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Abstract

An object retrieval protocol that enforces mutually exclusive acceashared object is an important prim-
itive employed by many distributed applications including distributed directatisgjbuted resource shar-
ing systems and ordered multicast protocols, to hame a few. Most existing impibgioas of this object
retrieval primitive use a tree as the underlying communication structure due sintiple acyclic nature of
trees. The worst case performance of this primitive and of the large diodygplications built upon it, is
O(n) for n nodes sharing the object. In this paper, we present a novel distribeffeaidfusting tree for
object retrieval protocols that guarantees the message complexity pevaktmveraged over the worst case
sequence of retrievals, to I6&log n). In addition, our algorithm adjusts only portions of the tree in which
retrievals occur; this is advantageous when the tree structure refléstgkeroximity. We implement best
known techniques from the centralized setting and compare their perfoemeth our algorithm. Results
are presented from experiments carried out on PlanetLab to evaluaterfbengance of different schemes
under different workloads. We also present extensions to our bestiogoel allowing a wide range of dis-
tributed applications including atomic broadcast and content discovenhievadoetter performance using
our techniques. To our knowledge, this is the first attempt to reducesacests in a distributed tree where
the tree dynamically adjusts itself during use to achi@ykeg n) performance for worst case workloads.






1 Introduction

The hierarchical acyclic structure of trees allows the use of simple distdilaug®rithms for data sharing
and coordination among nodes in the tree. An important primitive used in mahesé algorithms is an
object retrieval protocol that enforces mutually exclusive accesshtared mobile object. The object can be
retrieved by a requesting node from the current owner. When thevatisecomplete, the requesting node
becomes the new owner of the object. Many implementations of this primitive arerkimcluding several
token-based distributed mutual exclusion solutions [26, 5, 12, 33, 2BHetributed directory protocols
[7]. In all these cases, nodes communicate by exchanging messagesetiraited across tree edges.
Therefore, the worst case performance of these algorithms and ofgieetlady of applications built upon
these primitives [15, 13, 14] is proportional to the diameter (longest pdtielea two nodes) of the tree.
The trivial solution to make the tree “flat” (every node is a child of the roofsdoot scale well—the root
becomes a bottleneck. Therefore, all such algorithms can benefit fodstrdouted mechanism that would
reduce the diameter of the tree, e.g., by explicitly balancing or heuristicalijucasring the tree, while
keeping a low fixed degree.

In this paper we present a novel distributed algorithm, célestening that improves the worst case per-
formance of the object retrieval protocols mentioned above. In partjdld#tening achieves aamortized
cost—cost per retrieval averaged over the worst case sequence ief/a¢tr—of O(log n), wheren is the
number of nodes in the tree. This is a result of employing a new restructioeimgstic that brings nodes
frequently requesting the object closer to each other. Flattening achigsesnortized cost while keeping
the cost of individual retrieval operations low. Flattening also has a teyd® preserve the structure of
the tree, in that the nodes that are close to one another tend to stay closedaather if the workload
permits. So, for example, if the tree edges connect nodes that areaphimgily close to one another, and
if the object is passed among nodes close to each other (both in the treecmdgmhically), then flattening
preserves the geographic locality in the tree structure.

Our basic algorithm is designed to work with a single shared object on a/linearfor object retrieval pro-
tocols enforcing mutually exclusive access. We present extensions tzasisalgorithm that allow nodes
sharing multiple objects ik-ary trees through any protocol that runs on tree edges, to use tuidaes
for reduced access costs.

1.1 Related work and comparison to alternatives

The main goal of our work is to guarantéglog n) access costs in a distributed tree structure. This issue
has previously been addressed in the context of binary search tr@ssl&adjusting overlay networks.

1.1.1 Binary search trees

Our work is inspired by work on balancing binary search trees (BSTa)centralized system (e.g., [1, 29,
3, 11]), particularly the work of Sleator and Tarjansplay tree$29]. Splay trees, detailed in the Appendix,
are an elegant solution to efficient BSTs that achiéN&g n) amortized cost per search. When a node in
the tree is accessed, splaying uses a “move to front” heuristic that brimgstlessed item to the root of the
tree, on the assumption that this item will be accessed again, while taking steplsnce the tree in the
process.

Itis not too difficult to design a distributed version of splaying to work injoantion with an object retrieval
protocol, particularly if splaying is done by the node holding the object: Ifabgct retrieval protocol
ensures mutually exclusive access to the object, splaying while holding et ensures that concurrent



splaying will not take place, thereby substantially simplifying the design ofltarithm and precluding the
need for expensive locking of parts of the tree. Thus the obviousaitapof splaying to our setting is the
following scheme: Upon retrieving the object, a node splays itself to the fdbedree, before releasing
the object to the next node. This simple adaptation inherit$Xtfieg n) amortized cost of the splay trees.
So the question arises, why not simply implement and use splaying as a distalbgbethm?

One of the main concerns with employing splay trees in a distributed setting isgleenlamber of messages
that need to be exchanged. Even when the tree is perfectly balancéueardrieving node is close to the
current owner of the object, splaying would still rotate the retrieving nodbeaaoot, resulting in a high
messaging cost for the retrieval.

Even in the centralized setting, this excessive reorganization of the teebdem a major concern and
researchers have tried to counter this problem by developing variagpdaying that reduce the amount of
restructuring performed for each acceSsemi-splaying29] uses less restructuring by bringing an accessed
item only part way up to the root. However, as noted by the authors, seayisp adapts rather slowly to
changing workloadsPeriodic splaying34] restructures the tree every fixed number of accesses, instead of
restructuring with every access. Although this variant produces gemdts in the average case, it cannot
handle the worst case welRandomized splayinf®, 8] rotates an accessed node to the root only with
a certain probability. A high probability results in too much restructuring andvaplimbability fails to
preserve locality-based sub-structures in the tree: even when alltthevaits are within a small subtree,
some of the nodes from this subtree may end up close to the root while othermd@ here is an obvious
trade-off between the number of messages sent in a series of restrycperations and the effectiveness
of these operations. We find a better point in this trade-off than otheoapipes have allowed.

Another concern with splaying is that although bottom-up splaying perfoestsucturing in rather local
steps, the top-down splaying and top-down semi-splaying variants (geEnAix for different types of splay
techniques) require distant nodes in the tree to form edges with each 8tloér operations in a distributed
system not only result in a high messaging cost but also make it virtually infyp@$sr a routing service—
i.e., a service that routes messages from one node to another node edoedgges, possibly hopping through
many intermediate nodes—to adapt to these modifications quickly. Routing thtioeigree is an essential
part of our target protocols, and any restructuring that does not #tlewouting information to be updated
in a distributed and scalable fashion is undesirable.

Unlike splaying, distributed versions of B-trees [3] and variants like tHmBtrees [20] have been pro-
posed and analyzed in literature [10, 18, 24]. However, this reséasibeen done in the context of dis-
tributing large dictionaries across nodes on a network. Tree balancimgpi®yed to distribute dictionary
data uniformly across the participating nodes. This model is very différent ours because its goal is
distributed load balancing and not efficient object sharing. The fundeidifference with our approach is
that whereas distributed B-trees explicitly balance the tree whenever iahatia inserted or removed from
the tree, flattening only performs “on-demand” balancing that dynamicatyugtures the tree according
to the workload to maintain af(log n) retrieval cost. Moreover, these distributed B-tree proposals do not
support an object retrieval protocol that can be used for providingistency of a modifiable shared object
as required in our setting.

1.1.2 Overlay networks

In more recent years, much research has been done on self-admsatitay networks ([30, 25, 27, 16, 17,
22], to name a few) which retain @i(log n) diameter as nodes join and leave the overlay. The restructuring
is either done during the join and leave operations or is done periodicall2$3@7], where the frequency
may depend on observed parameters like failure rate [22]. Our focussipdper is somewhat different:



given an arbitrary tree topology our goal is to guararidéeg n) amortized retrieval costs. Therefore, we
do not expect anything from the join or leave procedures other tharhiakeep the tree connected. To
improve the retrieval costs, our tree adjusts itself according to the worki®ador example, if a certain
subtree is never used by the application running on our overlay theruthizés is never restructured. This
approach may result in more or less restructuring than other self-adjustertpy proposals depending
on the workload. However, once adjusted, our scheme achieves the logtiiowdure for this workloat]
whereas other self-adjusting overlays may not. Note that our algorithnisvadhese properties for any
workload while retaining the worst case amortized cosD@bg n).

1.2 Contributions

Our contributions in this paper are threefold: First, to our knowledgewauk is the first that attempts
to restructure a distributed tree according to the workload to reduce théizedorost of object retrievals
within the tree. We believe such an algorithm could improve the worst caf@ipance of a large group of
distributed protocols.

Second, we present new bottom-up and top-down restructuring primitise€xploit the fact that our al-
gorithm need not be order-preserving (unlike binary search tréH®. resulting primitives also achieve
O(log n) amortized costs like the splaying counterparts but are optimized for the disttibatting:Top-
down semi-flatteningas a much lower message complexity than the splaying variants, and botbvtap-d
andbottom-up flatteningechniques allow nodes to make local restructuring decisions, permitting them to
easily update their local routing tables to reflect the new tree topology.

Finally, we present a novel approach that combines bottom-up flattentshdoprdown semi-flattening
schemes in one simple algorithm. This algorithm adapts the amount of restrgdiutime workload and
restructures the tree on an “on-demand” basis. The result is a resingctaheme that has a low messaging
cost but still adapts quickly to workloads. Our algorithm also presenadity in the tree structure if the
workload permits, a desirable property for tree topologies that are loaseetwork metrics or geographical
information [35, 9].

To see the effectiveness of our algorithms in a real-world setting, we imptetiherArrow distributed
directory protocol [7] and perform experiments with it on PlanetLab, gui&ioth a static tree and a tree
implementing flattening algorithms. Results from these experiments show that tsiecase performance
of the Arrow protocol is improved by several orders of magnitude wheadwvith flattening. We also
compare our scheme against different splaying variants and showattaniihg is much better optimized
for the distributed setting.

2 System model

Our system consists of a set nfnodes distributed across a network and initially structured as a rooted,
binary, unordered tree. This tree is a logical overlay network with vertiepresenting nodes in the system
and edges representing overlay edges. Eachned® is initialized only with the identities of its neighbors

in the tree, i.e., a parent pointer (initialized to the distinguished valuefor the root) and a set of child
pointers of cardinality at most two. There is no central database adedssilndes that contains information
about the tree structure. Nodes communicate via remote procedure calls)(R¥®des and communication

1The proof of this guarantee appears in [29] asstaic optimality theorerhich is a direct result of thaccess lemmawe
prove the access lemma here (see Lemmas 1 and 2) for our algoritidntisesefore the static optimality theorem also applies.



between them are reliable: nodes do not fail, and each RPC completes ite &dinunbounded time, i.e.,
communication is asynchronous.

Nodes access mobile objects that are used in application-specific protecolsevity, we deal with a single
mobile object; extensions to multiple objects are discussed in Section 8. Théhabdieitiates aetrieval

of the object is called eequestor We say a requeseérminateswhen it reaches itsesponderi.e., the node
that will release the object to be sent to the requestor. The respondetemitietransfer (when it does
not need the object anymore), which follows the unique path in the treetiremesponder to the requestor.
When the object arrives at the requestor, the retrieval is completee Tiegr be several concurrent requests
but at most one transfer in the tree at a time. Object retrieval protocasoamf mutually exclusive access
satisfy these properties. All other mechanisms related to object retrieegisaocol specific. We make no
assumptions about these details.

Our algorithm restructures the tree during the object transfer to avoitlo@mt restructuring, as transfers
do not overlap. Each transfer results in a new tree. Weély$e denote the initial tree before any retrievals
begin.

3 Properties

We present a distributed algorithm that offers the following propertiegewteintaining the nodes in a tree
structure:

G1. The message complexity of retrieval operations i®(m logn).

G2. All messages exchanged in a retrieval are confined to the subtnesniog the requestor and the
responder, and the parent of that subtree. As a corollary, we &cttievfollowing property: Let
T; = (V;, E;) denote the tree after thé" retrieval has completed such that there are no outstanding
retrievals in the tree and nodg € V; owns the object. Let, ..., v; be thek nodes that start the
subsequent retrievals whose completion results in theTiree Let T’ = (V', E’) be the smallest
subtree ofl; such thaty, ..., v € V'. Then the message complexity of each of thiesetrievals is
proportional to (i.e., is a small constant multiple gfY|.

Our algorithm guarantees a@n(logn) amortized cost per retrieval (G1). In addition the algorithm takes
advantage of the locality in the workload, i.e., if the requestor and the rdepame close to each other,
then only a small amount of restructuring will be done because all restingtwill be confined to a small
subtree (G2). This results in a small messaging cost for individual ratragerations. Furthermore, this
property allows us to preserve geographical mappings in the tree, ifjakstors and responders belong to
a certain geographical region.

4 Self-adjusting distributed trees

4.1 Key insight

Splay trees use the “move to front” heuristic and rotate accessed nodedalthe root since all searches
in a BST start from the root. In our setting however, a request may start &ny node in the tree. So
a better heuristic is to move the responders close to the requestors. Orte achjeve this would be to
move both the requestors and responders close to the root, but this mightoerkill and would require
excessive restructuring. Instead, we rotate the requestors andploaders close to the root of the smallest



subtree that contains both of them. This scheme has the advantage of minimeigtitucturing in the
tree if the requestor and the responder are close to each other alngalystill achieving theO(log n)
amortized cost. We implement this scheme by restructuring along the tranttiergra the responder to
the requestor employing bothottom-up flatteningind top-down semi-flatteningechniques in one algo-
rithm. This combination of “full” and “semi” flattening also allows our algorithm t@ptrather quickly to
changing workloads while still being conservative about the number ofages exchanged.

Most existing restructuring techniques including splay trees emplagion as the basic restructuring step.
This is convenient as rotation preserves the order of nodes in the treegumement for binary search
trees. Since ordering of nodes is irrelevant in our target protocoldgfiee and use new primitives that are
better suited to our goals. Here we present these primitives and the bottdoptgiown and hybrid (that
combines bottom-up and top-down variants) flattening algorithms that usepttiestves.

4.2 Bottom-up flattening

Our first algorithm is a bottom-up scheme that restructures the tree whiehewebject moves up an edge
during its transfer from the respondeto the requestor. Bottom-up flattening starts fromand proceeds

to the highest node in the transfer pathrtdn caset is the highest node, no restructuring is done. The result
of bottom-up flattening is to bringto the root of the subtree that contains

4.2.1 Preferred rotation primitive

We define a variation of the rotation primitive for bottom-up flattening. For eatdtion performed by the
respondet over its parent, t chooses one of its children agpeeferred child The rotation is performed
such thatt keeps the preferred child and hands-off the other childl. téVe call this apreferred rotation
Preferred rotations are used in bottom-up flattening as shown in Figurer Xhé-first rotations chooses
either one of its children as the preferred child. For each subsequtatibn, the child that just rotated
over in the previous step (noden Figure 1) is preferred. performs these preferred rotations until it rotates
over the highest node in the pathito

D
tBUFlatten(r, b, 1)
=

Figure 1. Bottom-up flattening: rotates keeping the preferred child. Preferred child is the one tlaat
rotated over. For the first rotation any child may be preferred.

4.2.2 Bottom-up flattening algorithm

Figure 2 shows the distributed algorithm that implements bottom-up flattening. Weedthe variables
encoding global state at a nogeusing the prefix #.”, e.g., y.parent. Variable names without the prefix
denote temporary state that is deleted once this invocation is over. We assumastience of a routing
serviceR that can be queried by nodes to find the next node, and if a node itselfhggthest node, in the
path from a responder to a requestor. We describe a minimal distributidgservice that achieves these
goals in Section 5.



1. ¢.BUFlatten(r, b, w) [* r: requestor: preferred childg: former child oft.parent */
2. a « t.children \ {b} * a is the child not preferred */

3. z « t.parent [* z is the current parent */

4. t.children — {t.children \ {a}} U {z} I* replace childa with z */

5. [gParent, isHigh] < z.rotateEdge(t,r,w,a) [* z replaces its childy with ¢ and sets.parent to ¢ */

6. t.parent < gParent [* set new parent to old grand-parent */

7. a.setParent(z) * a.parent now points toz */

8. if isHigh [*if z was the highest node in the path, then... */

9. t.parent.replaceChild(z, t) [* ...my new parent replaces its chitdwith me and stop */
10. elset.BUFlatten(r, z, z) [* otherwise, perform next rotation preferring*/

11. z.rotateEdge(t,r, w, a) [* t: respondery: requestorw: child to replaceq: new child */
12. T <« z.parent [* x is my current parent */

13. z.parent « ¢ [* sett as new parent */

14. z.children «— {z.children \ {w}} U {a} I* replace childw with a */

15. return [z, R.amHighNode(z, ¢, r)] [* return z and if | am the highest node in this path or not */
16. z.replaceChild(z,t) I* z: child to replacet: new child */

17. x.children — {z.children \ {z}} U {¢} I* replace childz with ¢ and return */

18. a.setParent(z) I* z: new parent */

19. a.parent « z [* set parent to: and return */

Figure 2: Bottom-up flattening. All nodes implement all algorithms.

The respondet initiates bottom-up flattening by invokingBUFlatten(r, b, ¢). If ¢ is initially a leaf node
thenb = | anda = L (line 2). If ¢t only has one child theh is that child andz = L. We assume that
when there is a remote invocation on_anode, the method returns (possibly with an error message) so the
invoking node can carry on its execution. TloeateEdge message (line 5) results insettingz.parent to ¢

and adding’s non-preferred child. to z.children replacingt. Note thatt's new parent after each preferred
rotation ¢'s grand-parent before the rotation) need not be notified of its new lsldcet is going to rotate

over this node anyway in the next step. Therefore, at each sub#esiap after the first rotation,parent

does not contain in its children set but rather contains the nodehatt just rotated over in the previous
step. After the last rotation,parent is notified of its new child (line 9). The RPCs in lines 5, 7 and 9 ensure
that all restructuring is complete by the time the last rotation completes.

4.2.3 Discussion

Each preferred rotation requires 4 messages—two messages foif éaeha RPCs (lines 5 and 7), except
for the last rotation that requires 6 messages due to line 9. The most effinjdamentation of bottom-up
splaying (see Appendix) also requires 8 messages for moving up two gtitpsugh the messaging costs
are similar, bottom-up flattening has a much simpler algorithmic logic than bottom-uprapl&ottom-up
flattening is also slightly more efficient than bottom-up splaying in terms of the aradrtizst (the constant
in the “big-oh” notation is smaller).



4.3 Top-down semi-flattening

Our second algorithm is a top-down scheme that restructures the treewenehne object moves down an
edge during its transfer. Top-down flattening starts at the highest nekle path from the respondéeto the
requestor-. Since top-down flattening is preceded by bottom-up, this highest nodef#stjithe responder
t. We bringr close tot via a top-down semi-flattening mechanism that bringsart way up tot, while
performing less restructuring than full flattening.

4.3.1 Child swap primitive

Top-down semi-flattening is performed by repeating the step shown in RBgyre anda are in path front
tor. Nodey swaps one of its children (root of subtr€g with x's child a. We call this steghild swap “+"
represents the current node of the flattening operation, i.e., the nexsulaifdis performed by. Flattening
is started byt and stops i is the current node or a child of the current node.

Figure 3: Top-down semi-flattening; z anda are in the path from to ». Next child swap is performed by
a.

1. y.TDSemiFlatten(t,r, z) [* t: respondery: requestorz: my new parent */

2. y.parent «— 2

3. if r € {y} Uy.children *if  or my child is the requestor, then...*/

4, stop [* ...stop the restructuring */

5. x < R.nextNode(y,t,7) /* find the child that is in path fron to r */

6. ¢ < y.children \ {z} I* this is the child not in path */

7. c.setParent(z) I* ¢'s parent should now be */

8. a «— z.childSwap(t, r, ¢) [* swap children atr and geta, the grand-child in path */

9. y.children « {y.children \ {c}} U {a} * swap child with grand-child */

10. a.TDSemiFlatten(¢, r, y) [* initiate next child swap; this RPC can be non-blocking */
11. z.childSwap(t,r,c) [* t: respondery: requestorg: my parent’s child not in path */
12. a — R.nextNode(z,t,7) * find my child that is in path front to r */

13. x.children «— {z.children \ {a}} U {c} * swap child with parent’s child */

14, return a [* return my child that has been swapped */

Figure 4: Top-down semi-flattening. All nodes implement all algorithms.

4.3.2 Top-down semi-flattening algorithm

Figure 4 shows the distributed algorithm for this scheme. The algorithm is initigteds
t. TDSemiFlatten(t, 7, t.parent). At each step, the current nogeand its childz swapy’s child that is not



in the path between andr with z’s child that is in this path (lines 9 and 13). The swapped children are
notified of their new parents (lines 7 and 10).

4.3.3 Discussion

Top-down semi-flattening approximately halves the depth of each nodvedtar) in the path fromt to r,
after bottom-up flattening. As a result, semi-flattening bring®ser tot. Compared to the splaying counter
parts, top-down semi-flattening has a much lower messaging cost. In parteadh child swap requires 5
messages and moves two steps down the tree—two messages for each of@irsvin lines 7 and 8 and
an additional message for the RPC in line 10 (this RPC may be non-blockidgcewe do not count its
response against the latency of the child swap). In contrast, an optimahimpiation of top-down semi-
splaying (see Appendix) requires a number of messages ranging ftorh®for each step. Furthermore,
top-down semi-flattening performs only local pointer reassignments thatsadiiomple updates for a routing
service. Top-down semi-splaying makes it difficult for a distributed rousieryice to update the routes
correctly after restructuring.

4.4 Hybrid flattening
4.4.1 Hybrid flattening algorithm

Our main algorithm combines bottom-up flattening with top-down semi-flattening tauctsre along the
transfer path from the respondeto the requestor. Figure 5 shows the distributed algorithm for hybrid
flattening.t performs bottom-up flattening if it is not the highest node (lines 2—7). Thidt®int becoming
root of the subtree that contains After bottom-up flattening is complete,qifis a child oft then no more
restructuring is required (line 8). Otherwigeanitiates top-down semi-flattening (line 9).

1. t.HybridFlatten(r) * r: requestor */

2. if R.amHighNode(t,¢,r) is false [*BUFlatten if | am not the highest node */

3. {a, b} « t.children I* a andb aret’s children, could be null */

4. ifa=_1

5. prefChild « b [* choose the non-null child as the preferred child */
6. elseprefChild «— a [* if both are null or non-null then choose any */

7. t.BUFlatten(r, prefChild, t) /* do bottom-up flattening */

8. if » & t.children * if more than one hop away from, then...*/

9. t. TDSemiFlatten(¢, r, t.parent) [*...do top-down semi-flattening */

Figure 5: Hybrid flattening algorithm.

4.4.2 Discussion

Hybrid flattening inherits its low message complexity and simplicity from the two coestitschemes. It
achieves an amortized cost@flog n) (G1), see Section 6 for a detailed analysis. The restructuring follows
the transfer path from the responder to the requestor, achieving QeFghows an example tree where
r retrieves the object from Hybrid flattening bringg andr close to each other and in process, balances
the remaining tree.



Figure 6: Hybrid flattening. Bold lines show the path betweemdr. Root of A was the first preferred
child.

5 Route management

In the flattening algorithms we assume a routing senfcthat supports two types of queries: First, the
R.nextNode(y, t, ) query is invoked by a nodg to obtain the node following in path fromt to r in the
current tree (lines 5 and 12 in Figure 4). Second,Re@nHighNode(y, t, ) query is invoked by a nodg

to find out ify is the highest node (i.e., closest to the root) in the path fréor in the current tree (line 15
in Figure 2 and line 2 in Figure 5).

These two queries can be supported by a simple distributed routing sesviickosvs: An instance of the
routing serviceR,, runs locally at every nodgand observes all requests and transfers passing thgough
inserts an entry in the local routing table upon observing a request aadhis entry to answe?,.nextNode
and R,.amHighNode queries during the corresponding transfer. The entry is deleted aéierahsfer
passes through. Each request contains the identity of the requestand the identity ofy’'s neighbor

x that forwards this request tg. y replacesr with y in the request and forwards this request towards
its neighborz that is in direction of the responder (s identified using application specific mechanisms,
e.g., see Section 7). Upon observing such a requgsiadds the following entry to the routing table:
{r:z—y — z,b},ie, the transfer destined forwill come from 2z and should be forwarded ta b is

a boolean encoding whethgris the highest node in the path or nak, setsb to false if either z or z is
y.parent and totrue otherwise.

This simple mechanism using backward pointers is enough to answer the ésiegjmentioned above.
However, this routing information must be updated with restructuring to teflemew tree. The rules for
modifying the routing table with restructuring are simple since all restructuriloga and deterministic and
transfers do not overlap. Some updates require neighbors to exctiaigrouting tables with each other,
but not with any other nodes in the tree. Listing the whole set of rules i®smatsuming and uninteresting
and is therefore avoided. As an example we list a subset of rules useatley when performing a child-
swap step in top-down semi-flattening as shown in Figure 3, see Table21 aizghssumed to bg parent.
Rules with an(x) requirez’s routing table; this can be piggy-backed on the return message sent itlofe
Figure 4. As an example, the first rule in Table 1 states that if the transgeceming fromz and going tar
and according ta’s routing table entry for this destinatiom,was forwarding this ta, theny can forward
this toa directly after the flatteninga(becomes a child of as a result of the restructuring) agpds not the
highest node in this path. implies that this entry is not required any more and can be deleted. Similar rules
exist for all cases in our algorithms.

We note that all messages exchanged by neighboring routing servicescftange routing tables) can be
piggy-backed on existing messages as shown in the example above. olhesmanagement does not
add to the message complexity of our algorithm. To compare with splay trees, ifeneto use top-
down semi-splaying instead of top-down semi-flattening, the distributed roséngce would be much



more complicated than the one presented here and would require a much mggsage complexity, as
the restructuring in top-down semi-splaying is not localized (see Appendiddtails on top-down semi-

splaying).

Table 1: Modifications done by for routes tax
Before | After

x)z—y—x|x—a|z—y— a,false
Y )

() y—ax|lx—a y — a,true
(¥)c—y—2x|zr—a|x—y— a,true
(%)

Table 2: Modifications done by for routes toc

Before | After
z—y—cC z — y — x,false
Yy —cC Yy — x,true

(¥)z—y—cla—z| a—y— xtrue
(x)x—y—clabz 1

6 Amortized analysis

We use message complexity (number of messages exchanged)@sstheeasure in our analysis. This
is justified in a distributed setting as network latency is expected to dominate atiersflike processing
time. To allow comparison with splay trees, we use the potential method [32]d@rtiortized analysis as
in [29]. We assign a real number callpdtentialto each possible state of the treep#étential functioris a
mapping from the tree states to the potential. €pensef an operation in the potential method is defined
as:

expense= actual cost net increase in potential

Using this definition, the total actual cost of a sequence @jperations can be derived as:

total actual cost= total expense- net decrease in potential Q)

Our proof strategy to bound the total actual cost of a sequence dditapes is to bound the expense of the
sequence of operations (lemma 1 for top-down and lemma 2 for bottom-upifigit@md the net decrease
in potential (lemma 3) resulting from the sequence of operations. For thi, e assume that the tree
contains a static set af nodes.

We begin by assigning a positive weigh{x) to each node: that remains fixed throughout the execution.
Then define the size(z) of a nodex to be the sum of weights of all nodes in the subtree rooted &ve
define the rank(z) of x aslog(s(z)) (binary logarithms are used throughout). For each ngdee keep
r(z) tokens on that node, thus the potential function is just the sum of the réaksnodes in the tree. As
a measure of the actual cost, we charge 1 for each child swap and-gdafetation. We uss ands’, r and

r’ to denote the sizes and ranks just before and after a restructuringesipectively.



Lemma 1. The expense of top-down semi-flattening from a nddea noder is at mos(r(t) — r(r)).

Proof. Top-down semi-flattening constitutes of child swaps. The expense ofdwp-gemi-flattening is the
sum of the expense costs of all the child swaps along the way. We claim ¢hexplense of a single child
swap withz being the parent of andy being the parent of (see Figure 3) is at mogi(r(y) — r'(a)).
The sum of these child swap costs telescopeXi¢t) — r(r)) if the path length betweehandr is even
and2(r(t) — r(r’)) if this length is odd; where’ is the parent of. The lemma holds in either case since
r(r') > r(r).

So we only need to prove the claim regarding the expense of each chifd 3a child swap is as shown
in Figure 3. The actual cost associated with a child swap is 1 so the exigense

= 1+ netincrease in potential
=1+71'(z) —r(x) [since onlyz’s rank changds
<1+r1'(z) —r(a) [sincer(z) > r(a)]

Now we need to prove the following:

1+1'(z) —r(a) < 2(r(y) —1'(a))
or equivalently

1 < 2r(y) —2r'(a) +r(a) — ' ()

1 <2r(y) —1'(a) —1'(z) [sincer’(a) = r(a)]
—1>7r'(a) —r(y) +r'(z) —x(y)
12 1os(2 ) 110622

s(y) s(y)
This last inequality is true sincgy) > s’(a) + s’(z) andlog a + log b maximizes at -2 itz + b < 1 (due to
the convexity oflog). O

Lemma 2. The expense of bottom-up flattening from a nottea nodeh is at most(r(h) — r(t)) + 1.

Proof. Bottom-up flattening constitutes only of preferred rotations. To see thetefié preferred rotations

on the expense of bottom-up flattening, we need to analyze two prefetagtns at a time. Bottom-up
flattening constitutes of these pairs of preferred rotations, possibly fetidy a single preferred rotation at
the end if the path betweerandh is of odd length.

Let z be the parent afandz be the parent of as shown in Figure .is the node that performs the preferred
rotations. We claim that the amortized cost of a single preferred rotatiomisst2(r’(¢) — r(¢)) + 1 and

that of a pair of preferred rotations is at mast’(t) — r(¢)). The sum of these costs telescopes and proves
the lemma. We now prove our claim.

The actual cost of a single preferred rotation performed dyer z is 1. The expense is:

=1+4+71(t) —r(t) +1'(2) —r(2)
<1+71'(t)—r(t) [sincer'(z) <r(z)]
<1+2('(t) —r(t))



The actual cost of a pair of preferred rotations performed byer z and thenr (see Figure 1) is 2. The
amortized cost is:

=2+471'(t) —r(t) +1'(2) — r(2) + r'(z) — r(x)
<2+471'(2) +r'(z) — 2r(t)
[sincer’(t) = r(z) andr(t) < r(2)]

Now we need to prove the following:

2+1'(2) +1r'(z) — 2r(t) < 2(r'(t) — r(t))

or equivalently

2
-2

IN

2r'(t) — r'(2) — r'(2)
v'(z) —1'(t) + ' (x) — 1'(¢)
s'(z s’(x))

s'(t) s'(t)

This last inequality is true sincé(y) > s'(z) + s/(z) andlog a + log b maximizes at -2 itz + b < 1 (due
to the convexity ofog). O

V

—2 > log(

) + log(

Lemma 3. The net decrease in potential over any sequence of operations i$&@§g1 log(—X), where

n w(y)

Proof. The maximum size of a nodg for all yy, is W wheny is the root of the tree and the minimum size is
w(y) wheny is a leaf. Thus the net decrease in the rank of npdeat mostog(W) —log(w(y)). Summing
up over all nodes proves the lemma. O

Theorem 1. The total actual cost of a sequencermftop-down flattening operations is at mg&im +
n)logn.

Proof. Assign a weight ofl /n to each node. The total expense of the sequence is atmm@sgi(t) —
r(r))) < 2mlogn foranyt andr, see Lemma 1. The net decrease in potential is at st log(%) =
nlog n. Substituting these values in Equation 1 proves the result. O
Theorem 2. The total actual cost of a sequencebottom-up flattening operations is at mest- (2m +
n)logn.

Proof. Assign a weight ofl /»n to each node. The total expense of the sequence is atmast 2(r(h) —
r(t))) < m+2mlognforanyh andt, see Lemma 2. The netdecrease in potential is at ngst log(X) =
nlog n. Substituting these values in Equation 1 proves the result. O

+

Theorem 3. The total actual cost of a sequencemthybrid flattening operations is at mo3tn + (2m
n)logn.



Proof. Assign a weight ofl /n to each node. The total expense of the sequence is atnjast 2(r(h) —
r(t)) + 2(r”(t) — r(r))) for anyt, h andr, wherer”(t) is the rank oft after bottom-up flattening, see
Lemmas 1 and 2. Since this is the same as the raiklsfore bottom-up flattening (the subtree contains
the same nodes), so the total expense of the sequence is ab(as?(r(h)—r(t))+2(r(h)—r(r))) < m+
2mlog 2n = 3m + 2mlogn for anyt, h andr. The net decrease in potential is at m@@zl log(%) =
nlog n. Substituting these values in Equation 1 proves the result.

7 Experiments

We have a complete implementation of the flattening algorithms and the distributedyreemiice described
in previous sections. Our experiments use this implementation with the Arrow distlidirectory protocol
[7]. We modified the Arrow protocol so the transfers also follow the patbudi the tree; the Arrow
protocol proposed in [7] uses the tree edges only to route requesteadd the transfers directly over the
underlying network. This change was implemented using the routing seresmeilled in Section 5. The
Arrow protocol maintains a forward pointer called @amow on each node; this arrow points in the direction
of the responder. These arrows also need to be maintained like the dgoimters described in Section 5
in the event of restructuring. This is also done through a set of rules sitnithiose used by the routing
service. As with route management, the messages exchanged by neightmates to keep the arrows
consistent are also piggy-backed on the flattening protocol messageskifthese details as they pertain
specifically to the Arrow protocol.

We performed our experiments on PlanetLab [6]. Around 75 PlanetLdbsnlmcated in North America
were used for all experiments. These included Internet2, CAnet andrsity machines in the US and
Canada. To control the sequence of requests (so we can constmsttcases and other distributions), we
used one node external to the overlay tree as a “monitor”. The monitoaegeld control messages with all
nodes, e.g., to have nodes initiate a request or pull information about Ingvaleetrieval operation took.
We performed two sets of experiments. For the first experiment, we cotesfrthe worst case tree, i.e., a
“line” with 75 nodes. Nodes farthest away from each other in the tree wexde to alternate sending 25
requests each, so the object would “ping-pong” between these twa ndddarepeated this experiment on 10
different worst case trees, i.e., we always constructed a line but #iopoof nodes in this line was chosen
randomly. Figure 7 plots the average time per retrieval against the numbetrief/als performed for the
“vanilla” Arrow protocol, i.e., when no restructuring is employed, and far Mrrow protocol with hybrid
flattening. Each point is a mean of the results from 10 experiments. Outsrebow that hybrid flattening
handles the worst case as claimed. The amortized cost of retrievals wiild Agktening improves a great
deal on the vanilla Arrow protocol even for a small sequence, e.g. tdévas.

Our second experiment compares the performance of flattening with splayartree structure that reflects
network proximity and a workload that allows to take advantage of this piypphbr this experiment, we
construct a line consisting only of nodes located at Berkeley (11 in totelal this the “Berkeley tree”.
We then construct a “random” binary tree using the other PlanetLab modigsin the Berkeley tree to one
of the leaf nodes (see Figure 9). Initially, the object is located at the fabederkeley tree. A total of
50 requests are made by randomly chosen Berkeley nodes. Again rfeenpéhis experiment 10 times,
each time with a different random binary tree. Figure 8 plots the average tmeepieval against the
number of retrievals. Each point in the plot is a mean of the 10 experimengsdifférent curves plot the
performance of the Arrow protocol using different types of restnistuschemes. Splaying has a high initial
cost since it rotates each Berkeley node to the root of the tree when tlecompletes its first retrieval (see
Figure 10 for an example topology from one of our experiments, with eackelBey node having completed
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Figure 8: Amortized cost in a geographically mapped tree

at least one retrieval). Even when all Berkeley nodes have beenddtetige root, retrievals are somewhat
expensive due to the large amount of restructuring required with exaergfar. Randomized splaying does
not have a high restructuring cost but moves only a subset of Berkeldss to the root resulting in some
of the retrievals going through other nodes in the tree (see Figure 119.sifiation gets better as more
Berkeley nodes are rotated to the root. We used randomized splaying withabjlity of 0.3 to splay after
a retrieval. The choice is somewhat arbitrary, higher probability resultgmristructuring costs and lower
probability breaks the locality in the tree.

In contrast to the two splaying schemes, hybrid and top-down semi-flattgeirigrm much better. We
evaluate top-down semi-flattening individually as it can be used without baifpftfattening in extensions
to our protocol applicable in a more generic setting, see Section 8. In thaniflgttexperiments, all re-
structuring is confined to the Berkeley nodes (see Figures 12 and Higuré-or this particular workload
top-down semi-flattening out-performs the hybrid case due to its low restingteosts. In general, e.g., if
the Berkeley tree had 1000 nodes, the semi-flattening scheme would poteadguickly to the workload
as hybrid flattening. Hybrid flattening, however, will adapt to arbitraryklmads and has a performance
comparable to the semi-flattening scheme for this particular workload too.

We illustrate an example topology used in the experiments documented in Figaiéally, the tree looks
as shown in Figure 9 where the black ovals show the nodes located a&i@erkhe subsequent topologies
shown here are the result of using different types of restructurihgnveach of the Berkeley nodes have
completed at least one retrieval. Since Berkeley nodes make requakistgnsome nodes may have re-
trieved the object more than once. Figures 10, 11, 12 and 13 show thigltezeusing splaying, randomized
splaying, hybrid flattening and top-down semi-flattening respectively.
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Figure 9: Initial topology. Black nodes are all at Berkeley

Figure 10: Splaying: after all Berkeley nodes requested at least once

8 Extensions and other applications

As presented, our algorithms work for a single object shared by nodasgad in a binary tree running an
object retrieval protocol that enforces mutually exclusive accessveMer, simple extensions to the basic
algorithm presented earlier can result in variations that are much moreigand widely applicable to
many different scenarios. Here we discuss these extensions aribdl@agplications that can benefit from
these variations.

8.1 Non-mutually exclusive protocols

Our algorithms avoid concurrent restructuring and in-efficient lockirth@tree by restructuring only when

the object is being transferred in a retrieval protocol that enforcesahakelusion. One way to avoid

locking large parts of the tree for protocols that do not enforce mutwailigion, is to only use top-down

semi-flattening. In this case, if two concurrent restructuring operationmmticross paths in the tree, then
we do not have to deal with concurrency control. If they do cross pattie tree, then the highest node
(closest to root) that sees both of these operations can perform simgledmcurrency control to avoid any
inconsistencies in the tree structure. Our experiments with top-down semiifigtisee Section 7) show
that it performs well in a distributed setting, since it uses a very small nunfledditional messages for

restructuring.

Figure 11: Randomized splaying: after all Berkeley nodes requestedsttonce



Figure 13: Top-down semi-flattening: after all Berkeley nodes reqdedtieast once

8.2 Multiple objects

For simplicity, we described our algorithms assuming a single shared objedtipllwbjects can easily
be supported by maintaining a different logical tree for each sharedtobj&is can result in some opti-
mizations as well, e.g., only nodes interested in an object may join that objeet’sTtnées allows nodes not
interested in an object to avoid keeping any state or routing any messagleis fabject. It also allows the
interested nodes to retrieve the object from each other without havingt®tttough other nodes. This can
greatly improve performance in applications where interest in the same offlects network proximity.

8.3 K-arytrees

Our algorithms as described in the previous sections work only for a biregy However, extensions ko
ary trees are straightforward. In both bottom-up flattening and top-dewmri+#attening, each step consists
of a node replacing one of its children —let us denote this atetist significant node-with a node in the
transfer path—denote it as timeost significant nodeln the first step of Figure 1, root of subtreeis the
least significant node andis the most significant node whereas in Figure 3, root of suldireethe least
significant node and is the most significant node. In case of-ary tree, the most significant node is still
well-defined (the node in the transfer path) but the least significantisau#. A simple strategy to define
the least significant node could be the following: If a nada ak-ary tree hag’ < k children, then we say
it hask — &’ null children. z prioritizes its children according to some heuristic, e.g., a least recently used
(LRU) type algorithm that gives a higher priority to a child which was in thesfanpath of the most recent
retrieval throughe. The null children always get the lowest priority. Themnay choose the child with the
lowest priority as the least significant node when restructuring.

8.4 Applications

With these extensions, our self-adjusting tree can support many applettaimun on overlays. We discuss
two such application.



8.4.1 Application-level atomic multicast

Consider an application-level atomic multicast protocol where multiple sonmaggtake turns to multicast,
e.g., the source must hold a token before it is allowed to multicast and the tai{esresi among the sources
using a retrieval protocol enforcing mutual exclusion (similar semantios bagn achieved in [19, 4]). Our
self-adjusting tree can form the overlay consisting of all the sourcesemmivers. As a source multicasts
a batch of messages, top-down semi-flattening can be applied to balanceethdttr this source as the
reference root (nodes in the tree use the node where the messagemarg from as the parent and other
neighbors as children). When a different source gets the token atgltstanulticast its messages, the tree
self adjusts and optimizes for the new source.

8.4.2 Content discovery

Without the restriction of mutually exclusive access, our algorithms can fleedfo any object discovery
and retrieval protocol in either the request or transfer phase. (fuadjasting tree provides a generic
substrate and any resource discovery protocols that use a tree retrcarube laid on top of this substrate.
If these protocols involve communication along the path from a node disogvieie resource to the owner
of the resource, then the top-down semi-flattening algorithm can be usgedefiect will be to bring the
source of the request closer to the owner of the resource while bajgihariree along the path. This can
result in improved performance specially in applications where resoareemapped to nodes based on
the semantics of the resource contents [31]. In these cases the sammandukeexpected to send future
resource discovery requests (for semantically related resourcgs)ddito either the same resource owner
or other nodes in its proximity.

9 Conclusions and future work

In this paper, we present a novel distributed algorithm that guaranteessh case amortized message
complexity of O(logn) for object retrievals in a distributed tree. In addition, our algorithm adjuskg o
portions of the tree in which retrievals occur; this is advantageous wherethstructure reflects network
proximity. The existing algorithm works on binary trees. We believe it carxtended tak-ary trees using
techniques similar to [28, 21]. We expect to investigate that in the future.
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Splay trees

Splay trees [29] are binary search trees that guarantee an amortsteaf €flog n) per access and there-
fore are as efficient as any form of uniformly balanced trees forceiffily long sequence of accesses.
Furthermore, they are as efficient as static optimum search trees faientffi long sequence of accesses.
Splay trees use heuristics to restructure the tree with each access opéraisorestructuring (called splay-
ing) brings the accessed item to the root of the tree. Splaying can eithenkesthrting from the accessed
node and moving up to the root (bottom-up splaying) or starting from theandtmoving down to the
accessed node (top-down splaying):

Bottom-up splaying

Bottom-up splaying consists of a number of zig-zig (see Figure 14) andarjgsee Figure 15) steps fol-
lowed by a single zig (see Figure 16) step; symmetric cases are omitted.

Figure 16: The zig case in bottom-up splaying.

Top-down splaying

Top-down splaying maintains three different subtrees, a left subtmeatetbl, a right subtree denotel
and a middle subtree. The zig and zig-zig steps are shown in Figures IIBarekpectively. The zig-zag
case (not shown) is just treated as two separate zig cases. The finalvsiges reassembling the tree from
the three subtrees as shown in Figure 19. Top-down semi-splaying is @yatigitified version of top-down
splaying that brings the accessed node only part way up to the root. iJ-aag and zig steps in top-down
semi-splaying are the same as in top-down splaying. The zig-zig step ugep theeT’ and a special node
called “Top” as shown in Figure 20.



Figure 17: The zig case in top-down splayingandzx are in path from root to the accessed node.

Figure 18: The zig-zig case in top-down splaying. A rotation is perfornafadrby is attached taR.

Figure 19: The reassembly step in top-down splaying.

Figure 20: The zig-zig case in top-down semi-splaying.



