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Abstract

An object retrieval protocol that enforces mutually exclusive access toa shared object is an important prim-
itive employed by many distributed applications including distributed directories,distributed resource shar-
ing systems and ordered multicast protocols, to name a few. Most existing implementations of this object
retrieval primitive use a tree as the underlying communication structure due to the simple acyclic nature of
trees. The worst case performance of this primitive and of the large bodyof applications built upon it, is
O(n) for n nodes sharing the object. In this paper, we present a novel distributed self-adjusting tree for
object retrieval protocols that guarantees the message complexity per retrieval, averaged over the worst case
sequence of retrievals, to beO(log n). In addition, our algorithm adjusts only portions of the tree in which
retrievals occur; this is advantageous when the tree structure reflects network proximity. We implement best
known techniques from the centralized setting and compare their performance with our algorithm. Results
are presented from experiments carried out on PlanetLab to evaluate the performance of different schemes
under different workloads. We also present extensions to our basic protocol allowing a wide range of dis-
tributed applications including atomic broadcast and content discovery to achieve better performance using
our techniques. To our knowledge, this is the first attempt to reduce access costs in a distributed tree where
the tree dynamically adjusts itself during use to achieveO(log n) performance for worst case workloads.





1 Introduction

The hierarchical acyclic structure of trees allows the use of simple distributed algorithms for data sharing
and coordination among nodes in the tree. An important primitive used in many ofthese algorithms is an
object retrieval protocol that enforces mutually exclusive access to a shared mobile object. The object can be
retrieved by a requesting node from the current owner. When the retrieval is complete, the requesting node
becomes the new owner of the object. Many implementations of this primitive are known including several
token-based distributed mutual exclusion solutions [26, 5, 12, 33, 23] and distributed directory protocols
[7]. In all these cases, nodes communicate by exchanging messages thatare routed across tree edges.
Therefore, the worst case performance of these algorithms and of the large body of applications built upon
these primitives [15, 13, 14] is proportional to the diameter (longest path between two nodes) of the tree.
The trivial solution to make the tree “flat” (every node is a child of the root) does not scale well—the root
becomes a bottleneck. Therefore, all such algorithms can benefit from adistributed mechanism that would
reduce the diameter of the tree, e.g., by explicitly balancing or heuristically restructuring the tree, while
keeping a low fixed degree.
In this paper we present a novel distributed algorithm, calledflattening, that improves the worst case per-
formance of the object retrieval protocols mentioned above. In particular, flattening achieves anamortized
cost—cost per retrieval averaged over the worst case sequence of retrievals—ofO(log n), wheren is the
number of nodes in the tree. This is a result of employing a new restructuringheuristic that brings nodes
frequently requesting the object closer to each other. Flattening achievesthis amortized cost while keeping
the cost of individual retrieval operations low. Flattening also has a tendency to preserve the structure of
the tree, in that the nodes that are close to one another tend to stay close to one another if the workload
permits. So, for example, if the tree edges connect nodes that are geographically close to one another, and
if the object is passed among nodes close to each other (both in the tree and geographically), then flattening
preserves the geographic locality in the tree structure.
Our basic algorithm is designed to work with a single shared object on a binary tree for object retrieval pro-
tocols enforcing mutually exclusive access. We present extensions to thisbasic algorithm that allow nodes
sharing multiple objects ink-ary trees through any protocol that runs on tree edges, to use our techniques
for reduced access costs.

1.1 Related work and comparison to alternatives

The main goal of our work is to guaranteeO(log n) access costs in a distributed tree structure. This issue
has previously been addressed in the context of binary search trees and self-adjusting overlay networks.

1.1.1 Binary search trees

Our work is inspired by work on balancing binary search trees (BSTs) ina centralized system (e.g., [1, 29,
3, 11]), particularly the work of Sleator and Tarjan onsplay trees[29]. Splay trees, detailed in the Appendix,
are an elegant solution to efficient BSTs that achieveO(log n) amortized cost per search. When a node in
the tree is accessed, splaying uses a “move to front” heuristic that brings the accessed item to the root of the
tree, on the assumption that this item will be accessed again, while taking steps tobalance the tree in the
process.
It is not too difficult to design a distributed version of splaying to work in conjunction with an object retrieval
protocol, particularly if splaying is done by the node holding the object: If theobject retrieval protocol
ensures mutually exclusive access to the object, splaying while holding the object ensures that concurrent



splaying will not take place, thereby substantially simplifying the design of the algorithm and precluding the
need for expensive locking of parts of the tree. Thus the obvious adaptation of splaying to our setting is the
following scheme: Upon retrieving the object, a node splays itself to the root of the tree, before releasing
the object to the next node. This simple adaptation inherits theO(log n) amortized cost of the splay trees.
So the question arises, why not simply implement and use splaying as a distributed algorithm?
One of the main concerns with employing splay trees in a distributed setting is the large number of messages
that need to be exchanged. Even when the tree is perfectly balanced andthe retrieving node is close to the
current owner of the object, splaying would still rotate the retrieving node tothe root, resulting in a high
messaging cost for the retrieval.
Even in the centralized setting, this excessive reorganization of the tree has been a major concern and
researchers have tried to counter this problem by developing variants ofsplaying that reduce the amount of
restructuring performed for each access.Semi-splaying[29] uses less restructuring by bringing an accessed
item only part way up to the root. However, as noted by the authors, semi-splaying adapts rather slowly to
changing workloads.Periodic splaying[34] restructures the tree every fixed number of accesses, instead of
restructuring with every access. Although this variant produces good results in the average case, it cannot
handle the worst case well.Randomized splaying[2, 8] rotates an accessed node to the root only with
a certain probability. A high probability results in too much restructuring and a low probability fails to
preserve locality-based sub-structures in the tree: even when all the retrievals are within a small subtree,
some of the nodes from this subtree may end up close to the root while others may not. There is an obvious
trade-off between the number of messages sent in a series of restructuring operations and the effectiveness
of these operations. We find a better point in this trade-off than other approaches have allowed.
Another concern with splaying is that although bottom-up splaying performs restructuring in rather local
steps, the top-down splaying and top-down semi-splaying variants (see Appendix for different types of splay
techniques) require distant nodes in the tree to form edges with each other. Such operations in a distributed
system not only result in a high messaging cost but also make it virtually impossible for a routing service—
i.e., a service that routes messages from one node to another node along tree edges, possibly hopping through
many intermediate nodes—to adapt to these modifications quickly. Routing through the tree is an essential
part of our target protocols, and any restructuring that does not allowthe routing information to be updated
in a distributed and scalable fashion is undesirable.
Unlike splaying, distributed versions of B-trees [3] and variants like the B-link trees [20] have been pro-
posed and analyzed in literature [10, 18, 24]. However, this researchhas been done in the context of dis-
tributing large dictionaries across nodes on a network. Tree balancing is employed to distribute dictionary
data uniformly across the participating nodes. This model is very differentfrom ours because its goal is
distributed load balancing and not efficient object sharing. The fundamental difference with our approach is
that whereas distributed B-trees explicitly balance the tree whenever a dataitem is inserted or removed from
the tree, flattening only performs “on-demand” balancing that dynamically restructures the tree according
to the workload to maintain anO(log n) retrieval cost. Moreover, these distributed B-tree proposals do not
support an object retrieval protocol that can be used for providing consistency of a modifiable shared object
as required in our setting.

1.1.2 Overlay networks

In more recent years, much research has been done on self-adjustingoverlay networks ([30, 25, 27, 16, 17,
22], to name a few) which retain anO(log n) diameter as nodes join and leave the overlay. The restructuring
is either done during the join and leave operations or is done periodically [30, 25, 27], where the frequency
may depend on observed parameters like failure rate [22]. Our focus in this paper is somewhat different:



given an arbitrary tree topology our goal is to guaranteeO(log n) amortized retrieval costs. Therefore, we
do not expect anything from the join or leave procedures other than thatthey keep the tree connected. To
improve the retrieval costs, our tree adjusts itself according to the workload. So for example, if a certain
subtree is never used by the application running on our overlay then that subtree is never restructured. This
approach may result in more or less restructuring than other self-adjustingoverlay proposals depending
on the workload. However, once adjusted, our scheme achieves the optimal structure for this workload1,
whereas other self-adjusting overlays may not. Note that our algorithms achieve these properties for any
workload while retaining the worst case amortized cost ofO(log n).

1.2 Contributions

Our contributions in this paper are threefold: First, to our knowledge, ourwork is the first that attempts
to restructure a distributed tree according to the workload to reduce the amortized cost of object retrievals
within the tree. We believe such an algorithm could improve the worst case performance of a large group of
distributed protocols.
Second, we present new bottom-up and top-down restructuring primitivesthat exploit the fact that our al-
gorithm need not be order-preserving (unlike binary search trees).The resulting primitives also achieve
O(log n) amortized costs like the splaying counterparts but are optimized for the distributed setting:Top-
down semi-flatteninghas a much lower message complexity than the splaying variants, and both top-down
andbottom-up flatteningtechniques allow nodes to make local restructuring decisions, permitting them to
easily update their local routing tables to reflect the new tree topology.
Finally, we present a novel approach that combines bottom-up flattening and top-down semi-flattening
schemes in one simple algorithm. This algorithm adapts the amount of restructuring to the workload and
restructures the tree on an “on-demand” basis. The result is a restructuring scheme that has a low messaging
cost but still adapts quickly to workloads. Our algorithm also preserves locality in the tree structure if the
workload permits, a desirable property for tree topologies that are basedon network metrics or geographical
information [35, 9].
To see the effectiveness of our algorithms in a real-world setting, we implement the Arrow distributed
directory protocol [7] and perform experiments with it on PlanetLab, using both a static tree and a tree
implementing flattening algorithms. Results from these experiments show that the worst case performance
of the Arrow protocol is improved by several orders of magnitude when used with flattening. We also
compare our scheme against different splaying variants and show that flattening is much better optimized
for the distributed setting.

2 System model

Our system consists of a set ofn nodes distributed across a network and initially structured as a rooted,
binary, unordered tree. This tree is a logical overlay network with vertices representing nodes in the system
and edges representing overlay edges. Each nodev ∈ V is initialized only with the identities of its neighbors
in the tree, i.e., a parent pointer (initialized to the distinguished value “⊥” for the root) and a set of child
pointers of cardinality at most two. There is no central database accessible to nodes that contains information
about the tree structure. Nodes communicate via remote procedure calls (RPCs). Nodes and communication

1The proof of this guarantee appears in [29] as thestatic optimality theoremwhich is a direct result of theaccess lemma. We
prove the access lemma here (see Lemmas 1 and 2) for our algorithms and therefore the static optimality theorem also applies.



between them are reliable: nodes do not fail, and each RPC completes in a finite but unbounded time, i.e.,
communication is asynchronous.
Nodes access mobile objects that are used in application-specific protocols. For brevity, we deal with a single
mobile object; extensions to multiple objects are discussed in Section 8. The nodethat initiates aretrieval
of the object is called arequestor. We say a requestterminates, when it reaches itsresponder, i.e., the node
that will release the object to be sent to the requestor. The responder initiates thetransfer (when it does
not need the object anymore), which follows the unique path in the tree fromthe responder to the requestor.
When the object arrives at the requestor, the retrieval is complete. There may be several concurrent requests
but at most one transfer in the tree at a time. Object retrieval protocols enforcing mutually exclusive access
satisfy these properties. All other mechanisms related to object retrievals are protocol specific. We make no
assumptions about these details.
Our algorithm restructures the tree during the object transfer to avoid concurrent restructuring, as transfers
do not overlap. Each transfer results in a new tree. We useT0 to denote the initial tree before any retrievals
begin.

3 Properties

We present a distributed algorithm that offers the following properties, while maintaining the nodes in a tree
structure:

G1. The message complexity ofm retrieval operations isO(m log n).

G2. All messages exchanged in a retrieval are confined to the subtree containing the requestor and the
responder, and the parent of that subtree. As a corollary, we achieve the following property: Let
Ti = (Vi, Ei) denote the tree after theith retrieval has completed such that there are no outstanding
retrievals in the tree and nodev0 ∈ Vi owns the object. Letv1, ..., vk be thek nodes that start thek
subsequent retrievals whose completion results in the treeTi+k. Let T ′ = (V ′, E′) be the smallest
subtree ofTi such thatv0, ..., vk ∈ V ′. Then the message complexity of each of thesek retrievals is
proportional to (i.e., is a small constant multiple of)|V ′|.

Our algorithm guarantees anO(log n) amortized cost per retrieval (G1). In addition the algorithm takes
advantage of the locality in the workload, i.e., if the requestor and the responder are close to each other,
then only a small amount of restructuring will be done because all restructuring will be confined to a small
subtree (G2). This results in a small messaging cost for individual retrieval operations. Furthermore, this
property allows us to preserve geographical mappings in the tree, if all requestors and responders belong to
a certain geographical region.

4 Self-adjusting distributed trees

4.1 Key insight

Splay trees use the “move to front” heuristic and rotate accessed nodes close to the root since all searches
in a BST start from the root. In our setting however, a request may start from any node in the tree. So
a better heuristic is to move the responders close to the requestors. One wayto achieve this would be to
move both the requestors and responders close to the root, but this might bean overkill and would require
excessive restructuring. Instead, we rotate the requestors and the responders close to the root of the smallest



subtree that contains both of them. This scheme has the advantage of minimizing the restructuring in the
tree if the requestor and the responder are close to each other already,while still achieving theO(log n)
amortized cost. We implement this scheme by restructuring along the transfer path from the responder to
the requestor employing bothbottom-up flatteningand top-down semi-flatteningtechniques in one algo-
rithm. This combination of “full” and “semi” flattening also allows our algorithm to adapt rather quickly to
changing workloads while still being conservative about the number of messages exchanged.
Most existing restructuring techniques including splay trees employrotation as the basic restructuring step.
This is convenient as rotation preserves the order of nodes in the tree—arequirement for binary search
trees. Since ordering of nodes is irrelevant in our target protocols, wedefine and use new primitives that are
better suited to our goals. Here we present these primitives and the bottom-up, top-down and hybrid (that
combines bottom-up and top-down variants) flattening algorithms that use theseprimitives.

4.2 Bottom-up flattening

Our first algorithm is a bottom-up scheme that restructures the tree whenever the object moves up an edge
during its transfer from the respondert to the requestorr. Bottom-up flattening starts fromt and proceeds
to the highest node in the transfer path tor. In caset is the highest node, no restructuring is done. The result
of bottom-up flattening is to bringt to the root of the subtree that containsr.

4.2.1 Preferred rotation primitive

We define a variation of the rotation primitive for bottom-up flattening. For eachrotation performed by the
respondert over its parentz, t chooses one of its children as apreferred child. The rotation is performed
such thatt keeps the preferred child and hands-off the other child toz. We call this apreferred rotation.
Preferred rotations are used in bottom-up flattening as shown in Figure 1. For the first rotation,t chooses
either one of its children as the preferred child. For each subsequent rotation, the child thatt just rotated
over in the previous step (nodez in Figure 1) is preferred.t performs these preferred rotations until it rotates
over the highest node in the path tor.

Figure 1: Bottom-up flattening:t rotates keeping the preferred child. Preferred child is the one thatt last
rotated over. For the first rotation any child may be preferred.

4.2.2 Bottom-up flattening algorithm

Figure 2 shows the distributed algorithm that implements bottom-up flattening. We denote the variables
encoding global state at a nodey using the prefix “y.”, e.g., y.parent. Variable names without the prefix
denote temporary state that is deleted once this invocation is over. We assume the existence of a routing
serviceR that can be queried by nodes to find the next node, and if a node itself is thehighest node, in the
path from a responder to a requestor. We describe a minimal distributed routing service that achieves these
goals in Section 5.



1. t.BUFlatten(r, b, w) /* r: requestor,b: preferred child,w: former child oft.parent */
2. a← t.children \ {b} /* a is the child not preferred */
3. z ← t.parent /* z is the current parent */
4. t.children← {t.children \ {a}} ∪ {z} /* replace childa with z */
5. [gParent, isHigh]← z.rotateEdge(t, r, w, a) /* z replaces its childw with a and setsz.parent to t */
6. t.parent← gParent /* set new parent to old grand-parent */
7. a.setParent(z) /* a.parent now points toz */
8. if isHigh /* if z was the highest node in the path, then... */
9. t.parent.replaceChild(z, t) /* ...my new parent replaces its childz with me and stop */
10. elset.BUFlatten(r, z, z) /* otherwise, perform next rotation preferringz */

11. z.rotateEdge(t, r, w, a) /* t: responder,r: requestor,w: child to replace,a: new child */
12. x← z.parent /* x is my current parent */
13. z.parent← t /* set t as new parent */
14. z.children← {z.children \ {w}} ∪ {a} /* replace childw with a */
15. return [x,R.amHighNode(z, t, r)] /* returnx and if I am the highest node in this path or not */

16. x.replaceChild(z, t) /* z: child to replace,t: new child */
17. x.children← {x.children \ {z}} ∪ {t} /* replace childz with t and return */

18. a.setParent(z) /* z: new parent */
19. a.parent← z /* set parent toz and return */

Figure 2: Bottom-up flattening. All nodes implement all algorithms.

The respondert initiates bottom-up flattening by invokingt.BUFlatten(r, b, t). If t is initially a leaf node
thenb = ⊥ anda = ⊥ (line 2). If t only has one child thenb is that child anda = ⊥. We assume that
when there is a remote invocation on a⊥ node, the method returns (possibly with an error message) so the
invoking node can carry on its execution. TherotateEdge message (line 5) results inz settingz.parent to t
and addingt’s non-preferred childa to z.children replacingt. Note thatt’s new parent after each preferred
rotation (t’s grand-parent before the rotation) need not be notified of its new childt, sincet is going to rotate
over this node anyway in the next step. Therefore, at each subsequent step after the first rotation,t.parent

does not containt in its children set but rather contains the nodez that t just rotated over in the previous
step. After the last rotation,t.parent is notified of its new child (line 9). The RPCs in lines 5, 7 and 9 ensure
that all restructuring is complete by the time the last rotation completes.

4.2.3 Discussion

Each preferred rotation requires 4 messages—two messages for each of the two RPCs (lines 5 and 7), except
for the last rotation that requires 6 messages due to line 9. The most efficient implementation of bottom-up
splaying (see Appendix) also requires 8 messages for moving up two steps. Although the messaging costs
are similar, bottom-up flattening has a much simpler algorithmic logic than bottom-up splaying. Bottom-up
flattening is also slightly more efficient than bottom-up splaying in terms of the amortized cost (the constant
in the “big-oh” notation is smaller).



4.3 Top-down semi-flattening

Our second algorithm is a top-down scheme that restructures the tree whenever the object moves down an
edge during its transfer. Top-down flattening starts at the highest node inthe path from the respondert to the
requestorr. Since top-down flattening is preceded by bottom-up, this highest node is, infact, the responder
t. We bringr close tot via a top-down semi-flattening mechanism that bringsr part way up tot, while
performing less restructuring than full flattening.

4.3.1 Child swap primitive

Top-down semi-flattening is performed by repeating the step shown in Figure3. y, x anda are in path fromt
to r. Nodey swaps one of its children (root of subtreeC) with x’s child a. We call this stepchild swap. “+”
represents the current node of the flattening operation, i.e., the next childswap is performed bya. Flattening
is started byt and stops ifr is the current node or a child of the current node.

Figure 3: Top-down semi-flattening:y, x anda are in the path fromt to r. Next child swap is performed by
a.

1. y.TDSemiFlatten(t, r, z) /* t: responder,r: requestor,z: my new parent */
2. y.parent← z
3. if r ∈ {y} ∪ y.children /* if I or my child is the requestor, then...*/
4. stop /* ...stop the restructuring */
5. x← R.nextNode(y, t, r) /* find the child that is in path fromt to r */
6. c← y.children \ {x} /* this is the child not in path */
7. c.setParent(x) /* c’s parent should now bex */
8. a← x.childSwap(t, r, c) /* swap children atx and geta, the grand-child in path */
9. y.children← {y.children \ {c}} ∪ {a} /* swap child with grand-child */
10. a.TDSemiFlatten(t, r, y) /* initiate next child swap; this RPC can be non-blocking */

11. x.childSwap(t, r, c) /* t: responder,r: requestor,c: my parent’s child not in path */
12. a← R.nextNode(x, t, r) /* find my child that is in path fromt to r */
13. x.children← {x.children \ {a}} ∪ {c} /* swap child with parent’s child */
14. return a /* return my child that has been swapped */

Figure 4: Top-down semi-flattening. All nodes implement all algorithms.

4.3.2 Top-down semi-flattening algorithm

Figure 4 shows the distributed algorithm for this scheme. The algorithm is initiatedby t as
t.TDSemiFlatten(t, r, t.parent). At each step, the current nodey and its childx swapy’s child that is not



in the path betweent andr with x’s child that is in this path (lines 9 and 13). The swapped children are
notified of their new parents (lines 7 and 10).

4.3.3 Discussion

Top-down semi-flattening approximately halves the depth of each node (relative to t) in the path fromt to r,
after bottom-up flattening. As a result, semi-flattening bringsr closer tot. Compared to the splaying counter
parts, top-down semi-flattening has a much lower messaging cost. In particular, each child swap requires 5
messages and moves two steps down the tree—two messages for each of the two RPCs in lines 7 and 8 and
an additional message for the RPC in line 10 (this RPC may be non-blocking, and so we do not count its
response against the latency of the child swap). In contrast, an optimal implementation of top-down semi-
splaying (see Appendix) requires a number of messages ranging from 6to 13 for each step. Furthermore,
top-down semi-flattening performs only local pointer reassignments that allows simple updates for a routing
service. Top-down semi-splaying makes it difficult for a distributed routingservice to update the routes
correctly after restructuring.

4.4 Hybrid flattening

4.4.1 Hybrid flattening algorithm

Our main algorithm combines bottom-up flattening with top-down semi-flattening to restructure along the
transfer path from the respondert to the requestorr. Figure 5 shows the distributed algorithm for hybrid
flattening.t performs bottom-up flattening if it is not the highest node (lines 2–7). This results int becoming
root of the subtree that containsr. After bottom-up flattening is complete, ifr is a child oft then no more
restructuring is required (line 8). Otherwise,t initiates top-down semi-flattening (line 9).

1. t.HybridFlatten(r) /* r: requestor */
2. if R.amHighNode(t, t, r) is false /*BUFlatten if I am not the highest node */
3. {a, b} ← t.children /* a andb aret’s children, could be null */
4. if a = ⊥
5. prefChild← b /* choose the non-null child as the preferred child */
6. elseprefChild← a /* if both are null or non-null then choose any */
7. t.BUFlatten(r, prefChild, t) /* do bottom-up flattening */
8. if r 6∈ t.children /* if more than one hop away fromr, then...*/
9. t.TDSemiFlatten(t, r, t.parent) /*...do top-down semi-flattening */

Figure 5: Hybrid flattening algorithm.

4.4.2 Discussion

Hybrid flattening inherits its low message complexity and simplicity from the two constituent schemes. It
achieves an amortized cost ofO(log n) (G1), see Section 6 for a detailed analysis. The restructuring follows
the transfer path from the responder to the requestor, achieving G2. Figure 6 shows an example tree where
r retrieves the object fromt. Hybrid flattening bringst andr close to each other and in process, balances
the remaining tree.



Figure 6: Hybrid flattening. Bold lines show the path betweent andr. Root ofA was the first preferred
child.

5 Route management

In the flattening algorithms we assume a routing serviceR that supports two types of queries: First, the
R.nextNode(y, t, r) query is invoked by a nodey to obtain the node followingy in path fromt to r in the
current tree (lines 5 and 12 in Figure 4). Second, theR.amHighNode(y, t, r) query is invoked by a nodey
to find out ify is the highest node (i.e., closest to the root) in the path fromt to r in the current tree (line 15
in Figure 2 and line 2 in Figure 5).
These two queries can be supported by a simple distributed routing service as follows: An instance of the
routing serviceRy runs locally at every nodey and observes all requests and transfers passing throughy. Ry

inserts an entry in the local routing table upon observing a request and uses this entry to answerRy.nextNode

and Ry.amHighNode queries during the corresponding transfer. The entry is deleted after the transfer
passes throughy. Each request contains the identity of the requestorr and the identity ofy’s neighbor
x that forwards this request toy. y replacesx with y in the request and forwards this request towards
its neighborz that is in direction of the responder (z is identified using application specific mechanisms,
e.g., see Section 7). Upon observing such a request,Ry adds the following entry to the routing table:
{r : z → y → x, b} , i.e., the transfer destined forr will come fromz and should be forwarded tox. b is
a boolean encoding whethery is the highest node in the path or not.Ry setsb to false if either z or x is
y.parent and totrue otherwise.
This simple mechanism using backward pointers is enough to answer the two queries mentioned above.
However, this routing information must be updated with restructuring to reflect the new tree. The rules for
modifying the routing table with restructuring are simple since all restructuring islocal and deterministic and
transfers do not overlap. Some updates require neighbors to exchange their routing tables with each other,
but not with any other nodes in the tree. Listing the whole set of rules is space consuming and uninteresting
and is therefore avoided. As an example we list a subset of rules used bynodey when performing a child-
swap step in top-down semi-flattening as shown in Figure 3, see Tables 1 and2. z is assumed to bey.parent.
Rules with an(∗) requirex’s routing table; this can be piggy-backed on the return message sent in line14 of
Figure 4. As an example, the first rule in Table 1 states that if the transfer was coming fromz and going tox
and according tox’s routing table entry for this destination,x was forwarding this toa, theny can forward
this toa directly after the flattening (a becomes a child ofy as a result of the restructuring) andy is not the
highest node in this path.⊥ implies that this entry is not required any more and can be deleted. Similar rules
exist for all cases in our algorithms.
We note that all messages exchanged by neighboring routing services (toexchange routing tables) can be
piggy-backed on existing messages as shown in the example above. Thus route management does not
add to the message complexity of our algorithm. To compare with splay trees, if wewere to use top-
down semi-splaying instead of top-down semi-flattening, the distributed routingservice would be much



more complicated than the one presented here and would require a much higher message complexity, as
the restructuring in top-down semi-splaying is not localized (see Appendix for details on top-down semi-
splaying).

Table 1: Modifications done byy for routes tox
Before After

(∗) z → y → x | x→ a z → y → a, false
(∗) y → x | x→ a y → a, true

(∗) c→ y → x | x→ a x→ y → a, true

(∗) c→ y → x | x 6→ a ⊥

Table 2: Modifications done byy for routes toc
Before After

z → y → c z → y → x, false
y → c y → x, true

(∗) x→ y → c | a→ x a→ y → x, true

(∗) x→ y → c | a 6→ x ⊥

6 Amortized analysis

We use message complexity (number of messages exchanged) as thecostmeasure in our analysis. This
is justified in a distributed setting as network latency is expected to dominate other factors like processing
time. To allow comparison with splay trees, we use the potential method [32] for the amortized analysis as
in [29]. We assign a real number calledpotentialto each possible state of the tree. Apotential functionis a
mapping from the tree states to the potential. Theexpenseof an operation in the potential method is defined
as:

expense= actual cost+ net increase in potential

Using this definition, the total actual cost of a sequence ofm operations can be derived as:

total actual cost= total expense+ net decrease in potential (1)

Our proof strategy to bound the total actual cost of a sequence of operations is to bound the expense of the
sequence of operations (lemma 1 for top-down and lemma 2 for bottom-up flattening) and the net decrease
in potential (lemma 3) resulting from the sequence of operations. For this proof, we assume that the tree
contains a static set ofn nodes.
We begin by assigning a positive weightw(x) to each nodex that remains fixed throughout the execution.
Then define the sizes(x) of a nodex to be the sum of weights of all nodes in the subtree rooted atx. We
define the rankr(x) of x aslog(s(x)) (binary logarithms are used throughout). For each nodex, we keep
r(x) tokens on that node, thus the potential function is just the sum of the ranks of all nodes in the tree. As
a measure of the actual cost, we charge 1 for each child swap and preferred rotation. We uses ands′, r and
r′ to denote the sizes and ranks just before and after a restructuring step,respectively.



Lemma 1. The expense of top-down semi-flattening from a nodet to a noder is at most2(r(t)− r(r)).

Proof. Top-down semi-flattening constitutes of child swaps. The expense of top-down semi-flattening is the
sum of the expense costs of all the child swaps along the way. We claim that the expense of a single child
swap withx being the parent ofa andy being the parent ofx (see Figure 3) is at most2(r(y) − r′(a)).
The sum of these child swap costs telescopes to2(r(t) − r(r)) if the path length betweent andr is even
and2(r(t) − r(r′)) if this length is odd; wherer′ is the parent ofr. The lemma holds in either case since
r(r′) ≥ r(r).
So we only need to prove the claim regarding the expense of each child swap. The child swap is as shown
in Figure 3. The actual cost associated with a child swap is 1 so the expenseis:

= 1 + net increase in potential

= 1 + r′(x)− r(x) [since onlyx’s rank changes]

≤ 1 + r′(x)− r(a) [sincer(x) ≥ r(a)]

Now we need to prove the following:

1 + r′(x)− r(a) ≤ 2(r(y)− r′(a))

or equivalently

1 ≤ 2r(y)− 2r′(a) + r(a)− r′(x)

1 ≤ 2r(y)− r′(a)− r′(x) [sincer′(a) = r(a)]

−1 ≥ r′(a)− r(y) + r′(x)− r(y)

−1 ≥ log(
s′(a)

s(y)
) + log(

s′(x)

s(y)
)

This last inequality is true sinces(y) ≥ s′(a) + s′(x) andlog a + log b maximizes at -2 ifa + b ≤ 1 (due to
the convexity oflog).

Lemma 2. The expense of bottom-up flattening from a nodet to a nodeh is at most2(r(h)− r(t)) + 1.

Proof. Bottom-up flattening constitutes only of preferred rotations. To see the effects of preferred rotations
on the expense of bottom-up flattening, we need to analyze two preferred rotations at a time. Bottom-up
flattening constitutes of these pairs of preferred rotations, possibly followed by a single preferred rotation at
the end if the path betweent andh is of odd length.
Let z be the parent oft andx be the parent ofz as shown in Figure 1.t is the node that performs the preferred
rotations. We claim that the amortized cost of a single preferred rotation is atmost2(r′(t)− r(t)) + 1 and
that of a pair of preferred rotations is at most2(r′(t)− r(t)). The sum of these costs telescopes and proves
the lemma. We now prove our claim.
The actual cost of a single preferred rotation performed byt overz is 1. The expense is:

= 1 + r′(t)− r(t) + r′(z)− r(z)

≤ 1 + r′(t)− r(t) [sincer′(z) ≤ r(z)]

≤ 1 + 2(r′(t)− r(t))



The actual cost of a pair of preferred rotations performed byt over z and thenx (see Figure 1) is 2. The
amortized cost is:

= 2 + r′(t)− r(t) + r′(z)− r(z) + r′(x)− r(x)

≤ 2 + r′(z) + r′(x)− 2r(t)

[sincer′(t) = r(x) andr(t) ≤ r(z)]

Now we need to prove the following:

2 + r′(z) + r′(x)− 2r(t) ≤ 2(r′(t)− r(t))

or equivalently

2 ≤ 2r′(t)− r′(z)− r′(x)

−2 ≥ r′(z)− r′(t) + r′(x)− r′(t)

−2 ≥ log(
s′(z)

s′(t)
) + log(

s′(x)

s′(t)
)

This last inequality is true sinces′(y) ≥ s′(z) + s′(x) andlog a + log b maximizes at -2 ifa + b ≤ 1 (due
to the convexity oflog).

Lemma 3. The net decrease in potential over any sequence of operations is at most
∑n

y=1 log( W
w(y)), where

W =
∑n

y=1 w(y).

Proof. The maximum size of a nodey, for all y, isW wheny is the root of the tree and the minimum size is
w(y) wheny is a leaf. Thus the net decrease in the rank of nodey is at mostlog(W )− log(w(y)). Summing
up over all nodes proves the lemma.

Theorem 1. The total actual cost of a sequence ofm top-down flattening operations is at most(2m +
n) log n.

Proof. Assign a weight of1/n to each node. The total expense of the sequence is at mostm(2(r(t) −
r(r))) ≤ 2m log n for anyt andr, see Lemma 1. The net decrease in potential is at most

∑n
y=1 log( W

w(y)) =
n log n. Substituting these values in Equation 1 proves the result.

Theorem 2. The total actual cost of a sequence ofm bottom-up flattening operations is at mostm+(2m+
n) log n.

Proof. Assign a weight of1/n to each node. The total expense of the sequence is at mostm(1 + 2(r(h)−
r(t))) ≤ m+2m log n for anyh andt, see Lemma 2. The net decrease in potential is at most

∑n
y=1 log( W

w(y)) =
n log n. Substituting these values in Equation 1 proves the result.

Theorem 3. The total actual cost of a sequence ofm hybrid flattening operations is at most3m + (2m +
n) log n.



Proof. Assign a weight of1/n to each node. The total expense of the sequence is at mostm(1 + 2(r(h)−
r(t)) + 2(r′′(t) − r(r))) for any t, h and r, wherer′′(t) is the rank oft after bottom-up flattening, see
Lemmas 1 and 2. Since this is the same as the rank ofh before bottom-up flattening (the subtree contains
the same nodes), so the total expense of the sequence is at mostm(1+2(r(h)−r(t))+2(r(h)−r(r))) ≤ m+
2m log 2n = 3m + 2m log n for anyt, h andr. The net decrease in potential is at most

∑n
y=1 log( W

w(y)) =
n log n. Substituting these values in Equation 1 proves the result.

7 Experiments

We have a complete implementation of the flattening algorithms and the distributed routing service described
in previous sections. Our experiments use this implementation with the Arrow distributed directory protocol
[7]. We modified the Arrow protocol so the transfers also follow the path through the tree; the Arrow
protocol proposed in [7] uses the tree edges only to route requests andsends the transfers directly over the
underlying network. This change was implemented using the routing service described in Section 5. The
Arrow protocol maintains a forward pointer called anarrow on each node; this arrow points in the direction
of the responder. These arrows also need to be maintained like the backward pointers described in Section 5
in the event of restructuring. This is also done through a set of rules similarto those used by the routing
service. As with route management, the messages exchanged by neighboring nodes to keep the arrows
consistent are also piggy-backed on the flattening protocol messages. We skip these details as they pertain
specifically to the Arrow protocol.
We performed our experiments on PlanetLab [6]. Around 75 PlanetLab nodes located in North America
were used for all experiments. These included Internet2, CAnet and university machines in the US and
Canada. To control the sequence of requests (so we can construct worst cases and other distributions), we
used one node external to the overlay tree as a “monitor”. The monitor exchanged control messages with all
nodes, e.g., to have nodes initiate a request or pull information about how long a retrieval operation took.
We performed two sets of experiments. For the first experiment, we constructed the worst case tree, i.e., a
“line” with 75 nodes. Nodes farthest away from each other in the tree were made to alternate sending 25
requests each, so the object would “ping-pong” between these two nodes. We repeated this experiment on 10
different worst case trees, i.e., we always constructed a line but the position of nodes in this line was chosen
randomly. Figure 7 plots the average time per retrieval against the number ofretrievals performed for the
“vanilla” Arrow protocol, i.e., when no restructuring is employed, and for the Arrow protocol with hybrid
flattening. Each point is a mean of the results from 10 experiments. Our results show that hybrid flattening
handles the worst case as claimed. The amortized cost of retrievals with hybrid flattening improves a great
deal on the vanilla Arrow protocol even for a small sequence, e.g., 10 retrievals.
Our second experiment compares the performance of flattening with splaying in a tree structure that reflects
network proximity and a workload that allows to take advantage of this property. In this experiment, we
construct a line consisting only of nodes located at Berkeley (11 in total), we call this the “Berkeley tree”.
We then construct a “random” binary tree using the other PlanetLab nodesand join the Berkeley tree to one
of the leaf nodes (see Figure 9). Initially, the object is located at the root of the Berkeley tree. A total of
50 requests are made by randomly chosen Berkeley nodes. Again, we perform this experiment 10 times,
each time with a different random binary tree. Figure 8 plots the average time per retrieval against the
number of retrievals. Each point in the plot is a mean of the 10 experiments. The different curves plot the
performance of the Arrow protocol using different types of restructuring schemes. Splaying has a high initial
cost since it rotates each Berkeley node to the root of the tree when this node completes its first retrieval (see
Figure 10 for an example topology from one of our experiments, with each Berkeley node having completed
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Figure 7: Amortized cost of the worst case.
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Figure 8: Amortized cost in a geographically mapped tree

at least one retrieval). Even when all Berkeley nodes have been rotated to the root, retrievals are somewhat
expensive due to the large amount of restructuring required with every transfer. Randomized splaying does
not have a high restructuring cost but moves only a subset of Berkeleynodes to the root resulting in some
of the retrievals going through other nodes in the tree (see Figure 11). This situation gets better as more
Berkeley nodes are rotated to the root. We used randomized splaying with a probability of 0.3 to splay after
a retrieval. The choice is somewhat arbitrary, higher probability results in high restructuring costs and lower
probability breaks the locality in the tree.
In contrast to the two splaying schemes, hybrid and top-down semi-flatteningperform much better. We
evaluate top-down semi-flattening individually as it can be used without bottom-up flattening in extensions
to our protocol applicable in a more generic setting, see Section 8. In the flattening experiments, all re-
structuring is confined to the Berkeley nodes (see Figures 12 and Figure13). For this particular workload
top-down semi-flattening out-performs the hybrid case due to its low restructuring costs. In general, e.g., if
the Berkeley tree had 1000 nodes, the semi-flattening scheme would not adapt as quickly to the workload
as hybrid flattening. Hybrid flattening, however, will adapt to arbitrary workloads and has a performance
comparable to the semi-flattening scheme for this particular workload too.
We illustrate an example topology used in the experiments documented in Figure 8.Initially, the tree looks
as shown in Figure 9 where the black ovals show the nodes located at Berkeley. The subsequent topologies
shown here are the result of using different types of restructuring, when each of the Berkeley nodes have
completed at least one retrieval. Since Berkeley nodes make requests randomly, some nodes may have re-
trieved the object more than once. Figures 10, 11, 12 and 13 show this treewhen using splaying, randomized
splaying, hybrid flattening and top-down semi-flattening respectively.



Figure 9: Initial topology. Black nodes are all at Berkeley

Figure 10: Splaying: after all Berkeley nodes requested at least once

8 Extensions and other applications

As presented, our algorithms work for a single object shared by nodes arranged in a binary tree running an
object retrieval protocol that enforces mutually exclusive access. However, simple extensions to the basic
algorithm presented earlier can result in variations that are much more generic and widely applicable to
many different scenarios. Here we discuss these extensions and possible applications that can benefit from
these variations.

8.1 Non-mutually exclusive protocols

Our algorithms avoid concurrent restructuring and in-efficient locking of the tree by restructuring only when
the object is being transferred in a retrieval protocol that enforces mutual exclusion. One way to avoid
locking large parts of the tree for protocols that do not enforce mutual exclusion, is to only use top-down
semi-flattening. In this case, if two concurrent restructuring operations do not cross paths in the tree, then
we do not have to deal with concurrency control. If they do cross pathsin the tree, then the highest node
(closest to root) that sees both of these operations can perform simple local concurrency control to avoid any
inconsistencies in the tree structure. Our experiments with top-down semi-flattening (see Section 7) show
that it performs well in a distributed setting, since it uses a very small number of additional messages for
restructuring.

Figure 11: Randomized splaying: after all Berkeley nodes requested atleast once



Figure 12: Hybrid flattening: after all Berkeley nodes requested at least once

Figure 13: Top-down semi-flattening: after all Berkeley nodes requested at least once

8.2 Multiple objects

For simplicity, we described our algorithms assuming a single shared object. Multiple objects can easily
be supported by maintaining a different logical tree for each shared object. This can result in some opti-
mizations as well, e.g., only nodes interested in an object may join that object’s tree. This allows nodes not
interested in an object to avoid keeping any state or routing any messages for this object. It also allows the
interested nodes to retrieve the object from each other without having to route through other nodes. This can
greatly improve performance in applications where interest in the same objectreflects network proximity.

8.3 K-ary trees

Our algorithms as described in the previous sections work only for a binarytree. However, extensions tok-
ary trees are straightforward. In both bottom-up flattening and top-down semi-flattening, each step consists
of a node replacing one of its children —let us denote this as theleast significant node—with a node in the
transfer path—denote it as themost significant node. In the first step of Figure 1, root of subtreeA is the
least significant node andz is the most significant node whereas in Figure 3, root of subtreeC is the least
significant node anda is the most significant node. In case of ak-ary tree, the most significant node is still
well-defined (the node in the transfer path) but the least significant nodeis not. A simple strategy to define
the least significant node could be the following: If a nodex in ak-ary tree hask′ < k children, then we say
it hask − k′ null children.x prioritizes its children according to some heuristic, e.g., a least recently used
(LRU) type algorithm that gives a higher priority to a child which was in the transfer path of the most recent
retrieval throughx. The null children always get the lowest priority. Thenx may choose the child with the
lowest priority as the least significant node when restructuring.

8.4 Applications

With these extensions, our self-adjusting tree can support many applications that run on overlays. We discuss
two such application.



8.4.1 Application-level atomic multicast

Consider an application-level atomic multicast protocol where multiple sourcesmay take turns to multicast,
e.g., the source must hold a token before it is allowed to multicast and the token isshared among the sources
using a retrieval protocol enforcing mutual exclusion (similar semantics have been achieved in [19, 4]). Our
self-adjusting tree can form the overlay consisting of all the sources andreceivers. As a source multicasts
a batch of messages, top-down semi-flattening can be applied to balance the tree with this source as the
reference root (nodes in the tree use the node where the messages arecoming from as the parent and other
neighbors as children). When a different source gets the token and starts to multicast its messages, the tree
self adjusts and optimizes for the new source.

8.4.2 Content discovery

Without the restriction of mutually exclusive access, our algorithms can be applied to any object discovery
and retrieval protocol in either the request or transfer phase. Our self-adjusting tree provides a generic
substrate and any resource discovery protocols that use a tree structure can be laid on top of this substrate.
If these protocols involve communication along the path from a node discovering the resource to the owner
of the resource, then the top-down semi-flattening algorithm can be used. The effect will be to bring the
source of the request closer to the owner of the resource while balancing the tree along the path. This can
result in improved performance specially in applications where resourcesare mapped to nodes based on
the semantics of the resource contents [31]. In these cases the same nodecan be expected to send future
resource discovery requests (for semantically related resources) targeted to either the same resource owner
or other nodes in its proximity.

9 Conclusions and future work

In this paper, we present a novel distributed algorithm that guarantees aworst case amortized message
complexity ofO(log n) for object retrievals in a distributed tree. In addition, our algorithm adjusts only
portions of the tree in which retrievals occur; this is advantageous when thetree structure reflects network
proximity. The existing algorithm works on binary trees. We believe it can be extended tok-ary trees using
techniques similar to [28, 21]. We expect to investigate that in the future.
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Splay trees

Splay trees [29] are binary search trees that guarantee an amortized cost of O(log n) per access and there-
fore are as efficient as any form of uniformly balanced trees for sufficiently long sequence of accesses.
Furthermore, they are as efficient as static optimum search trees for sufficiently long sequence of accesses.
Splay trees use heuristics to restructure the tree with each access operation. This restructuring (called splay-
ing) brings the accessed item to the root of the tree. Splaying can either be done starting from the accessed
node and moving up to the root (bottom-up splaying) or starting from the rootand moving down to the
accessed node (top-down splaying):

Bottom-up splaying

Bottom-up splaying consists of a number of zig-zig (see Figure 14) and zig-zag (see Figure 15) steps fol-
lowed by a single zig (see Figure 16) step; symmetric cases are omitted.

Figure 14: The zig-zig case in bottom-up splaying. Triangles denote subtrees.

Figure 15: The zig-zag case in bottom-up splaying.

Figure 16: The zig case in bottom-up splaying.

Top-down splaying

Top-down splaying maintains three different subtrees, a left subtree denotedL, a right subtree denotedR
and a middle subtree. The zig and zig-zig steps are shown in Figures 17 and18, respectively. The zig-zag
case (not shown) is just treated as two separate zig cases. The final step involves reassembling the tree from
the three subtrees as shown in Figure 19. Top-down semi-splaying is a slightly modified version of top-down
splaying that brings the accessed node only part way up to the root. The zig-zag and zig steps in top-down
semi-splaying are the same as in top-down splaying. The zig-zig step uses thetop treeT and a special node
called “Top” as shown in Figure 20.



Figure 17: The zig case in top-down splaying.y andx are in path from root to the accessed node.

Figure 18: The zig-zig case in top-down splaying. A rotation is performed beforey is attached toR.

Figure 19: The reassembly step in top-down splaying.

Figure 20: The zig-zig case in top-down semi-splaying.


