting

u before v, let `P (u, v) denote the length along P from u to v. Let d(u, v) denote the length of

the shortest path from node u to node v. For ease of notation, we use let `P (v) to denote `P (s, v)

and dv to denote d(s, v). For a set of nodes V ′ ⊆ V , let π(V ′) =
∑

v∈V ′ π(v). For a set of edges

E′ ⊆ E, let `(E ′) =
∑

e∈E′ `(e). We denote the optimal solution to our problems by P ∗.

The “min-excess” objective

The main subroutine in our algorithms requires also introducing a variation on the cost function,

closely related to the length of the path. Define the excess of a path P from u to v, εP (u, v), to

be `P (u, v) − `(u, v), that is, the difference between that path’s length and the shortest distance

between u and v in the graph. We may now ask for a minimum-excess path that visits at least k

value. Obviously, the minimum-excess path of total value k is also the minimum-length path of

total value k; however, a path of a constant factor times minimum length may have more than a

constant-factor times the minimum excess. We therefore consider separately the MIN-EXCESS-

PATH problem. Note that an (s, t) path approximating the optimum excess ε by a factor α will have

length d(s, t) + αε ≤ α(d(s, t) + ε) and therefore approximates the minimum cost path by a factor

α as well. Achieving a good approximation to this MIN-EXCESS-PATH problem will turn out to be

a key ingredient in our approximation algorithms.

Preliminaries

We assume without loss of generality that all nodes are reachable from the start within their respec-

tive deadlines. (That is, for all vertices v, the deadline D(v) is larger than the release time R(v) as

well as the shortest distance of v from the start, d(v).)

We also assume that all values are integers in the range {1, . . . , n2}—this allows us to “guess”

the value collected by a solution in some of our algorithms, by trying out all possible integer values

less than n3. We can make this assumption by scaling the values down such that the maximum

value is exactly n2 (this guarantees that O gets at least n2 reward). We then round each value down

to its nearest integer, losing an additive amount of at most n, which is a negligible multiplicative

factor. This negligible factor does mean that an approximation algorithm for a max-value problem

with guarantee c on polynomially bounded inputs has (weaker) guarantee “arbitrarily close to c”

on arbitrary inputs. For the MIN-EXCESS-PATH problem, we do not make this bounded-value

assumption. This implies that the running time of our algorithm is linear in the total value in the
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graph (the minimum value at any location being 1). Note however that in our algorithms for the

max-value problems, we may use a bicriteria version of min-excess in which we approximate the

value obtained to within a (1 +O(1/n)) factor and excess to within an αex factor. We may then use

the bounded value assumption, and our running time is again bounded by a polynomial in n.

Some of our algorithms (for the DEADLINES-TSP and TIME-WINDOWS-TSP problems) use

as a subroutine a dynamic program that computes the maximum reward achievable between two

specified end points for all possible path lengths. So, strictly speaking, the running time of these

algorithms has a polynomial dependence on n and Dmax. This would be undesirable if Dmax is

exponential in n. However, we can use the following idea to reduce the running time to polynomial

in n and logDmax. For all possible reward values (that are integers between 1 and n3), we use

binary search to find the smallest length for which that reward can be obtained. So we only need

to compute and store polynomially many different lengths for each start and end pair. For ease of

exposition, we ignore this detail while describing the algorithms.

Although all our algorithms run in polynomial time, the actual running times are fairly large.

The MIN-EXCESS-PATH algorithm (Section 2.2.2) requires O(Πn4) applications of the k-TSP sub-

routine, where Π is the total value in the graph. Algorithm P2P for the ORIENTEERING problem

(Figure 2.2) requires O(n2) applications of the algorithm for the MIN-EXCESS-PATH problem.

The O(log n) approximation for DEADLINES-TSP (Figure 2.5) requires O(n6) applications of Al-

gorithm P2P. The bicriteria approximation (Algorithm C, see Figure 2.9) requires O(n5 log 1
ε ) ap-

plications of the Algorithm P2P. Note that these are worst case running times for the algorithms,

and the actual running times may be much smaller.

2.1.3 Summary of results

We present the first approximation, a 3-approximation to the ORIENTEERING problem, solving an

open problem of [8, 19]. Central to our result is a constant-factor approximation for the MIN-

EXCESS-PATH problem defined above, which uses an algorithm for the min-cost k-value path prob-

lem as a subroutine.

Using an approximation of αkTSP for the min-length k-value path problem (k-path problem in

[39]), as a subroutine, we get an αex = 3
2αkTSP − 1

2 approximation for the MIN-EXCESS-PATH

problem. We use this algorithm for MIN-EXCESS-PATH to obtain a dαexe approximation for ORI-

ENTEERING. Our final approximation factors for these problems are 2 + ε and 3 respectively, based

on an improved analysis of a (2 + ε)-approximation for min-length k-value path due to Chaudhuri

et al. [39] (see Section 2.2.3).

We develop a 3 log n approximation for the DEADLINES-TSP, based on the 3-approximation

that we provide for the ORIENTEERING problem, and further extend this to a 3 log2 n approximation

for TIME-WINDOWS-TSP.

We also give an algorithm for the TIME-WINDOWS-TSP problem, that achieves a bicriteria
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optimization — it achieves a constant factor approximation to the reward, while exceeding the

deadlines by a small factor. In particular, for any given ε > 0, suppose that we define Πε
P =

∑

v:R(v)≤`P (v)<(1+ε)D(v) Π(v) to be the value collected by a path P if all the deadlines are inflated

by a factor of 1+ε. Then our algorithm collects value Πε
P ≥ Ω( 1

log (1/ε) )ΠP ∗ . That is, for a constant

ε, our algorithm obtains a constant fraction of the reward, while exceeding deadlines by a 1 + ε

factor. Note that unlike typical bicriteria results, our approximation is logarithmic in 1/ε rather than

linear. In particular, this implies an O(logDmax)-approximation for the TIME-WINDOWS-TSP

problem, where Dmax is the maximum deadline in the graph, by taking ε = 1/Dmax. This gives

an asymptotically better approximation than our O(log2 n)-approximation if all the deadlines in the

graph are polynomially bounded in n.

In Section 2.6 we also give constant-factor approximations to several related problems, includ-

ing the max-value tree problem—the “dual” to the k-MST (min-cost tree) problem—and max-value

cycle. Finally, using the APX-hardness of TRAVELING SALESMAN PROBLEM on bounded met-

rics [60], we prove that the ORIENTEERING, MIN-EXCESS-PATH, DEADLINES-TSP and TIME-

WINDOWS-TSP are APX-hard.

Our approximation and inapproximability results are summarized in Figure 1.1 in Chapter 1.

2.2 MIN-EXCESS-PATH

Recall that in the min-excess k-value path problem, we are given a value quota k; Our goal is to

construct a path from s to twith value at least k and (approximately) minimum excess. This problem

is closely related to the k-TSP, or the min-length k-value problem, where the goal is to construct a

path with k value of (approximately) minimum length. The two problems are equivalent in terms of

optimal solutions. However, in terms of approximation, min-excess is harder than k-TSP.

In this section, we present a dynamic-programming based algorithm for the min-excess problem,

that uses a k-TSP approximation algorithm as a black-box. We present an analysis of our algorithm

relating the approximation factor achieved to the approximation factor for k-TSP guaranteed by

the black-box algorithm. In particular, an αkTSP approximation to k-TSP guarantees a 3
2αkTSP − 1

2

approximation to the min-excess problem via our algorithm. Using a 2-approximation to k-TSP due

to Garg [69], this gives us a 2.5-approximation to min-excess.

Towards the end of this section, we present an improved analysis based on a 2+δ approximation

to k-TSP due to Chaudhuri et al. [39], that gives a 2 + δ approximation to min-excess.

Recall that we use P ∗ to denote the optimal solution, that is the shortest path from s to t with

π(P ∗) ≥ k. Let the excess of this path be denoted ε∗ = εP ∗(s, t) = `(P ∗) − d(s, t). The key idea

behind our algorithm for Min-Excess is the observation that two extreme cases of the problem —

one when the optimal solution has nearly zero excess, and second when P ∗ has a very large excess

— can be approximated easily using previously known techniques. We describe these extreme cases

first.
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For the first case, suppose that the optimum solution path encounters all its vertices in increasing

order of distance from s. We call such a path monotonic. We can find this optimum monotonic path

via a simple dynamic program: for each possible value p and for each vertex i in increasing order of

distance from s, we compute the minimum excess path that starts at vertex s, ends at i, and collects

value at least p. In order to do so, we guess the last vertex visited by the optimal path before i—say

it is j < i—then the path is given by the previously computed optimal path from s to j that collects

value p−π(i), followed by the shortest path from j to i. We try all possible values of j, and pick the

one that gives a path with the minimum excess. Once this process ends, the solution to the problem

is given by the path corresponding to t and collecting value k.

In the second case, suppose that the excess ε∗ is larger than the distance d(s, t). Then, an αkTSP-

approximation to k-TSP on this instance returns a path with total length αkTSP(d(s, t) + ε∗) ≤
d(s, t) + (2αkTSP − 1)ε∗. Therefore, we get a 2αkTSP − 1 approximation to excess.

2.2.1 A segment partition

We solve the general case by breaking the optimum path into segments that are either monotonic (so

can be found optimally as just described) or “wiggly” (generating a large amount of excess). We

show that the total length of the wiggly portions is comparable to the excess of the optimum path;

our solution uses the optimum monotonic paths and approximates the length of the wiggly portions

by a constant factor, yielding an overall increase proportional to the excess.

In order to simplify the following discussion, we assume that no two locations in the graph are at

exactly the same distance from the start s. We can ensure this by adding small offsets to the lengths

of all the edges in the graph.

Consider the optimal path P ∗ from s to t. We divide it into segments in the following manner.

For any real d, define f(d) as the number of edges on P ∗ with one end-point at distance less

than d from s and the other end-point at distance at least d from s. Note that f(d) ≥ 1 for all

0 ≤ d ≤ d(s, t) (it may also be nonzero for some d ≥ d(s, t)). Note also that f is piecewise

constant, changing only at distances equal to vertex distances. We break the real line into intervals

according to f : the type one intervals are the maximal intervals on which f(d) = 1; the type 2

intervals are the maximal intervals on which f(d) ≥ 2. These intervals partition the real line (out

to the maximum distance reached by the optimum solution) and alternate between types 1 and 2.

Let the interval boundaries be labeled 0 = b1 < b2 · · · bm, where bm is the maximum distance of

any vertex on the path, so that the ith interval is (bi, bi+1). Note that each bi is the distance label

for some vertex. Let Vi be the set of vertices whose distance from s falls in the ith interval. Note

that the optimum path traverses each set Vi exactly once—one of any two adjacent intervals is of

type 1; if the path left this interval and returned to it then f(d) would exceed 1 within the interval.

Thus, the vertices of P ∗ in set Vi form a contiguous segment of the optimum path that we label as

Si = P ∗ ∩ Vi.
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t

type 1 type 1type 2 type 2 type 1 type 2

b b b b2 n1 i

Figure 2.1: Segment partition of a path in graph G

A segment partition is shown in Figure 2.1.

Note that for each i, there may be (at most) one edge crossing from Vi to Vi+1. To simplify the

next two lemmas, let us split that edge into two with a vertex at distance bi from s, so that every

edge is completely contained in one of the segments (this can be done since one end-point of the

edge has distance exceeding bi and the other end-point has distance less than bi).

Lemma 2.1. A segment Si of type 1 has length at least bi+1 − bi. A segment Si of type 2 has

length at least 3(bi+1 − bi), unless it is the segment containing t in which case it has length at least

3(d(t)− bi).

Proof. The length of segment Si is lower bounded by the integral of f(d) over the ith interval. In a

type 1 interval the result is immediate. For a type 2 interval, note that f(d) ≥ 1 actually implies that

f(d) ≥ 3 by a parity argument—if the path crosses distance d twice only, it must end up at distance

less than d.

Corollary 2.2. The total length of type-2 segments is at most 3ε∗/2.

Proof. Let `i denote the length of segment i. We know that the length of P ∗ is d(t) + ε∗ =
∑

`i.

At the same time, we can write

d(t) ≤ bm =
m−1
∑

i=1

(bi+1 − bi) ≤
∑

i type 1

`i +
∑

i type 2

`i/3

It follows that

ε∗ =
∑

`i − d(t) ≥
∑

i type 2

2`i/3

Multiplying both sides by 3/2 completes the proof.
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Having completed this analysis, we note that the corollary remains true even if we do not in-

troduce extra vertices on edges crossing interval boundaries. The crossing edges are considered

to belong to the type 1 segments that they cross, but this only decreases the total length of type 2

segments.

2.2.2 A dynamic program

Our algorithm computes, for each interval that might be an interval of the optimum solution, a

segment corresponding to the optimum solution in that interval. It then uses a dynamic program

to paste these fragments together using (and paying for) edges that cross between segments. The

segments we compute are defined by 4 vertices: the closest-to-s and farthest-from-s vertices, c and

f , in the interval (which define the start- and end-points of the interval: our computation is limited

to vertices within that interval), and the first and last vertices, x and y, on the segment within that

interval. They are also defined by the amount p of value we are required to collect within the

segment. There are therefore O(Πn4) distinct segments to compute, where Π is the total value in

the graph.

For each segment we find a nearly optimal type 1 and type 2 solution. In order to compute a

type-1 solution, we compute an optimum (shortest) monotonic path from x to y that collects value p.

To compute an approximately optimal type-2 solution, we use the k-TSP routine that approximates

to within a constant factor the minimum length of a path that starts at x, finishes at y, stays within

the boundaries of the interval defined by c and f , and collects value at least p.

Given the optimal type 1 and near-optimal type-2 segments determined for each set of 4 vertices

and value, we can find the optimal way to paste some subset of them together, obtaining k value and

using minimum length, using a dynamic program. Note that the segments corresponding to P ∗ are

considered in this dynamic program, so our solution will be at least as good as the one we get by

using the segments corresponding to the ones on the optimum path (i.e., using the optimum type-1

segments and using the approximately optimum type-2 segments). Therefore, we need only show

that approximating the segments of P ∗ returns a path with small excess.

We now focus on the segments corresponding to the optimum path P ∗. Consider the segments

Si of length `i on the optimum path. If Si is of type 1, our algorithm will find a (monotonic)

segment with the same end-points collecting the same amount of value of no greater length. If Si is

of type 2, our algorithm (through its use of subroutine k-TSP) will find a path with the same end-

points collecting the same value over length at most αkTSP`i. Let L1 denote the total length of the

optimum type 1 segments, together with the lengths of the edges used to connect between segments.

Let L2 denote the total length of the optimum type 2 segments. Recall that L1 + L2 = d(t) + ε∗

and that (by Corollary 2.2) L2 ≤ 3
2ε

∗. By concatenating the optimum type-1 segments and the

approximately optimum type-2 segments, the dynamic program can (and therefore will) find a path
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collecting the same total value as P ∗ of total length at most

L1 + αkTSPL2 = L1 + L2 + (αkTSP − 1)L2

≤ d(t) + ε∗ + (αkTSP − 1)

(

3

2
ε∗

)

= d(t) +

(

3

2
αkTSP −

1

2

)

ε∗.

In other words, we approximate the minimum excess to within a factor of 3
2αkTSP − 1

2 . Using the

2-approximation to k-TSP due to Garg [69], we obtain an approximation ration of 2.5.

2.2.3 An improved analysis

Our approximation guarantee for min-excess path derived above is based on treating the k-TSP

subroutine as a “black-box”. In this section we show how to slightly improve our approximation

guarantee for min-excess path problem by exploiting the details of the min-cost path algorithm

derived from the work of Chaudhuri et al. [39].

We begin with a brief description of the Chaudhuri et. al algorithm. In their paper, Chaudhuri

et al. provide a subroutine for constructing a tree containing nodes s and t that spans at least k

vertices1 and has cost at most (1 + 1
2δ) times the cost of the shortest s-t path with k vertices, for

any fixed constant δ. To construct an s-t path from the tree obtained by the algorithm of Chaudhuri

et al., we can double all the edges, except those along the tree path from s to t. This gives us a

partial “Euler tour” of the tree that starts at s and ends at t. Clearly, the cost of such a path is at

most (2 + δ) times the cost of the shortest s-t path spanning value k, for any fixed constant δ, and

is therefore a (2 + δ)-approximation to k-TSP.

In fact, if the optimal path P ∗ has length d(t) + ε∗, then the tree has length at most (1 +
1
2δ)(d(t) + ε∗). We convert this tree into a path from s to t by doubling all edges, except for the

ones on the tree path from s to t. Noting that the total cost of “non-doubled” edges is d(s, t), we

get a path from s to t of length at most (2 + δ)(d(t) + ε∗)− d(t) = (1 + δ)d(t) + (2 + δ)ε∗. This

stronger guarantee gives us an improved guarantee on the performance of the min-excess algorithm

described above.

In particular, suppose that we apply the k-TSP algorithm to a segment of type-2 with end points

x and y, and having an optimum min-excess path with length ` = d(x, y) + ε. Then we get a path

from x to y with the same value and length at most (1 + δ)`+ ε, for any fixed small constant δ.

Now we can apply Corollary 2.2 to obtain an approximation in terms of the excess. However,

note that the ε in the above expression is the excess of the path between the nodes u and v, and is

not the same as the difference of the excess of the path P ∗ at v and its excess at u. In order to obtain

1The algorithm can be transformed easily to obtain a tree spanning a given target value—to each node v with a value

πv , we attach πv − 1 leaves with zero-length edges, and run the algorithm on this new graph.
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a bound in terms of the latter, let εu denote the excess of P ∗ from s to u, and εv the excess of P ∗

from s to v. Then, ` = (d(v) + εv)− (d(u) + εu) ≤ d(u, v) + εv − εu. Therefore, ε ≤ εv − εu, and

the Chaudhuri et al. algorithm returns a path of length at most (1 + δ)` + εv − εu.

The dynamic program finds a path collecting the same total value as P ∗ and of total length at

most

L1 + (1 + δ)L2 +
∑

type 2 segments

(εv − εu) ≤ L1 + (1 + δ)L2 + ε∗

= d(t) + 2ε∗ + δL2

≤ d(t) + 2ε∗ +
3δ

2
ε∗

where the last statement follows from Corollary 2.2. Therefore, we get an approximation ratio of

2 + δ′ for the min-excess problem, for any small constant δ ′.

2.3 ORIENTEERING

In the max-value D-length path problem, a.k.a. ORIENTEERING, we are given a deadline D and the

goal is to find a path of length at most D that obtains the maximum possible value.

In this section we present the first constant-factor approximation for this problem in general

metrics, based on the algorithm for min-excess developed in the previous section. The min-excess

algorithm on any instance returns a path with the same amount of value as the optimal path, but has

a slightly larger length. The main idea behind our ORIENTEERING approximation is to divide the

optimal path into segments, such that we can short-cut some of these segments in order to gain time,

and utilize this extra time to approximate excess on the remaining segments. Using this idea, an

αex approximation to min-excess gives us a dαexe approximation to the ORIENTEERING problem.

In particular, using the (2 + δ)-approximation for min-excess from the previous section or the 2.5-

approximation from Section 2.2.2, we achieve a 3-approximation to ORIENTEERING.

We begin with some properties of excess. Let P be any u − v path that visits nodes in the

order u0 = u, u1, . . . , ul = v. Recall that εP (ui, uj) denotes the excess of path P from ui to uj —

εP (ui, uj) = `P (ui, uj)− d(ui, uj).

Fact 1 εP (u0, ui) is increasing in i.

Fact 2 The excess function is sub-additive. That is, for any nodes ui, uj , uk with 0 ≤ i < j < k ≤
l, εP (ui, uj) + εP (uj , uk) ≤ εP (ui, uk).

Proof. The first fact follows from the triangle inequality. The second follows by rewriting εP (ui, uj)+

εP (uj , uk) as `P (ui, uj)−d(ui, uj)+ `P (uj , uk)−d(uj , uk) = `P (ui, uk)−d(ui, uj)−d(uj , uk)

and observing that d(ui, uj) + d(uj, uk) ≥ d(ui, uk) by the triangle inequality.
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2.3.1 A 3-approximation

We now present our 3-approximation for ORIENTEERING. The algorithm P2P is given in Figure 2.2.

Informally, the algorithm proceeds by guessing two points on the optimal path. It then approximates

the three resulting subpaths using the MIN-EXCESS-PATH algorithm while respecting the deadline

D, and picks the one that obtains the most value. Note that by design, the algorithm produces a path

of length at most D. We just need to show that it visits enough points.

Input: Graph G = (V,E); special nodes s and t; length bound D.

Output: Path P from s to t with π(P ) ≥ 1
3π(P ∗) and length at most D.

1. For every pair of nodes u and v, we will consider a path which proceeds from s to u, then visits some

vertices while traveling from u to v, and then travels directly from v to t. The allowed excess of the

path from u to v is ε(u, v) = D − d(s, u) − d(u, v) − d(v, t). Using the 2 + δ-approximation to the

minimum excess problem from Section 2.2, or the 2.5-approximation from Section 2.2.2, we compute

a path from u to v of excess at most ε(u, v) that visits at least as many vertices as the best path from u

to v with excess ε(u, v)/3.

2. We now pick the pair (u, v) that maximizes the total reward collected on the computed path. We then

travel from s to u via a straight line, then u to v via the chosen path, then v to t.

Figure 2.2: Algorithm P2P— 3-approximation for s− t ORIENTEERING

Theorem 2.3. The algorithm P2P is a 3-approximation to the point-to-point orienteering problem.

Proof. Consider the optimum path P ∗ from s to t. Break this path into three pieces, each having

at least 1/3 of the total value value (including their end-points), and let u and v be the end-points

of the portion such that εP ∗(u, v) is smallest. Consider now the path O ′ that travels directly from

s to u, then follows P ∗ to v, and then travels directly from v to t. By traveling along O ′ rather

than P ∗, we save a total of at least εP ∗(s, u) + εP ∗(v, t). Now using Fact 2, and because we chose

u, v such that εP ∗(u, v) is the smallest of the three segments, we conclude that we save a total

of at least 2εP ∗(u, v); that is, `P ∗(s, t) − `O′(s, t) ≥ 2εP ∗(u, v). This is enough to pay for the

added length produced by applying the min-excess approximation from u to v. Formally, we have

`O′(s, t) = d(s, u) + d(u, v) + εP ∗(u, v) + d(v, t), and by definition, ε(u, v) = D − d(s, u) −
d(u, v)− d(v, t) ≥ `P ∗(s, t)− `O′(s, t) + εP ∗(u, v). Plugging in the above inequality, we get that

ε(u, v) ≥ 3εP ∗(u, v). Since the min-excess algorithm gets at least as much value as the best possible

path from u to v with excess ε(u, v)/3, it is guaranteed to get at least as much as this portion of the

optimal path, which is at least 1/3 of the total value of the optimal path.
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Figure 2.3: A bad example for Orienteering. The distance between each consecutive pair of points is 1.

2.3.2 Difficulties in obtaining a 2 + δ approximation

We used a 2 + δ approximation to the min-excess problem in order to obtain a 3-approximation to

ORIENTEERING. The key idea behind obtaining this approximation was to show that for any integer

r, there exist vertices u and v on P ∗, such that

• the segment of P ∗ between u and v contains at least a 1
r fraction of the total value, and,

• the excess of P ∗ between u and v is at most a 1
r fraction of the excesses εP ∗(s, u)+εP ∗(u, v)+

εP ∗(v, t)

A natural approach to improving the approximation factor achieved by our algorithm would be

to show that the above statement holds for all real numbers r, and in particular for r = 2+ δ. Below

we show that there are graphs for which this does not hold, and therefore our analysis cannot be

improved in this direction.

Note that this statement does not preclude the possibility of obtaining a better approximation

factor for the problem through a different analysis. For example, it may be possible to show that a

different path between u and v, rather than a segment of P ∗, has low excess and large reward.

Lemma 2.4. For every δ > 0, there is a graph G(δ) containing a path P ∗, such that for every pair

of points u and v with the property that P ∗ collects a 1
2+δ fraction of its value between u and v, the

excess εP ∗(u, v) ≥ 1
2εP ∗(s, t) > 1

2+δ (εP ∗(s, u) + εP ∗(u, v) + εP ∗(v, t)).

Proof. The path P ∗ consists of n = 3
⌈

2
δ + 1

⌉

vertices s = u1 . . . un = t (see Figure 2.3). The

distance between ui and ui+1 is 1 for all i. The distance between un/3−1 and un/3+1 is also 1, and

between u2n/3−1 and u2n/3+1 is 1.

Note that the length of the path P ∗ is n−1, while d(s, t) = n−3. So P ∗ has a total excess of 2.

Any segment of P ∗ containing at least a 1
2+δ fraction of its value contains either the nodes un/3−1,

un/3 and un/3+1, or the nodes un/3−1, un/3 and un/3+1. It therefore has excess at least 1, and the

lemma holds.

2.4 Incorporating timing constraints

We now move on to max-value planning problems with more general timing constraints. In partic-

ular, in this section, we investigate a max-value problem where every location has a release-time
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and a deadline associated with it; The value at a location is obtained only if the location is visited

after its release time and before its deadline. We call this the Max-value Time-Windows TSP, or the

TIME-WINDOWS-TSP for short.

We also consider a special case of this problem where all the release times are zero. We call this

the Max-value Deadlines TSP, or the DEADLINES-TSP. Note that the ORIENTEERING problem is

a further special case of this problem in which all nodes v ∈ V have R(v) = 0 and all have the

same deadline D(v) = D.

In this section we give an algorithm for approximating the TIME-WINDOWS-TSP, that uses

an ORIENTEERING approximation as a subroutine. An αOrient-approximation for ORIENTEERING,

when used in our algorithm, gives an αOrient log
2 n approximation to the TIME-WINDOWS-TSP. For

the special case when all release times are zero, our algorithm gives an αOrient log n approximation to

the DEADLINES-TSP. Using the 3-approximation for ORIENTEERING developed in Section 2.3, we

obtain a 3 log n and a 3 log2 n approximation for the DEADLINES-TSP and the TIME-WINDOWS-

TSP respectively. We begin by describing the approximation for DEADLINES-TSP.

We begin by introducing some new notation. For a path P and set S ⊆ V , let ΠP (S) =
∑

v∈S:R(v)≤`P (v)≤D(v) π(v) and ΠP = ΠP (V ). Note that a path can visit a node multiple times,

but the value at any node can be collected at most once. For any path P , the restriction of the path

P to a set S of vertices, P|S , denotes the path that visits nodes of S in the order that P visited them,

and does not visit any other nodes. Note that, for all S and P , `P|S
(v) ≤ `P (v) for all v ∈ S.

For the TIME-WINDOWS-TSP, our solution is allowed to “wait” at locations (or alternately,

to take longer to traverse an edge than its specified length) as desired, in order to arrive at future

locations after their release times.

2.4.1 Using ORIENTEERING to approximate DEADLINES-TSP

We first concentrate on the case where all release-times are zero. As mentioned earlier, our algorithm

for the DEADLINES-TSP uses ORIENTEERING as a subroutine to find segments of a near optimal

path. At a high level, our algorithm extracts subgraphs from the graph, such that solving instances

of ORIENTEERING over each subgraph (with a single deadline) gives us a good approximation to

the segment of P ∗ traversing the subgraph. We then combine these segments in the best possible

manner using a dynamic program, and obtain an approximation to P ∗. We say that a path visits a

location, if the location is visited before its deadline.

More formally, we prove that there is a partition of the graph into sets {Vi} with the follow-

ing properties. The sets are characterized by deadlines {δi}, such that Vi = {v ∈ V : D(v) ∈
(δi, δi+1]}. There is a path that for all pairs i < j visits vertices in Vi before vertices in Vj , and

obtains at least a 1
log n fraction of the optimal reward. Furthermore, this path has the property, that

among all vertices that it visits in the set Vi, the vertex with the smallest deadline is visited last. This

allows us to use the ORIENTEERING subroutine to approximate the path in every set and stitch these



26 CHAPTER 2. PLANNING WITH TIME CONSTRAINTS

together using dynamic programming.

In order to define the sets {Vi}, it is convenient to view the vertices in the optimal path P ∗ as

lying on a two dimensional plane, with the horizontal and vertical axes corresponding to deadlines

and time respectively. Let s = u0, u1, . . . , ul = t denote the vertices visited by P ∗. Then vertex ui
lies at the point pi = (D(ui), `P ∗(ui)) (See Figure 2.4(a)).

2.4.2 Minimal vertices

We now define a special set of vertices visited by P ∗, called minimal vertices, such that breaking

P ∗ into segments at these vertices will allow us to transform the DEADLINES-TSP into multiple

instances of ORIENTEERING.

Without loss of generality, we assume that D(s) = 0. Let u(0) = s be the first minimal

vertex. We define the ith minimal vertex u(i) to be the vertex with the smallest deadline visited by

P ∗ after the (i − 1)th minimal vertex. Formally, ui is minimal if for any other vertex uj , either

`P ∗(uj) ≤ `P ∗(ui) or D(uj) ≥ D(ui). Pictorially, these are vertices that form the upper left

envelope of the points pi. LetM = {u(0), . . . , u(m)} denote the set of minimal vertices ordered in

increasing order of deadlines, with |M| = m+ 1.

In order to understand the importance of minimal vertices, let us consider a simpler problem,

where we know all the minimal vertices u(i) and the times t(i) at which P ∗ visits them. Here is

how we can approximate P ∗ in this case. We construct approximations to segments of P ∗ between

every consecutive pair of minimal vertices. Consider, for example the pair u(i) and u(i+1). Note

that the vertices that P ∗ visits between u(i) and u(i+1) have deadlines larger than that of u(i+1),

D(u(i+1)). So we can simply remove all locations with deadlines smaller than D(u(i+1)), and

reduce the deadlines of the remaining ones to D(u(i+1)). We now use ORIENTEERING with the

time t(i+1) − t(i) as the deadline to approximate this part.

One issue that we need to be careful about here is to avoid double-counting the value by visiting

the same vertex multiple times in different segments. We can take care of this by first constructing

the first segment from u(0) to u(1), removing all the vertices visited from the graph, constructing the

second segment, removing all the vertices visited from the graph, and continuing in this fashion for

the remaining segments. A simple covering argument shows that we only lose an additional additive

factor of 1 in using this sequential construction. Therefore, if we know the minimal vertices and the

times at which they were visited, this technique gives us a αOrient+1 approximation for DEADLINES-

TSP.

Now let us consider the problem of not knowing the times at which P ∗ visits the minimal

vertices. (We will deal with the issue of not know the minimal vertices later in Section 2.4.4.) One

approach that we may take is to try out all possible values of these times. Each segment can have

Θ(Dmax) possible lengths, where Dmax is the maximum deadline in the graph. Furthermore, the

number of segments can be Θ(n). In this case, the number of trials in the sequential algorithm above
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would be Θ(Dn
max). So this approach in infeasible.

Instead, if we could approximate each segment in parallel, then we would only require Θ(Dmax)

trials for each consecutive pair of minimal vertices, and therefore at most Θ(Dmaxn) trials in all. We

still need to deal with multiple-counting of value in this case. One way to avoid multiple-counting

would be to partition the graph into sets Vi, such that while constructing a segment between u(i)

and u(i+1), we can only visit vertices in the set Vi. All vertices in the set Vi would of course have

deadlines larger than D(u(i+1)). We may also restrict them to having deadlines less than D(u(i+2)),

so that Vi is disjoint from the set Vi+1. We must now show that restricting the constructed segments

in this manner does not reduce the amount of reward collected by a large factor. We formalize this

construction in the next subsection, and prove that we only lose a factor of log n in partitioning

the graph in this manner. We will further show in Section 2.4.4 that we can approximate the best

solution obeying this restriction to within a constant factor (namely, αOrient). Together this would

imply an O(log n) approximation.
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(a) The 2-dimensional layout and minimal vertices (b) Family of disjoint collections of rectangles

Figure 2.4: An example illustrating the construction of the rectangles R(x, y, z).

2.4.3 A partition into sets

Following the basic idea above, we now use sets of minimal vertices to define a partition of P ∗ into

segments that also partitions the graph into sets based on deadlines.

For any three minimal vertices u(x), u(y), u(z) ∈ M with x ≤ y ≤ z, define the set V (x, y, z)

to be the set of all vertices with deadlines between those of u(y) and u(z). Likewise, define the

rectangle spanned by x, y, and z, denoted R(x, y, z), to be the set of all points in V (x, y, z) that are

visited by P ∗ between u(x) and u(y) (see Figure 2.4(a)). Formally, these are vertices u visited by

P ∗ such that D(u(y)) ≤ D(u) ≤ D(u(z)) and `P ∗(u(x)) ≤ `P ∗(u) ≤ `P ∗(u(y)).
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A crucial property of the sets V (·) that we will use in our analysis is that for any indices w ≤
x ≤ y ≤ z, the sets V (w, x, y) and V (x, y, z) are disjoint. Likewise, the rectangles R(w, x, y) and

R(x, y, z) are “component-wise” disjoint, that is, they are disjoint along both the time and deadline

axes. Therefore, we can approximate the segments P ∗
|R(w,x,y) and P ∗

|R(x,y,z) in parallel without

worrying about double-counting the value.

Extending this idea, given a subset S = {n1, n2, · · · } of indices of minimal vertices, we define

a collection of rectangles: C(S) = {R(nj , nj+1, nj+2) | 1 ≤ j ≤ |S| − 2}. Note that any two

rectangles in C(S) are component-wise disjoint by definition.

We say that a vertex u visited by P ∗ is in a collection C(S) if it belongs to some rectangle

R ∈ C(S). We now construct log n collections of disjoint rectangles, F = {C1, . . . , Clog n}, with

the property that each vertex visited by P ∗ lies in at least one of these collections. This implies

that the total reward contained in this family of collections is at least ΠP ∗ . Therefore, there is

some collection Ci that has at least a 1/ log n fraction of this reward. In the next subsection, we

give a polynomial time procedure to compute a path that collects at least an O(1) fraction of the

reward contained in the best disjoint collection of rectangles. Together, these imply an O(log n)

approximation.

The family C1, . . . , Clog n is defined as follows. Let

Si = {ni,j = j2i + 2i−1 : 0 ≤ j ≤ 2logm−i − 1} ∪ {0,m},

where ni,−1 = 0 and ni,2log m−i = m, by definition. Now let Ci = C(S). So, e.g.,

C1 = {R(2j − 1, 2j + 1, 2j + 3) : j = 0, . . . ,m/2 − 1}
C2 = {R(4j − 2, 4j + 2, 4j + 6) : j = 0, . . . ,m/4 − 1}

and so on (see Figure 2.4 (b)). Thus we have a family F = {C1, . . . , Clogm} consisting of logm ≤
log n collections. Note that for all j ≤ m, at least one set Si contains j.

Lemma 2.5. For each vertex u visited in the optimum path P ∗, there is at least one collection

Ci ∈ F , such that u lies in some rectangle in Ci.

Proof. Consider a vertex u ∈ P ∗ and let u(i) be the minimal vertex for which D(u(i)) ≤ D(u) <

D(u(i+1)). Likewise, let u(j) be the minimal vertex such that `P ∗(u(j−1)) < `P ∗(u) ≤ `P ∗(u(j)).

Observe that i ≥ j−1. If i = j−1, thenD(u) < D(u(i+1)) and `P ∗(u) > `P ∗(u(j−1)) = `P ∗(u(i))

contradicts the fact that u(i+1) is the next minimal vertex after u(i). Therefore we have i ≥ j.
Now observe that if for some b, the subset Sb contains exactly one number k with j ≤ k ≤ i,

then the point u would lie in some rectangle in Cb, in particular, the one corresponding to the number

k. Specifically, let the indices preceding and following k in Sb be k1 and k2. Then we have k1 < j

and k2 > i. So, `P ∗(u(k1)) ≤ `P ∗(u(j−1)) < `P ∗(u) ≤ `P ∗(u(j)) ≤ `P ∗(u(k)). On the other hand,

D(u(k)) ≤ D(u(i)) ≤ D(u) < D(u(i+1)) ≤ D(u(k2)). Therefore, u ∈ R(k1, k, k2).
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It remains to show that there exists a subset Sb containing exactly one number k with j ≤ k ≤ i.
Let b be such that 2b ≤ i− j < 2b+1. For this choice of b, either |Sb ∩ [i, j]| = 1 or |Sb ∩ [i, j]| = 2.

In the first case, we are already done. In the second case, let x and y be the two points in Sb ∩ [i, j],

then observe that (x+ y)/2 ∈ Sb+1 and since i− j < 2b+1, exactly one point from Sb+1 lies in the

range [i, j]. This concludes the proof of the lemma.

2.4.4 Finding the best collection

We now show how we can find a path such that the total reward collected in that path is a constant

factor of the reward in the best collection.

Recall that if we knew all the minimal vertices in P ∗, then we could approximate the value

collected by the best collection C ∈ F in the following manner: Guess the amount of time that P ∗

spends in each rectangle in C (by trying allDmax values), approximate each rectangleR(x, y, z) ∈ C
using ORIENTEERING over the subgraph G[V (x, y, z)], and then combine these to obtain an αOrient-

approximation to C.

However, without knowing the minimal vertices, we cannot know which vertices lie in the sets

V (x, y, z), and therefore cannot obtain the above approximation. To get around this problem, we

use dynamic programming to try all possible sets of minimal vertices. In particular, for every triple

of vertices in the graph, assuming that they form a consecutive triple of minimal vertices in some

collection C, we find the approximately optimal path over the rectangle spanned by these vertices.

We then use a dynamic program to combine a subset of these paths in the best possible way.

The algorithm is described in detail in Figure 2.5.

Lemma 2.6. We can compute in polynomial time a feasible path that collects at least a third of the

the reward collected by the best collection Ci.

Proof. Let v1, . . . , vn denote the vertices inG in the increasing order of their deadlines. We compute

the following quantity: For every triple of vertices vi, vj , vk such that i ≤ j ≤ k, and for all possible

lengths `, we find the best path that starts at vi and ends at vj , takes time `, visits vertices with

deadlines between D(vj) and D(vk), and obtains as much reward as possible. When vi, vj , and vk
are minimal vertices, this path approximates the value that the optimal path obtains in the rectangle

R(i, j, k).

Having obtained these O(n3Dmax) quantities, the next step of our algorithm considers all possi-

ble ways of combining these approximate paths to get the maximum possible reward. The algorithm

does this using a dynamic program that records for each vertex and each length, the best combina-

tion of the subpaths up to that vertex with that length (see Step 4 in Figure 2.5). Note that since

the vertices are ordered by deadlines, no vertex is double counted in the reward. Secondly, observe

that any path corresponding to a collection Ci would be considered by this dynamic program, as this

corresponds to patching intervals corresponding to the disjoint rectangles in Ci. Hence modulo the
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Input: Graph G = (V,E) with deadlines D(v).

Output: Path P with ΠP ≥ 1
3 log n

ΠP∗ .

1. Let v1, . . . , vn denote the vertices in G in the increasing order of their deadlines.

2. Let Vjk denote the set of vertices with deadlines betweenD(vj) andD(vk). For all i 6= j 6= k ≤ n, for

all ` ≤ D(vj), apply the ORIENTEERING approximation to the graph restricted to Vjk with distance

bound `, start vi, and terminal vertex vj , and let π(i, j, k, `) denote the reward obtained.

3. Let π′(j, k, `) with ` ≤ D(vk) denote the (approximately) maximum reward that can be obtained by a

path of length ` covering nodes in disjoint rectangles having deadline at most D(vk) and terminating

at vertex vj .

4. For all j ≤ k ≤ n and ` ≤ D(vk), compute π′(j, k, `) and the corresponding path by the following

recurrence

π′(j, k, `) = max
i≤j, with `′≤D(vj)

{π′(i, j, `′) + π(i, j, k, `− `′)}

5. Return the path corresponding to maximum reward maxj π
′(j, n,D(vn)) computed in the last step.

Figure 2.5: Algorithm DTSP—3 log n-approximation for DEADLINES-TSP

factor 3 that we lose in the point to point orienteering subroutine, we can obtain at least the reward

contained in the optimum collection Ci.

The algorithm is given in Figure 2.5. By Lemma 2.5 and 2.6 we have that,

Theorem 2.7. Algorithm DTSP described in Figure 2.5 is a 3 log n approximation algorithm for

the DEADLINES-TSP problem.

2.4.5 From deadlines to time-windows

Note that Algorithm DTSP can be easily modified to return a path of length exactly T for some

parameter T — Reduce the deadlines of all nodes with D(v) > T to T and run the algorithm; If the

resulting path is shorter than T , wait at the last node for an appropriate amount of time. Likewise,

we can modify the algorithm so that the returned path must end at a pre-specified vertex t.

We now show how to use Algorithm DTSP to solve the TIME-WINDOWS-TSP problem in the

special case when all the nodes have a deadline of∞, but there is a fixed limit T on the length of

the path and the path must start from node s and end at node t. (Note that the nodes have non-zero

release times.) We call this problem ORIENTEERING with Release Times.

Given an instance G of ORIENTEERING with Release Times, we convert the graph G into its

“complimentary” graph G′ = (V,E), with each v ∈ V having a time window [0, T −R(v)], where

R(v) is the release time of v in G. For any “legal” path P of length T in G that starts at s, ends at t
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and visits vertices v within their time-windows [R(v),∞], we can define a legal path P R in G′ that

starts at t, ends at s, follows path P in reverse, and visits nodes v within [0, T−R(v)]. Therefore, any

solution to ORIENTEERING with Release Times onG can be converted into a solution with the same

reward to the DEADLINES-TSP on G′, and vice versa. Therefore, using an αDTSP-approximation

to the DEADLINES-TSP, we can obtain an αDTSP-approximation to ORIENTEERING with Release

Times. We get the following theorem:

Theorem 2.8. Algorithm DTSP gives a 3 log n approximation to ORIENTEERING with Release

Times, when applied to the complimentary graph.

Based on the above theorem, our algorithm for the TIME-WINDOWS-TSP problem is simple—

run the algorithm DTSP (Figure 2.5), replacing the ORIENTEERING subroutine in step 1 by the

algorithm for ORIENTEERING with Release Times. This gives a 3 log2 n-approximation to the

TIME-WINDOWS-TSP problem. In fact, an (αDTSP)-approximation to the DEADLINES-TSP can

be converted to an (αDTSP log n)-approximation to the TIME-WINDOWS-TSP problem using the

same technique.

Theorem 2.9. The algorithm described above gives a 3 log2 n approximation to the TIME-WINDOWS-

TSP Problem.

2.5 A bicriteria approximation for the TIME-WINDOWS-TSP

We now consider relaxing the timing constraints in the TIME-WINDOWS-TSP, so as to obtain

larger value than that obtained by the algorithm in the previous section. In particular, we allow our

solution to collect value at locations that are visited within their time-windows, as well as shortly

after their deadlines have passed. Suppose that the optimal solution covering the maximum value

while obeying time-windows exactly is P ∗. We measure the quality of a solution by two criteria:

(1) the ratio between the value obtained by our solution and the value obtained by P ∗, and, (2) the

maximum factor by which our solution exceeds the deadline of a location where it claims the value.

In this section, we describe a bicriteria algorithm for the TIME-WINDOWS-TSP that for any

ε > 0, obtains an O(log 1
ε ) fraction of the value obtained by P ∗, if it is allowed to visit vertices in

the window [R(v), (1 + ε)D(v)]. Equivalently, if we allow the path to exceed deadlines of vertices

by a factor of (1 + 2−k), for any k > 0, then we can obtain an O(k) approximation to the value.

We begin with a few special purpose algorithms, and then describe how to combine them for

the general case. We first consider the case when P ∗ visits a large fraction of the nodes very close

to their deadlines (the small margin case). Then we consider the case when P ∗ visits many nodes

much before their deadlines (the large margin case). Towards the end of this section, we show

that the bicriteria result also implies a O(logDmax)-approximation to the TIME-WINDOWS-TSP

Problem.
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Figure 2.6: Division of set Vε into segments Sj . Note that segments Si, Si+3 and Si+6 are disjoint along the time

axis.

2.5.1 The small margin case

At the heart of our bicriteria approximation is a procedure that obtains a constant fraction of the

optimal reward while exceeding deadlines by a small factor, if P ∗ visits most nodes v ∈ P ∗ very

close to their deadlines (within some multiplicative factor).

Let ε be a fixed constant. Consider the set of nodes Vε = {v : D(v)/(1+ε) ≤ `P ∗(v) ≤ D(v)}.
We design an algorithm A that obtains a constant fraction of ΠP ∗(Vε) as reward, while exceeding

deadlines by a factor of (1 + ε)2. Note that only deadlines are violated — nodes on the path output

by algorithm A are visited after their release times.

Intuitively, if we consider the nodes visited by P ∗ close to their deadlines, then P ∗ must visit

them roughly in order of their deadlines. In fact, as we show below, we can divide these vertices

into groups according to deadlines, such that if we consider every third group in the division, all

the vertices in a group are visited by P ∗ before all the vertices in the third next group. This means

that we can consider every third group separately, and approximate the subpath of P ∗ over it using

ORIENTEERING, and patch the obtained paths to form a good solution. Note that in each group, the

deadlines of nodes vary only by a small constant factor. Therefore, by applying ORIENTEERING to

these groups with a single deadline picked appropriately, we only exceed the deadlines by a constant

factor. We now describe the division into groups.

Let f = 1√
1+ε

. We divide the nodes in the graph into segments as follows. Segment Sj consists

of nodes that have deadlines in (f jDmax, f
j−1Dmax] (Figure 2.6). The benefit of having small

variation in the deadlines of vertices in each segment is that we can treat f j−1Dmax as a single

deadline for all nodes in Sj , and would only be violating the deadlines by a factor of f . Similarly,

we take care of all the release times, while losing an extra factor of f 3 in the deadlines, as described

below.

However, note that in approximating P ∗
|Sj

for some segment j, we may lose out on the value
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Input: Graph G = (V,E) with deadlines D(v); Constant ε; f = 1√
1+ε

. Let Sj = {v : D(v) ∈
(f jDmax, f

j−1Dmax]}, Simod3 = ∪∞j=0S3j+i.

Output: Path P with ΠP ≥ 1
9ΠP∗(Vε) and R(v) ≤ `P (v) ≤ (1 + ε)2D(v) for all v ∈ P , where

Vε = {v : D(v)/(1 + ε) ≤ `P∗(v) ≤ D(v)}.

1. For all j, for all u, v ∈ Sj , and for all integers ` ≤ f j−1Dmax − f jDmax, use the ORIENTEERING

algorithm to find a path of length ` from u to v. Let the value collected by this path be π(u, v, `).

2. For k = 0, 1, 2 do the following:

(a) Let π′(v, j, `) for ` ≤ f j−1Dmax denote the (approximately) maximum reward that can be

collected from Skmod3 up to segment Sj ⊂ Skmod3 using a path of length ` that ends at v ∈ Sj .

(b) Compute π′(v, j, `) using the following recurrence.

π′(v, j, `) = max
fjDmax≤`′≤`,u∈Sj ,u′∈Sj+3

{π′(u′, j + 3, `′ − `(u′, u)) + π(u, v, `− `′)}

3. Output the path corresponding to the maximum value collected until the last segment, slowed-down

by a factor of f3.

Figure 2.7: Algorithm A—Bicriteria approximation for the small margin case

collected by P ∗ in neighboring segments, if P ∗ visits these nodes before visiting its last vertex in

Sj . This issue can be dealt with by approximating only every third segment. In particular, we note

that the definition of f and Vε are such that for any j, all vertices in Sj ∩ Vε are visited by P ∗ after

all vertices in Sj+3 ∩ Vε (see Lemma 2.10 and Figure 2.6).

Lemma 2.10. For any j and any nodes u ∈ Sj ∩ Vε and v ∈ Sj+3 ∩ Vε, `P ∗(v) < `P ∗(u).

Proof. We have D(v) ≤ f j+2Dmax. So, `P ∗(v) ≤ D(v) ≤ f j+2Dmax. Likewise, Du > f jDmax.

So, by the definition of Vε, `P ∗(u) ≥ f2Du > f j+2Dmax ≥ `P ∗(v).

The above lemma suggests a natural strategy for approximating the reward collected by P ∗ in

Vε. Let Simod3 = ∪∞j=0S3j+i for i = 0, 1, 2. Then, ∪iSimod3 = Vε. Then, one of the three sets

contains at least a third of the total reward in Vε. Let this be Skmod3. We approximate the value

obtained by P ∗ in this set.

Let P ′ = P ∗
|Skmod3

. We approximate P ′ by constructing approximations to the optimal path

in sets S3j+k ∈ Skmod3, and join them by taking a shortcut across the intermediate sets S3j+k−1

and S3j+k−2. In order to approximate the optimal path in some Sj , we guess the first and the last

vertex that P ′ visits in this set, and the corresponding times at which it visits them. Then we use

the ORIENTEERING algorithm to construct a path of the guessed length. We append these subpaths,

with an appropriate amount of “waiting-time” between consecutive segments, so that the resulting

path visits segments in the same time interval as P ∗.
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Since we do not actually know the times at which P ∗ visits these segments, our algorithm tries

all possible values for the length of the subpath, and computes one subpath corresponding to each

length. We then use a dynamic program to find the best division of length into different segments,

in order to obtain a path with a given total length ending at a specific vertex (see Step 2(b) in Fig-

ure 2.7). The dynamic program takes polynomial time and considers all possible valid combinations

of subpaths, returning one that is at least as good as the one corresponding to the optimal path P ∗.

We now consider the issue of exceeding deadlines within each segment. Consider again the

subpaths corresponding to P ∗. Lemma 2.11 shows that the start time of such a path in segment Sj
is at least f 3 times the release time of any node in Sj , whereas the end time time is at most f times

the deadline of any node in Sj .

Lemma 2.11. For any two nodes v ∈ Sj ∩ Vε, f3R(v) ≤ `A(v) < fD(v).

Proof. Note that by construction, both A and P ∗ visit vertices in Sj ∩ Vε after the time f j+2Dmax

and before f j−1Dmax. Therefore, for all v ∈ Sj ∩ Vε, R(v) ≤ f j−1Dmax. This gives `A(v) ≥
f j+2Dmax ≥ f3R(v). Furthermore, by the definition of Sj , D(v) < f jDmax. Therefore, `A(v) ≤
f j−1Dmax < fD(v).

Finally, we “slow-down” this path by a factor of f 3, that is, if the path output by the algorithm

visits a vertex at time t, we visit the vertex and then wait until time t
f3 to move to the next vertex. In

the worst case, the path constructed as above visits nodes in Sj at 1
f3 ×f j−1Dmax. By the definition

of Sj , we know that this is at most (1 + ε)2 times the deadline of any node in Sj . Furthermore, this

slow-down ensures that the path visits every vertex after its release time. We lose a factor of 3 in

reward by leaving out vertices in Simod3, i 6= k, and another factor of 3 by using algorithm P2P.

Thus, we get the following theorem. Figure 2.7 describes the algorithm in detail.

Theorem 2.12. Algorithm A returns a path P with Πε
P ≥ 1

9ΠP ∗(Vε).

2.5.2 The large margin case

In this section, we consider the second extreme case — approximating P ∗ on vertices that are visited

much before their deadlines. Let V 1
4

= {v : `P ∗(v) ≤ D(v)
4 }. We will describe an algorithm that

collects a constant fraction of the reward ΠP ∗(V 1
4
).

For all nodes v, define new deadlines D ′(v) = D(v)
4 . Note that for all v ∈ V 1

4
, P ∗ visits v before

its new deadline D′(v).

Our algorithm is allowed to violate these new deadlines D ′(v) by a factor of 4. Note that it is

straightforward for us to obtain as much reward as P ∗ while increasing the total length of the path by

a factor of 2 + ε (using the MIN-EXCESS-PATH algorithm of Section 2.2), or to obtain a fraction of

that reward with the same total length as P ∗ using ORIENTEERING. However, we need a guarantee

on the time taken to visit each node individually, rather than one on the total length of the path. A
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guarantee on the total length suffices when the deadlines of all the locations under consideration are

within a constant factor of each other. This suggests the following approach—we divide the graph

into subsets such that the deadlines of locations in each subset are within a constant factor of each

other, and approximate each of these subsets.

We can approximate each of these subsets individually, while exceeding the new deadlines

D′(v) by a small constant factor. In fact, we can concatenate the approximations to some of these

subsets while losing only another small constant factor in the time taken to reach each location. This

is because suppose that we take time τ to approximate one of the subsets with small deadlines, and

another subset has deadlines larger than kτ , then by concatenating the two paths, we exceed the

time taken to visit locations in the second subset by a factor of at most 1 + 1/k. We can therefore

approximate many of these subsets simultaneously, obtaining a good approximation.

We now give the details. Let α = 1.2. For i ≥ 0, the set Si contains nodes v that have D′(v) ∈
[αi, αi+1). Let β = 8. We define “super-sets” containing every βth set Si—for j ∈ {0, · · · , β− 1},
define Sjmodβ = ∪i≥0Sβi+j . Then, ∪j≤β−1Sjmodβ = V . Our goal is to approximate P ∗ on the set

Sjmodβ where it collects the most value.

Let Pi be a path returned by the ORIENTEERING algorithm with parameter D = αi+1 when

applied to the graph induced by {s} ∪ Si. Note that Pi collects at least 1
3ΠP ∗(Si) reward. Let Ti

be a tour that starts at the root, follows path Pi and then returns back to the root. For some j < β,

consider the path constructed by appending all Tβi+j for i ≥ 0. Assume that the length of Ti is

exactly 2αi+1 (we can ensure this by waiting for an appropriate amount of time at the root between

consecutive tours). Let this path be called Qj .

Input: Graph G = (V,E) with deadlines D(v).

Output: Path Q with ΠQ ≥ 1
24ΠP∗(V 1

4
) and R(v) ≤ `Q(v) ≤ D(v) for all v ∈ Q, where V 1

4
= {v :

`P∗(v) ≤ D(v)
4 }.

1. For all i, use the ORIENTEERING algorithm on graph G({s} ∪ Si) to construct a path Pi with length

at most αi+1. Let Ti be the corresponding tour of length 2αi+1.

2. For all j ∈ {0, · · · , β − 1}, let Qj be the concatenation of Pβi+j for all i ≥ 0 and let πj =
∑

i ΠPβi+j
(Sβi+j).

3. Return the path Qj , slowed down by a factor of 2, corresponding to the maximum reward πj over all

j.

Figure 2.8: Algorithm B—Approximation for the large margin case

Lemma 2.13. For any i and j and v ∈ Sβi+j , 1
2R(v) ≤ `Qj (v) ≤ 1

2D(v).

Proof. The length of the path Qj up to and including the set Sβi+j is
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∑

k<i

|Tβk+j |+ |Pβi+j | =
∑

k<i

2|Pβk+j |+ |Pβi+j |

= 2
∑

k<i

αβk+j+1 + αβi+j+1

= 2αj+1α
βi − 1

αβ − 1
+ αβi+j+1

≤ αβi+j+1

(

2

αβ − 1
+ 1

)

The deadline of v is D(v) = 4D′(v) ≥ 4αβi+j . Thus,

`Qj (v) ≤
α

4

(

2

αβ − 1
+ 1

)

D(v)

Taking α = 1.2 and β = 8, we get that `Qj (v) ≤ 1
2D(v). Similarly,

`Qj (v) ≥
∑

k<i

|Tβk+j| =
2αβi+j+1

αβ − 1

Using β = 8, and D′(v) ≤ αβi+j+1, we get `Qj (v) ≥ 1
2D

′(v). However we also have R(v) ≤
D′(v), because P ∗ collects vertex v before time D′(v). Therefore we get `Qj (v) ≥ 1

2R(v).

Slowing down the path Qj by a factor of 2 ensures that we cover all nodes within their time

window [R(v), D(v)]. Note that the sets Sjmodβ for j ∈ {0, · · · , β−1} together cover all the nodes

in V 1
4
. Furthermore, we have ΠQj ≥ 1

3

∑

iΠP ∗(Sβi+j). Thus, one of the paths Qj gives a 3β = 24

approximation to the reward collected by P ∗ in V 1
4
. Our algorithm for finding the best Qj is given

in Figure 2.8.

Theorem 2.14. Algorithm B returns a path P with ΠP ≥ 1
24ΠP ∗(V 1

4
).

2.5.3 The general case

Now we will give an algorithm that produces a bicriteria approximation for the entire graph. In

particular, given a parameter ε, we construct a path that obtains reward at least Ω(log−1 1
ε )ΠP ∗ if it

is allowed to exceed the deadlines by a factor of 1 + ε.

The idea behind our algorithm is as follows. We consider a division of the graph into a small

number of groups such that each group either falls into the small-margin case studied in Sec-

tion 2.5.1, or the large-margin case studied in Section 2.5.2. We can approximate any of these

groups using the algorithms A or B respectively, obtaining a large reward and exceeding deadlines

by a small factor. The approximation corresponding to the largest group (in terms of total reward)

forms our solution.
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Input: Graph G = (V,E) with deadlines D(v); parameter ε.

Output: Path P with ΠP ≥ Ω( 1
log 1

ε

)ΠP∗ and R(v) ≤ `P (v) ≤ (1 + ε)D(v) for all v ∈ P .

1. Let f = 1√
1+ε

and s be the smallest integer for which f (1.5)s ≤ 1
4 .

2. Apply algorithmA with parameter f to the graph, and let P0 be the path obtained.

3. Apply algorithm B to the graph, and let Ps+1 be the path obtained.

4. For all i ∈ {1, · · · , s}, do the following:

(a) For all v ∈ V , define D′(v) = D(v)f (1.5)i−1

.

(b) Apply algorithm A with parameter f (1.5)i−1

to the graph with the new deadlines D′, and let Pi

be the path obtained.

5. Among the paths constructed above, return the one with the maximum reward.

Figure 2.9: Algorithm C—Bicriteria approximation for the general case

As before, let f = 1√
1+ε

. Let s be defined as the smallest integer for which f (1.5)s ≤ 1
4 . Then

s = O(log 1
ε ). Divide all the nodes into s + 2 groups as follows. Group i, 1 ≤ i ≤ s, is given

by Vi = {v : `P ∗(v) ∈ (f (1.5)i
D(v), f (1.5)i−1

D(v)]}. Group 0 is given by V0 = {v : `P ∗(v) ∈
(fD(v), D(v)]}. Group s + 1 is defined as Vs+1 = {v : `P ∗(v) ∈ (0, D(v)/4]}. These groups

together cover all the nodes in P ∗. So, one of the groups contains at least a 1
s+2 fraction of the total

reward collected by P ∗. Let Vi be such a group. We now show how we can approximate the value

that P ∗ collects in any of these groups.

If i = 0, we can apply algorithm A right away and obtain a path P with ΠP ≥ 1
9ΠP ∗(V0) that

visits its nodes within a factor of (1 + ε) of their deadlines.

Consider the case when 1 ≤ i ≤ s. Scale all the deadlines down by a factor of f (1.5)i−1
,

that is, define D′(v) = f (1.5)i−1
D(v). Then the path P ∗ visits all nodes in Vi at time `P ′(v) ∈

(f0.5(1.5)i−1
D′(v), D′(v)]. Now apply algorithm A with parameter f 0.5(1.5)i−1

. Then, the obtained

path collects reward πP ≥ 1
9ΠP ∗(Vi) and visits all nodes v before time D ′(v)f−(1.5)i−1

= D(v).

Finally consider the case when i = s+ 1. Note that this is the large margin case considered in

a previous subsection. So we can use algorithm B to obtain a 24-approximation in this case.

Putting everything together, we get the following theorem. The algorithm is described in Fig-

ure 2.9.

Theorem 2.15. Algorithm C returns a path P with Πε
P ≥ 1

24(s+2)ΠP ∗ = Ω( 1
log 1

ε

)ΠP ∗ .

As a simple corollary of Theorem 2.15, we get an O(logDmax)-approximation to the TIME-

WINDOWS-TSP problem without exceeding deadlines.
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Corollary 2.16. Algorithm C with ε = 1/Dmax gives an O(logDmax)-approximation to the TIME-

WINDOWS-TSP problem.

Proof. From Theorem 2.15, we know that for ε = 1/Dmax the path P collects an Ω(1/ logDmax)

fraction of the reward from nodes v visited before (1 + ε)D(v). For ε = 1/Dmax, (1 + ε)D(v) <

D(v) + 1. Since, all edge lengths and deadlines are integral by assumption, node v is visited by

D(v).

2.6 Extensions

2.6.1 Max-Value Tree and Max-Value Cycle

In this section, we consider the tree and cycle variants of the ORIENTEERING problem. In Max-

Value Tree, given a graph G with root r, value function Π and lengths d, we are required to output

a tree T rooted at r with d(T ) ≤ D and maximum possible reward Π(T ). This problem is also

called the Budget Prize-Collecting Steiner Tree problem [89]. Although the unrooted version of the

problem can be approximated to within a factor of 5 + ε via a 3-approximation for k-MST [89], the

version of the problem in which a tree is required to contain a specified vertex has remained open

until the initial publication of this work.

Let the optimal solution for this problem be a tree T ∗. Double the edges of this tree to obtain an

Euler tour of length at most 2D. Now, divide this tour into two paths, each starting from the root r

and having length at most D. Among them, let P ′ be the path that has greater reward. Now consider

the Max-Value Path problem on the same graph with distance limit D. Clearly the optimal solution

P ∗ to this problem has Π(P ∗) ≥ Π(P ′) ≥ Π(T ∗)
2 . Thus, we can use the αOrient-approximation for

ORIENTEERING to get a 2αOrient-approximation to T ∗.

Finally we note that we can use our algorithm for the ORIENTEERING problem to approximate

Max-Value Cycle. Namely, we can find an approximately maximum-value cycle of length at most

D that contains a specified vertex s. To this end we apply our algorithm to an instance of the

ORIENTEERING problem with the starting node s and the length constraint D/2. To obtain a cycle

from the resulting path we connect its end-points by a shortest path. Clearly, the length of the

resulting cycle is at most D. Now, notice that an optimal max-value cycle of length D can span

at most twice the amount of value that an optimal max-value path of length D/2. Thus, using

αOrient-approximation to ORIENTEERING we get 2αOrient-approximation to the Max-Value Cycle

problem.

2.6.2 Multiple-Path ORIENTEERING

In this section we consider a variant of the ORIENTEERING in which we are allowed to construct up

to k paths, each having length at most D.
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We approximate this problem by applying the algorithm in Section 2.3 successively k times,

to construct the k paths. At the i-th step, we set the values of all points visited in the first i − 1

paths to 0, and constructed the i-th path on the new graph, using the ORIENTEERING algorithm in

Section 2.3. Using a set-cover like argument, we get the following approximation guarantees for the

cases when all paths have the same starting point and when different paths have different starts.

Theorem 2.17. If all the paths have a common start node, the above algorithm gives a 1/(1 −
e−1/αOrient ) approximation to Multiple-Path ORIENTEERING. If the paths have different given start

nodes, the above algorithm gives a αOrient + 1 approximation to Multiple-Path ORIENTEERING.

Using αOrient = 3, we get a 3.53 and 4 approximation respectively.

Proof. Let α = αOrient. Consider first the case when all the paths have the same starting point.

Let the difference in the reward collected by the optimal solution and the reward collected by our

solution up to stage i be Πi. At the beginning, this is the total reward of the optimal solution. At step

i, at least one of the paths in the optimal solution collects reward, not collected by the algorithm

by stage i, of value at least 1
kΠi. Then, using the approximation guarantee of the algorithm for

orienteering, our solution collects at least a 1
kα fraction of Πi. That is, Πi+1 ≤ (1− 1

kα)Πi. By the

end of k rounds, the total reward collected by optimal solution, but not collected by us, is at most

(1− 1
kα)kΠ(P ∗) ≤ e−1/αΠ(P ∗), and the result follows.

Next consider the case when different paths have different starting locations. Let Oi be the set

of points visited by the i-th path in the optimal solution, and Ai be the corresponding set of points

visited by our algorithm. Let ∆i be the set of points that are visited by the i-th path in the optimal

solution and some other path in our solution. Let O = ∪iOi, A = ∪iAi and ∆ = ∪i∆i. Now, in

the i-th stage, there is a valid path starting at the i-th source, that visits all points in Oi \∆i. Thus

we have Π(Ai) ≥ 1
α (Π(Oi)−Π(∆i)). Summing over i, we get αΠ(A) ≥ (Π(O)−Π(∆)). But

Π(∆) ≤ Π(A). Thus Π(A) ≥ 1
α+1Π(O).

2.6.3 ORIENTEERING on special metrics

Finally, we consider the case when the underlying graph on locations is a special metric, namely a

tree metric, and show that in this case ORIENTEERING can be solved exactly in polynomial time.

In particular, our algorithm takes as input a tree T rooted at vertex s, a terminal node t, and a

length bound D, and outputs the maximum reward that can be obtained by a path of length at most

D traversing the tree starting at s and ending at t. Without loss of generality, we may assume that

t = s by adding d(s, t) to the distance bound D. We may also assume that the tree is a binary tree,

by adding zero-length edges.

Our algorithm proceeds by guessing the amount of time Dl that the optimal path spends in the

left subtree of s; it recursively computes the reward obtained by a tour of length at most D l in the

left subtree of s, and the reward obtained by a tour of length at most D−Dl− 2`l− 2`r in the right

subtree of s. Here `l and `r are the lengths of the left and right edges incident on s respectively. The
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algorithm computes these values for all possible values of Dl, and picks the one for which the sum

of the rewards obtained on either sides is maximized. The number of computations is at most D for

each node in the tree, and therefore at most nD in all.

Theorem 2.18. There exists a dynamic-programming-based algorithm that solves ORIENTEERING

exactly on tree metrics and takes time O(nD).

2.7 Hardness of approximation

All the problems discussed in this paper are NP-hard, as they are generalizations of the TRAVEL-

ING SALESMAN PROBLEM. In this section we show that MIN-EXCESS-PATH, ORIENTEERING,

DEADLINES-TSP and TIME-WINDOWS-TSP are APX-hard, that is, it is NP-hard to approximate

these problems to within an arbitrary constant factor.

The hardness of approximating the MIN-EXCESS-PATH problem follows from the APX-hardness

of TRAVELING SALESMAN PROBLEM[118]. In particular, we can approximate TRAVELING SALES-

MAN PROBLEM to within an αex factor by approximating the MIN-EXCESS-PATH problem to

within an αex factor with a reward quota of n. We therefore get the following theorem:

Theorem 2.19. The MIN-EXCESS-PATH problem is NP-hard to approximate to within a factor of
220
219 .

Theorem 2.20. ORIENTEERING is NP-hard to approximate to within a factor of 1481
1480 .

Proof. We reduce the TRAVELING SALESMAN PROBLEM on {1, 2}-metrics to ORIENTEERING.

In particular, let G = (V,E) be a complete graph on n nodes, with edges lengths in the set {1, 2}.
Engebretsen and Karpinski [60] show that the TRAVELING SALESMAN PROBLEM is NP-hard to

approximate within a factor of 1 + α = 741
740 on such graphs.

Our reduction is as follows. Let the length of the optimal TSP solution be L = n + δn. (We

simply try all values of L between n and 2n.) Suppose that there is an algorithm that approximates

ORIENTEERING within a factor of 1 + β, where β ≤ 1
1480 . We apply this algorithm to the graph

G with distance limit L. Note that the optimal solution (which is the optimal TSP path) collects

n− 1 nodes within distance L (all nodes except the start, assuming a reward of 0 on the start node).

Therefore, the solution returned by our algorithm collects 1
1+β (n − 1) nodes. We augment this

solution to a tour containing all the nodes, by using (1 − 1
1+β )(n − 1) + 1 edges of length at most

2. Therefore, the length of our solution is at most

L+ 2(1 − 1
1+β )(n− 1) + 2 = L+ 2β

1+β (n− 1) + 2

< L+ 2βn

= L+ αn ≤ (1 + α)L

where the second inequality follows from assuming that n > 1
β2 .
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Therefore, we get a (1 + α)-approximation to TSP on G, contradicting the fact that the TRAV-

ELING SALESMAN PROBLEM is NP-hard to approximate to within a (1 + α) factor on {1, 2}-
metrics.

Using a similar argument as for ORIENTEERING, we get a 1481
1480 hardness of approximation for

the max-value cycle problem as well. The result trivially extends to the DEADLINES-TSP and

TIME-WINDOWS-TSP problems as well.

2.8 Concluding remarks

In this chapter we develop new techniques for approximating budget versions of planning problems.

We combine dynamic programming with LP-relaxations of the problems to give the first approxi-

mations to these problems.

Linear programming is one of the most widely used techniques for approximating NP-hard opti-

mization problems; there is a large repertoire of techniques for rounding solutions to LP-relaxations

of problems (see [138] for examples). Unfortunately, budget versions of planning problems do not

seem to have good LP-relaxations. LP-based techniques appear to perform poorly specifically in in-

stances where the “slack” in the solution is small (i.e. by reducing the budget by a small amount, the

value obtained is reduced considerably). We formalize this notion of slack through a quantity that

we call the excess of a path, and show how low-excess instances can be approximated via dynamic

programming. It would be interesting to see if such a “slack”-based approach implies improved

approximations to other problems that have poor LP-relaxations.

From the point of view of hardness of approximation, our current results imply the same hard-

ness for the DEADLINES-TSP and TIME-WINDOWS-TSP problems, as for the ORIENTEERING

problem. We strongly suspect that the former two problems are strictly harder to approximate than

ORIENTEERING, and are in fact hard to approximate within o(log n) factors. The difficulty in prov-

ing such a result is to design a class of instances of the problems that have a good optimal solution,

and for which the deadlines of vertices do not reveal the order in which the optimal solution visits

them.

Two important classes of path-planning problems not considered in our work are pickup-and-

delivery problems and problems dealing with the min-vehicle objective. For the latter, it is easy to

obtain log-approximations using covering arguments. However we suspect that it may be possible

to approximate these within constant factors. Another interesting class of problems is the online ver-

sion of planning problems where requests for visiting sites arrive over time. It would be interesting

to extend our algorithms for MIN-EXCESS-PATH and ORIENTEERING to this case.
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Chapter 3

Planning under Uncertainty

3.1 Introduction

We continue our study of path-planning problems, albeit in a dynamic context, where the underlying

map or constraints on the path change over time.

Consider a robot with a map of its environment, that needs to visit a number of sites in order

to drop off packages, collect samples, search for a lost item, etc. In Chapter 2, we studied algo-

rithms that allow the robot to perform its tasks as efficiently as possible while obeying deadlines

on the tasks. However, what if the environment of the robot is changing over time, or alternately,

the robot makes mistakes in following the algorithm precisely? For example, the algorithm may

instruct the robot to take 10 steps forward, while the robot takes only 9. Furthermore, obstacles in

the robot’s environment may change unpredictably over time. Then the algorithm must take cor-

rective measures, or may fail to achieve its goal. In this situation, it may not be possible to specify

beforehand the course of actions taken by a robot following an adaptive algorithm, or quantify its

performance before the actual execution. A natural question then is to ask for a strategy for the

robot, that maximizes the number of tasks completed by a deadline in expectation, or minimizes the

time taken to complete all tasks in expectation, etc. In a slightly different scenario, suppose that a

rescue-robot is looking for a lost or trapped individual. Without knowledge of the exact location of

the individual, the robot may rely on its beliefs about the individual’s location (such as the relative

likelihoods of the finding the person at different locations), in order to minimize the time taken to

find the person, or maximize the probability that the person is found alive. We call such problems

stochastic path-planning problems.

Stochasticity in robot navigation can arise both from the unreliability in the robot’s behavior or

external forces that might do something unpredictable to the robot’s state. It is typically modeled

using Markov decision processes (MDPs) [27, 28, 91, 120, 131]. We describe the MDP formalism

below.

43
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3.1.1 Markov decision processes

A Markov decision process (MDP) consists of a state space S, a set of actions A, a probabilistic

transition function T , and a value (reward) function π. For this work, it is sufficient to consider

discrete, finite S and A. At any given time step, an agent (such as a robot) acting in an MDP will

be located at some state s ∈ S, where it can choose an action a ∈ A. The agent is subsequently

relocated to a new state s′ drawn from the transition probability distribution T (s′|s, a) ≡ Pr[qt+1 =

s′|qt = s, a], where qt is a random variable indicating the agent’s state at time step t. The transition

function captures both the agent’s stochastic dynamics (e.g., unreliable actuators) and structure and

characteristics of the environment such as walls, pits, friction of the surface, etc.

As in the deterministic case, associated with each state is a (positive real) value, given by the

function π(s), which the agent receives each time it enters the state s.1 For example, a package-

delivery robot might get a reward every time it correctly delivers a package.

In certain planning problems, such as the TSP over an MDP, the robot does not obtain any

additional benefit from visiting a state more than once, or may obtain lesser and lesser reward on

subsequent visits. These problems can be formulated in the traditional MDP framework (where the

robot gets the same reward every time it visits a state), by expanding the state space to represent not

only the current position of the robot, but all the locations visited by it in the past. Unfortunately,

this increases the state size by an exponential factor. So instead, we consider MDPs with reward

functions that change over time. For example, the reward may decrease over time, or may become

zero after the first visit to the state.

3.1.2 Strategies and policies

A solution to a Markov decision process is a strategy for the robot, that specifies the action that the

robot should take given its current state and the history of its actions and outcomes. Formally, let

Qt = {qi}1≤i<t denote the set of states visited by the robot until time i. Then, the strategy of a

robot is a function ψ : S × St−1 → A that maps a pair (qt, Qt) to an action at. More generally,

we may allow the function ψ to specify a distribution over actions, rather than a single action:

ψ : S × St−1 ×A→ [0, 1]. The next state qt+1 is picked from the distribution T (s|qt, ψ(qt, Qt)).

A strategy that picks actions based solely on the current state of the robot, and not on its history,

is known as a static policy, or a policy for short. Strategies that depend on the history are known

as dynamic strategies, or just strategies for short. In comparison to dynamic strategies, policies

trade-off simplicity of expression for a degradation in performance. For MDPs with time-dependent

rewards, taking history into account while picking an action can obtain much better performance

than ignoring the history. We give some examples of this in Section 3.3.2.

1It is also possible to model rewards associated with actions or transitions by writing more general reward functions

such as π(s, a) or π(s, a, s′), but such extensions do not fundamentally change the nature of the MDP. Any such functions

can be rewritten into a model of the form we give here with an appropriate modification to the state and action sets.
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On the other hand, a strategy that depends on history may take super-polynomial space to specify

completely, while a policy only takes linear space to express. Note also that, because a fixed (s, a)

pair yields a fixed probability distribution over next states, the combination of an MDP with a

fixed policy produces a Markov chain over S, making it easier to analyze its properties. Therefore,

policies may be easier to pre-compute and implement in practice than strategies.

In this chapter, we consider optimization over the class of static as well as dynamic strategies.

We also consider the question of how much we lose in terms of the value of the objective function by

using a static policy instead of a strategy. This ratio of the performance of the optimal static policy

to the performance of the optimal strategy is known in literature as the Adaptivity Gap [52, 53].

3.1.3 Objectives

The goal of planning in an MDP framework is to formulate a strategy that guides the agent to

optimal long-term aggregate reward. This goal is formalized in the form of rewards at every state;

Broadly, the objective is to maximize the average reward visited per time step, or the total reward

visited until some terminating condition is achieved. Depending on whether or not the reward at a

node stays the same independent of time, we can classify the corresponding objectives into those

that are time-dependent and those that are not.

Time-independent objectives, that is, those where the reward at every state stays constant over

time, have been studied extensively and can be solved optimally using static policies. There are

well-known algorithms [27, 120, 131] for optimizing these objectives that take time polynomial in

the cardinality of the state space. For example, consider the objective of reaching a specific state

as fast as possible. Here we can assign a reward of 1 at the goal state, and 0 at any other state.

In this case, it is easy to see that the best strategy for the robot is a history-independent policy.

This stochastic shortest path problem can be solved easily using a linear program, or using faster

techniques such as dynamic programming or value iteration (see [27] for a review). Likewise,

consider a “reinforcement-learning” problem, where the goal of the robot is to learn how to perform

“good actions” repeatedly, without performing “bad actions”. In this case, the good actions are

assigned reward 1, the remaining actions are assigned reward 0, and the goal is to maximize the

average reward collected at every time step. Again in this case, the best strategy for the robot is a

policy, and it can be found using techniques such as dynamic programming2 .

In the related infinite horizon discounted reward [91, 120, 131] objective, the reward at every

location decreases exponentially with time; the goal is to obtain as much reward as possible in

expectation. This optimality criterion guides the robot to accumulate as much reward as possible in

2The reinforcement-learning framework also deals with the problem of exploring an unknown environment. The goal

is to reconstruct or “learn” the unknown MDP by trying different actions and observing the outcomes, while at the same

time obtaining a large reward per time step. This can be done using algorithms such as “Q-learning” [91]; Finding the

best strategy given a partial reconstruction of the MDP is a subroutine in such algorithms.
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a timely manner, and produces what in practice turns out to be good behavior. Although outwardly

this appears to be a time-dependent objective function, owing to the constant rate of decrease, the

optimal strategy for this objective is a policy [24], and can be found via linear programming or

through techniques such as value iteration or policy iteration [91].

In this chapter we consider a class of time-dependent objectives, in particular, those where the

reward at a state disappears after the robot first visits the state. These objectives model one-time

tasks such as delivering items or collecting samples. One way of optimizing these objectives while

using existing techniques is to expand the state space to represent not only the current location of

the robot, but also a record of all the sub-goals (reward to be collected, or packages to be delivered)

that it has already covered. For example, one could write S = L× 2d, where L is a set of discrete

locations that the robot could occupy, and the list of d bits tracks whether the agent has achieved

each of d sub-goals. Then the new reward function can be π(〈l, b1, . . . , bd〉) = 1 iff l is a location

containing sub-goal i and bi = 0, or R(s) = 0 otherwise. When the robot reaches the location

containing sub-goal i, bi is set to 1 and remains so thereafter. This formulation yields an exponential

increase in the size of the state space over the raw cardinality of L thereby preventing a fast, exact

solution of the MDP. Instead it would be preferable to directly model the case of rewards that are

given only the first time a state is visited.

As a first step towards tackling this general problem, we abandon the stochastic element and

restrict the model to deterministic, reversible actions. Consider for example, the infinite horizon

discounted reward objective, albeit with the difference that the reward at a state disappears the first

time the state is visited. This problem, that we call the DISCOUNTED-REWARD-TSP, is interesting

even in a deterministic context, where each action available to the robot is a deterministic action—it

results in a specific state with probability 1. This model is a reasonable approximation to many

robot-navigation style MDP domains, in which we can formulate sub-policies for navigating be-

tween pairs of locations in the environment. Often, such sub-policies, or macros, can be “nearly

deterministic” (failing with probability ≤ ε) because they average out the stochasticity of atomic

actions over many steps [106]. We can to a good approximation, therefore, treat such a domain as

a deterministic planning problem over the set of sub-goal locations (nodes) and location-to-location

macros (arcs).

Getting back to the original MDP model, we consider the objective of minimizing the expected

time taken to visit all the states. We call this problem the STOCHASTIC-TSP. In the determinis-

tic case, this simply becomes the ASYMMETRIC-TSP (ATSP). The ATSP is NP-hard and can be

approximated within a factor of O(log n) [67]. In the stochastic case, we may consider finding an

approximately-optimal dynamic strategy, or an approximately-optimal static policy for this prob-

lem. We show below (Section 3.3.2) that the expected time taken by the two optimal policies differs

by a factor of at most poly(n).

Note that when the solution to the problem is a static policy, the expected length of the TSP

tour is simply the cover-time of the corresponding Markov chain. The problem is, therefore, also
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related to the problem of estimating the cover-time of a Markov chain in directed graphs. Estimating

the cover-time of a Markov chain, and more specifically that of the random walk on an undirected

graph, has been a long-open problem. A simple way of doing this is to simulate the Markov chain

several times and take the average of the cover times obtained in each execution. This algorithm is

reasonably fast for undirected graphs, but can take exponentially long in the case of general Markov

chains (as some chains have exponential cover times). In the case of undirected graphs, one can

instead use quantities such as the effective-resistance of the graph to estimate the cover time to

within some approximation. The best such approximation known to date is an O((log log n)2)-

approximation, and can be computed deterministically in polynomial time [93]. In the case of

general Markov chains, an O(log n) approximation can be obtained via hitting times3, and we are

not aware of any better results. Another related problem is that of finding a static policy in a graph

with the fastest mixing time4. This problem can be cast as a convex optimization problem and can

be solved exactly using semi-definite programming [34]. We discuss the connection between mixing

time and cover time in Section 3.3.3.

3.1.4 Stochastic optimization

Optimization problems involving stochasticity have been studied extensively in Operations Research

as well as approximation algorithms (see, for example, [29] and [50]). One way of classifying these

problems is by the levels of recourse available to the algorithm, that is, the sequence in which

outcomes of stochastic processes is revealed and the algorithm is allowed to make choices.

A popular model of recourse studied extensively recently from the point of view of approxima-

tion is the fixed-stage recourse model [80, 82, 86, 123, 129]. In the 2-stage recourse model, the

algorithm first makes some choices in the first stage; then the instantiations of the random variables

are revealed and the algorithm is allowed to take recourse actions to fix the solution accordingly,

albeit at a higher cost. This model can be extended to multiple (but fixed number of) stages, where

in each stage the algorithm first makes some choices, then a few random variables are revealed. A

recent result of Shmoys and Swamy [129] shows for a class of optimization problems (such as set

cover or Steiner tree), that if a problem in the class has a β-approximation algorithm in the deter-

ministic case, then in the 2-stage recourse model it can be approximated within a factor of 2β + ε.

Hayrapetyan et al. [84] and Gupta et al. [81] independently extended this result to multiple stages for

the Stochastic Steiner tree problem and given an O(k)-approximation for it in the k-stage recourse

model.

Note that our problem can also be cast in the recourse model—at each step, the algorithm com-

3The hitting time from a state u to a state v is the expected time taken to go from u to v in a simulation of the Markov

chain.

4Informally, the mixing time of a static policy, or a Markov chain, is the time taken by the policy to converge to its

stationary distribution. See [117] for details.
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mits to a part of the solution by picking an action, following which, an outcome is revealed. How-

ever, results analogous to that of Hayrapetyan et al. and Gupta et al. may not apply to our context,

because the number of stages in our problems is variable, and may be as large as exponential in the

number of states5.

Among approximation algorithms for stochastic optimization problems, the work that relates

most closely to ours is that of Dean, Goemans and Vondrak [52, 53], studying the stochastic knap-

sack problem. In the stochastic knapsack problem, one is given a number of item each with a random

size and a value. The goal is to pack items into a knapsack of size 1, obtaining the maximum pos-

sible value. The size of an item gets instantiated when the algorithm decides to put that item in the

knapsack. Dean et al. show that the adaptivity gap of this problem is a constant, and using this

result they give a constant approximation to the optimal dynamic strategy for this problem. The

stochastic knapsack problem can be modeled as a STOCHASTIC-ORIENTEERING problem, where

the distance between the root and any node (representing an item) is a random variable, and the goal

is to maximize the reward obtained in expectation by a fixed deadline. The results of Dean et al.,

however, do not generalize to STOCHASTIC-ORIENTEERING—the adaptivity gap for the latter can

be as large as Ω(n).

3.1.5 Our Results

We study the DISCOUNTED-REWARD-TSP problem on deterministic undirected graphs, and present

the first approximation—a 6.75-approximation—for it. Our algorithm is based on the observation

that the optimal solution to this problem must collect a large fraction of its reward in a prefix that

has constant excess. We then use the MIN-EXCESS-PATH algorithm developed in Chapter 2 as a

subroutine to approximate this problem.

Next we study the STOCHASTIC-TSP and show that the adaptivity gap of this problem is

bounded by O(n3 log n). In the case of deterministic (directed or undirected) graphs, the adaptivity

gap reduces to Θ(n). We then convert this gap into an O(n3 log n)-approximation algorithm that

outputs a static policy for the problem. We also present a simple n-approximation for the problem

that outputs a dynamic strategy for it.

3.2 Maximum Discounted-Reward Path

We now consider the infinite-horizon discounted-reward model in which the reward at every location

decreases exponentially with time. One can motivate this exponential discounting by imagining

that, at each time step, there is some fixed probability the game will end (the robot loses power,

a catastrophic failure occurs, the objectives change, etc.) For another example, suppose we are

5In fact, our n-approximation for the STOCHASTIC-TSP is stronger than what may be obtained for the multi-stage

recourse model in general, as the number of stages in our problem is at least n.
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searching for a lost item, and at each time step there is some possibility the item will be taken (or,

if we are searching for a trapped individual in a dangerous environment, and at each time step there

is some probability γ the individual might die). Then, if the probability of finding the item at a

location v at time 0 is π(v), the probability of finding it at time t is π(v)γ t. We can model this by

placing rewards π(v) at locations v, and discounting the reward collected for a site reached at time

t by γt, where γ is a fixed and known discount factor.

Exponential discounting is often used in the MDP setting, as mentioned before. In this setting, it

also has the nice mathematical property that it is time-independent, meaning that an optimal strategy

is stationary and can be completely described by the mapping from states to actions given by ψ.6

However, we will be considering the case that the reward at a node can be collected only the first

time the robot visits the node (as in searching for a lost item, or a trapped individual). In this case,

the optimal strategy may not be stationary policy.

As a first step towards solving this problem, we study it in the deterministic case. We now

describe some notation. Let γ ∈ (0, 1) denote the discount factor in the problem. Then the value or

reward collected at a location at time t is discounted by a factor γ t. Given a path P rooted at s, let

the discounted reward collected at node v by path P be defined as ρPv = π(v)γ`P (v), where `P (v)

is the first time at which P visits v. The max-discounted-reward path problem is to find a path P

rooted at s, that maximizes ρP =
∑

v∈P ρ
P
v . We call this the DISCOUNTED-REWARD-TSP. Note

that the length of the path is not specifically bounded in this problem, though of course shorter paths

produce less discounting.

In this section we present an approximation algorithm for the DISCOUNTED-REWARD-TSP

which builds upon our min-excess path algorithm. We assume without loss of generality that the

discount factor is γ = 1/2—we simply rescale each length ` to `′ such that γ` = (1
2)`

′
, i.e.,

`′ = ` log2(1/γ).

We first establish a property of an optimal solution that we make use of in our algorithm: in-

formally, we show that any optimal path must collect a large fraction of its discounted-reward in a

prefix with low (constant) excess; we approximate this prefix using our MIN-EXCESS-PATH algo-

rithm, losing only a constant in the length of the prefix, and therefore in the discount applied to the

reward.

Define the scaled value π′ of a node v to be the (discounted) reward that a path gets at node v

if it follows a shortest path from the root to v. That is, π ′
v = πvγ

dv . Let Π′(P ) =
∑

v∈P π
′
v . Note

that for any path P , the discounted reward obtained by P is at most Π′(P ).

Now consider an optimal solution P ∗. Let ε be a parameter that we will set later. Let t be the

last node on the path P ∗ for which `P ∗(t) − dt ≤ ε, i.e., the excess of path P ∗ at t is at most ε.

Consider the portion of P ∗ from root s to t. Call this path P ∗
t .

6Under other objective functions, an optimal policy could require dependence on the number of steps remaining in the

game or other functions of the history of states encountered to date.
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Input: Graph G = (V,E); special start node s; discount factor γ.

Output: Path P starting from s with ρ(P ) ≥ (6.75 + δ)ρ(P ∗).

1. Re-scale all edge lengths so that γ = 1/2.

2. Replace the value of each node with the value discounted by the shortest path to that node: π ′
v =

γdvπv . Call this modified graph G′.

3. Guess t—the last node on optimal path P ∗ with excess less than ε.

4. Guess k—the value of Π ′(P ∗
t ).

5. Apply our MIN-EXCESS-PATH approximation to find a path P collecting scaled value k with small

excess.

6. Return this path as the solution.

Figure 3.1: A (6.75 + δ)-approximation for DISCOUNTED-REWARD-TSP

Lemma 3.1. Let P ∗
t be the part of P ∗ from s to t. Then, ρ(P ∗

t ) ≥ ρ(P ∗)(1− 1
2ε ).

Proof. Assume otherwise. Suppose we shortcut P ∗ by taking a shortest path from s to the next node

visited by P ∗ after t. This new path collects (discounted) rewards from the vertices of P ∗ − P ∗
t ,

which form more than a 1
2ε fraction of the total discounted reward by assumption. The shortcutting

procedure decreases the distance on each of these vertices by at least ε, meaning these rewards are

“undiscounted” by a factor of at least 2ε over what they would be in path P ∗. Thus, the total reward

on this path exceeds the optimum, a contradiction.

It follows that we can approximate ρ(P ∗) by approximating ρ(P ∗
t ). Based on the above ob-

servation, we give the algorithm of Figure 3.1 for finding an approximately optimal solution. Our

algorithm uses the min-excess algorithm to approximate the path ρ(P ∗). Because the excess of this

path is a constant, the extra discount on the reward, apart from the discount accounted for by the

function Π′, is at most a constant factor. Note that in the algorithm, “guess t” and “guess k” are

implemented by exhausting all polynomially many possibilities.

Our analysis below proceeds in terms of α = αex, the approximation factor for our min-excess

path algorithm.

Lemma 3.2. Our approximation algorithm finds a path P that collects discounted reward ρ(P ) ≥
Π′(P ∗

t )/2αε.

Proof. The prefix P ∗
t of the optimum path shows that it is possible to collect scaled value k =

Π′(P ∗
t ) on a path with excess ε. Thus, our approximation algorithm finds a path collecting the same

scaled value with excess at most αε. In particular, the excess of any vertex v in P is at most αε.
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Thus, the discounted reward collected at v is at least

ρ(v) ≥ πv
(

1

2

)dv+αε

= πv

(

1

2

)dv
(

1

2

)αε

= π′v

(

1

2

)αε

Summing over all v ∈ P and observing Π′(P ) ≥ Π′(P ∗) completes the proof.

Combining Lemma 3.2 and Lemma 3.1, we get the following:

Theorem 3.3. The solution returned by the above algorithm has ρ(P ) ≥ (1− 1
2ε )ρ(P

∗)/2αε.

Proof.

ρ(P ) ≥ Π′(P ∗)/2αε by Lemma 3.2

≥ ρ(P ∗
t )/2αε by definition of π′

≥
(

1− 1

2ε

)

ρ(P ∗)/2αε by Lemma 3.1

We can now set ε as we like. Writing x = 2−ε we optimize our approximation factor by

maximizing (1− x)xα to deduce x = α/(α + 1). Plugging in this x yields an approximation ratio

of (1 + αex)(1 + 1/αex)
αex ≈ 6.75 + δ.

3.3 Stochastic TSP

In this section we consider the STOCHASTIC-TSP. In this problem, the goal is to produce a strategy

that takes the (approximately) minimum time in expectation to visit all states in the MDP. Note that

this problem generalizes the ASYMMETRIC-TSP (TRAVELING SALESMAN PROBLEM on directed

graphs), and is therefore NP-hard. In this section we study the complexity as well as approxima-

bility of this problem. We consider approximating this problem via both static as well as dynamic

strategies.

We also consider the question of how much worse the best static policy can be with respect to the

best dynamic strategy. We bound this adaptivity gap in Section 3.3.2. Determining the adaptivity

gap of STOCHASTIC-TSP is interesting even when we restrict the problem to deterministic graphs,

that is, when every action in the underlying MDP is a deterministic action with a single outcome.

In that case, as noted earlier, the STOCHASTIC-TSP simply becomes the TRAVELING SALESMAN

PROBLEM. Note that an optimal solution to the TRAVELING SALESMAN PROBLEM may pass

through some vertices more than once. In this case, when the solution is at some such vertex,

the outgoing edge followed by it next depends on the number of times it has visited this node

previously. In our terminology, it is therefore a dynamic (adaptive) solution. A static policy in this
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case is allowed to place probabilities on outgoing edges, such that the resulting Markov chain has a

small cover-time.

We extend the Markov-chain terminology to dynamic strategies, and use the term “cover-time”

to denote the expected time taken by a strategy to visit all the states. The cover-time of a strategy ψ

is denoted C(ψ).

We begin by examining the complexity and the adaptivity gap of the problem, following which

we develop some simple approximations to it.

3.3.1 The complexity of computing the optimal strategy

In studying the complexity of the STOCHASTIC-TSP we are concerned with the following decision

question — “Does there exist a strategy with cover-time at most t?” Note that t may be exponential

in n. So in order to answer this question in polynomial time (or even for this question to be in

NP), we may not be able to execute a candidate strategy and note its cover-time; Instead we must

compute its cover-time analytically.

In some cases, it may take a long time to pre-compute and specify an optimal strategy or compute

its cover-time before executing it, however, it may be easier to compute the next step in the strategy

based on the current location and history. Suppose that for an approximation or exact solution, there

is an algorithm that takes as input a state and history and outputs an action to be executed, and lies

in complexity class C. Then we say that the approximation or exact solution can be i-computed7 in

class C.

For example, we show in Section 3.3.4 there exists a polynomial-time n-approximation to the

STOCHASTIC-TSP. On the other hand, we show below that the optimal solution to STOCHASTIC-

TSP can be i-computed in PSPACE. Note that the optimal strategy may take exponentially many

bits to specify, so the problem may not lie in PSPACE.

Theorem 3.4. The optimal solution to STOCHASTIC-TSP can be i-computed in PSPACE.

Proof. Figure 3.2 gives an algorithm for computing a solution to STOCHASTIC-TSP iteratively.

From the description of the algorithm, it is immediate that the algorithm lies in PSPACE. We now

prove that the algorithm produces an optimal solution to STOCHASTIC-TSP.

Suppose that for all s′ ∈ S \X the recursive calls to ITER(X ∪{s′}, s′) return the correct value

τs′ of the expected time taken to cover the remaining nodes. Then, a setting of the τu variables

for u ∈ X , for which the following equations hold, must give the expected time to visit all the

remaining states from the node u.

τu = min
a∈A

{

`(u, a) +
∑

v∈S
τvT (v|u, a)

}

∀u ∈ X

7The “i” stands for iterative.
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Input: An MDP on state space S and actions A with transition function T ; a set of states X ⊂ S already

visited and a current state s ∈ X .

Output: Action a ∈ A to be taken from s and an estimate of the expected time τ = ITER(X, s) to visit all

nodes.

1. For all s′ ∈ S \X , compute τs′ = ITER(X ∪ {s′}, s′).

2. For s′ ∈ X , let τs′ denote the expected time taken to visit all nodes given that the next action results

in state s′. Solve the following linear program:

max τs s.t. τu ≤ `(u, a) +
∑

v∈S

τvT (v|u, a) ∀u ∈ X, a ∈ A

Here `(u, a) is the length (cost) of action a starting from state u.

3. Let τ = ITER(X, s) be the value of the above linear program, and a be the action for which τs =

`(s, a) +
∑

v∈S τvT (v|s, a). Output a and τ .

Figure 3.2: Exact iterative PSPACE algorithm ITER for STOCHASTIC-TSP

Suppose that in the solution to the above linear program, there is a variable τu for which the above

equation does not hold, then we can increase the value of that variable. This increase propagates to

other constraints in the LP and thus to other variables, and eventually we obtain a solution with a

larger τs value. Then such a solution cannot be the optimal solution to the linear program. Therefore,

the solution to the linear program returns correct values for the expected completion times.

3.3.2 The adaptivity gap

The following example shows that the gap of adaptivity for STOCHASTIC-TSP can be as high as

Ω(n) even for deterministic undirected graphs, where n is the number of states in the graph.

Example 3.5. Let G be a line graph containing n nodes v1, · · · , vn. That is, for every 1 ≤ i <

n, there is a unit-length edge between vi and vi+1. Then, the optimal TRAVELING SALESMAN

PROBLEM tour on this graph has length 2(n − 1). However, any Markov chain on this graph has

cover time at least Ω(n2), with the best one being a random walk on the graph [117]. Therefore, the

adaptivity gap of TRAVELING SALESMAN PROBLEM on this graph is Ω(n).

A natural question to ask is whether the above example represents the worst case for the adaptiv-

ity gap. We now show that this is indeed the case for deterministic undirected graphs. We also show

that the gap cannot be worse than O(n log n) for deterministic directed graphs, and O(n3 log n) for

general MDPs. However, we do not have any examples exhibiting a gap larger than O(n) for the

latter two cases.
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Theorem 3.6. The adaptivity gap of STOCHASTIC-TSP in any deterministic graph is at most

O(n log n). In undirected graphs this gap is at most O(n).

Proof. LetG(V,E) be the graph under consideration, and let T be the optimal TRAVELING SALES-

MAN PROBLEM tour in this graph. We assume for now that G is unweighted, that is, every edge

in G has length 1. We later show how to remove this assumption. Let G[T ] = (V, T ) denote the

Eulerian graph defined by T—the edge set of this graph consists of all edges traversed by T . Note

that the out-degree of every node in this graph is equal to its in-degree. Let R denote the random

walk on this graph; this walk picks an out-going edge uniformly at random at every vertex. Standard

results [117] now imply that if G[T ] is undirected, the cover time of R is at most 2n|T |. In directed

graphs, note that the hitting time from any node u to any node v is at most n|T |. Now, if we start

at some node u and run the random walk R for 2n|T |(1 + κ) log n steps, the probability that some

node is not visited is at most n−κ. Therefore, the cover time of the walk is at most O(n|T | log n).

The result now follows from noting that the length of the optimal tour is |T |.
Finally, let us consider the case of weighted graphs. The above proof uses the fact that in the

graph G[T ], for any two adjacent nodes u and v, the hitting time from u to v is at most |T |. We

first note that this is (nearly) the case for weighted graphs as well. Suppose that each edge has an

integral length, and imagine breaking each edge of the graph with length ` into ` pieces of length 1,

and running a random walk on this new graph. Then the new graph is unweighted and has |T | edges

(|T | now denotes the total length of all edges in T ). This implies that for nodes u and v that are

adjacent in the old graph G[T ], the hitting time from u to v is at most |T |+`(u, v). For non-adjacent

nodes u and v, note that there is a path from u to v containing at most n − 2 intermediate nodes.

The hitting time to go from u to v is therefore at most (n− 1)|T |+ `(u, v) ≤ n|T |. The remaining

analysis follows as before.

We now show a weaker result for general MDPs.

Theorem 3.7. For any strategy ψ in an MDP with n states, there exists a policy ψ̃ such that C(ψ̃) =

O(n3 log n)C(ψ).

Proof. As in the proof of the previous theorem, we assume that the graph is unweighted, for sim-

plicity. The weighted case can be proved analogously. We define a probability distribution p on

state-action pairs (s, a) based on the strategy ψ, and consider the static policy ψ̃ that for every loca-

tion s picks an action a with probability proportional to p(s, a). The distribution p has the following

property: if we extend it to state-outcome pairs (or “edges”)—pe(s, s
′) =

∑

a∈A p(s, a)T (s′|s, a)—
then we have

∑

s pe(s, s
′) =

∑

s pe(s
′, s). That is, pe is the stationary distribution on edges (state-

outcome pairs) defined by the policy ψ̃.

The distribution p is defined as follows. Consider the set E of all possible executions of ψ (note

that these are all possible tours on S containing all the states—possibly multiple times), and let qψ
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denote the probability distribution defined by ψ on this set. That is, for an execution E ∈ E, qψ(E)

denotes the probability that executing ψ resulted in the tour E.

Let #E(s, a) denote the number of times the action a was executed from state s in E, #E(s, s′)

denote the number of times the state s′ followed the state s in E, and #E(s) denotes the number of

times the state s was visited in E. We define p as

p(s, a) =
∑

E∈E

qψ(E)
#E(s, a)

C(ψ)

Note that p is a probability distribution, as
∑

s,a

∑

E∈E
qψ(E)#E(s, a) =

∑

E∈E
qψ(E)|E| =

C(ψ), where |E| =
∑

s,a #E(s, a) denotes the length of E. In fact, roughly speaking, p(s, a) is

the probability that the action a is taken from state s in a typical execution of ψ. Furthermore, it is

immediate8 that

pe(s, s
′) =

∑

E∈E

qψ(E)
#E(s, s′)
C(ψ)

Finally, we can show that pe is a stationary distribution, by noting that,

∑

s

pe(s, s
′) =

∑

E∈E

qψ(E)

∑

s#E(s, s′)

C(ψ)

=
∑

E∈E

qψ(E)
#E(s′)
C(ψ)

=
∑

E∈E

qψ(E)

∑

s#E(s′, s)

C(ψ)
=

∑

s

pe(s
′, s)

Having defined the distributions p and pe, we now analyze the stationary policy ψ̃. We show

that for any pair of states u and v, there is a path from u to v containing edges that have a high

probability under the stationary distribution pe of ψ̃. Informally, this means that the time taken by

ψ̃ to follow this path starting from u is small. This gives us an upper bound on the hitting time

hψ̃(u, v), and allows us to derive a bound on the cover time using standard arguments [117].

Consider a directed graph Gψ on states as follows. A pair (s, s′) is a directed edge in Gψ iff

pe(s, s
′) ≥ 4

C(ψ)n2 .

Claim 3.8. Gψ is strongly connected.

8Another way of looking at the probability distributions p and pe is to consider the computation tree of ψ with edges

at alternate levels denoting actions and outcomes respectively. Suppose that each edge is labeled with the probability that

it is encountered in an execution of ψ. Then the probability pe(s, s
′) is simply the sum over the labels of all edges of the

form a → s′ preceded by edges s → a, divided by C(ψ). Likewise, the probability p(s, a) is the sum over all edges of

the form s → a, divided by C(ψ). But the label of an edge a → s′ is simply T (s′|s, a) times the label of the preceding

edge s→ a. Therefore the statement follows.
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Proof. Suppose, for the sake of contradiction, that Gψ is not strongly connected. Then there are

sets X and S \X such that there is no edge in Gψ from X to S \X . Note that for all executions E,
∑

s∈X,s′ 6∈X #E(s, s′) ≥ 1, because E is a tour containing all the states. Then,

∑

s∈X,s′ 6∈X
pe(s, s

′) =
∑

E∈E

qψ(E)

∑

s,s′ #E(s, s′)

C(ψ)

≥
∑

E∈E

qψ(E)
1

C(ψ)
=

1

C(ψ)

This along with the fact that there are at most n2/4 pairs (s, s′) implies that for at least one pair

(s, s′), pe(s, s′) ≥ 4
C(ψ)n2 .

The above claim implies that for any two states u and v in S, there is a path from u to v such

that each edge in the path has probability at least 4
C(ψ)n2 under the stationary distribution of ψ̃. Let

this path be u = s1, s2, · · · , sm = v, where m ≤ n. Note that, given that we are currently at state

si, the expected time taken to go to the state si+1 is at most the expected time taken to follow the

edge (si, si+1), which is9 at most 1/pe(si, si+1) ≤ 1
4C(ψ)n2. Therefore, the expected time taken

to reach v starting from u is at most the expected time taken to go to s2, then to s3, and so on to

sm = v, which is at most 1
4C(ψ)n3.

Now consider running the policy ψ̃ in phases, each of C(ψ)n3 steps. In any phase, for any state

s′, the probability that we have not visited s′ in this phase is at most 1
4 . Therefore, we expect to see

at least 3/4th of the states not yet visited, in this phase. Call a phase “bad” if we see fewer than 1/2

of the remaining states in that phase, and “good” otherwise. Note that the probability that a phase

is bad is at most 1/2. Furthermore, we need at most log n “good” phases to see all the states in S.

Therefore the expected number of phases, before we have seen all the states is 2 log n, and so we

get C(ψ̃) ≤ 2C(ψ)n3 log n.

This concludes the proof of the theorem.

The theorem implies the following statement on the adaptivity gap of STOCHASTIC-TSP.

Corollary 3.9. The adaptivity gap of STOCHASTIC-TSP in any MDP is at most 2n3 log n.

3.3.3 Approximation via static policies

We showed in the previous section that for any MDP, there exists a static policy with cover time

within a factor of O(n3 log n) of the cover time of the optimal strategy. We now show that we can

in fact achieve this approximation in polynomial time. The proof of Theorem 3.7 suggests a natural

9To see this, suppose that the probability of state si under the stationary distribution defined by ψ̃ is pv(si) =
∑

s′ pe(si, s
′). Then the expected time taken to return to si, starting from si is 1/pv(si), while the expected number of

returns to si before we take the edge (si, si+1) is pe(si, si+1)/(
∑

s′ pe(si, s
′)) = pe(si, si+1)/pv(si).
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way of achieving this. Recall that in the proof of the theorem, under the stationary distribution of

the policy ψ̃, the total probability of edges from some set X to S \ X is at least 1/C(ψ). We now

construct an (exponential-sized) LP that finds such a distribution:

max P s.t.
∑

s∈S,a∈A ps,a = 1

ps,s′ =
∑

a∈A T (s′|s, a)ps,a ∀s, s′ ∈ S
∑

s′∈S ps,s′ =
∑

s′∈S ps′,s ∀s ∈ S
∑

s∈X,s′∈S\X ps,s′ ≥ P ∀X ⊂ S
ps,a ≥ 0 ∀s ∈ S, a ∈ A

Note that the optimal solution P ∗ to the above linear program has value at least 1/C(ψ). Fur-

thermore, the proof of Theorem 3.7 implies that the policy corresponding to the probability dis-

tribution found by the linear program has cover time at most O(n3 log n 1
P ∗ ) = O(n3 log nC(ψ)).

Therefore, modulo solving the linear program, we can approximate the cover time ofC(ψ) to within

a factor of O(n3 log n) using this approach.

The linear program above has exponentially many constraints. However, note that given a po-

tential solution, we can easily find a violated constraint in the LP. The first three sets of constraints

can be checked in polynomial time. For the fourth set of constraints, we set up a complete directed

graph on the set of states, and place a weight of ps,s′ on edge (s, s′); we then find the minimum

directed cut in this graph; if the value of this cut is less than C , then the corresponding constraint is

a violated constraint. Given this separation oracle, we can use the ellipsoid algorithm to solve the

linear program. We get the following theorem:

Theorem 3.10. There is a polynomial-time algorithm that given an MDP finds a static strategy with

cover-time at most O(n3 log n) times that of the optimal strategy.

The objective of the above linear program is to find a policy that maximizes the transition prob-

ability from each set to its complement. This seems very similar to the goal of finding a policy

with a large conductance10 . The conductance of a policy is closely related to its mixing time. So

this suggests that finding a policy with a small mixing time may lead to a good approximation for

the cover time. (As noted previously, this latter problem can be solved exactly via semi-definite

programming [34].) We however do not know of any means of proving such a result. In particular,

it is easy to see that a policy which has the uniform distribution as its stationary distribution and has

a mixing time of T , has a cover time at most O(Tn log n). However, given a strategy with a small

cover time, we do not know how to derive a policy with a small mixing time that has as its stationary

distribution a close-to-uniform distribution.

10The conductance of a policy is the minimum over all subsets containing less than half the probability mass, of the

transition probability from the subset to its complement, divided by the probability mass of the subset.
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3.3.4 Approximation via dynamic strategies

Our approximation to the optimal strategy using static policies is limited by the adaptivity gap of

the problem. We therefore investigate approximations via dynamic strategies. A natural place to

start exploring good dynamic solutions is the special case of ASYMMETRIC-TSP. Recall that the

ASYMMETRIC-TSP can be approximated to within an O(log n) factor [67]. A natural approach for

extending an approximation to ASYMMETRIC-TSP to the stochastic case is the following:

• For every pair of states (s, s′), compute the static policy φs,s′ with the smallest expected time

for going from the state s to the state s′; let this expected time be denoted |φs,s′ |.

• Set up a complete directed graph on the set of states, with each edge (s, s′) assigned the length

|φs,s′ |.

• Solve ASYMMETRIC-TSP on the graph G; let the resulting tour be s1, s2, · · · , sn, s1.

• Follow policy φs1,s2 until arriving at s2. Then follow policy φs2,s3 until arriving at s3, and so

on.

The approximation factor achieved by the above algorithm is at least Ω(log n), as this is the best

approximation currently know for ASYMMETRIC-TSP. However, the following example shows that

in fact this factor can be as large as n−1
logn , even if we can solve the ASYMMETRIC-TSP exactly.

Example 3.11. Consider the following MDP on a state space S with n states. From each state s,

there are n actions available. The first of these has length 1 and picks a state uniformly at random

from S. The remaining n − 1 are deterministic actions and are defined as follows—for all states

s′ 6= s, there is an action that has length n− 1 and results in the state s′ with probability 1.

Then, the optimal strategy for this MDP always follows the first (randomized) action, and has

cover time n log n. However, the best policy for going from a state s to a state s ′ always takes the

deterministic action with length n − 1. Therefore, each edge in the graph G has length n − 1 and

the resulting tour has length n(n− 1).

We now give a simple algorithm that obtains an n approximation to the optimal strategy:

Algorithm ARBITRARY-ORDER

1. Fix an arbitrary order on the states—s1, s2, · · · , sn

2. For every i ≤ n, compute the static policy φi with the smallest expected time for going from

the state si to the state si+1; let this expected time be denoted |φi|.

3. Follow strategy φ1 until s2 is seen, then follow φ2 until s3 is seen, and so on.
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Theorem 3.12. The above algorithm ARBITRARY-ORDER gives an n-approximation to the cover-

time of the optimal strategy.

Proof. The proof follows by noting that for all i ≤ n, |φi| ≤ C(ψ).

3.4 Concluding remarks

In this chapter we consider problems where the robot collects a reward only the first time it visits a

location. Solving such “time-dependent” MDPs is an important problem in AI. Unfortunately, the

well-understood and widely employed techniques of linear programming and dynamic program-

ming do not give good solutions to these problems — the size of the linear program solving the

problem exactly may be exponential, and a dynamic program may require an exponential number

of iterations to give an accurate solution. In fact we are not aware of any technique for solving these

problems, other than simulating the MDP, or solving specific instances analytically.

We present the first approximation algorithms for a class of time-dependent MDPs. Although

our approximation factors are polynomial in the size of the problem, they are interesting and non-

trivial, as the cost of the optimal solution may in fact be exponential in the size of the problem.

However, it would be interesting to obtain poly-log approximations to these problems. Another

interesting question is to resolve whether STOCHASTIC-TSP and time-dependent MDPs in general

are in PSPACE or not.

Finally, it would be interesting to develop general techniques for converting algorithms for de-

terministic problems into their stochastic counterparts. This is not entirely inconceivable – it can be

done, for example, for some 2-stage stochastic problems (see, for example, [80]).
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Chapter 4

Correlation Clustering

4.1 Introduction

Consider the following problem arising in Natural Language Processing — we are given a document

that refers to several people and/or entities, and, we wish to determine which of these references cor-

respond to the same entity. For example, a news article may contain references to Queen Elizabeth

by different strings such as “her majesty”, “the Queen of England”, and “she”. Resolving these ref-

erences, or Coreference Analysis [46, 47, 139, 140], is essential to the understanding and automated

processing of language and speech. Problems such as this arise in several fields such as natural lan-

guage processing, computer vision and databases (for example, automated resolution of citations).

Unfortunately, in most of these applications, the dependencies between references are ambiguous,

and not always consistent. Moreover, the same string may be used to reference different entities in

different contexts.

Cohen and Richman [46, 47] formulate the coreference problem as a graph problem in the

following way — based on past data, they “learn” a classifier f(A,B), that given two references A

and B, outputs whether or not it believes A and B are similar to each other. Then they construct

a graph on references, with the edge between references A and B weighted by the output of the

classifier f(A,B). Now the problem is to cluster the graph, such that pairs of references that have

a heavy positive weight edge between them lie in the same cluster, whereas those with a heavy

negative edge between them lie in different clusters. In particular, we want to maximize the total

weight of positive edges with both end points in the same cluster, and negative edges with end points

in different clusters. We call this the CORRELATION-CLUSTERING problem.

Specifically, we consider the following problem. Given a fully-connected graph G with edges

labeled “+” (similar) or “−” (different), find a partition of the vertices into clusters that agrees as

much as possible with the edge labels. In particular, we can look at this in terms of maximizing

agreements (the number of + edges inside clusters plus the number of − edges between clusters) or

in terms of minimizing disagreements (the number of − edges inside clusters plus the number of +

edges between clusters). These two are equivalent at optimality but, as usual, differ from the point

61
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of view of approximation. In this paper we give a constant factor approximation to the problem of

minimizing disagreements, and a PTAS1 for maximizing agreements. We also extend some of our

results to the case of real-valued edge weights.

In practice, the classifier f typically would output a probability, in which case the natural edge

label is log(Pr(same)/Pr(different)). This is 0 if the classifier is unsure, positive if the classifier

believes the items are more likely in the same cluster, and negative if the classifier believes they are

more likely in different clusters. The case of {+,−} labels corresponds to the setting in which the

classifier has equal confidence about each of its decisions.

What is interesting about the clustering problem defined here is that unlike most clustering

formulations, we do not need to specify the number of clusters k as a separate parameter. For

example, in k-median [36, 88] or min-sum clustering [127] or min-max clustering [85], one can

always get a perfect score by putting each node into its own cluster — the question is how well one

can do with only k clusters. In our clustering formulation, there is just a single objective, and the

optimal clustering might have few or many clusters: it all depends on the edge labels. Note also that

many standard formulations assume the underlying graph is a metric; we do not need to assume that

the similarity measure is somehow consistent2 .

To get a feel for this problem, notice that if there exists a perfect clustering, i.e., one that gets all

the edges correct, then the optimal clustering is easy to find: just delete all “−” edges and output the

connected components of the graph remaining. (In [47] this is called the “naive algorithm”.) Thus,

the interesting case is when no clustering is perfect. Also, notice that for any graph G, it is trivial to

produce a clustering that agrees with at least half of the edge labels: if there are more + edges than

− edges, then simply put all vertices into one big cluster; otherwise, put each vertex into its own

cluster. This observation means that for maximizing agreements, getting a 2-approximation is easy

(note: we will show a PTAS). In general, finding the optimal clustering is NP-hard [43].

Another simple fact to notice is that if the graph contains a triangle in which two edges are

labeled + and one is labeled −, then no clustering can be perfect. More generally, the number

of edge-disjoint triangles of this form gives a lower bound on the number of disagreements of the

optimal clustering. This fact is used in our constant-factor approximation algorithm.

For maximizing agreements, our PTAS is quite similar to the PTAS developed by de la Vega [51]

for MAXCUT on dense graphs, and related to PTASs of Arora et al. [13, 10]. Notice that since there

must exist a clustering with at least n(n − 1)/4 agreements, this means it suffices to approximate

agreements to within an additive factor of εn2. This problem is also closely related to work on

testing graph properties of [76, 119, 6]. In fact, we show how we can use the General Partition

1A PTAS (polynomial-time approximation scheme) is an algorithm that for any given fixed ε > 0 runs in polynomial

time and returns an approximation within a (1 + ε) factor. Running time may depend exponentially (or worse) on 1/ε,

however.

2For example, if references A and B are similar, and B and C are similar, A and C are not necessarily similar.
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Property Tester of Goldreich, Goldwasser, and Ron [76] as a subroutine to get a PTAS with running

time O(neO(( 1
ε
)
1
ε )). Unfortunately, this is doubly exponential in 1

ε , so we also present an alternative

direct algorithm (based more closely on the approach of [51]) that takes only O(n2eO( 1
ε
)) time.

Relation to agnostic learning: One way to view this clustering problem is that edges are

“examples” (labeled as positive or negative) and we are trying to represent the target function f

using a hypothesis class of vertex clusters. This hypothesis class has limited representational power:

if we want to say (u, v) and (v, w) are positive in this language, then we have to say (u,w) is positive

too. So, we might not be able to represent f perfectly. This sort of problem — trying to find the

(nearly) best representation of some arbitrary target f in a given limited hypothesis language — is

sometimes called agnostic learning [98, 25]. The observation that one can trivially agree with at

least half the edge labels is equivalent to the standard machine learning fact that one can always

achieve error at most 1/2 using either the all positive or all negative hypothesis.

Our PTAS for approximating the number of agreements means that if the optimal clustering has

error rate ν, then we can find one of error rate at most ν + ε. Our running time is exponential in

1/ε, but this means that we can achieve any constant error gap in polynomial time. What makes this

interesting from the point of view of agnostic learning is that there are very few problems where

agnostic learning can be done in polynomial time.3 Even for simple classes such as conjunctions

and disjunctions, no polynomial-time algorithms are known that give even an error gap of 1/2− ε.

4.1.1 Related and subsequent work

The CORRELATION-CLUSTERING problem was first formulated by Cohen et al. [47] in the context

of natural language processing. They proposed a greedy heuristic for solving this problem, but did

not give any theoretical guarantees on the quality of the clustering produced. Studying this prob-

lem in the context of phylogeny reconstruction in computational biology, Chen et al. [43] proved,

independently of us, that this problem is NP-hard even in unweighted graphs. For completeness, we

present an alternative proof of NP-hardness in Section 4.3.

We gave the first approximation algorithms for minimizing disagreements and maximizing

agreements for unweighted graphs. Wellner et al. [139, 140] implemented a variant of our algo-

rithm for minimizing disagreements and used it for the problem of Proper Noun Coreference. Their

results indicate that our algorithm outperforms all the previously known (graph based, as well as

other machine learning based) techniques for this problem.

Following the initial publication of this work, several better approximations and lower bounds

have been developed for minimizing disagreements and maximizing agreements on both unweighted

3Not counting trivial cases, like finding the best linear separator in a 2-dimensional space, that have only polynomially-

many hypotheses to choose from. In these cases, agnostic learning is easy since one can just enumerate them all and

choose the best.
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and weighted graphs. The approximation for minimizing disagreements in the unweighted case

was improved to a factor of 4 using an LP-relaxation by Charikar, Guruswami and Wirth [37].

Subsequently, Ailon, Charikar and Newman [4] developed a combinatorial 3-approximation for the

problem. This is the currently best known algorithm for unweighted graphs.

On weighted graphs, Immorlica et. al. [54] and Emanuel et. al. [58] independently developed

log-factor approximations for the problem of minimizing disagreements. The latter show that this

problem is equivalent to the minimum multiway cut problem. Charikar, Guruswami and Wirth

also give a 0.7664-approximation for maximizing agreements in a general weighted graph, which

was recently improved to 0.7666 by Swamy [132]. Charikar et al. also improve our hardness of

approximation result for minimizing disagreements to 29/28, and give a hardness of approximation

of 115/116 for maximizing agreements.

CONSENSUS-CLUSTERING – A special case: Consider an experiment for producing a clus-

tering of objects, that is influenced by environmental factors. One way of obtaining a reliable output

from such an experiment is to run it multiple times, and then aggregate the clusterings output in

different runs to produce a clustering that matches as closely as possible with all of them. More pre-

cisely, we say that the distance between two clusterings is the number of pairs of elements that they

classify differently. Then, given several input clusterings, the problem is to produce a clustering that

minimizes the sum of its distances from all the input clusterings. This CONSENSUS-CLUSTERING

problem (see [64] and references therein) is known to be NP-hard even when the number of input

clusterings is only 3. This problem reduces to the objective of minimizing disagreements, when

the weight on every edge is given by the number of input clusterings that put both the end points

of the edge in one cluster minus the number of clusterings that put the end points in different clus-

ters. A 2-approximation for this problem is easy, and can be achieved by simply producing the

best input clustering. This was recently improved by Ailon, Charikar and Newman [4] to an 11/7

approximation.

4.2 Notation and definitions

Let G = (V,E) be a complete graph on n vertices, and let e(u, v) denote the label (+ or −) of the

edge (u, v). Let N+(u) = {u} ∪ {v : e(u, v) = +} and N−(u) = {v : e(u, v) = −} denote the

positive and negative neighbors of u respectively.

We let OPT denote an optimal clustering on this graph. In general, for a clustering C, let C(v)
be the set of vertices in the same cluster as v. We will use A to denote the clustering produced by

our algorithms.

In a clustering C, we call an edge (u, v) a mistake if either e(u, v) = + and yet u 6∈ C(v), or

e(u, v) = − and u ∈ C(v). When e(u, v) = +, we call the mistake a positive mistake, otherwise it
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is called a negative mistake. We denote the total number of mistakes made by a clustering C by mC ,

and use mOPT to denote the number of mistakes made by OPT .

For positive real numbers x, y and z, we use x ∈ y± z to denote x ∈ [y− z, y+ z]. Finally, let

X for X ⊆ V denote the complement (V \X).

4.3 NP-completeness

In this section, we will prove that the problem of minimizing disagreements, or equivalently, max-

imizing agreements, is NP-complete. As mentioned earlier, the NP-hardness of this problem was

known prior to our work [43] (although not to our knowledge). For completeness, we present a

different proof below.

It is easy to see that the decision version of this problem (viz. Is there a clustering with at most z

disagreements?) is in NP since we can easily check the number of disagreements given a clustering.

Also, if we allow arbitrary weights on edges with the goal of minimizing weighted disagreements,

then a simple reduction from the Multiway Cut problem proves NP-hardness – simply put a −∞-

weight edge between every pair of terminals, then the value of the multiway cut is equal to the value

of weighted disagreements. We use this reduction to give a hardness of approximation result for the

weighted case in Section 4.7.

We give a proof of NP hardness for the unweighted case by reducing the problem of Partition

into Triangles (GT11 in [68]) to the problem of minimizing disagreements. The reader who is not

especially interested in NP-completeness proofs should feel free to skip this section.

The Partition into Triangles problem is described as follows: Given a graph G with n = 3k

vertices, does there exist a partition of the vertices into k sets V1, . . . , Vk, such that for all i, |Vi| = 3

and the vertices in Vi form a triangle.

Given a graph G = (V,E), we first transform it into a complete graph G′ on the same vertex set

V . An edge in G′ is weighted +1 if it is an edge in G and −1 otherwise.

Let A be an algorithm that given a graph outputs a clustering that minimizes the number of

mistakes. First notice that if we impose the additional constraint that all clusters produced by A

should be of size at most 3, then given the graph G′, the algorithm will produce a partition into

triangles if the graph admits one. This is because if the graph admits a partition into triangles, then

the clustering corresponding to this triangulation has no negative mistakes, and any other clustering

with clusters of size at most 3 has more positive mistakes than this clustering. Thus we could use

such an algorithm to solve the Partition into Triangles problem.

We will now design a gadget that forces the optimal clustering to contain at most 3 vertices in

each cluster. In particular, we will augment the graph G′ to a larger complete graph H , such that in

the optimal clustering on H , each cluster contains at most 3 vertices from G ′.

The construction of H is as follows: In addition to the vertices and edges of G ′, for every 3-

tuple {u, v, w} ⊂ G′, H contains a clique Cu,v,w containing n6 vertices. All edges inside these
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cliques have weight +1. Edges between vertices belonging to two different cliques have weight −1.

Furthermore, for all u, v, w ∈ G′ each vertex in Cu,v,w has a positive edge to u, v and w, and a

negative edge to all other vertices in G′.

Now assume that G admits a triangulation and let us examine the behavior of algorithm A on

graph H . Let N = n6
(

n
3

)

.

Lemma 4.1. Given H as input, in any clustering that A outputs, every cluster contains at most

three vertices of G′.

Proof. First consider a clustering C of the following form:

1. There are
(

n
3

)

clusters.

2. Each cluster contains exactly one clique Cu,v,w and some vertices of G′.

3. Every vertex u ∈ G′ is in the same cluster as Cu,v,w for some v and w.

In any such clustering, there are no mistakes among edges between cliques. The only mistakes

are between vertices of G′ and the cliques, and those between the vertices of G′. The number of

mistakes of this clustering is at most n7(
(n
2

)

− 1) +
(n
2

)

because each vertex in G′ has n6 positive

edges to
(n
2

)

cliques and is clustered with only one of them.

Now consider a clustering in which some cluster has four vertices in G′, say, u, v, w and y. We

show that this clustering has at least n7(
(

n
2

)

− 1) + n6

2 mistakes. Call this clustering X . Firstly,

without loss of generality we can assume that each cluster in X has size at most n6 + n4, otherwise

there are at least Ω(n10) negative mistakes within a cluster. This implies that each vertex in G′

makes at least
(n
2

)

n6 − (n6 + n4) positive mistakes. Hence the total number of positive mistakes

is at least n7(
(

n
2

)

− 1) − n5. Let Xu be the cluster containing vertices u, v, w, y ∈ G′. Since Xu

has at most n6 +n4 vertices, at least one of u, v, w, y will have at most n4 positive edges inside Xu

and hence will contribute at least an additional n6 − n4 negative mistakes to the clustering. Thus

the total number of mistakes is at least (
(n
2

)

− 1)n7 − n5 + n6 − n4 ≥ n7(
(n
2

)

− 1) + n6/2. Thus

the result follows.

The above lemma shows that the clustering produced by A will have at most 3 vertices of G in

each cluster. Thus we can use the algorithm A to solve the Partition into Triangles problem and the

reduction is complete.

4.4 A constant factor approximation for minimizing disagreements

As a warm-up to the general case, we begin by giving a very simple 3-approximation to the best

clustering containing two clusters. That is, if the best two-cluster partition of the graph has x

mistakes, then the following algorithm will produce one with at most 3x mistakes.
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Let OPT (2) be the best clustering containing two clusters, and let the corresponding clusters

be C1 and C2. Our algorithm simply considers all clusters of the form {N+(v), N−(v)} for v ∈ V .

Of these, it outputs the one that minimizes the number of mistakes.

Theorem 4.2. The number of mistakes of the clustering output by the algorithm stated above is at

most mA ≤ 3mOPT (2).

Proof. Let’s say an edge is “bad” if OPT (2) disagrees with it, and define the “bad degree” of a

vertex to be the number of bad edges incident to it. Clearly, if there is a vertex that has no bad edges

incident to it, the clustering produced by that vertex would be the same as {C1, C2}, and we are done

with as many mistakes as mOPT (2).

Otherwise, let v be a vertex with minimum bad degree d, and without loss of generality, let

v ∈ C1. Consider the partition {N+(v), N−(v)}. Let X be the set of bad neighbors of v – the d

vertices that are in the wrong set of the partition with respect to {C1, C2}. The total number of extra

mistakes due to this set X (other than the mistakes already made by OPT ) is at most dn. However,

since all vertices have bad degree at least d, mOPT (2) ≥ nd/2. So, the number of extra mistakes

made by taking the partition {N+(v), N−(v)} is at most 2mOPT (2). This proves the theorem.

We now describe our main algorithm: a constant-factor approximation for minimizing the num-

ber of disagreements.

The high-level idea of the algorithm is as follows. First, we show (Lemma 4.3 and 4.5) that if we

can cluster a portion of the graph using clusters that each look sufficiently “clean” (Definition 4.4),

then we can charge off the mistakes made within that portion to “erroneous triangles”: triangles with

two + edges and one− edge. Furthermore, we can do this in such a way that the triangles we charge

are nearly edge-disjoint, allowing us to bound the number of these mistakes by a constant factor of

OPT. Second, we show (Lemma 4.7) that there must exist a nearly optimal clustering OPT ′ in

which all non-singleton clusters are “clean”. Finally, we show (Theorem 4.8 and Lemma 4.12) that

we can algorithmically produce a clustering of the entire graph containing only clean clusters and

singleton clusters, such that mistakes that have an end-point in singleton clusters are bounded by

OPT ′, and mistakes with both end-points in clean clusters are bounded using Lemma 4.5.

We begin by showing a lower bound for OPT . We call a triangle “erroneous” if it contains

two positive edges and one negative edge. A fractional packing of erroneous triangles is a set of

erroneous triangles {T1, · · · , Tm} and positive real numbers ri associated with each triangle Ti,

such that for any edge e ∈ E,
∑

e∈Ti
ri ≤ 1.

Lemma 4.3. Given any fractional packing of erroneous triangles {r1, · · · , rm}, we have
∑

i ri ≤
OPT .

Proof. Let M be the set of mistakes made by OPT . Then, mOPT =
∑

e∈M 1 ≥∑

e∈M
∑

e∈Ti
ri,

by the definition of a fractional packing. So we have mOPT ≥
∑

i |M ∩Ti|ri. Now, for each Ti, we
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must have |M ∩Ti| ≥ 1, because OPT must make at least one mistake on each erroneous triangle.

This gives us the result.

Next we give a definition of a “clean” cluster and a “good” vertex.

Definition 4.4. A vertex v is called δ-good with respect to C , where C ⊆ V , if it satisfies the

following:

• |N+(v) ∩ C| ≥ (1− δ)|C|

• |N+(v) ∩ (V \ C)| ≤ δ|C|

If a vertex v is not δ-good with respect to (w.r.t.) C , then it is called δ-bad w.r.t. C . Finally, a set C

is δ-clean if all v ∈ C are δ-good w.r.t. C .

We now present two key lemmas.
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(a) Erroneous triangles for negative mistakes (b) Erroneous triangles for positive mistakes

Figure 4.1: Construction of a triangle packing for Lemma 4.5

Lemma 4.5. Given a clustering of V in which all clusters are δ-clean for some δ ≤ 1/4, there

exists a fractional packing {ri, Ti}mi=1 such that the number of mistakes made by this clustering is

at most 4
∑

i ri.

Proof. Let the clustering on V be (C1, · · · , Ck). First consider the case where the number of negative

mistakes (m−
C ) is at least half the total number of mistakes mC . We will construct a fractional

packing of erroneous triangles with
∑

i ri ≥ 1
2m

−
C ≥ 1

4mC .

Pick a negative edge (u, v) ∈ Ci × Ci that has not been considered so far. We will pick a vertex

w ∈ Ci such that both (u,w) and (v, w) are positive, and associate (u, v) with the erroneous triangle

(u, v, w) (see Figure 1). We now show that for all (u, v), such a w can always be picked such that

no other negative edges (u′, v) or (u, v′) (i.e. the ones sharing u or v) also pick w.
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Since Ci is δ-clean, neither u nor v has more than δ|Ci| negative neighbors inside Ci. Thus (u, v)

has at least (1− 2δ)|Ci| vertices w such that both (u,w) and (v, w) are positive. Moreover, at most

2δ|Ci| − 2 of these could have already been chosen by other negative edges (u, v ′) or (u′, v). Thus

(u, v) has at least (1 − 4δ)|Ci| + 2 choices of w that satisfy the required condition. Since δ ≤ 1/4,

(u, v) will always be able to pick such a w. Let Tuvw denote the erroneous triangle u, v, w.

Note that any positive edge (v, w) can be chosen at most 2 times by the above scheme, once for

negative mistakes on v and possibly again for negative mistakes on w. Thus we can give a value of

ruvw = 1/2 to each erroneous triangle picked, ensuring that
∑

Ti contains (u,v) ri ≤ 1. Now, since

we pick a triangle for each negative mistake, we get that
∑

Ti
ri = 1

2

∑

Ti
1 ≥ 1

2m
−
C .

Next, consider the case when at least half the mistakes are positive mistakes. Just as above, we

will associate mistakes with erroneous triangles. We will start afresh, without taking into account

the labelings from the previous part.

Consider a positive edge between u ∈ Ci and v ∈ Cj . Let |Ci| ≥ |Cj |. Pick a w ∈ Ci such that

(u,w) is positive and (v, w) is negative (see Figure 1). There will be at least |Ci|−δ(|Ci|+|Cj |) such

vertices as before and at most δ(|Ci| + |Cj |) of them will be already taken. Thus, there are at least

|Ci| − 2δ(|Ci|+ |Cj|) ≥ |Ci|(1− 4δ) > 0 choices for w. Moreover only the positive edge (u,w) can

be chosen twice (once as (u,w) and once as (w, u)). Thus, as before, to obtain a packing, we can

give a fractional value of ruvw = 1
2 to the triangle Tuvw. We get that

∑

Ti
ri = 1

2

∑

Ti
1 ≥ 1

2m
+
C .

Now depending on whether there are more negative mistakes or more positive mistakes, we can

choose the triangles appropriately, and hence account for at least a quarter of the total mistakes in

the clustering.

Lemma 4.5 along with Lemma 4.3 gives us the following corollary.

Corollary 4.6. Any clustering in which all clusters are δ-clean for some δ ≤ 1
4 has at most 4mOPT

mistakes.

Lemma 4.7. There exists a clustering OPT ′ in which each non-singleton cluster is δ-clean, and

mOPT ′ ≤ ( 9
δ2

+ 1)mOPT .

Proof. Consider the following procedure applied to the clustering of OPT and call the resulting

clustering OPT ′.

Procedure δ-Clean-Up: Let COPT
1 , COPT

2 , ..., COPT
k be the clusters in OPT .

1. Let S = ∅.

2. For i = 1, · · · , k do:

(a) If the number of δ
3 -bad vertices in COPT

i is more than δ
3 |COPT

i |, then, S = S ∪ COPT
i ,

C′i = ∅. We call this “dissolving” the cluster.
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(b) Else, let Bi denote the δ
3 -bad vertices in COPT

i . Then S = S ∪Bi and C′i = COPT
i \Bi.

3. Output the clustering OPT ′: C′1, C′2, ..., C′k, {x}x∈S .

We will prove that mOPT and mOPT ′ are closely related.

We first show that each C ′i is δ clean. Clearly, this holds if C ′i = ∅. Now if C ′i is non-empty, we

know that |COPT
i | ≥ |C′i| ≥ |COPT

i |(1 − δ/3). For each point v ∈ C ′i, we have:

|N+(v) ∩ C′i| ≥ (1− δ

3
)|COPT

i | − (
δ

3
)|COPT

i |

= (1− 2
δ

3
)|COPT

i |
> (1− δ)|C ′i|

Similarly, counting positive neighbors of v in COPT
i ∩ C′i and outside COPT

i , we get,

|N+(v) ∩ C′i| ≤
δ

3
|COPT
i |+ δ

3
|COPT
i |

≤ 2δ

3

|C′i|
(1− δ/3)

< δ|C′i| ( as δ < 1)

Thus each C ′i is δ-clean.

We now account for the number of mistakes. If we dissolve some COPT
i , then clearly the number

of mistakes associated with vertices in the original cluster COPT
i is at least (δ/3)2|COPT

i |2/2. The

mistakes added due to dissolving clusters is at most |COPT
i |2/2.

If COPT
i was not dissolved, then, the original mistakes in COPT

i were at least δ/3|COPT
i ||Bi|/2.

The mistakes added by the procedure is at most |Bi||COPT
i |. Noting that 6/δ < 9/δ2, the lemma

follows.

For the clustering OPT ′ given by the above lemma, we use C ′i to denote the non-singleton

clusters and S to denote the set of singleton clusters. We will now describe Algorithm CAUTIOUS

that tries to find clusters similar to OPT ′. Throughout the rest of this section, we assume that

δ = 1
44 .

Algorithm CAUTIOUS :

1. Pick an arbitrary vertex v and do the following:

(a) Let A(v) = N+(v).

(b) (Vertex Removal Step): While ∃x ∈ A(v) such that x is 3δ-bad w.r.t. A(v), A(v) =

A(v) \ {x}.
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(c) (Vertex Addition Step): Let Y = {y|y ∈ V, y is 7δ-good w.r.t. A(v)}. Let A(v) =

A(v) ∪ Y .4

2. Delete A(v) from the set of vertices and repeat until no vertices are left or until all the pro-

duced setsA(v) are empty. In the latter case, output the remaining vertices as singleton nodes.

Call the clusters output by algorithm CAUTIOUS A1, A2, · · · . Let Z be the set of singleton

vertices created in the final step. Our main goal will be to show that the clusters output by our

algorithm satisfy the property stated below.

Theorem 4.8. ∀j, ∃i such that C ′j ⊆ Ai. Moreover, each Ai is 11δ-clean.

In order to prove this theorem, we need the following two lemmas.

Lemma 4.9. If v ∈ C ′i, where C′i is a δ-clean cluster in OPT ′, then, any vertex w ∈ C ′i is 3δ-good

w.r.t. N+(v).

Proof. As v ∈ Ci, |N+(v) ∩ C′i| ≥ (1 − δ)|C ′i| and |N+(v) ∩ C′i| ≤ δ|C′i|. So, (1 − δ)|C ′i| ≤
|N+(v)| ≤ (1 + δ)|C ′i|. The same holds for w. Thus, we get the following two conditions.

|N+(w) ∩N+(v)| ≥ (1− 2δ)|C ′i| ≥ (1− 3δ)|N+(v)|
|N+(w) ∩N+(v)| ≤ |N+(w) ∩N+(v) ∩ C′i|+ |N+(w) ∩N+(v) ∩ C′i|

≤ 2δ|C′i| ≤ 2δ
1−δ |N+(v)| ≤ 3δ|N+(v)|

Thus, w is 3δ-good w.r.t. N+(v).

Lemma 4.10. Given an arbitrary set X , if v1 ∈ C′i and v2 ∈ C′j , i 6= j, then v1 and v2 cannot both

be 3δ-good w.r.t. X .

Proof. Suppose that v1 and v2 are both 3δ-good with respect to X . Then, |N+(v1) ∩ X| ≥ (1 −
3δ)|X| and |N+(v2) ∩X| ≥ (1 − 3δ)|X|, hence |N+(v1) ∩N+(v2) ∩X| ≥ (1 − 6δ)|X|, which

implies that

|N+(v1) ∩N+(v2)| ≥ (1− 6δ)|X| (4.1)

Also, since v1 and v2 lie in δ-clean clusters C ′i and C′j in OPT ′ respectively, |N+(v1) \ C′i| ≤
δ|C′i|, |N+(v2) \ C′j | ≤ δ|C′j | and C′i ∩ C′j = ∅. It follows that

|N+(v1) ∩N+(v2)| ≤ δ(|C′i|+ |C′j|) (4.2)

Now notice that |C ′i| ≤ |N+(v1)∩C′i|+δ|C′i| ≤ |N+(v1)∩X∩C′i|+|N+(v1)∩X∩C′i|+δ|C′i| ≤
|N+(v1) ∩X ∩ C′i| + 3δ|X| + δ|C ′i| ≤ (1 + 3δ)|X| + δ|C ′i|. So, |C′i| ≤ 1+3δ

1−δ |X|. The same holds

for C′j . Using Equation 4.2, |N+(v1) ∩N+(v2)| ≤ 2δ 1+3δ
1−δ |X|.

However, since δ < 1/9, we have 2δ(1+3δ) < (1−6δ)(1− δ). Thus the above equation along

with Equation 4.1 gives a contradiction and the result follows.

Corollary 4.11.

4Observe that in the vertex addition step, all vertices are added in one step as opposed to in the vertex removal step
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This gives us the following important corollary.

After every application of the removal step 1b of the algorithm, no two vertices from distinct C ′i
and C′j can be present in A(v).

Now we go on to prove Theorem 4.8.

Proof of Theorem 4.8: We will first show that each Ai is either a subset of S or contains exactly

one of the clusters C ′j . The first part of the theorem will follow.

We proceed by induction on i. Consider the inductive step. For a cluster Ai, let A′
i be the

set produced after the vertex removal phase such the cluster Ai is obtained by applying the vertex

addition phase to A′
i. We have two cases. First, we consider the case when A′

i ⊆ S. Now during the

vertex addition step, no vertex u ∈ C ′j can enter A′
i for any j. This follows because, since C ′j is δ-

clean and disjoint fromA′
i, for u to enter we need that δ|C ′j | ≥ (1−7δ)|A′

i| and (1−δ)|C ′j | ≤ 7δ|A′
i|,

and these two conditions cannot be satisfied simultaneously. Thus Ai ⊆ S.

In the second case, some u ∈ C ′j is present in A′
i. However, in this case observe that from

Corollary 4.11, no vertices from C ′k can be present in A′
i for any k 6= j. Also, by the same reasoning

as for the case A′
i ⊆ S, no vertex from C ′k will enter A′

i in the vertex addition phase. Now it only

remains to show that C ′j ⊆ Ai. Note that all vertices of C ′j are still present in the remaining graph

G \ (
⋃

`<iA`).

Since u was not removed from A′
i it follows that many vertices from C ′j are present in A′

i. In

particular, |N+(u)∩A′
i| ≥ (1− 3δ)|A′

i| and |N+(u) ∩A′
i| ≤ 3δ|A′

i|. Now (1− δ)|C ′j | ≤ |N+(u)|
implies that |C ′j| ≤ 1+3δ

1−δ |A′
i| < 2|A′

i|. Also, |A′
i ∩ C′j | ≥ |A′

i ∩ N+(u)| − |N+(u) ∩ C′j | ≥
|A′

i ∩N+(u)| − δ|C ′j |. So we have |A′
i ∩ C′j| ≥ (1− 5δ)|A′

i|.
We now show that all remaining vertices from C ′j will enter Ai during the vertex addition phase.

For w ∈ C′j such that w /∈ A′
i, |A′

i ∩ C′j | ≤ 5δ|A′
i| and |N+(w) ∩ C′j | ≤ δ|C′j | together imply that

|A′
i ∩ N+(w)| ≤ 5δ|A′

i| + δ|C′j | ≤ 7δ|A′
i|. The same holds for |A′

i ∩ N+(w)|. So w is 7δ-good

w.r.t. A′
i and will be added in the Vertex Addition step. Thus we have shown that A(v) can contain

C′j for at most one j and in fact will contain this set entirely.

Next, we will show that for every j, ∃i s.t. C ′j ⊆ Ai. Let v chosen in Step 1 of the algorithm

be such that v ∈ C ′j . We show that during the vertex removal step, no vertex from N+(v) ∩ C′j
is removed. The proof follows by an easy induction on the number of vertices removed so far (r)

in the vertex removal step. The base case (r = 0) follows from Lemma 4.9 since every vertex

in C′j is 3δ-good with respect to N+(v). For the induction step observe that since no vertex from

N+(v) ∩ C′j is removed thus far, every vertex in C ′j is still 3δ-good w.r.t. to the intermediate A(v)

(by mimicking the proof of Lemma 4.9 with N+(v) replaced by A(v)). Thus A′
i contains at least

(1−δ)|C′j | vertices of C ′j at the end of the vertex removal phase, and hence by the second case above,

C′j ⊆ Ai after the vertex addition phase.

Finally we show that every non-singleton cluster Ai is 11δ-clean. We know that at the end of

the vertex removal phase, ∀x ∈ A′
i, x is 3δ-good w.r.t. A′

i. Thus, |N+(x) ∩ A′
i| ≤ 3δ|A′

i|. So the
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total number of positive edges leaving A′
i is at most 3δ|A′

i|2. Since, in the vertex addition step, we

add vertices that are 7δ-good w.r.t. A′
i, the number of these vertices can be at most 3δ|A′

i|2/(1 −
7δ)|A′

i| < 4δ|A′
i|. Thus |Ai| < (1 + 4δ)|A′

i|.
Since all vertices v inAi are at least 7δ-good w.r.t. A′

i,N
+(v)∩Ai ≥ (1−7δ)|A′

i | ≥ 1−7δ
1+4δ |Ai| ≥

(1− 11δ)|Ai|. Similarly, N+(v) ∩Ai ≤ 7δ|A′
i| ≤ 11δ|Ai|. This gives us the result. 2

Now we are ready to bound the mistakes of A in terms of OPT and OPT ′. Call mistakes that have

both end points in some clusters Ai and Aj as internal mistakes and those that have an end point in

Z as external mistakes. Similarly in OPT ′, we call mistakes among the sets C ′i as internal mistakes

and mistakes having one end point in S as external mistakes. We bound mistakes of CAUTIOUS in

two steps: the following lemma bounds external mistakes.

Lemma 4.12. The total number of external mistakes made by CAUTIOUS are less than the external

mistakes made by OPT ′.

Proof. From Theorem 4.8, it follows that Z cannot contain any vertex v in some C ′i. Thus, Z ⊆ S.

Now, any external mistakes made by CAUTIOUS are positive edges adjacent to vertices in Z . These

edges are also mistakes in OPT ′ since they are incident on singleton vertices in S. Hence the

lemma follows.

Now consider the internal mistakes of A. Notice that these could be many more than the internal

mistakes of OPT ′. However, we can at this point apply Lemma 4.6 on the graph induced by V ′ =
⋃

iAi. In particular, the bound on internal mistakes follows easily by observing that 11δ ≤ 1/4,

and that the mistakes of the optimal clustering on the graph induced by V ′ is no more than mOPT .

Thus,

Lemma 4.13. The total number of internal mistakes of CAUTIOUS is ≤ 4mOPT .

Summing up results from the Lemmas 4.12 and 4.13, and using Lemma 4.7, we get the following

theorem:

Theorem 4.14. mCAUTIOUS ≤ ( 9
δ2

+ 5)mOPT , with δ = 1
44 .

4.5 A PTAS for maximizing agreements

In this section, we give a PTAS for maximizing agreements: the total number of positive edges

inside clusters and negative edges between clusters.

As before, let OPT denote an optimal clustering and A denote our clustering. We will abuse

notation and also use OPT to denote the number of agreements in the optimal solution. As noted

in the introduction, OPT ≥ n(n − 1)/4. So it suffices to produce a clustering that has at least

OPT −εn2 agreements, which will be the goal of our algorithm. Let δ+(V1, V2) denote the number
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of positive edges between sets V1, V2 ⊆ V . Similarly, let δ−(V1, V2) denote the number of negative

edges between the two. Let OPT (ε) denote the optimal clustering that has all non-singleton clusters

of size greater than εn.

Lemma 4.15. OPT (ε) ≥ OPT − εn2/2.

Proof. Consider the clusters of OPT of size less than or equal to εn and break them apart into

clusters of size 1. Breaking up a cluster of size s reduces our objective function by at most
(

s
2

)

,

which can be viewed as s/2 per node in the cluster. Since there are at most n nodes in these

clusters, and these clusters have size at most εn, the total loss is at most ε n
2

2 .

The above lemma means that it suffices to produce a good approximation to OPT (ε). Note that the

number of non-singleton clusters in OPT (ε) is less than 1
ε . Let COPT

1 , . . . , COPT
k denote the non-

singleton clusters of OPT (ε) and let COPT
k+1 denote the set of points which correspond to singleton

clusters.

4.5.1 A PTAS doubly-exponential in 1/ε

If we are willing to have a run time that is doubly-exponential in 1/ε, we can do this by reducing

our problem to the General Partitioning problem of [76]. The idea is as follows.

Let G+ denote the graph of only the + edges in G. Then, notice that we can express the quality

of OPT (ε) in terms of just the sizes of the clusters, and the number of edges in G+ between and

inside each of COPT
1 , . . . , COPT

k+1 . In particular, if si = |COPT
i | and ei,j = δ+(COPT

i , COPT
j ), then

the number of agreements in OPT (ε) is:

[

k
∑

i=1

ei,i

]

+

[(

sk+1

2

)

− ek+1,k+1

]

+





∑

i6=j
(sisj − ei,j)



 .

The General Partitioning property tester of [76] allows us to specify values for the si and eij ,

and if a partition ofG+ exists satisfying these constraints, will produce a partition that satisfies these

constraints approximately. We obtain a partition that has at least OPT (ε) − εn2 agreements. The

property tester runs in time exponential in ( 1
ε )
k+1 and polynomial in n.

Thus if we can guess the values of these sizes and number of edges accurately, we would be

done. It suffices, in fact, to only guess the values up to an additive ±ε2n for the si, and up to an

additive ±ε3n2 for the ei,j , because this introduces an additional error of at most O(ε). So, at most

O((1/ε3)1/ε
2
) calls to the property tester need to be made. Our algorithm proceeds by finding a

partition for each possible value of si and ei,j and returns the partition with the maximum number

of agreements. We get the following result:

Theorem 4.16. The General Partitioning algorithm returns a clustering of graph G which has more

than OPT − εn2 agreements with probability at least 1− δ. It runs in time eO(( 1
ε
)1/ε)× poly(n, 1

δ ).
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4.5.2 A singly-exponential PTAS

We will now describe an algorithm that is based on the same basic idea of random sampling used

by the General Partitioning algorithm. The idea behind our algorithm is as follows: Let {Oi} be the

clusters in OPT . We select a small random subset W of vertices and cluster them correctly into

{Wi} with Wi ⊂ Oi ∀i, by enumerating all possible clusterings of W . Since this subset is picked

randomly, with a high probability, for all vertices v, the density of positive edges between v and W i

will be approximately equal to the density of positive edges between v and Oi. So we can decide

which cluster to put v into, based on this information. However this is not sufficient to account

for edges between two vertices v1 and v2, both of which do not belong to W . So, we consider a

partition of the rest of the graph into subsets Ui of size m and try out all possible clusterings {Uij}
of each subset, picking the one that maximizes agreements with respect to {Wi}. This gives us the

PTAS.

Firstly note that if |COPT
k+1 | < εn, then if we only consider the agreements in the graphG\COPT

k+1 ,

it affects the solution by at most εn2. For now, we will assume that |COPT
k+1 | < εn and will present

the algorithm and analysis based on this assumption. Later we will discuss the changes required to

deal with the other case.

In the following algorithm ε is a performance parameter to be specified later. Letm = 883×40
ε10

(log 1
ε+

2), k = 1
ε and ε′ = ε3

88 . Let pi denote the density of positive edges inside the cluster COPT
i and nij

the density of negative edges between clusters COPT
i and COPT

j . That is, pi = δ+(COPT
i , COPT

i )/
(|COPT

i |
2

)

and nij = δ−(COPT
i , COPT

j )/(|COPT
i ||COPT

j |). Let W ⊂ V be a random subset of size m.

We begin by defining a measure of goodness of a clustering {Uij} of some set Ui with respect

to a fixed partition {Wi}, that will enable us to pick the right clustering of the set Ui. Let p̂i and n̂ij
be estimates of pi and nij respectively, based on {Wi}, to be defined later in the algorithm.

Definition 4.17. Ui1, . . . , Ui(k+1) is ε′-good w.r.t. W1, . . . ,Wk+1 if it satisfies the following for all

1 ≤ j, ` ≤ k:

(1) δ+(Uij ,Wj) ≥ p̂j
(Wj

2

)

− 18ε′m2

(2) δ−(Uij ,W`) ≥ n̂j`|Wj||W`| − 6ε′m2

and, for at least (1− ε′)n of the vertices x and ∀ j,

(3) δ+(Uij , x) ∈ δ+(Wj, x)± 2ε′m.

Our algorithm is as follows:

Algorithm DIVIDE&CHOOSE :

1. Pick a random subset W ⊂ V of size m.
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2. For all partitions W1, . . . ,Wk+1 of W do

(a) Let p̂i = δ+(Wi,Wi)/
(|Wi|

2

)

, and n̂ij = δ−(Wi,Wj)/|Wi||Wj |.
(b) Let q = n

m − 1. Consider a random partition of V \W into U1, . . . , Uq, such that ∀i,
|Ui| = m.

(c) For all i do:

Consider all (k+1)-partitions of Ui and let Ui1, . . . , Ui(k+1) be a partition that is ε′-good

w.r.t. W1, . . . ,Wk+1 (by Definition 4.17 above). If there is no such partition, choose

Ui1, . . . , Ui(k+1) arbitrarily.

(d) Let Aj =
⋃

i Uij for all i. Let a({Wi}) be the number of agreements of this clustering.

3. Let {Wi} be the partition ofW that maximizes a({Wi}). Return the clusters {Ai}, {x}x∈Ak+1

corresponding to this partition of W .

We will concentrate on the ”right” partition of W given by Wi = W ∩ COPT
i , ∀i. We will show

that the number of agreements of the clustering A1, . . . , Ak+1 corresponding to this partition {Wi}
is at least OPT (ε)− 2εn2 with a high probability. Since we pick the best clustering, this gives us a

PTAS.

We will begin by showing that with a high probability, for most values of i, the partition of Uis

corresponding to the optimal partition is good with respect to {Wi}. Thus the algorithm will find at

least one such partition. Next we will show that if the algorithm finds good partitions for most U i,

then it achieves at least OPT −O(ε)n2 agreements.

We will need the following results from probability theory. Please refer to [7] for a proof.

FACT 1: LetH(n,m, l) be the hypergeometric distribution with parameters n,m and l (choos-

ing l samples from n points without replacement with the random variable taking a value of 1 on

exactly m out of the n points). Let 0 ≤ ε ≤ 1. Then

Pr

[
∣

∣

∣

∣

H(n,m, l)− lm

n

∣

∣

∣

∣

≥ εlm

n

]

≤ 2e−
ε2lm
2n

FACT 2: LetX1, X2, ..., Xn be mutually independent random variables such that |Xi−E[Xi]| <
m for all i. Let S =

∑n
i=1Xi, then

Pr [|S −E[S]| ≥ a] ≤ 2e−
a2

2nm2

We will also need the following lemma:

Lemma 4.18. Let Y and S be arbitrary disjoint sets and Z be a set picked from S at random. Then

we have the following:

Pr

[
∣

∣

∣

∣

δ+(Y,Z)− |Z||S| δ
+(Y, S)

∣

∣

∣

∣

> ε′|Y ||Z|
]

≤ 2e
−ε′2 |Z|

2
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Proof. δ+(Y,Z) is a sum of |Z| random variables δ+(Y, v) (v ∈ Z), each bounded above by |Y |
and having expected value δ+(Y,S)

|S| .

Thus applying Fact 2, we get

Pr
[
∣

∣δ+(Y,Z)− |Z|δ+(Y, S)/|S|
∣

∣ > ε′|Z||Y |
]

≤ 2e−ε
′2|Z|2|Y |2/2|Z||Y |2 ≤ 2e−ε

′2|Z|/2

Now notice that since we picked W uniformly at random from V , with a high probability the

sizes of Wis are in proportion to |COPT
i |. The following lemma formalizes this.

Lemma 4.19. With probability at least 1 − 2ke−ε
′2εm/2 over the choice of W , ∀i, |Wi| ∈ (1 ±

ε′)mn |COPT
i |.

Proof. For a given i, using Fact 1 and since |COPT
i | ≥ εn,

Pr
[
∣

∣

∣
|Wi| −

m

n
|COPT
i |

∣

∣

∣
> ε′

m

n
|COPT
i |

]

≤ 2e−ε
′2m|COPT

i |/2n ≤ 2e−ε
′2εm/2

Taking a union bound over the k values of i we get the result.

Using Lemma 4.19, we show that the computed values of p̂i and n̂ij are close to the true values pi
and nij respectively. This gives us the following two lemmas.

Lemma 4.20. IfWi ⊂ COPT
i and Wj ⊂ COPT

j , i 6= j, then with probability at least 1−4e−ε
′2εm/4

over the choice of W , δ+(Wi,Wj) ∈ m2

n2 δ
+(COPT

i , COPT
j )± 3ε′m2.

Proof. We will apply Lemma 4.18 in two steps. First we will bound δ+(Wi,Wj) in terms of

δ+(Wi, COPT
j ) by fixing Wi and considering the process of picking Wj from COPT

j .

Using Wi for Y , Wj for Z and COPT
j for S in Lemma 4.18, we get the following5.

Pr
[
∣

∣

∣
δ+(Wi,Wj)−

m

n
δ+(Wi, COPT

j )
∣

∣

∣
> ε′m2

]

≤ 2e−ε
′2εm/4

We used the fact that m ≥ |Wj | ≥ εm/2 with high probability. Finally, we again apply Lemma

4.18 to bound δ+(Wi, COPT
j ) in terms of δ+(COPT

i , COPT
j ). Taking Y to be COPT

j , Z to be Wi

and S to be COPT
i , we get

Pr
[
∣

∣

∣
δ+(Wi, COPT

j )− m

n
δ+(COPT

i , COPT
j )

∣

∣

∣
> 2ε′

m

n
|COPT
i ||COPT

j |
]

≤ 2e−ε
′2εm/4

Again we used the fact that |Wi| < 2m
n |COPT

i | with high probability. So, with probability at least

1 − 4e−ε
′2εm/4, we have, |mn δ+(Wi, COPT

j ) − m2

n2 δ
+(COPT

i , COPT
j )| < 2ε′m

2

n2 |COPT
i ||COPT

j | <
2ε′m2 and |δ+(Wi,Wj)− m

n δ
+(Wi, COPT

j )| < ε′m2. This gives us

5We are assuming that W is a set of size m chosen randomly from n with replacement, since m is a constant, we will

have no ties with probability 1 −O(n−1).
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Pr

[∣

∣

∣

∣

δ+(Wi,Wj)−
m2

n2
δ+(COPT

i , COPT
j )

∣

∣

∣

∣

> 3ε′m2

]

≤ 4e−ε
′2εm/4

Lemma 4.21. With probability at least 1− 8
ε′2 e

−ε′3εm/4 over the choice of W , p̂i ≥ pi − 9ε′

Proof. Note that we cannot use an argument similar to the previous lemma directly here since we

are dealing with edges inside the same set. Instead we use the following trick.

Consider an arbitrary partition of COPT
i into 1

ε′ sets of size ε′n′ each where n′ = |COPT
i |. Let

this partition be COPT
i,1 , · · · , COPT

i,1/ε′ and let Wi,j = Wi ∩ COPT
i,j . Let m′ = |Wi|. Now consider

δ+(Wi,j1 ,Wi,j2). Using an argument similar to the previous lemma, we get that with probability at

least 1− 4e−ε
′3εm/4,

δ+(Wi,j1 ,Wi,j2) ∈
|Wi,j1 ||Wi,j2 |
|COPT
i,j1

||COPT
i,j2

|δ
+(COPT

i,j1 , COPT
i,j2 )± 2ε′|Wi,j1 ||Wi,j2 |

Noting that
|Wi,j1

||Wi,j2
|

|COPT
i,j1

||COPT
i,j2

| < (1 + 3ε′)m
′2

n′2 , with probability at least 1− 4e−ε
′3εm/4, we get,

Pr

[
∣

∣

∣

∣

δ+(Wi,j1 ,Wi,j2)−
m′2

n′2
δ+(COPT

i,j1 , COPT
i,j2 )

∣

∣

∣

∣

< 8ε′|Wi,j1 ||Wi,j2 |
]

≥ 1− 8e−ε
′3εm/4

This holds for every value of j1 and j2 with probability at least 1− 8
ε′2
e−ε

′3εm/4. Now,

δ+(Wi,Wi) ≥
∑

j1<j2

δ+(Wi,j1 ,Wi,j2)

≥ 1

1 + 8ε′
m′2

n′2
∑

j1<j2

δ+(COPT
i,j1 , COPT

i,j2 )

≥ 1

1 + 8ε′
m′2

n′2
(pi

n′2

2
− 1

ε′
ε′2n′2

2
)

≥ (pi − 9ε′)
|Wi|2

2

Now let Uij = Ui ∩ COPT
j . The following lemma shows that for all i, with a high probability all

Uijs are ε′-good w.r.t. {Wi}. So we will be able to find ε′-good partitions for most Uis.

Lemma 4.22. For a given i, let Uij = Ui∩COPT
j , then with probability at least 1−32k 1

ε′2
e−ε

′3εm/4

over the choice of Ui, ∀j ≤ k, {Uij} are ε′-good w.r.t. {Wj}.
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Proof. Consider the partition {Uij} of Ui. Using an argument similar to Lemma 4.20, we get

|δ+(Uij ,Wl) − m2

n2 δ
+(COPT

j , COPT
l )| ≤ 3ε′m2 with probability at least 1 − 4e−ε

′2εm/4. Also,

again from Lemma 4.20, |δ+(Wj ,Wl) − m2

n2 δ
+(COPT

j , COPT
l )| ≤ 3ε′m2. So, |δ+(Uij ,Wl) −

δ+(Wj,Wl)| ≤ 6ε′m2 with probability at least 1− 8e−ε
′2εm/4. This gives us the second condition

of Definition 4.17.

Similarly, using Lemma 4.21, we obtain the first condition. The failure probability in this step

is at most 16 1
ε′2
e−ε

′3εm/4.

Now, consider δ+(x,Uij). This is a sum ofm {0, 1} random variables (corresponding to picking

Ui from V ), each of which is 1 iff the picked vertex lies in COPT
j and is adjacent to x. Applying

Chernoff bound, we get,

Pr
[
∣

∣

∣
δ+(x,Uij)− m

n δ
+(x, COPT

j )
∣

∣

∣
> ε′m

]

≤ 2e−ε
′2m/2

Similarly we have, Pr
[
∣

∣

∣
δ+(x,Wj)− m

n δ
+(x, COPT

j )
∣

∣

∣
> ε′m

]

≤ 2e−ε
′2m/2.

So we get, Pr [|δ+(x,Uij)− δ+(x,Wj)| > 2ε′m] ≤ 4e−ε
′2m/2.

Note that, here we are assuming that W and Ui are picked independently from V . However,

picking Ui from V \W is similar to picking it from V since the collision probability is extremely

small.

Now, the expected number of points that do not satisfy condition 3 for some Uij is 4ne−ε
′2m/2.

The probability that more than ε′n of the points fail to satisfy condition 3 for one of the Uijs in Ui
is at most k 1

ε′n4ne−ε
′2m/2 ≤ 4k

ε′ e
−ε′2m/2. This gives us the third condition.

The total probability that some Ui does not satisfy the above conditions is at most

8e−ε
′2εm/4 + 16 1

ε′2
e−ε

′3εm/4 + 4k
ε′ e

−ε′2m/2

≤ 32 1
ε′2
e−ε

′3εm/4

Now we can bound the total number of agreements of A1, . . . , Ak, {x}x∈Ak+1
in terms of OPT :

Theorem 4.23. If |COPT
k+1 | < εn, then A ≥ OPT − 3εn2 with probability at least 1− ε.

Proof. From Lemma 4.22, the probability that we were not able to find an ε′-good partition of Ui
w.r.t. W1, · · · ,Wk is at most 32 1

ε′2
e−ε

′3εm/4. By our choice of m, this is at most ε2/4. So, with

probability at least 1− ε/2, at most ε/2 of the Uis do not have an ε′-good partition.

In the following calculation of the number of agreements, we assume that we are able to find

good partitions of all Uis. We will only need to subtract at most εn2/2 from this value to obtain the

actual number of agreements, since each Ui can affect the number of agreements by at most mn.

We start by calculating the number of positive edges inside a cluster Aj . These are given by



80 CHAPTER 4. CORRELATION CLUSTERING

∑

a

∑

x∈Aj
δ+(Uaj , x). Using the fact that Uaj is good w.r.t. {Wi} (condition (3)),

∑

x∈Aj
δ+(Uaj , x)

≥∑

x∈Aj
(δ+(Wj, x)− 2ε′m)− ε′n|Uaj |

=
∑

b δ
+(Wj , Ubj)− 2ε′m|Aj | − ε′n|Uaj |

≥∑

b{p̂j
|Wj |2

2 − 18ε′m2} − 2ε′m|Aj| − ε′n|Uaj |

The last inequality follows from the fact that Ubj is good w.r.t. {Wi} (condition (1)). From Lemma

4.19,

∑

x∈Aj
δ+(Uaj , x) ≥

∑

b{m
2

n2 p̂j(1− ε′)2
|COPT

j |2
2 − 18ε′m2} − 2ε′m|Aj | − ε′n|Uaj|

≥ m
n p̂j(1− ε′)2

|COPT
j |2

2 − 18ε′mn− 2ε′m|Aj | − ε′n|Uaj |

Thus we bound
∑

a δ
+(Aj , Uaj) as

∑

a δ
+(Aj , Uaj) ≥ p̂j(1− ε′)2

|COPT
j |2

2 − 18ε′n2 − 3ε′n|Aj |.
Now using Lemma 4.21, the total number of agreements is at least

∑

j

[

p̂j(1− ε′)2
|COPT

j |2
2

]

−18ε′n2k − 3ε′n2

≥∑

j

[

(pj − 9ε′)(1− ε′)2 |COPT
j |2

2

]

− 18ε′n2k − 3ε′n2

Hence, A+ ≥ OPT + − 11ε′kn2 − 21ε′n2k ≥ OPT + − 32ε′n2k.

Similarly, consider the negative edges in A. Using Lemma 4.20 to estimate δ−(Uai, Ubj), we get,

∑

ab

δ−(Uai, Ubj) ≥ δ−(COPT
i , COPT

j )− 9ε′n2 − 2ε′n|Ai| − ε′n|Aj|

Summing over all i < j, we get the total number of negative agreements is at least OPT − −
12ε′k2n2.

So we have, A ≥ OPT − 44ε′k2n2 = OPT − εn2/2. However, since we lose εn2/2 for not

finding ε′-good partitions of every Ui (as argued before), εn2 due to COPT
k+1 , and εn2/2 for using

k = 1
ε we obtain A ≥ OPT − 3εn2.

The algorithm can fail in four situations:

1. More than ε/2 Uis do not have an ε′-good partition. However, this happens with probability

at most ε/2.

2. Lemma 4.19 does not hold for some Wi. This happens with probability at most 2ke−ε
′2εm/2.

3. Lemma 4.21 does not hold for some i. This happens with probability at most 8k
ε′2
e−ε

′3εm/4

4. Lemma 4.20 does not hold for some pair i, j. This happens with probability at most 4k2e−ε
′2εm/4.

Observing that the latter three probabilities sum up to at most ε/2 by our choice of m. So, the

algorithm succeeds with probability greater than 1− ε.
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Now we need to argue for the case when |COPT
k+1 | ≥ εn. Notice that in this case, using an

argument similar to Lemma 4.19, we can show that |Wk+1| ≥ εm
2 with a very high probability. This

is good because, now with a high probability, Ui(k+1) will also be ε′-good w.r.t. Wk+1 for most

values of i. We can now count the number of negative edges from these vertices and incorporate

them in the proof of Theorem 4.23 just as we did for the other k clusters. So in this case, we can

modify algorithm DIVIDE&CHOOSE to consider ε′-goodness of the (k + 1)th partitions as well.

This gives us the same guarantee as in Theorem 4.23. Thus our strategy will be to run Algorithm

DIVIDE&CHOOSE once assuming that |COPT
k+1 | ≥ εn and then again assuming that |COPT

k+1 | ≤ εn,

and picking the better of the two outputs. One of the two cases will correspond to reality and will

give us the desired approximation to OPT .

Now each Ui has O(km) different partitions. Each iteration takes O(nm) time. There are n/m

Uis, so for each partition of W , the algorithm takes time O(n2km). Since there are km different

partitions of W , the total running time of the algorithm is O(n2k2m) = O(n2eO( 1
ε10

log ( 1
ε
))). This

gives us the following theorem:

Theorem 4.24. For any δ ∈ [0, 1], using ε = δ
3 , Algorithm DIVIDE&CHOOSE runs in time

O(n2eO( 1
δ10

log ( 1
δ
))) and with probability at least 1− δ

3 produces a clustering with number of agree-

ments at least OPT − δn2.

4.6 Random noise

Going back to our original motivation, if we imagine there is some true correct clustering OPT

of our n items, and that the only reason this clustering does not appear perfect is that our function

f(A,B) used to label the edges has some error, then it is natural to consider the case that the errors

are random. That is, there is some constant noise rate ν < 1/2 and each edge, independently, is

mislabeled with respect to OPT with probability ν. In the machine learning context, this is called

the problem of learning with random noise. As can be expected, this is much easier to handle than

the worst-case problem. In fact, with very simple algorithms one can (w.h.p.) produce a clustering

that is quite close to OPT , much closer than the number of disagreements between OPT and f .

The analysis is fairly standard (much like the generic transformation of Kearns [97] in the machine

learning context, and even closer to the analysis of Condon and Karp for graph partitioning [48]). In

fact, this problem nearly matches a special case of the planted-partition problem of McSherry [116].

Shamir and Tsur [128] independently consider the random noise problem in a slightly more general

framework—they consider different amounts of noise for positive and negative edges. Their results

are similar in spirit as ours. We present our analysis anyway since the algorithms are so simple.

One-sided noise: As an easier special case, let us consider only one-sided noise in which

each true “+” edge is flipped to “−” with probability ν. In that case, if u and v are in different
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clusters of OPT , then |N+(u) ∩ N+(v)| = 0 for certain. But, if u and v are in the same cluster,

then every other node in the cluster independently has probability (1 − ν)2 of being a neighbor

to both. So, if the cluster is large, then N+(u) and N+(v) will have a non-empty intersection

with high probability. So, consider clustering greedily: pick an arbitrary node v, produce a cluster

Cv = {u : |N+(u) ∩ N+(v)| > 0}, and then repeat on V − Cv . With high probability we will

correctly cluster all nodes whose clusters in OPT are of size ω(log n). The remaining nodes might

be placed in clusters that are too small, but overall the number of edge-mistakes is only Õ(n).

Two-sided noise: For the two-sided case, it is technically easier to consider the symmetric

difference of N+(u) and N+(v). If u and v are in the same cluster of OPT , then every node

w 6∈ {u, v} has probability exactly 2ν(1−ν) of belonging to this symmetric difference. But, if u and

v are in different clusters, then all nodes w in OPT (u)∪OPT (v) have probability (1−ν)2 +ν2 =

1 − 2ν(1 − ν) of belonging to the symmetric difference. (For w 6∈ OPT (u) ∪ OPT (v), the

probability remains 2ν(1 − ν).) Since 2ν(1 − ν) is a constant less than 1/2, this means we can

confidently detect that u and v belong to different clusters so long as |OPT (u) ∪ OPT (v)| =

ω(
√
n log n). Furthermore, using just |N+(v)|, we can approximately sort the vertices by cluster

sizes. Combining these two facts, we can w.h.p. correctly cluster all vertices in large clusters, and

then just place each of the others into a cluster by itself, making a total of Õ(n3/2) edge mistakes.

4.7 Extensions

So far in the paper, we have only considered the case of edge weights in {+,−}. Now we consider

real valued edge weights. To address this setting, we need to define a cost model – the penalty for

placing an edge inside or between clusters.

One natural model is a linear cost function. Specifically, let us assume that all edge weights lie

in [−1,+1]. Then, given a clustering, we assign a cost of 1−x
2 if an edge of weight x is within a

cluster and a cost of 1+x
2 if it is placed between two clusters. For example, an edge weighing 0.5

incurs a cost of 0.25 if it lies inside a cluster and 0.75 otherwise. A 0−weight edge, on the other

hand, incurs a cost of 1/2 no matter what.

Another natural model is to consider weighted disagreements. That is, a positive edge incurs

a penalty equal to its weight if it lies between clusters, and zero penalty otherwise, and vice versa

for negative edges. The objective in this case is to minimize the sum of weights of positive edges

between clusters and negative edges inside clusters. A special case of this problem is edge weights

lying in {−1, 0,+1}. Zero-weight edges incur no penalty, irrespective of the clustering, and thus

can be thought of as missing edges.

In this section we show that our earlier results generalize to the case of linear cost functions for

the problem of minimizing disagreements. However, we do not have similar results for the case of

weighted disagreements or agreements. We give evidence that this latter case is hard to approximate.
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Linear cost functions

First we consider the linear cost function on [−1,+1] edges. It turns out, as we show in the following

theorem, that any algorithm that finds a good clustering in a graph with +1 or −1 edges also works

well in this case.

Theorem 4.25. Let A be an algorithm that produces a clustering on a graph with +1 and −1 edges

with approximation ratio ρ. Then, we can construct an algorithm A′ that achieves a (2ρ + 1)-

approximation on a [−1, 1]−graph, under a linear cost function.

Proof. Let G be a [−1, 1]−graph, and let G′ be the graph with +1 and −1 edges obtained when we

assign a weight of 1 to all positive edges in G and −1 to all the negative edges (0 cost edges are

weighted arbitrarily). Let OPT be the optimal clustering on G and OPT ′ the optimal clustering

on G′. Also, let m′ be the measure of cost (on G′) in the {+,−} penalty model and m in the new

[−1, 1] penalty model.

Then, m′
OPT ′ ≤ m′

OPT ≤ 2mOPT . The first inequality follows by design. The latter in-

equality holds because the edges on which OPT incurs a greater penalty according to m ′ in G′

than according to m in G, are either the positive edges between clusters or negative edges inside a

cluster. In both these situations, OPT incurs a cost of at least 1/2 in m and at most 1 in m ′.

Our algorithm A′ simply runs A on the graph G′ and outputs the resulting clustering A. So, we

have, m′
A ≤ ρm′

OPT ′ ≤ 2ρmOPT .

Now we need to bound mA in terms of m′
A. Notice that, if a positive edge lies between two

clusters in A, or a negative edge lies inside a cluster, then the cost incurred by A for these edges in

m′ is 1 while it is at most 1 in m. So, the total cost due to such mistakes is at most m ′
A. On the other

hand, if we consider cost due to positive edges inside clusters, and negative edges between clusters,

then OPT also incurs at least this cost on those edges (because cost due to these edges can only

increase if they are clustered differently). So cost due to these mistakes is at most mOPT .

So we have,
mA ≤ m′

A +mOPT ≤ 2ρmOPT +mOPT

= (2ρ+ 1)mOPT

Interestingly, the above theorem holds generally for a class of cost functions that we call unbi-

ased. An unbiased cost function assigns a cost of at least 1
2 to positive edges lying between clusters

and negative edges inside clusters, and a cost of at most 1
2 otherwise. A 0−weight edge always

incurs a cost of 1
2 as before. For example, one such function is 1+x3

2 if an edge of weight x lies

between clusters and 1−x3

2 otherwise.
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Weighted agreements/disagreements

Next we consider minimizing weighted disagreements or maximizing weighted agreements. Con-

sider first, the special case of edge weights lying in {−1, 0,+1}. Notice that, as before, if a perfect

clustering exists, then it is easy to find it, by simply removing all the − edges and producing each

connected component of the resulting graph as a cluster. The random case is also easy if defined

appropriately. However, our approximation techniques do not appear to go through. We do not

know how to achieve a constant-factor, or even logarithmic factor, approximation for minimizing

disagreements. Note that we can still use our DIVIDE&CHOOSE algorithm to achieve an additive

approximation of εn2 for agreements. However, this does not imply a PTAS in this variant, because

OPT might be o(n2).

Now, suppose we allow arbitrary real-valued edge weights, lying in [−∞,+∞]. For example,

the edge weights might correspond to the log odds6 of two documents belonging to the same cluster.

It is easy to see that the problem of minimizing disagreements for this variant is APX-hard, by

reducing the problem of minimum multiway cut to it. Specifically, let G be a weighted graph with

special nodes v1, · · · , vk. The problem of minimum multiway cut is that of finding the smallest cut

that separates these special nodes. This problem is known to be APX-hard [68]. We convert this

problem into a disagreement minimization problem as follows: among each pair of special nodes

vi and vj , we put an edge of weight −∞. Then, notice that any clustering algorithm will definitely

put each of v1, · · · , vk into separate clusters. The number (or total weight) of disagreements is

equal to the value of the cut separating the special nodes. Thus, any algorithm that achieves an

approximation ratio of ρ for minimizing disagreements, would achieve an approximation ratio of ρ

for minimum multiway cut problem. We get the following:

Theorem 4.26. The problem of minimizing disagreements on weighted graphs with unbounded

weights is APX-hard.

Note that the above result is pretty weak. It does not preclude the possibility of achieving a

constant approximation, similar to the one for {+,−}-weighted graphs. However we have reason

to believe that unlike before, we cannot obtain a PTAS for maximizing agreements in this case.

We show that a PTAS for maximizing agreements gives a polynomial time procedure for O(nε)

coloring a 3− colorable graph. While it is unknown whether this problem is NP-Hard, the problem

is well-studied and the best known result is due to Blum and Karger [31], who give a polynomial

time algorithm to Õ(n3/14) color a 3-colorable graph.

Theorem 4.27. Given a PTAS for the problem of maximizing agreements, we can use the algorithm

to obtain an algorithm for O(nε) coloring a 3− colorable graph, for any ε > 0.

6For example, if the classifier assigns a probability p to two documents being the same, the log odds could be defined

as log p
1−p

.
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Proof. Let G = (V,E) be a 3 colorable graph, and let m = |E| and n = |V |. Let K be an n vertex

complete graph obtained from G as follows: an edge e of K has weight −1 if e is an edge in G, and

has a positive weight of δm/
(

n
2

)

otherwise. Here δ is a parameter to be specified later.

If we choose each color class as a cluster, it is easy to see that the resulting clustering agrees on

the m negative weight edges and on at least 3
(

n/3
2

)

positive weight edges. Thus the total weight of

agreements in the optimal clustering is at least m(1+ δ/3). Let us invoke the PTAS for maximizing

agreements with ε′ = δ/30, then we obtain a clustering which has cost of agreements at least

m(1 + δ/3)/(1 + δ/30) ≥ m(1 + δ/5).

We now claim that the size of largest cluster is at least n/5. Suppose not. Then the weight of

positive agreements can be at most δ m

(n
2)
· 5 ·

(n/5
2

)

which is about δm/5. Since the total weight of

negative edges is m, the total weight of agreements for the clustering cannot be more than m(1 +

δ/5), violating the guarantee given by the PTAS. Hence, there exists a cluster of size at least n/5 in

this clustering. Call this cluster C .

Now observe that since the PTAS returns a clustering with at least (1 + δ/5)m agreements, and

the total weight of all positive edges is at most δm, the total weight of negative agreements is at

least (1− 4δ
5 )m. This implies that C contains at most 4δ

5 m negative weight edges. Thus the density

of negative weight edges in C is at most 4δm
5 /

(n/5
2

)

≈ 20δ · m
(n
2)

. That is, the cluster C has an edge

density of at most about 20δ times that of G and size at least n/5.

We can now apply this procedure recursively to C (since C is also 3-colorable). After 2 log b n

such recursive steps, where b = 1
20δ , we obtain a set of density at most 1/n2 times that of C (and

hence independent). Call this independent set I . Note that the size of I is at least n/(52 logb n).

Choosing δ such that b = 52/ε, it is easy to verify that I has size at least n1−ε.

Now we can remove I from G and iterate on G− I (since G− I is also 3-colorable). It is easy

to see that this procedure gives an O(nε) coloring of G.

4.8 Concluding remarks

In this chapter we consider clustering problems with pairwise constraints on vertices. It would be

interesting to extend our work to the problems where we are given constraints on three or more

vertices. For example, one constraint on three specific vertices may require putting all the three

vertices into the same cluster or all three into different clusters. Such constraints arise in the context

of Markov Random Fields, where the goal is to find the most likely (energy minimizing) global

configuration, given the effect of local structure on the overall energy. More generally, given a

relationship between the energy of a configuration and the probability of its occurence, and therefore

a distribution on all configurations, it would be desirable to develop an algorithm that outputs a

random configuration drawn from this distribution. This turns out to be an important problem in

statistical physics and also has applications in statistical machine learning. However in general this
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problem is #-P hard. It would be interesting to develop algorithms for special classes of Markov

Random Fields.

Another interesting extension of our work would be to allow each vertex in the graph to lie in

multiple, but few, clusters. This would be useful, for example, in a document classification context

where a document may contain information on two different topics. The goal would then be to

correctly classify a large fraction (or all) of the edges, while minimizing the number of distinct

clusters each document belongs to, or minimizing the total number of clusters. Additionally, in the

case that the clustering disagrees with some edges, it would be interesting to also output a confidence

level for each edge in the graph specifying how confident the algorithm is in its classification of the

edge. This feature may be useful in machine learning applications.



Chapter 5

Min-Ratio Partitioning

5.1 Introduction

In the GENERALIZED-SPARSEST-CUT problem, we are given an undirected graph G = (V,E) with

edge capacities ce. We are also given a subset D ⊆ V × V , containing |D| = k source-sink pairs

{si, ti}, called demand pairs, with each pair having an associated demand Di. The sparsity of a

set (cut) S ⊆ V is defined to be the factor by which the demand going across the cut exceeds the

capacity of the cut:

Φ(S) =
C(S, S̄)

D(S, S̄)

where D(S, S̄) is the net demand going from the terminals in S to those outside S, and C(S, S̄) is

the total capacity of edges exiting S. The sparsest cut is defined to be the cut with the minimum

sparsity, and its sparsity is denoted by Φ = minS⊆V Φ(S).

The GENERALIZED-SPARSEST-CUT problem is NP-hard even when there is a unit demand

between all pairs of vertices. In this latter case, the problem is simply known as the SPARSEST-CUT

problem. There is much work on approximating this fundamental problem (see, e.g., [109, 130]),

and O(log k) approximations were previously known [111, 18]. In a recent breakthrough, Arora,

Rao and Vazirani [17] developed an improved O(
√

log n) approximation for the uniform demands

SPARSEST-CUT based on a semidefinite programming relaxation of the problem. In this chapter, we

extend the work of Arora et al. to the general case, obtaining a weaker O(log3/4 n) approximation.

The closely related MULTICUT problem has the same input as GENERALIZED-SPARSEST-CUT,

but the goal is to find a smallest (or least weight) subset of the edges M ⊆ E whose removal

disconnects all the demand pairs, i.e., in the subgraph (V,E \M) every si is disconnected from

its corresponding vertex ti. This natural partitioning problem has also been extensively studied,

and is known to have an O(log n) approximation [70] via linear programming. Unfortunately, the

semidefinite programming relaxation that leads to an improved approximation for SPARSEST-CUT

does not give a similar improvement for the MULTICUT problem, and was in fact recently shown to

have an integrality gap of Ω(log n) [3].

87
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In this chapter, we also study the inapproximability of the MULTICUT and SPARSEST-CUT

problems. We show that assuming the Unique Games Conjecture of Khot [101], these problems are

NP-hard to approximation within any constant factor. If a stronger version of the conjecture is true,

then our result implies an Ω(
√

log log n) hardness for the two problems. This is the first hardness

of approximation result for SPARSEST-CUT, and improves on a previous APX-hardness result for

MULTICUT. Our result also extends to the MIN-2CNF≡ DELETION problem, which is a special

case of MULTICUT. In the MIN-2CNF≡ DELETION problem the input is a weighted set of clauses

on n variables, each clause of the form x = y, where x and y are literals, and the goal is to find an

assignment to the variables minimizing the total weight of unsatisfied clauses. We elaborate on this

problem towards the end of this chapter.

5.1.1 SPARSEST-CUT and low-distortion metric embeddings

The Sparsest Cut problem is closely linked to the problem of embedding general metrics into `1

metrics with a low distortion. In fact, one of the first major applications of metric embeddings

in Computer Science was an O(log k) approximation to the SPARSEST-CUT problem with non-

uniform demands [111, 18]. This result was based on a fundamental theorem of Bourgain [33] in

the local theory of Banach spaces, which showed that any finite n-point metric could be embedded

into `1 space (and indeed, into any of the `p spaces) with distortion O(log n). The connection

between these results uses the fact that the Generalized SPARSEST-CUT problem seeks to minimize

a linear function over all cuts of the graph, which is equivalent to optimizing over all n-point `1

metrics:

Φ = min
S⊆V

C(S, S̄)

D(S, S̄)
= min

cut metrics δS

∑

(u,v)∈E cuv δS(u, v)
∑

ijDi δS(si, ti)
= min

d∈`1

∑

(u,v)∈E cuv d(u, v)
∑

ij Di d(si, ti)
(5.1)

Since the problem of minimizing over all `1 metrics is NP-hard, we can optimize over all n-

point metrics instead, and then use an algorithmic version of Bourgain’s embedding to embed into

`1 with only an O(log n) loss in performance.

A natural extension of this idea is to optimize over a smaller class of metrics that contains `1;

a natural candidate for this class is NEG, the class of n-point metrics of negative type1. These are

just the metrics obtained by squaring an Euclidean metric, and hence are often called “`2-squared”

metrics. It is known that the following relationships hold:

`2 metrics ⊆ `1 metrics ⊆ NEG metrics. (5.2)

Since it is possible to optimize over NEG via semidefinite programming, this gives us a semidefi-

nite relaxation for the GENERALIZED-SPARSEST-CUT problem [73]. Now if we could prove that

1Note that NEG usually refers to all distances of negative-type, even those that do not obey the triangle inequality. In

this thesis, we will use NEG only to refer to negative-type metrics.
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n-point metrics in NEG embed into `1 with distortion D, we would get a D-approximation for

SPARSEST-CUT; while this D has been conjectured to be O(
√

log n) or even O(1), no bounds bet-

ter than the O(log n) were known prior to this work. (See the Section 5.3 for subsequent progress

towards the resolution of this conjecture.)

In a recent breakthrough, Arora, Rao, and Vazirani [17] showed that every n-point metric in

NEG has a contracting embedding into `1 such that the sum of the distances decreases by only

O(
√

log n). Formally, they showed that the SDP relaxation had an integrality gap of O(
√

log n)

for the case of uniform demand SPARSEST-CUT; however, this is equivalent to the above statement

by the results of Rabinovich [121]. We extend the techniques of Arora, Rao, and Vazirani to give

embeddings for n-point metrics in NEG into `2 with distortion O(log3/4 n), thereby implying an

O(log3/4 n)-approximation algorithm for the GENERALIZED-SPARSEST-CUT problem.

5.1.2 The Unique Games Conjecture

Our hardness results are based on a conjecture of Khot [101] that states that it is NP-hard to deter-

mine whether the value of a certain kind of 2-prover game, in particular a Unique 2-prover game, is

close to 0 or close to 1.

Unique 2-prover game is the following problem. The input is a bipartite graph G = (Q,EQ),

where each side p = 1, 2 contains n = |Q|/2 vertices denoted qp1, · · · , qpn, and represents n possible

questions to prover p. In addition, the input contains for each edge (q1
i , q

2
j ) ∈ EQ a non-negative

weight w(q1
i , q

2
j ). These edges will be called question edges, to distinguish them from edges in the

MULTICUT instance. Each question is associated with a set of d distinct answers, denoted by [m] =

{1, . . . ,m}. The input also contains, for every edge (q1
i , q

2
j ) ∈ EQ, a bijection bij : [m] → [m],

which maps every answer of question q1
i to a distinct answer for q2

j .

A solution A to the 2-prover game consists of an answer Api ∈ [m] for each question qpi (i.e., a

sequence {Api } over all p ∈ [2] and i ∈ [n]). The solution is said to satisfy an edge (q1
i , q

2
j ) ∈ EQ if

the answers A1
i and A2

j agree, i.e., A2
j = bij(A

1
i ). We assume that the total weight of all the edges

in EQ is 1 (by normalization). The value of a solution is the total weight of all the edges satisfied by

the solution. The value of the game is the maximum value achievable by any solution to the game.

Conjecture 5.1 (Unique Games [101]). For every fixed η, δ > 0 there exists m = m(η, δ) such

that it is NP-hard to determine whether a unique 2-prover game with answer set size m has value at

least (1− η) or at most δ.

We will also consider stronger versions of the Unique Games Conjecture in which η, δ, and

m are functions of n. Specifically, we will consider versions with η ≤ O(1/
√

log log n), δ ≤
1/(log n)Ω(η), and m = m(η, δ) ≤ O(log n). We denote the size of an input instance by N .

Notice that N = (nm)Θ(1), and is thus polynomial in n as long as m ≤ n, and in particular for

m ≤ O(log n).
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Plausibility of the conjecture and its stronger version.

The Unique Games Conjecture has been used to show optimal inapproximability results for VERTEX

COVER [100] and MAX-CUT [99]. Proving the conjecture using current techniques appears quite

hard. In particular, the asserted NP-hardness is much stronger than what we can obtain via standard

constructions using the PCP theorem [15, 14] and the parallel repetition theorem [124], two deep

results in computational complexity.

Although the conjecture seems difficult to prove in general, some special cases are well-understood.

In particular, if at all the Unique Games Conjecture is true, then necessarily m ≥ max{1/η1/10 , 1/δ}.
This follows from a semidefinite programming algorithm presented by Khot in [101]. Trevisan [136]

recently improved the algorithm of Khot to obtain the following guarantee: given an instance of

Unique Games with value 1 − ε
log n for some ε > 0, the algorithm obtains a solution with value

1 − O(ε1/3). This result implies that the conjecture is false when η = O(1/ log n) (assuming

P 6= NP ). Very recently, we were informed [38] of a different lower bound on η expressed in

terms of δ and m; We do not know the precise values for the three parameters obtained in this re-

sult, however the values that we use in our construction are not excluded by this result. Feige and

Reichman [63] recently showed that for every constant L > 0 there exists a constant δ > 0, such

that it is NP-hard to distinguish whether a unique 2-prover game (with m = m(L, δ)) has value at

least Lδ or at most δ; this result falls short of the Unique Games Conjecture in that Lδ is bounded

away from 1.

We obtain a Ω(min{ 1
η , log

1
δ})-hardness for MULTICUT and SPARSEST-CUT (see Theorem 5.5

below). Assuming the Unique Games Conjecture with η ≤ O(1/
√

log log n), δ ≤ 1/(log n)Ω(η),

andm = m(η, δ) ≤ O(log n), which is not excluded by the above results, this implies an Ω(
√

log log n)

hardness (Corollary 5.7). Further results on the conjecture may imply that the hardness obtained by

us is weaker than reported in Corollary 5.7.

5.2 Our results

An improved approximation for GENERALIZED-SPARSEST-CUT

We extend the techniques of Arora, Rao, and Vazirani to give embeddings for n-point metrics in

NEG into `2 with distortion O(log3/4 n). More generally, we obtain the following theorem.

Theorem 5.2. Given (V,d), a negative-type metric, and a set of terminal-pairs D ⊆ V × V with

|D| = k, there is a contracting embedding ϕ : V → `2 such that for all pairs (x, y) ∈ D,

‖ϕ(x)− ϕ(y)‖2 ≥
1

O(log3/4 k)
d(x, y).

Note that the above theorem requires the embedding to be contracting for all node pairs, but the

resulting contraction needs to be small only for the terminal pairs. In particular, when D = V × V ,
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the embedding is an O(log3/4 n)-distortion embedding into `2. Though we also give a randomized

polynomial-time algorithm to find this embedding, let us point out that optimal embeddings into `2

can be found using semidefinite programming [111, Thm. 3.2(2)].

Let us now note some simple corollaries.

Theorem 5.3. Every n-point metric in NEG embeds into `1 with O(log3/4 n) distortion, and every

n-point metric in `1 embeds into Euclidean space `2 with O(log3/4 n) distortion. These embeddings

can be found in polynomial time.

The existence of both embeddings follows immediately from equation (5.2). To find the map

NEG → `1 in polynomial time, we can use the fact that every `2 metric can be embedded into

`1 isometrically; if we so prefer, we can find a distortion-
√

3 embedding into `1 in deterministic

polynomial time using families of 4-wise independent random variables [111, Lemma 3.3].

Theorem 5.4. There is a randomized polynomial-time O(log3/4 k)-approximation algorithm for the

SPARSEST-CUT problem with non-uniform demands.

Theorem 5.4 thus extends the results of Arora et al. [17] to the case of non-uniform demands,

albeit it proves a weaker result than the O(
√

log k) approximation that they achieve for uniform

demands.

The proof of Theorem 5.4 follows from the fact that the existence of distortion-D embeddings

of negative-type metrics into `1 implies an integrality gap of at most D for the semidefinite pro-

gramming relaxation of the GENERALIZED-SPARSEST-CUT problem. Furthermore the embedding

can be used to find such a cut as well. (For more details about this connection of embeddings to the

GENERALIZED-SPARSEST-CUT problem, see the survey by Shmoys [130, Sec. 5.3]; the semidefi-

nite programming relaxation can be found in the survey by Goemans [73, Sec. 6]).

The hardness of approximating SPARSEST-CUT and MULTICUT

We prove that if a strong version of the Unique Games Conjecture of Khot [101] is true, then MUL-

TICUT is NP-hard to approximate to within a factor of Ω(
√

log log n).2 Under the original version

of this conjecture, our reduction shows that for every constant L > 0, it is NP-hard to approxi-

mate MULTICUT to within factor L. Our methods yield similar bounds for SPARSEST-CUT and

MIN-2CNF≡ DELETION. The results also extend to the CORRELATION CLUSTERING problem

of minimizing disagreements in a weighted graph (see Chapter 4), as this problem is known to be

2The conference version of our paper [40] presented a weaker bound than that of Theorem 5.5, with the dependence on

η being Ω(log 1/η). The reduction is exactly the same, but the analysis is different (and perhaps simpler), as the current

version uses Friedgut’s Junta Theorem [66] rather than a theorem of Kahn, Kalai and Linial [92]. This improvement was

motivated, in part, by the integrality ratio of [102] for unique games, which suggests a significant asymmetry between

η(n) and δ(n).
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equivalent to the MULTICUT problem on weighted graphs. In particular, we prove the following

hardness result:

Theorem 5.5. Suppose that for η = η(n), δ = δ(n), and m = m(η, δ) ≤ O(log n), it is NP-hard

to determine whether a unique 2-prover game with |Q| = 2n vertices and answer set size m has

value at least 1− η(n) or at most δ(n). Then there exists L(n) = Ω
(

min
{

1
η(nΩ(1))

, log 1
δ(nΩ(1))

})

such that it is NP-hard to approximate MULTICUT, SPARSEST-CUT, and MIN-2CNF≡ DELETION

to within factor L(n).

This theorem immediately implies the following two specific hardness results.

Corollary 5.6. The Unique Games Conjecture implies that, for every constant L > 0, it is NP-hard

to approximate MULTICUT, SPARSEST-CUT, and MIN-2CNF≡ DELETION to within factor L.

Corollary 5.7. If a stronger version of the Unique Games Conjecture with η ≤ O(1/
√

log log n),

δ ≤ 1/(log n)Ω(η), and m = m(η, δ) ≤ O(log n) is true, then for some fixed c > 0, it is NP-

hard to approximate MULTICUT, SPARSEST-CUT, and MIN-2CNF≡ DELETION to within factor

Ω(
√

log log n).

For SPARSEST-CUT our hardness results hold only for the search version (in which the algorithm

needs to produce a cutset and not only its value), since our proof employs a Cook reduction.

5.3 Related and subsequent work

MULTICUT and SPARSEST-CUT are fundamental combinatorial problems, with connections to mul-

ticommodity flow, expansion, and metric embeddings. Both problems can be approximated to

within an O(log k) factor through linear programming relaxations [109, 70, 18, 111]. These bounds

match the lower bounds on the integrality gaps up to constant factors [109, 70].

The decade-old O(log k)-approximation for the uniform-demands version of SPARSEST-CUT

was recently improved by Arora, Rao and Vazirani [17] to a O(
√

log n)-approximation. In their

ground-breaking work, Arora, Rao and Vazirani use a semi-definite programming relaxation with

triangle-inequality constraints to give a low-average distortion embedding from negative-type met-

rics into `1. The obvious modification of the semidefinite program used for SPARSEST-CUT to solve

MULTICUT was recently shown to have an integrality ratio of Ω(log k) [3], which matches the ap-

proximation factor and integrality gap of previously analyzed linear programming relaxations for

this problem.

Our work adopts and adapts techniques of Arora, Rao and Vazirani [17], who gave anO(
√

log n)-

approximation for the uniform demand case of SPARSEST-CUT. In fact, using their results about the

behavior of projections of negative-type metrics almost as a black-box, we obtain an O(log5/6 n)-

approximation for GENERALIZED-SPARSEST-CUT. Our approximation factor is further improved
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to O(log3/4 n) by the results of Lee [107] showing that the hyperplane separator algorithm of Arora

et al. [17, Section 3] itself gives an O(
√

log n) approximation for the uniform demand case.

Over the past decade, there has been a large body of work on low-distortion embeddings of finite

metrics; see, e.g., [22, 33, 42, 61, 78, 79, 105, 111, 115, 113, 122], motivated in part by the fact that

it has proved invaluable in many algorithmic applications. Other references and examples can be

found in the surveys by Indyk [87] and Linial [110], or in the chapter by Matoušek [114]. Our work

stems in spirit from many of these papers. However, it draws most directly on the technique of

measured descent developed by Krauthgamer et. al. [105].

Independently of our work, Lee [107] has used so-called “scale-based” embeddings to give

low-distortion embeddings from `p (1 < p < 2) into `2. The paper gives a “Gluing Lemma” of the

following form: if for every distance scale i, we are given a contracting embedding φi such that each

pair x, y with d(x, y) ∈ [2i, 2i+1) has ‖φi(x)−φi(y)‖ ≥ d(x,y)
K , one can glue them together to get an

embedding φ : d→ `2 with distortion O(
√
K log n). His result is a generalization of [105], and of

our Lemma 5.21; using this gluing lemma, one can derive an `2 embedding from the decomposition

bundles of Theorem 5.19 without using any of the ideas in Section 5.4.5.

Following the initial publication of this work, Arora, Lee, and Naor [16] built upon our tech-

niques to obtain an embedding from negative-type metrics into `2 with distortion O(
√

log n log log n),

implying an approximation to GENERALIZED-SPARSEST-CUT with the same factor of approxima-

tion. Their improvement lies in a stronger gluing lemma. This result is essentially tight, as it is

known that embedding negative-type metrics into `2 requires Ω(
√

log n) distortion [59].

On the hardness side, it is known that MULTICUT is APX-hard [49], i.e., there exists a constant

c > 1, such that it is NP-hard to approximate MULTICUT to within a factor smaller than c. It should

be noted that this hardness of approximation holds even for k = 3, and that the value of c is not

specified therein, but it is certainly much smaller than 2. The MIN-2CNF≡ DELETION problem is

also known to be APX-hard, as follows, e.g., from [83].

Assuming his Unique Games Conjecture, Khot [101, Theorem 3] essentially obtained an ar-

bitrarily large constant-factor hardness for MIN-2CNF≡ DELETION, and this implies, using the

aforementioned reduction of [103], a similar hardness factor for MULTICUT. These results are not

noted in [101], and are weaker than our results in several respects. First, our quantitative bounds

are better; thus if a stronger, yet almost as plausible, version of this conjecture is true, then our

lower bound on the approximation factor improves to L = Ω(
√

log log n), compared with the

roughly Ω((log log n)1/4) hardness that can be inferred from [101]; this can be viewed as progress

towards proving tight inapproximability results for MULTICUT. Second, by qualitatively strength-

ening our MULTICUT result to a bicriteria version of the problem, we extend our hardness results

to the SPARSEST-CUT problem. It is unclear whether Khot’s reduction similarly leads to a hardness

result for SPARSEST-CUT. Finally, our proof is simpler (both the reduction and its analysis), and

makes direct connections to cuts (in a hypercube), and thus may prove useful in further investigation

of such questions.
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For SPARSEST-CUT, no hardness of approximation result was previously known. Independent

of our work, Khot and Vishnoi [102] have recently used a different construction to show an arbitrar-

ily large constant factor hardness for SPARSEST-CUT assuming the Unique Games Conjecture; their

hardness factor improves to Ω(log log n)1/6−ε, under a stronger quantitative version of the conjec-

ture similar to the one in Corollary 5.7. Additionally, they show the existence of a negative-type

metric that must incur a distortion of Ω(log log n)1/4−ε when embedded into `1. This result in turn

implies an integrality gap of Ω((log log)1/4−ε), for the semidefinite programming relaxation of the

SPARSEST-CUT problem with triangle inequalities.

5.4 An improved approximation for SPARSEST-CUT

5.4.1 A high-level overview

The proof of the Main Theorem 5.2 proceeds thus: we first classify the terminal pairs in D by

distance scales. We define the scale-i set Di to be the set of all pairs (x, y) ∈ D with d(x, y) ≈ 2i.

For each scale i, we find a partition of V into components such that for a constant fraction of the

terminal pairs (x, y) ∈ Di, the following two “good” events happens: (1) x and y lie in different

components of the partition, and (2) the distance from x to any other component is at least η 2i,

and the same for y. Here η = 1/O(
√

log k). Informally, both x and y lie deep within their distinct

components, and this happens for a constant fraction of the pairs (x, y) ∈ Di. This partition defines

a contracting embedding of the points into a one-dimensional `1 metric (a line) such that every pair

(x, y), for which the above “good” events happen, has low distortion. (The details of this process

are given in Section 5.4.3; the proofs use ideas from the paper by Arora, Rao, and Vazirani [17] and

the subsequent improvements by Lee [107].)

Note that the good event happens for only a constant fraction of the pairs in Di, and we have

little control over which of the pairs will be the lucky ones. However, to obtain low distortion for

every terminal pair, we want a partitioning scheme that separates a random constant fraction of the

pairs in Di. To this end, we employ a simple reweighting scheme (reminiscent of the Weighted

Majority algorithm [112] and many other applications). We just duplicate each unlucky pair and

repeat the above process O(log k) times. Since each pair that is unlucky gets a higher weight in

the subsequent runs, a simple argument given in Section 5.4.4 shows that each pair in Di will be

separated in at least log k of these O(log k) partitions. (Picking one of these partitions uniformly at

random would now ensure that each vertex is separated with constant probability.)

We therefore obtain a good partition for each distance scale individually. We could now use

these O(log k) partitions naı̈vely, by concatenating the corresponding “line-embeddings”, to con-

struct an embedding where the contraction for the pairs in D would be bounded by
√

log k/η =

O(log k). However, this would be no better than the previous bounds, and hence we have to be

more careful. We slightly adapt the measured descent embeddings of Krauthgamer et al. [105] to
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combine the O(log k) partitions for the various distance scales to get a distortion-O(
√

log k/η) =

O(log3/4 k) embedding. The details of the embedding are given in Section 5.4.5.

5.4.2 Notation and definitions

The SPARSEST-CUT SDP

Recall that in the SPARSEST-CUT problem, our goal is to find a cut S that minimizes the function

Φ(S) = C(S, S̄)/D(S, (̄S)). This problem is equivalent to the following program:

min
∑

(u,v)∈E
cuv d(u, v) s.t.

∑

ij

Di d(si, ti) = 1

d ∈ `1

This problem is NP-hard [96], so we relax the last constraint to d ∈ NEG. This gives us the

following semi-definite program, with d(u, v) = ‖xu − xv‖2 = 2(1− xu · xv):

min
∑

(u,v)∈E
cuv 2(1 − xu · xv) s.t.

∑

ij

Di (1− xsi · xti) = 1/2

‖xu‖2 = 1 ∀u

Let ΦNEG denote the value of the semidefinite program.

ΦNEG = min
d∈NEG

∑

(u,v)∈E cuv d(u, v)
∑

iDi d(si, ti)
(5.3)

This quantity can be approximated well in polynomial time (see, e.g., [73]). Since `1 ⊆ NEG,

it follows that ΦNEG ≤ Φ. On the other hand, if we can embed n-point metrics in NEG into `1
with distortion at most D, we can obtain a solution of value at most D × ΦNEG. It follows that

Φ ≤ D × ΦNEG, and the solution is a D approximation to GENERALIZED-SPARSEST-CUT.

Metrics

The input to our embedding procedure is a negative-type metric (V,d) with |V | = n. We can, and

indeed will, use the following standard correspondence between finite metrics and graphs: we set

V to the node set of the graph G = (V,E = V × V ), where the length of an edge (x, y) is set

to d(x, y). This correspondence allows us to perform operations like deleting edges to partition

the graph. By scaling, we can assume that the smallest distance in (V,d) is 1, and the maximum

distance is some value ∆(d), the diameter of the graph.
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It is well-known that any negative-type distance space admits a geometric representation as the

square of a Euclidean metric; i.e., there is a map ψ : V → R
n such that ‖ψ(x)− ψ(y)‖22 = d(x, y)

for every x, y ∈ V [57, Thm. 6.2.2]. Furthermore, the fact that d is a metric implies that the

angle subtended by any two points at a third point is non-obtuse. Since this map can be found in

polynomial time using semidefinite programming, we will assume that we are also given such a map

ψ. For any node x ∈ V , we use ~x to denote the point ψ(x) ∈ R
n.

Terminal pairs

We are also given a set of terminal pairs D ⊆ V ×V ; these are the pairs of nodes for which we need

to ensure a small contraction. In the sequel, we will assume that each node in V takes part in at most

one terminal-pair in D. This is without loss of generality: if a node x belongs to several terminal

pairs, we add new vertices xi to the graph at distance 0 from x, and replace x in the i-th terminal

pair with xi. (Since this transformation adds at most O(|D|) nodes, it does not asymptotically affect

our results.) Note that a result of this is that D may have two terminal pairs (x, y) and (x ′, y′) such

that d(x, x′) = d(y, y′) = 0.

A node x ∈ V is a terminal if there is a (unique) y such that (x, y) ∈ D; call this node y the

partner of x. Define Di to be the set of node-pairs whose distance according to d is approximately

2i.

Di = {(x, y) ∈ D | 2i ≤ d(x, y) < 2i+1} (5.4)

We use the phrase scale-i to denote the distances in the interval [2i, 2i+1), and hence Di is

merely the set of terminal pairs that are at distance scale i. If (x, y) ∈ Di, then x and y are called

scale-i terminals. Let D be the set of all terminal nodes, and Di be the set of scale-i terminals.

The radius r ball around x ∈ V is naturally defined to be B(x, r) = {z ∈ V | d(x, z) ≤ r}.
Given a set S ⊆ V , the ball B(S, r) = ∪x∈SB(x, r).

Metric decompositions: suites and bundles

Much of this section will deal with finding decompositions of metrics (and of the underlying graph)

with specific properties; let us define these here. Given a distance scale i and a partition Pi of the

graph, let Ci(v) denote the component containing a vertex v ∈ V . We say that a pair (x, y) ∈ Di is

δ-separated by the partition Pi if

• the vertices x and y lie in different components; i.e., Ci(x) 6= Ci(y), and

• both x and y are “far from the boundary of their components”, i.e., d(x, V \Ci(x)) ≥ δ d(x, y)

and d(y, V \ Ci(y)) ≥ δ d(x, y).

A decomposition suite Π is a collection {Pi} of partitions, one for each distance scale i between

1 and blog ∆(d)c. Given a separation function δ(x, y) : V × V → [0, 1], the decomposition suite
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Π is said to δ(x, y)-separate (x, y) ∈ D if for the distance scale i such that (x, y) ∈ Di, (x, y) is

δ(x, y)-separated by the corresponding partition Pi ∈ Π.

Finally, a δ(x, y)-decomposition bundle is a collection {Πj} of decomposition suites such that

for each (x, y) ∈ D, at least a constant fraction of the Πj δ(x, y)-separate the pair (x, y).

In Section 5.4.3, we show how to create a decomposition suite that Ω(1/
√

log k)-separates a

constant fraction of the pairs (x, y) ∈ Di, for all distance scales i. Using this procedure and a

simple reweighting argument, we construct a Ω(1/
√

log k)-decomposition bundle with O(log k)

suites. Finally, in Section 5.4.5, we show how decomposition bundles give us embeddings of the

metric d into `2.

5.4.3 Creating decomposition suites

In this section, we will give the procedure Project-&-Prune that takes a distance scale i, and con-

structs a partition Pi of V that η-separates at least a constant fraction of the pairs in Di. Here we use

η = 1
4c
√

log k
, where c is a constant to be defined later; let us also define f = 1

4η = c
√

log k.

Procedure Project-&-Prune:

Input: The metric (V,d), its geometric representation where x ∈ V is mapped to ~x ∈ R
n, and, a

distance scale i.

1. Project. In this step, we pick a random direction and project the points in V on the line in this

direction. Formally, we pick a random unit vector u. Let px =
√
n 〈~x, u〉 be the normalized

projection of the point ~x on u.

2. Bucket. Let ` = 2i/2, and set β = `/6. Informally, we will form buckets by dividing the
line into intervals of length β. We then group the terminals in Di according to which interval
(mod 4) they lie in. (See Figure 5.1.) Formally, for each a = 0, 1, 2, 3, define

Aa = { x ∈ Di | px ∈ ∪m∈Z

(

(4m+ a)β, (4m+ 1 + a)β
)

}

A terminal pair (x, y) ∈ Di is split by Aa if x ∈ Aa and y ∈ A(a+2) mod 4. If the pair (x, y)

is not split by any Aa, we remove both x and y from the sets Aa. For a ∈ {0, 1}, let Ba ⊆ Di

be the set of terminal pairs split by Aa or Aa+2.

3. Prune. If there exist terminals x ∈ Aa and y ∈ A(a+2) mod 4 for some a ∈ {0, 1} (not

necessarily belonging to the same terminal pair) with d(x, y) < `2/f , we remove x and y and

their partners from the sets {Aa}. We repeat until no such pairs remain.

4. Cleanup. For each a, if (x, y) ∈ Ba and the above pruning step has removed either of x

or y, then we remove the other one as well, and remove (x, y) from Ba. Once this is done,

Ba = Di ∩ (Aa ×A(a+2) mod 4) is once again the set of terminal pairs split by Aa or Aa+2.
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A1A0 A2 A3A0 A0A2 A3 A1

β

separated pair

~u

Figure 5.1: Projection and Bucketing

5. If max{|B0|, |B1|} ≤ 1
64 |Di|, go back to Step 1, else go to Step 6.

6. Say the set Ba has more pairs than B(1−a) mod 2. Define the partition Pi by deleting all

the edges at distance `2/2f from the set Aa. (This step can be thought of as taking C =

B(Aa, `
2/2f), and defining the partition Pi to be G[C] and G[V \ C], the components in-

duced by C and V \ C .)

Note the procedure above ensures that for any pair of terminals (x, y) ∈ Aa×A(a+2) mod 4, the

distance d(x, y) is at least `2/f = 2i/f , even if (x, y) 6∈ Di. Why do we care about these pairs?

It is because the separation of `2/f between the sets Aa and A(a+2) mod 4 ensures that the balls of

radius `2

2f around these sets are disjoint.

This in turn implies that terminal pairs (x, y) ∈ Di ∩ (Aa × A(a+2) mod 4) are η-separated

upon deleting the edges in Step 6. Indeed, for such a pair (x, y), the components Ci(x) and Ci(y),

obtained upon deleting the edges at distance `2

2f from the set Aa, are distinct, and both d(x, V \
Ci(x)) and d(y, V \ Ci(y)) are at least `2

2f ≥
d(x,y)

4f .

The following theorem now shows that the procedure Project-&-Prune terminates quickly.

Theorem 5.8. For any distance scale i, the procedure Project-&-Prune terminates in a constant

number of iterations. This gives us a random polynomial-time algorithm that outputs a partition P i
which η-separates at least 1

64 |Di| pairs of Di.

The proof of this theorem has two parts, which we will prove in the next two subsections. We

first show that the sets B0 and B1 contain most of Di before the pruning step (with a high probability

over the random direction u). We then show that the pruning procedure removes only a constant

fraction of the pairs from these sets B0 and B1 with a constant probability. In fact, the size of B0∪B1
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~u
A0A2A2 A2 A2A1A3A0 A0

≤ 3β√
2πσ

x

A1 A3 A1A3

Figure 5.2: The distribution of projected edge lengths in the proof of Lemma 5.9. If y falls into a light-shaded

interval, the pair (x, y) is split.

remains at least |Di|/32 even after the pruning, and then it follows that the larger of these sets must

have half of the terminal pairs, proving the theorem.

The projection step

Lemma 5.9. Fix a distance scale i. At the end of the bucketing stage, the set B0 ∪ B1 contains at

least 1
16 |Di| terminal pairs w.p. 1

15 .

Proof. Recall that a terminal pair (x, y) ∈ Di is split if x lies in the set Aa and y lies inA(a+2) mod 4

for some a ∈ {0, 1, 2, 3}. Also, we defined `2 = 2i, and hence (x, y) ∈ Di implies that ‖~x− ~y‖2 =

d(x, y) ∈ [`2, 2 `2). Consider the normalized projections px and py of the vectors ~x, ~y ∈ R
n

on the random direction u, and note that py − px is distributed as a Gaussian random variable

Zu ∼ N(0, σ2) with a standard deviation σ ∈ [`,
√

2`) (see Figure 5.2.)

Now consider the bucket of width β in which px lies. The pair (x, y) will not be separated if py
lies in either the same bucket, or in either of the adjoining buckets. (The probability of each of these

three events is at most 1√
2π σ
× β.) Also, at least 1

4 of the remainder of the distribution causes (x, y)

to be split, since each good interval is followed by three bad intervals with less measure.

Putting this together gives us that the probability of (x, y) being split is at least

1

4

(

1− 3β
1√
2π σ

)

≥ 1

4

(

1− 3(`/6)√
2π `

)

≥ 1

8

Since each pair (x, y) ∈ Di is separated with probability 1/8, the linearity of expectations and

Markov’s inequality implies that at least one-sixteenth of Di must be split at the end of the bucketing

stage with probability 1
15 .



100 CHAPTER 5. MIN-RATIO PARTITIONING

The pruning step

We now show that a constant fraction of the terminal pairs in Di also survive the pruning phase.

This is proved by contradiction, and follows the argument of Arora et al. [17].

Assume that, with a large probability (over the choice of the random direction u), a large fraction

of the terminal pairs in Di (say 1
64 |Di|) get removed in the pruning phase. By the definition of the

pruning step, the projection of ~x − ~y on u must have been large for such a removed pair (x, y). In

our algorithm, this happens when d(x, y) < `2/f , or equivalently when β >
√

d(x, y) × √f/6.

Since the expected value of |px − py| is exactly
√

d(x, y), while px and py are separated by at

least one bucket of width β, this implies that the expectation is exceeded by a factor of at least√
f/6 = Ω(log1/4 k). Setting t =

√
f/6, we can say that such a pair (x, y) is “stretched by a factor

t in the direction u”. For any given direction u, the stretched pairs removed in the pruning step are

disjoint, and hence form a matching Mu.

Arora et al. showed the following geometric property—for a given set W and some constant C ,

the number of disjoint t-stretched pairs in W ×W cannot be more than C|W | with constant prob-

ability (over the choice of u); however, their proof only proved this for stretch t = Ω(log1/3 |W |).
The dependence on t was improved subsequently by Lee [107] to t = Ω(log1/4 |W |).

In order to make the above discussion more precise, let us first recall the definition of a stretched

set of points.

Definition 5.10 ([17], Defn. 4). A set of n points ~x1, ~x2, . . . , ~xn in R
n is said to be (t, γ, β)-

stretched at scale l, if for at least a γ fraction of the directions u, there is a partial matching Mu =

{(xi, yi)}i, with |Mu| ≥ βn, such that for all (x, y) ∈ Mu, d(x, y) ≤ l2 and 〈u, ~x − ~y〉 ≥ tl/
√
n.

That is, the pair (x, y) is stretched by a factor of t in direction u.

Theorem 5.11 ([17], Thm. 5). For any γ, β > 0, there is aC = C(γ, β) such that if t > C log1/3 n,

then no set of n points in R
n can be (t, γ, β)-stretched for any scale l.

The above theorem has been subsequently improved by Lee to the following (as implied by

[107, Thm. 4.1]).

Theorem 5.12. For any γ, β > 0, there is a C = C(γ, β) such that if t > C log1/4 n, then no set of

n points in R
n can be (t, γ, β)-stretched for any scale l.

Summarizing the implication of Theorem 5.12 in our setting, we get the following corollary.

Corollary 5.13. Let W be a set of vectors corresponding to some subset of terminals satisfying the

following property: with probability Θ(1) over the choice of a random unit vector u, there exist

subsets Su, Tu ⊆ W and a constant ρ such that |Su| ≥ ρ|W | and |Tu| ≥ ρ|W |, and the length of

the projection |〈u, ~x − ~y〉| ≥ `/(6
√
n) for all ~x ∈ Su and ~y ∈ Tu. Then with probability Θ(1)

over the choice of u, the pruning procedure applied to sets Su and Tu returns sets S ′
u and T ′

u with

|S′
u| ≥ 3

4 |Su| and |T ′
u| ≥ 3

4 |Tu|, such that for all ~x ∈ S ′
u and ~y ∈ T ′

u, d(x, y) ≥ `2/f .
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Proof. For a unit vector u, let M(u) denote the matching obtained by taking the pairs (x, y) of

terminals that are deleted by the pruning procedure when given the vector u. Note that pairs (x, y) ∈
M(u) have the property that d(x, y) < `2/f and |px − py| > `/6. For the sake of contradiction,

suppose there is a constant γ such that the matchings M(u) are larger than ρ/4|W | with probability

at least 1− γ over the choice of u.

Using Definition 5.10 above, we get that the vectors in W form an (6
√
f, γ, ρ/4)-stretched set

at scale `/
√
f . Theorem 5.12 now implies that 6

√
f = 6

√
c(log k)1/4 must be at most C log1/4|W |.

However, since |W | ≤ 2k, setting the parameter c suitably large compared to C would give us the

contradiction.

Finally, we are in a position to prove Theorem 5.8 using Lemma 5.9 and Corollary 5.13.

Proof of Theorem 5.8. Define W to be Di, the set of all terminals that belong to some terminal

pair in Di. Let a be the index corresponding to the larger of B0 and B1 before the pruning step,

and set Su = Aa and Tu = A(a+2) mod 4 for this value of a. Lemma 5.9 assures us that |Su| =

|Tu| ≥ 1
32 |Di| = 1

16 |W | with probability 1
15 (over the random choice of the vector u ∈ R

n).

Furthermore, for each ~x ∈ Su and ~y ∈ Tu, the fact that |px − py| ≥ β translates to the statement

that 〈~x− ~y, u〉 ≥ `/(6√n).

These vectors satisfy the conditions of Corollary 5.13, and hence we can infer that with a con-

stant probability, the pruning procedure removes at most 1
4 |Su| and 1

4 |Tu| vertices from Su and Tu
respectively. Their partners may be pruned in the cleanup step as well, and hence the total num-

ber of terminal pairs pruned is at most 1
2 |Su|. Thus the number of terminal pairs remaining in

Di ∩ (S′
u × T ′

u) is at least 1
2 |Su| ≥ 1

64 |Di| pairs.

Since this happens with a constant probability, we will need to repeat Steps 1-3 of the procedure

(each time with a new unit vector u) only a constant number of times until we find a partition that

η-separates at least 1
64 |Di| of the terminal pairs; this proves the result.

Running the procedure Project-&-Prune for each distance scale i between 1 and blog ∆(d)c,
we can get the following result with γ = 1

64 .

Theorem 5.14. Given a negative-type metric d, we can find in randomized polynomial time a de-

composition suite Π = {Pi} that η-separates a constant fraction γ of the terminal pairs at each

distance scale i.

In the next section, we will extend this result to get a set of O(log k) decomposition suites {Πj}
so that each terminal pair (x, y) ∈ D is separated in a constant fraction of the Πj’s.

5.4.4 Obtaining decomposition bundles: weighting and watching

To start off, let us observe that the result in Theorem 5.14 can be generalized to the case where

terminal pairs have an associated weight wxy ∈ {0, 1, 2, . . . , k}.
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Lemma 5.15. Given terminal pairs (x, y) ∈ D with weights wxy, there is a randomized polynomial

time algorithm that outputs a decomposition suite Π which, for each distance scale i, Ω(1/
√

log k)-

separates terminals with total weight at least γ
∑

(x,y)∈Di
wxy.

Proof. The proof is almost immediate: we replace each terminal pair (x, y) ∈ Di having weight

wxy > 0 with wxy new terminal pairs (xj , yj), where the points {xj} and {yj} are placed at

distance 0 to x and y respectively. Doing this reduction for all weighted pairs gives us an unweighted

instance with a set D
′
i of terminal pairs. Now Theorem 5.14 gives us a decomposition suite η-

separating at least 1
64 |D′

i| of the new terminal pairs at distance scale i, where η = 1/O(
√

log D′
i) =

1/O(
√

log k). Finally, observing that the separated terminal pairs at scale i contribute at least
1
64

∑

(x,y)∈Di
wxy completes the claim.

In the sequel, we will associate weights with the terminal pairs in D and run the procedure from

Lemma 5.15 repeatedly. The weights start off at k, and the weight of a pair that is separated in some

iteration is halved in the subsequent iteration; this reweighting ensures that all pairs are separated

in significantly many rounds. (Note: this weighting argument is fairly standard and has been used,

e.g., in geometric algorithms [45], machine learning [112], and many other areas; see Welzl [141]

for a survey.)

The Algorithm:

1. Initialize w(0)(x, y) = 2dlog ke for all terminal pairs (x, y) ∈ D. Set j = 0.

2. Use the algorithm from Lemma 5.15 to obtain a decomposition suite Πj . Let Tj be the set of

terminal pairs η-separated by this decomposition.

3. For all (x, y) ∈ Tj , set w(j+1)(x, y) ← w(j)(x, y)/2; set w(j+1)(x, y) ← w(j)(x, y) for the

others. If w(j+1)(x, y) < 1 then w(j+1)(x, y)← 0.

4. Increment j ← j + 1. If
∑

(x,y)∈Di
w(j)(x, y) ≥ 1 for some i, go to step 2, else halt.

Note that the distance function d in each iteration of the algorithm remains the same.

Lemma 5.16. In each iteration j of the above algorithm the following holds

∑

(x,y)∈Di

w(j+1)(x, y) ≤ (1− γ

2
)

∑

(x,y)∈Di

w(j)(x, y)

Proof. In each iteration, the algorithm of Lemma 5.15 separates at least a γ fraction of the weight
∑

(x,y)∈Di
wj(x, y), and hence the total weight in the next round drops by at least half this amount.

Noting that initially we have
∑

(x,y)∈Di
w(0)(x, y) ≤ 2k2, one derives the following simple

corollary:
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Corollary 5.17. The above algorithm has at most 4
γ log k iterations.

Lemma 5.18. Every pair (x, y) ∈ Di is η-separated in at least log k iterations.

Proof. Since we start off with w(0)(x, y) ≥ k and end with w(j)(x, y) < 1, the weight w(j)(x, y)

must have been decremented at least log k times. Each such reduction corresponds to a round j in

which (x, y) was η-separated by Πj .

Theorem 5.19. The above procedure outputs an η-decomposition bundle with at most 4
γ log k de-

composition suites, such that each terminal pair (x, y) is η-separated in at least log k of these suites.

5.4.5 Embedding via decomposition bundles

In the previous sections we have constructed a decomposition bundle with a large separation be-

tween terminal pairs. Now, we show how to obtain a small distortion `2-embedding from this. The

proof mainly follows the lines of the results in Krauthgamer et al. [105].

Theorem 5.20. Given an α(x, y)-decomposition bundle for the metric d and a set D, there exists a

randomized contracting embedding ϕ : V −→ `2, such that for each pair (x, y) ∈ D,

||ϕ(x) − ϕ(y)||2 ≥ Ω

(

√

α(x, y)

log k

)

·d(x, y)

Note that for α(x, y) = Ω(1/
√

log k) this theorem implies Theorem 5.2.
Along the lines of the reasoning in [105], we define a measure of “local expansion”. Let

V (x, y) = max

{

log
|B(x, 2d(x, y))|
|B(x, d(x, y)/8)| , log

|B(y, 2d(x, y))|
|B(y, d(x, y)/8)|

}

where B(x, r) denotes the set of terminal nodes within the ball of radius r around x. We derive

Theorem 5.20 from the following lemma.

Lemma 5.21. Given an α(x, y)-decomposition bundle, there is a randomized contracting embed-

ding ϕ : V −→ `2 such that for every pair (x, y) with constant probability

||ϕ(x) − ϕ(y)||2 ≥ Ω

(

√

V (x, y)

log k
· α(x, y)

)

·d(x, y) .

By repeatedly applying Lemma 5.21, we obtain the following guarantee:

Corollary 5.22. Given an α(x, y)-decomposition bundle, there is a randomized contracting embed-

ding ϕ : V −→ `2 such that for every pair (x, y),

||ϕ(x) − ϕ(y)||2 ≥ Ω

(

√

V (x, y)

log k
· α(x, y)

)

·d(x, y) .
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Proof. The corollary follows by applying Lemma 5.21 repeatedly and independently for each de-

composition suite several times. Then concatenating and rescaling the resulting maps gives with

high probability an embedding that fulfills the corollary. In passing, we note that this algorithm (us-

ing independent repetitions) may result in an embedding with a large number of dimensions, which

may not be algorithmically desirable. However, it shows the existence of such an embedding, and we

can then use semidefinite programming followed by random projections to obtain a nearly-optimal

embedding of the metric into `2 with O(log n) dimensions in randomized polynomial time.

To see that the above corollary implies Theorem 5.20, we use a decomposition due to Fakcharoen-

phol et al. [61] (and its extension to general measures, as observed by Lee and Naor [108] and by

Krauthgamer et al. [105]) that has the property that with probability at least 1/2, a pair (x, y) is

Ω(1/V (x, y))-separated in this decomposition. Applying the corollary to this decomposition bun-

dle, we get an embedding ϕ1, such that

||ϕ1(x)− ϕ1(y)||2 ≥ Ω

(

1
√

V (x, y) · log k

)

·d(x, y) .

Applying the corollary to the decomposition bundle assumed by the theorem gives an embedding

ϕ2 with

||ϕ2(x)− ϕ2(y)||2 ≥ Ω

(

√

V (x, y)

log k
· α(x, y)

)

·d(x, y) .

Concatenating the two mappings and rescaling, we get a contracting embedding ϕ = 1√
2
(ϕ1 ⊗

ϕ2), with

||ϕ(x)− ϕ(y)||2

≥ Ω

(

1√
log k

·
( 1

V (x, y)
1
2

+ V (x, y)
1
2 α(x, y)

)

)

·d(x, y)

≥ Ω

(

√

α(x, y)

log k

)

·d(x, y)

as desired. Now it remains to prove Lemma 5.21.

The embedding

Let T = {1, . . . , log k} and Q = {0, . . . , h − 1}, for some suitably chosen constant h. In the

following we define an embedding into |T | · |Q| dimensions. For t ∈ T , let rt(x) denote the

minimum radius r such that the ball B(x, r) contains at least 2t terminal nodes. We call rt(x)

the t-radius of x. Further, let `t(x) ∈ N denote the distance class this radius belongs to (i.e.,

2`t(x)−1 ≤ rt(x) ≤ 2`t(x)).

Pick a decomposition suite Π = {Ps} from the decomposition bundle at random. In the follow-

ing δ(x, y) denotes the separation-factor between x and y in this suite, i.e., δ(x, y) = 1
d(x,y) min{d(x, V \
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Cs(x)),d(y, V \Cs(y))} if Cs(y) 6= Cs(x) and 0, otherwise. Observe that with constant probability

we have δ(x, y) ≥ α(x, y).

The standard way to obtain an embedding from a decomposition suite is to create a coordinate

for every distance scale and embed points in this coordinate with respect to the partitioning for

this scale. For example, one could assign a random color, 0 or 1, to each cluster C ∈ Pi. Let

Wi denote the set of nodes contained in clusters with color 0 in partitioning Pi. By setting the i-th

coordinate of the image ϕ(x) of a point x to d(x,W i
0), a pair (x, y) gets a distance Ω(δ(x, y)d(x, y))

with probability 1/2, because this is the probability that the clusters Ci(x) and Ci(y) get different

colors (in this case the distance is Ω(δ(x, y)d(x, y)) since both nodes are at least that far away from

the boundary of their cluster). Overall this approach gives an embedding into `2 with contraction

O(
√

log k/δ(x, y)), and has e.g. been used by Rao [122] for getting a
√

log n embedding of planar

metrics into `2.

In order to improve this, along the lines of the measured descent idea from [105], the goal

is to construct an embedding in which the distance between (ϕ(x), ϕ(y)) increases as the local

expansion V (x, y) increases. This can be achieved by constructing a coordinate for every t ∈
T and then embed points in this coordinate according to the partitioning for the corresponding

distance scale `t(x) (i.e., different points use different distance scales depending on their local

expansion). Thereby, for a pair with a high V (x, y)-value the nodes will often (≈ V (x, y) times)

be embedded according to the partitioning for distance scale i = blog d(x, y)c that corresponds to

d(x, y). Therefore, the pair (x, y) gets a larger distance (by a factor of roughly
√

V (x, y)) in this

embedding than in the standard approach.

However, transferring the rest of the standard analysis to this new idea has some difficulties. If

we define the set Wt as the nodes x that are colored 0 in the partitioning for scale `t(x) we cannot

argue that for a pair (x, y) either d(x,Wt) or d(y,Wt) is large, because nodes u very close to x

or y may have distance scales `t(u) that are different from `t(x) or `t(y). In order to ensure local

consistency such that all nodes close to x obtain their color from the same partitioning, we construct

several coordinates in the embedding for every t, such that for each distance scale `t(x) there is a

coordinate in which all nodes close to x derive their color from the partitioning for scale `t(x). The

details are as follows.

Let Q = {0, · · · , h − 1} denote the set of indices of coordinates corresponding to each value

of t. For each q ∈ Q, we partition the distance scales into groups gq of size h each, and let

the median scale in each group represent that group for the coordinate corresponding to q. In the

(q, t)th coordinate, the color of a node is picked according to the median distance scale in the group

gq to which `t(x) belongs.

In particular, let gq(`) := d `−qh e. Note that each distance group contains (at most) h consecutive

distance classes which means that distances within a group differ at most by a constant factor – all

distances in group g are in Θ(2h·g). We define a mapping πq between distance classes that maps all

classes of a group to the median distance class in this group (the value of πq for the first and last
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distance group is rounded off appropriately; we omit a precise definition for the sake of clarity).

πq(`) := i+ h · gq(`)− b
h

2
c

Observe that this partitioning satisfies the key property that for each distance class i, there exists a q

such that πq(i) = i.

Based on this mapping we define a set W q
t for each choice of t ∈ T and q ∈ Q by W q

t =

{x ∈ V : colorπq(`t(x))(x) = 0}, where colori(x) denotes the color of the cluster that contains x in

partitioning Pi. Note that all nodes whose t-radii fall into the same distance group (w.r.t. parameter

q) derive their color (and hence whether they belong to W q
t ) from the same partitioning.

Based on the sets W q
t we define an embedding ϕt,q : V −→ R for each coordinate (t, q) —

ϕt,q(x) = d(x,W q
t ). The embedding ϕ : V −→ R

|T ||Q| is defined by

ϕ(x) := ⊗t,q ϕt,q(x). (5.5)

Next we analyse the distortion of the map ϕ.

The analysis

Since each coordinate of ϕ maps point x to its distance from some subset of points, it follows that

each coordinate of this embedding is contracting. Therefore, we have for all x, y ∈ V

||ϕ(x) − ϕ(y)||2 ≤
√

|T | · |Q| · d(x, y)2

≤ O(
√

log k) · d(x, y)

Now, we show that for a pair x, y that is δ(x, y)-separated in the partitioning corresponding to

its distance scale blog(d(x, y))c, with a constant probability, we get

||ϕ(x) − ϕ(y)||2 ≥ Ω(δ(x, y) · d(x, y)) ·
√

V (x, y) (5.6)

This gives Lemma 5.21 since δ(x, y) > α(x, y) with constant probability.

Fix a pair (x, y) that is δ(x, y)-separated in the partitioning for distance scale blog(d(x, y))c.
Without loss of generality assume that the maximum in the definition of V (x, y) is attained by the

first term, i.e. |B(x,2d(x,y))|
|B(x,d(x,y)/8)| ≥

|B(y,2d(x,y))|
|B(y,d(x,y)/8)| . We show that for any t with |B(x,d(x, y)/8)| ≤ 2t ≤

|B(x, 2d(x, y))|, there is a q ∈ Q such that the coordinate (t, q) gives a large contribution, i.e.,

|ϕt,q(x)− ϕt,q(y)| ≥ Ω(δ(x, y) · d(x, y)). Equation 5.6 then follows.

We fix an integer t with log(|B(x,d(x, y)/8)|) ≤ t ≤ log(|B(x, 2d(x, y))|), and we use i =

blog d(x, y)c to denote the distance class of d(x, y). Clearly, the distance class `t(x) of the t-radius

of x is in {i − 4, . . . , i + 2}, because d(x, y)/8 ≤ rt(x) ≤ 2d(x, y). The following claim gives a

similar bound on the t-radius for nodes that are close to x.

Claim 5.23. Let z ∈ B(x, 1
16d(x, y)). Then `t(z) ∈ {i− 5, i + 3}.
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Proof. For the t-radius rt(z) around z we have rt(x) − d(x, y)/16 ≤ rt(z) ≤ rt(x) + d(x, y)/16.

Since d(x, y)/8 ≤ rt(x) ≤ 2d(x, y) we get 1
16d(x, y) ≤ rt(z) ≤ 33

16d(x, y), which yields the

claim.

In the following we choose h (the number of distances classes within a group) as 10, and q such

that πq(i) = i, i.e., i is the median of its distance group. Then the above claim ensures that for all

nodes z ∈ B(x, 1
16d(x, y)), the distance class `t(z) is in the same distance group as i. Furthermore,

these nodes choose their color (that decides whether they belong toW q
t ) according to the partitioning

for distance scale i. Recall that x is δ(x, y)-separated in this partitioning. Therefore, we can make

the following claim.

Claim 5.24. If x does not belong to the set W q
t , then,

d(x,W q
t ) ≥ min{ 1

16 , δ(x, y) }d(x, y) ≥ 1

16
δ(x, y) d(x, y)

Now, we consider the following events concerning the distances of x and y from W q
t , respec-

tively.

• X0 = {d(x,W q
t ) = 0}, i.e., x ∈W q

t

• Xfar = {d(x,W q
t ) > 1

16δ(x, y)d(x, y)}
• Yclose = {d(y,W q

t ) ≤ 1
32δ(x, y)d(x, y)}

• Yfar = {d(y,W q
t ) > 1

32δ(x, y)d(x, y)}
These events only depend on the random colorings chosen for the partitionings in different

distance classes. First we claim that the eventsX0 andXfar are independent of events Yclose and Yfar.

To see this, note thatX0 andXfar only depend on colors chosen for nodes inB(x, 1
16δ(x, y)d(x, y)).

Our choice of q ensures that these colors are derived from the partitioning for distance class i, and

Claim 5.23 implies that all nodes in B(x, 1
16δ(x, y)d(x, y)) get the color assigned to the cluster

Ci(x).

The events Yclose and Yfar, however, depend on colors chosen for nodes that lie in the ball

B(y, δ(x, y) 1
32d(x, y)). Such a color is either derived from a partitioning for a distance class differ-

ent from i (in this case independence is immediate), or it is equal to the color assigned to the cluster

Ci(y), using the fact that d(y, V \ Ci(y)) ≥ δ(x, y)d(x, y). In the latter case the independence

follows, since x and y lie in different clusters in this partitioning as they are separated by it.

IfX0∩Yfar orXfar∩Yclose happens, then the dimension (t, q) gives a contribution of Ω(δ(x, y)d(x, y)).

This happens with probability

Pr[X0∩Yfar ]Xfar ∩ Yclose]

= Pr[X0 ∩ Yfar] + Pr[Xfar ∩ Yclose]

= Pr[X0] ·Pr[Yfar] + Pr[Xfar] ·Pr[Yclose]

= Pr[X0] ·Pr[Yfar] + Pr[Xfar] · (1−Pr[Yfar])

= 1/2 .
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Here we used the fact that Pr[X0] = Pr[Xfar] = 1/2 which holds due to Claim 5.24. This

completes the proof of Lemma 5.21.

5.5 Hardness of approximating SPARSEST-CUT and MULTICUT

5.5.1 Preliminaries

Regular Unique Games

A unique 2-prover game is called regular if the total weight of question edges incident at any single

vertex is the same, i.e., 1/n, for every vertex in Q. We now show that we can assume without loss

of generality that the graph in the Unique Games Conjecture is regular. For simplicity, we state this

only for fixed η and δ. A similar result holds when they depend on n, because we increase the input

size by no more than a polynomial factor, and increase η and δ by no more than a constant factor.

Lemma 5.25. The Unique Games Conjecture implies that for every fixed η, δ > 0, there exists

m = m(η, δ) such that it is NP-hard to decide if a regular unique 2-prover game has value at least

(1− η) or at most δ.

The proof is based on an argument of Khot and Regev [100, Lemma 3.3].

Proof. Given a unique 2-prover game Q, we describe how to convert it to a regular game while

preserving its completeness and soundness. First we claim that we can assume that the ratio between

the max weight maxewe and the min weight minewe is bounded by n3. This is because we can

remove all edges with weight less than 1
n3 maxewe from the graph, changing the soundness and

completeness parameters by at most 1
n . By a similar argument, we can assume that all weights in

the graph are integral multiples of t = 1
n2 minewe.

Now we convert Q to a regular graph Q′ as follows. For each prover p ∈ {1, 2} and question

qpi , form W (p, i)/t vertices qpi (1), · · · , q
p
i (W (p, i)/t), where W (p, i) is the total weight of all the

edges incident on qpi . For every pair of vertices (q1
i , q

2
j ), connected by an edge e in Q, we form an

edge between q1
i (x) and q2

j (y), for all possible values of x and y, with weight we t
W (1,i)

t
W (2,j) .

Note that the total weight of all the edges remains the same as before. Each new node q1
i (x)

has total weight
∑

ewe
t

W (1,i)
t

W (2,j)
W (2,j)

t = t, where the sum is over all edges e incident on q1
i .

Therefore, the graph is regular. Furthermore, the number of vertices increases by a factor of at most

n5.

It only remains to show that the soundness and completeness parameters are preserved. To see

this, note that any solution on the original graph Q can be transformed to a solution of the same

value on Q′, by picking the same answer for every node qpi (x) in Q′ as the answer picked for qpi in

Q. Likewise, consider a solution in Q′. Note that the answers for the questions qpi (x) with different

values of x must all be the same, because all these questions are connected to identical sets of
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vertices, with the same weights. Therefore, the solution in Q that picks the same answer for qpi as

the answer for qpi (x) in Q′ has the same weight as the given solution in Q′.

Thus for every solution in Q, there is a solution of the same weight in Q′ and vice versa. This

proves that the two games have exactly the same soundness and completeness parameters.

Bicriteria MULTICUT

Our proof for the hardness of approximating SPARSEST-CUT relies on a generalization of MULTI-

CUT, where the solution M is required to cut only a certain fraction of the demand pairs. For a given

graph G = (V,E), a subset of the edges M ⊆ E will be called throughout a cutset of the graph. A

cutset whose removal disconnects all the demand pairs is called a multicut.

An algorithm is called an (α, β)-bicriteria approximation for MULTICUT if, for every input

instance, the algorithm outputs a cutset M that disconnects at least an α fraction of the demands

and has cost at most β times the weight of the optimum multicut. In other words, if M ∗ is the least

cost cutset that disconnects all the k demand pairs, then M disconnects at least αk demand pairs

and c(M) ≤ β · c(M ∗).

Hypercubes, dimension cuts, and antipodal vertices

As usual, the m-dimensional hypercube (in short an m-cube) is the graph C = (VC , EC) which

has the vertex set VC = {0, 1}m , and an edge (u, v) ∈ EC for every two vertices u, v ∈ {0, 1}m
which differ in exactly one dimension (coordinate). An edge (u, v) is called a dimension-a edge,

for a ∈ [m], if u and v differ in dimension a, i.e., u ⊕ v = 1a where 1a is a unit vector along

dimension a. The set of all the dimension-a edges in a hypercube is called the dimension-a cut in

the hypercube. The antipode of a vertex u is the (unique) vertex u all of whose coordinates are

different from those of u, i.e., the vertex u ⊕ 1 where 1 is the vector with 1 in every coordinate.

Notice that v is the antipode of u if and only if u is the antipode of v; thus, 〈u, u〉 form an antipodal

pair. The following simple fact will be key in our proof.

Fact 5.26. In every hypercube, a single dimension cut disconnects every antipodal pair.

5.5.2 Hardness of bicriteria approximation for MULTICUT

In this section we prove the part of Theorem 5.5 regarding the MULTICUT problem, namely, that

the Unique Games Conjecture implies that it is NP-hard to approximate MULTICUT within a certain

factor L. Our proof will actually show a stronger result—for every α ≥ 7/8 it is NP-hard to dis-

tinguish between whether there is a multicut of cost less than n2m+1 (the YES instance) or whether

every cutset that disconnects at least αk demand pairs has cost at least n2m+1L (the NO instance).

This implies that it is NP-hard to obtain an (α,L)-bicriteria approximation for MULTICUT.
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We start by describing a reduction from unique 2-prover game to MULTICUT (Section 5.5.2),

and then proceed to analyze the YES instance (Section 22) and the NO instance (Sections 22 and

22). Finally, we discuss the gap that is created for a bicriteria approximation of MULTICUT (Section

22).

The reduction

Given a unique 2-prover game instance GQ = (Q,EQ) with n = |Q|/2 and the corresponding

edge weights w(e) and bijections bij : [m]→ [m], we construct a MULTICUT instance G = (V,E)

with demand pairs, as follows. For every vertex (i.e., question) qpi ∈ Q, construct a m-dimensional

hypercube Cp
j . The dimensions in this cube correspond to answers for the question qpj .3 We let the

edges insides these 2n cubes have cost 1, and call them hypercube edges.

For each question edge (q1
i , q

2
j ) ∈ EQ, we extend bij to a bijection from the vertices of C1

i

(subsets of the answers for q1
i ) to the vertices of C2

j (subsets of the answers for q2
j ), and denote the

resulting bijection by b′ij : {0, 1}m → {0, 1}m . Formally, for every u ∈ {0, 1}m (vertex in C1
i )

and every a ∈ [m], the a-th coordinate of b′ij(u) is given by (b′ij(u))a = ub−1
ij (a). Then, we connect

every vertex v ∈ C1
i to the corresponding vertex b′ij(u) ∈ C2

j using an edge of cost wijΛ, where

Λ = n
η is a scaling factor. These edges are called cross edges.

Denote the resulting graph by G = (V,E). Notice that V is simply the union of the vertex sets

of the hypercubes Cp
i , for all p ∈ [2] and i ∈ [n], and that the edge set E contains two types of

edges, hypercube edges and cross edges.

To complete the reduction, it remains to define the demand pairs. For a vertex u ∈ V , the

antipode of u in G, denoted u, is defined to be the antipodal vertex of u in the hypercube C p
i that

contains u. The set D of demand pairs then contains every pair of antipodal vertices in G, and hence

k = |D| = n2m−1. Note that every vertex of G belong to exactly one demand pair.

The YES instance

Lemma 5.27. If there is a solution A for the unique 2-prover game GQ such that the total weight

of the satisfied questions is at least 1 − η, then there exists a multicut M ⊆ E for the MULTICUT

instance G such that c(M) ≤ 2m+1n.

Proof. Let A be such a solution for GQ. Construct M by taking the following edges. For every

question qpi ∈ Q and the corresponding answer Api (of prover p), take the dimension-Api cut in cube

Cpi . In addition, for every edge (q1
i , q

2
j ) ∈ EQ that the solution A does not satisfy, take all the cross

edges between the corresponding cubes C1
i and C2

j .

3This is a standard technique in PCP constructions for graph optimization problems. A hypercube can be interpreted

as a “long code” [23], and a dimension cut is the encoding of an answer in the 2-prover game.
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We first claim that removing M from G disconnects all the demand pairs. To see this, we

define a Boolean function f : V → {0, 1} on the graph vertices. For every cube C p
i , consider the

dimension-Api cut; it disconnects the cube into two connected components, one containing the all

zeros vector 0 and one containing the all ones vector 1. For every v ∈ C p
i , let f(v) = 0 if v is in the

same side as 0, and f(v) = 1 otherwise. This is exactly the Ap
i -th bit in v, i.e., f(v) = vAp

i
. Now

consider any demand pair (v, v), and note that f(v) = 1 − f(v). We will show below that every

edge (u, v) /∈M satisfies the property f(u) = f(v). This clearly proves the claim.

Consider first a hypercube edge (u, v) in Cp
i that is not a dimension-Api edge. Then f(u) =

uAp
i

= vAp
i

= f(v), by the definition of f . Next consider a cross edge (u, v) /∈ M . Then this edge

lies between cubes C1
i and C2

j , such that the question edge (q1
i , q

2
j ) satisfied by the unique 2-prover

game solution A. Therefore, bij(A1
i ) = A2

j . Then, f(u) = uA1
i

= vbij(A1
i ) = vA2

j
= f(v).

Finally, we bound the cost of the solution. Let S be the set of question edges not satisfied by the

solutionA. The total cost of the multicut solution is thus c(M) = 2n 2m−1+2mΛ
∑

(Q1
i ,Q

2
j)∈S wij ≤

2mn+ 2mn
η η = 2m+1n.

Hypercube cuts, Boolean functions, influences and juntas

We will analyze the NO instance shortly, but first we set up some notation and present a few technical

lemmas regarding cuts in hypercubes. In particular, we present Theorem 5.28, which will have a

crucial role in the sequel.

Recall that the dimensions of the hypercubes in the multicut instance corresponds to answers to

the 2-prover game. Therefore, we would like to determine which dimensions are the most significant

participants in a cut on the cube, as follows. Let C = (VC , EC) be an m-dimensional hypercube.

It will be useful to represent cuts on the hypercube C as functions f : VC → Z. Such a function

f corresponds to a partition of VC into sets {f−1(r) : r ∈ f(VC)}, which in turn corresponds

to the cutset {(u, v) ∈ EC : f(u) 6= f(v)}. Notice that f can be described as a function on

m Boolean variables (corresponding to the dimensions of the hypercube), where the dimension

a ∈ [m] corresponds to the a-th variable. The influence of a dimension (variable) a ∈ [m] on the

function f , denoted Ifa , is defined as the fraction of the dimension a-edges (u, v) ∈ EC for which

f(u) 6= f(v). In other words, Ifa = Pru∈VC
[f(u) 6= f(u ⊕ 1a)] where 1a is a unit vector along

dimension a. The total influence (also called average sensitivity) of f is
∑

a∈[m] I
f
a . We say that

the function f is a k-junta if there exists a subset J ⊆ [m], |J | ≤ k, such that for every variable

(dimension) a /∈ J and for every u ∈ VC , we have f(u) = f(u ⊕ 1a). In other words, f depends

on at most k variables, and the remaining variables have zero influence. Two functions f and f ′ are

said to be ε-close if Pru∈VC
[f(u) 6= f ′(u)] ≤ ε.

An important special case is that of Boolean functions, i.e., g : VC → {0, 1}, which corresponds

to a bipartition of VC . The balance of a Boolean function g is defined as min{ |g−1(0)|
|VC | , |g

−1(1)|
|VC | },

i.e., the minimum between Pru∈VC
[g(u) = 0] and Pru∈VC

[g(u) = 1].
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The next theorem, due to Friedgut [66], asserts that every function of low total influence is

close to a junta. We will later use it to determine a set of dimensions that are the most significant

participants in a low-cost cutset.

Theorem 5.28 (Friedgut’s Junta Theorem). Let g be a Boolean function defined on a hypercube

and fix ε > 0. Then g is ε-close to a Boolean function h defined on the same cube and depending

on only 2O(T/ε) variables, where T =
∑

a∈[m] I
g
a is the total influence of g.

The NO instance

Lemma 5.29. There exists L = Ω(min{η−1, log δ−1}) such that if the MULTICUT instance G has

a cutset of cost at most 2mnL whose removal disconnects α ≥ 7/8 fraction of the demand pairs,

then there is a solution A for the unique 2-prover game GQ whose value is larger than δ.

Proof. Let L = min{c/η, c log(1/δ)} for a constant c > 0 to be determined later, and let M ⊆ E

be a cutset of cost c(M) ≤ 2mnL whose removal disconnects α ≥ 7/8 fraction of the demand

pairs. Using M , we will construct for the unique 2-prover game GQ a randomized solution A

whose expected value is larger than δ, thereby proving the existence of a solution of value larger

than δ. The randomized solution A (i.e., a strategy for the two provers) is defined as follows.

Label each connected component of G \M with either 0 or 1 independently at random with equal

probabilities, and define a Boolean function f : V → {0, 1} by letting f(v) be the label of the

connected component of v ∈ V . Next, fix ε = 1/64 and for each vertex (question) qpi ∈ Q,

consider the restriction of f to the hypercube Cp
i ⊂ V , denoted f|Cp

i
, and apply to it Theorem

5.28 (Friedgut’s Junta Theorem) to obtain a subset of the variables (dimensions) J pi ⊆ [m] with

|Jpi | ≤ 2O(L/ε). Finally, choose the answer Api uniformly at random from J pi , independently of all

other events.

We proceed to analyze the expected value of this randomized solution A. Recall that the value

of a solution is equal to the probability that, for a question edge (q1
i , q

2
j ) chosen at random with

probability proportional to its weight, we have a2
j = bij(a

1
i ). Notice that although q1

i and q2
j are

correlated, each one is uniformly distributed because Q is regular. Without loss of generality, we

assume removing M disconnects at least as many demand pairs inside the cubes {C 1
l }l∈[n] as inside

the cubes {C2
l }l∈[n]. Now we claim that with a constant probability over the choice of a question

edge, the cut M has a low cost over edges incident on the corresponding hypercubes, and discon-

nects many demand pairs in the hypercubes. In other words, the quality of the cut locally is nearly as

good as the quality of the cut globally. In particular, we upper bound the probability of the following

four “bad” events (for a random question edge (q1
i , q

2
j )):

E1 = fewer than 1/8-fraction of the vertices v ∈ C1
i satisfy f(v) 6= f(v).

E2 = M contains more than 2m+4L hypercube edges in C1
i .

E3 = M contains more than 2m+4L hypercube edges in C2
j .
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E4 = M contains more than 2m+4ηL cross edges between C1
i and C2

j .

First, by our assumption above, removing M disconnects at least α ≥ 7/8 fraction of the demand

pairs inside the cubes {C1
l }l∈[n]. Thus, the expected fraction of demand pairs (v, v) in C 1

i that are

not disconnected in G \M (and thus clearly f(v) = f(v)) is at most 1/8. In addition, the expected

fraction of demand pairs (v, v) in C1
i that are disconnected in G \M and satisfy f(v) = f(v), is

at most 1/2, because different connected components of G \M are labeled independently. Thus,

the expected fraction of vertices v ∈ C1
i for which f(v) = f(v) is at most 5/8, and by Markov’s

inequality, Pr[E1] ≤ 5/7. Next, the cutset M contains at most 2mnL hypercube edges, thus the

expected number of edges in C1
i ∪ C2

j that are contained in M is at most 2mL, and by Markov’s

inequality Pr[E2 ∪ E3] ≤ 1/16. Finally, Pr[E4] ≤ 1/16, as otherwise the total cost of M along

the cross edges corresponding to this event is more than 1/16 · (2m+4ηL) · Λ = 2mnL ≥ c(M).

Taking a union bound, we upper bound the probability that any of the bad events occurs by

Pr[E1 ∪E2 ∪E3 ∪E4] ≤
5

7
+

2

16
<

6

7
.

In order to lower bound the expected value of the randomized solution A, we would like to show

that if none of the above bad events happens, then the two sets of dimensions J 1
i and J2

j obtained

using Friedgut’s Junta Theorem are relatively small, and further they are in “weak agreement”, and

these two properties will immediately imply that the randomized solution A satisfies Pr[bij(A
1
i ) =

A2
j ] > δ. Observe that if (u, v) ∈ E and f(u) 6= f(v), then (u, v) ∈ M . If the event E2 does

not occur, then the total influence of f|C1
i

is at most 8L, and thus |J 1
i | ≤ 2O(L/ε). Similarly, if the

event E3 does not occur, then the total influence of f|C2
j

is at most 8L, and thus |J 2
j | ≤ 2O(L/ε). In

addition, if the event E1 does not occur, then the balance of f|C1
i

is at least 1/16.

We now claim that if none of the above bad events happens then there is a ∈ J 1
i for which

bij(a) ∈ J2
j . Indeed, assume towards contradiction that J 1

i ∩ b−1
ij (J2

j ) = ∅. Then by construction

there is a Boolean function g1
i : C1

i → {0, 1} that is ε-close to f|C1
i

and depends on only variables

in J1
i . Note that the balance of g1

i is at least 1/16 − ε. Similarly, there is a Boolean function

g2
j : C2

j → {0, 1} that is ε-close to f|C2
j

and depends on only variables in J 2
j . We can relate these two

functions via b′ij : Ci1 → C2
j , namely by considering h : C1

i → {0, 1} given by h(v) = g2
j (b

′
ij(v)).

Notice that h is ε-close to f|C2
j
◦ b′ij , and that it depends only on variables in b−1

ij (J2
j ). Therefore

g1
i and h depend on disjoint sets of variables. It follows that Prv∈C1

i
[g1
i (v) 6= h(v)] ≥ 1/16 − ε,

because if we condition on the value of the variables in b−1
ij (J2

j ) we get that h(v) is determined, but

this does not affect the distribution of g1
i (v), which still attains each value (0 or 1) with probability

at least 1/16 − ε. Consequently, g1
i and h = g2

j ◦ bij are not (1/16 − ε)-close.

On the other hand, the event E4 not occuring implies that at most 16ηL vertices v ∈ C 1
i satisfy

f(v) 6= f(bij(v)). In other words, f|C1
i

is (16ηL)-close to f|C2
j
◦ bij . The former is ε-close to g1

i

while the latter is ε-close to g2
j ◦ bij (because bij is a bijection on the variables), and by the triangle

inequality we get that g1
i and h = g2

j ◦ bij are 2ε + 16ηL close. If c > 0 is sufficiently small,

2ε+ 16ηL < 1/16 − ε, which yields a contradiction.
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Using the above claim we get that for a random question edge,

Pr[A2
j = bij(A

1
i )] ≥ Pr[A1

i ∈ J1
i ∩ b−1

ij (J2
j ), A

2
j = bij(A

1
i )]

≥ 1

7
· 2−O(L/ε) · 2−O(L/ε)

= 2−O(L).

We conclude that the expected value of the randomized solution A is Pr[A2
j = bij(A

1
i )] ≥

2−O(L) > δ, where the last inequality holds if c > 0 is sufficiently small, and this completes the

proof of Lemma 5.29.

Putting it all together

The above reduction from unique 2-prover game to MULTICUT produces a gap ofL(n) = Ω(min{ 1
η(n) , log

1
δ(n)}).

We assumed m(η, δ) ≤ O(log n), and thus the resulting MULTICUT instance G has size N =

(n2d)O(1) = nΘ(1). It follows that in terms of the instance size N , the gap is

L(N) = Ω(min{ 1
η(NΘ(1))

, log 1
δ(NΘ(1))

}).

This completes the proof of the part of Theorem 5.5 regarding the MULTICUT problem, namely,

that the Unique Games Conjecture implies that it is NP-hard to approximate MULTICUT within the

above factor L(N). In fact, the above proof shows that it is even NP-hard to obtain a (7/8, L(N))-

bicriteria approximation.

Note that the number of demand pairs is k = n2m−1 = nΘ(1), and thus the hardness of approx-

imation factor is similar when expressed in terms of k as well. Note also that all edge weights in

the MULTICUT instance constructed above are bounded by a polynomial in the size of the graph.

Therefore, via a standard reduction, a similar hardness result holds for the unweighted MULTICUT

problem as well.

5.5.3 Hardness of approximating SPARSEST-CUT

In this section we prove the part of Theorem 5.5 regarding the SPARSEST-CUT problem. The proof

follows immediately from the next lemma in conjunction with the hardness of bicriteria approxima-

tion of MULTICUT (from the previous section).

Lemma 5.30. Let 0 < α < 1 be a constant. If there exists an algorithm for SPARSEST-CUT that

produces in polynomial time a cut whose value is within factor ρ ≥ 1 of the minimum, then there is

a polynomial time algorithm that computes an (α, 2ρ
1−α)-bicriteria approximation for MULTICUT.

Proof. Fix 0 < α < 1, and suppose A is an algorithm for SPARSEST-CUT that produces in polyno-

mial time a cut whose value is within factor ρ ≥ 1 of the minimum. Now suppose we are given an

input graph G = (V,E) and k demand pairs {si, ti}pi=1. We may assume without loss of generality
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that every si is connected (in G) to its corresponding ti. Let cmin and cmax be the smallest and

largest edge costs in G, and let n = |V |.
We now describe the bicriteria approximation algorithm for MULTICUT. For every value C ∈

[cmin, n
2cmax] which is a power of 2, execute a procedure that we will describe momentarily to

compute a cutset MC ⊆ E, and report, from all these cutsets MC whose removal disconnects at

least αk demand pairs, the one of least cost. For a given value C > 0, the procedure starts with

MC = ∅, and then iteratively MC is “augmented” as follows: Take a connected component S of

G \MC , apply algorithm A to G[S] (the subgraph induced on S and all the demand pairs that lie

inside S), and if the resulting cutset ES has value (in G[S]) at most ρ
1−α · Ck , then add the edges ES

to MC . Here, the value (ratio of cost to demands cut) of ES is defined as bS = c(ES)/|DS |, where

DS is the collection of demand pairs that lie in G[S] and get disconnected (in G[S]) when ES is

removed. Proceed with the iterations until for every connected component S in G \MC we have

bS >
ρ

1−α
C
k , at which point the procedure returns the cutset MC .

This algorithm clearly runs in polynomial time, so let us analyze its performance. We first claim

that for every value C , the cutset MC returned by the above procedure has sparsity at most ρ
1−α

C
k .

Indeed, suppose the procedure performs t augmentation iterations. Denote by Si the connected

component S that is cut at iteration i ∈ [t], by ESi the corresponding cutset output by A, and by

DSi the corresponding set of demand pairs that get disconnected. Clearly, MC is the disjoint union

E1 ∪ · · · ∪ Et, and it is easy to verify that the collection DC of demand pairs cut by the cutset MC

is the disjoint union DS1 ∪ · · · ∪ DSt . Thus,

c(MC) =

t
∑

i=1

c(ESi) ≤
ρ

1− α ·
C

k

t
∑

i=1

|DSi |

=
ρ

1− α ·
C

k
|DC |,

which proves the claim.

For the sake of analysis, fix an optimal multicut M ∗ ⊆ E, i.e., a cutset of G whose removal

disconnects all the demand pairs and has the least cost. The sparsity of M ∗ is b∗ = c(M∗)/k. We

will show that if C ∈ [c(M ∗), 2c(M ∗)], then the above procedure produces a cutset MC whose

removal disconnects a collection DC containing |DC | ≥ αk demand pairs; this will complete the

proof of the lemma, because it immediately follows that

c(MC) ≤ ρ

1− α ·
C

k
|DC | ≤

ρ

1− α · 2c(M
∗),

and clearly c(M ∗) ∈ [cmin,
(n
2

)

· cmax]. So suppose now C ∈ [c(M ∗), 2c(M ∗)] and assume for

contradiction that |DC | < αk. Denote by V1, . . . , Vp ⊆ V the connected components of G \MC ,

and let Dj contain the demand pairs that lie inside Vj . It is easy to see that
∑p

j=1 |Dj| = k −
|DC | > (1 − α)k. Similarly, let M ∗

j be the collection of edges in M ∗ that lie inside Vj . Then

c(M∗) ≥∑p
j=1 c(M

∗
j ). Notice that, in every induced graph G[Vj ], the edges of M ∗

j form a cutset
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(of G[Vj ]) that cuts all the demand pairs in Dj . Using the stopping condition of the procedure, and

since A provides an approximation within factor ρ, we have c(M ∗
j ) ≥ 1

1−α
C
k |Dj| (the inequality is

not strict because Dj might be empty). We thus derive the contradiction

c(M∗) ≥
p

∑

j=1

c(M∗
j ) ≥ 1

1− α ·
C

k

p
∑

j=1

|Dj| > c(M∗).

This shows that when C ∈ [c(M ∗), 2c(M ∗)], the procedure stops with a cutset MC whose removal

disconnects |DC | ≥ αk demand pairs, and concludes the proof of the lemma.

5.5.4 Hardness of approximating MIN-2CNF≡ DELETION

In this section, we modify the reduction in Section 5.5.2 to obtain a hardness of approximation

for MIN-2CNF≡ DELETION. In particular, we reduce the MULTICUT instance obtained in Sec-

tion 5.5.2 to MIN-2CNF≡ DELETION, such that a solution to the latter gives a MULTICUT of the

same cost in the former.

The MIN-2CNF≡ DELETION instance contains 2m−1n variables, one for each demand pair

(u, u). In particular, for every demand pair (u, u) ∈ D, we associate the literal xu with u and the

literal xu = ¬xu with u. There is a clause for every edge (u, v) in the graph G—(xu = xv)—with

weight equal to we.

The following lemma is immediate from the construction and implies an analogue of Lemma 5.29

for MIN-2CNF≡ DELETION.

Lemma 5.31. Given an assignment S of cost W to the above instance of MIN-2CNF≡ DELETION,

we can construct a solution of cost W to the MULTICUT instance G.

Proof. Let M be the set of edges (u, v) for which S(xu) 6= S(xv). Then M corresponds to the

clauses that are not satisfied by S and has weight W . The lemma follows from observing that M

is indeed a multicut—S is constant over connected components in G \M , and for any demand pair

(u, u), S(xu) 6= S(xu).

We now give an analog of Lemma 5.27.

Lemma 5.32. If there is a solution A for the unique 2-prover game GQ such that the total weight of

the satisfied questions is at least 1−η, then there exists an assignment S for the above MIN-2CNF≡
DELETION instance such that c(S) ≤ 2m+1n.

Proof. Given the solution A for GQ, we construct an assignment S as follows. For every question

qpi and for every vertex u in the corresponding hypercube C p
i , define S(xu) to be the Api -th bit of u,

i.e., S(xu) = uAp
i
. Note that this is a valid assignment, i.e., S(xu) = 1 − S(xu) for all vertices u,

as uAp
i

= 1− uAp
i
.
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We bound the cost of the solution by first analyzing the clauses corresponding to hypercube

edges in the corresponding MULTICUT instance. Consider unsatisfied clauses containing both vari-

ables in the same hypercube Cp
i , and note that the hypercube edges corresponding to these clauses

form a dimension-Api cut in the cube Cp
i . Therefore, the total weight of these clauses is at most

(2m−1)(2n) = 2mn.

Finally, consider an unsatisfied clause xu = xv corresponding to vertices in different hypercubes

C1
i and C2

j . Then S(xu) 6= S(xv) implies that uA1
i

= vbij(A1
i ) 6= vA2

j
, or, bij(A1

i ) 6= A2
j . There are

at most 2m such clauses for each question pair not satisfied by the solution A. Therefore, the total

weight of such clauses is at most 2mn
η η = 2mn.

The lemma follows from adding the two costs.

Lemmas 5.31 and 5.32 along with Lemma 5.29 imply the part of Theorem 5.5 regarding MIN-

2CNF≡ DELETION.

5.5.5 Limitations of our approach

The main bottleneck to improving the hardness factor lies in Friedgut’s Junta Theorem. These

bounds are tight in general, as shown by the tribes function [26] (see also [66, Section 2]).

Our reduction does not extend to the uniform-demands case of the SPARSEST-CUT problem or

the BALANCED-CUT problem. In particular, if a 2-prover system has a low-cost balanced cut, then

the corresponding graph on hypercubes would have a low-cost balanced cut even if the 2-prover

system does not have a high value solution.

5.6 Concluding remarks

Our work reduces the gap between the known approximability and hardness of approximation for

the SPARSEST-CUT and MULTICUT problems. It would be nice to reduce this gap further. For

the MULTICUT problem, an approximation better than O(log n) seems unlikely. Even for the

SPARSEST-CUT, an improvement over the currently best O(
√

log n) approximation appears un-

likely. On the other hand, there is a vast scope for improving the hardness of approximation results.

As a related problem, it is important to resolve the Unique Games Conjecture. This would lead to

new hardness results for several problems. Finally, it would be interesting to obtain hardness results

for other partitioning problems such as min-bisection and minimum balanced cut. Although good

“pseudo-approximations” are known for these problems4, the best true approximation known is a

weak O(log2 n) approximation [62]. On the hardness side, even a PTAS is not ruled out for these

problems.

4In a pseudo-approximation, the algorithm is allowed to output a cut with balance slightly worse than that of the

optimal cut.
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