Algorithmic and Domain Centralization in Distributed
Constraint Optimization Problems

John P. Davin

CMU-CS-05-154
July 2005

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Pragnesh Jay Modi, Co-Chair
Manuela Veloso, Co-Chair

Stephen F. Smith

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright(© 2005John P. Davin

This material is based upon work supported by the Defensaabd Research Projects Agency (DARPA) under
Contract No. NBCHDO030010. Any opinions, findings and cosidas or recommendations expressed in this material
are those of the author(s) and do not necessarily reflecti¢es\of the Defense Advanced Research Projects Agency
(DARPA), or the Department of Interior-National Businesn@r (DOI-NBC).



Keywords: multiagent systems, distributed optimization, DCOP, AgdQptAPO



Abstract

A class of problems known as Distributed Constraint Optatian Problems (DCOP)
has become a growing research interest in computer scietaibe of its difficulty
(NP-Complete) and many real-world applications (meeticigeduling, sensor net-
works, military planning). In this thesis we identify twoptgs of centralization rel-
evant to DCOPs:algorithmic centralizationin which a DCOP algorithm actively
centralizes part (or all) of the problem structure, a@odnain centralizationin which
inherent centralization already exists in the domain $pation.

We explore algorithmic centralization by empirically syuth Adopt and OptAPO,
two DCOP algorithms which differ in the amount of centrafiaa they use. Our re-
sults show that centralizing a problem’s structure de@gasmmunication overhead,
but increases local computation. We compare the algorithnesigh our contribution
of a new performance metric, Cycle-Based Runtime, whicagdloth communication
costs and local computation time into account.

We then explore domain centralization by studying meetictgeduling, which has
problem structure clustered at scheduling agents. We mras®vel variant of Adopt,
called AdoptMVA, which uses a centralized search withinragéo take advantage of
the partially centralized structure. We show that when agedering is controlled for,
AdoptMVA outperforms Adopt in situations where communioatcosts are high. We
contribute a Branch & Bound search heuristic which workd veglmeeting schedul-
ing problems with multiple variables per agent. We also eitgliy experiment with
meeting scheduling, showing that meeting size is in somescadetter indicator of

solution difficulty than the number of agents in a problem.
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Chapter 1

Introduction

Multi-agent systems are becoming a pervasive element bivedd computing applications. They
have the potential to be much more robust and fail-safe teatralized systems, and apply nat-
urally to a number of problems such as scheduling, militdaynping, and search and rescue. In
many multi-agent systems, constraint optimization is oh#éhe key capabilities required. For
example, an office assistant agent would need to optimizéimgescheduling problems. Or, field-
based agents for the postal service might need to optimiaeedeschedules.

The Distributed Constraint Optimization Problem (DCOP) glovides a natural framework
for handling these types of optimization problems whichlareature distributed across multiple
agents. DCOP can model rich constraint interactions betwagents, allowing it to be applied to
many types of multi-agent optimization problems. Furthieere exist several DCOP algorithms
for optimally solving these constraint problems. Some atgms partially or fully centralize the
problem in order to use traditional search procedures omptblelem. DCOP algorithms can be
classified along a spectrum algorithmic centralizatiorranging from fully distributed algorithms
to fully centralized algorithms. A DCOP domain also can g inherentomain centralization

in which agents naturally have control of multiple variable

This thesis primarily seeks to address the questions:

e How is performance influenced by the amount of algorithmitredization used in a DCOP

search?

e And, how can we take advantage of domain centralizationtwdcurs in problems such as

meeting scheduling?



1.1 Distributed Constraint Optimization Problems

Constraint Satisfaction Problems (CSP) have been a lomdjsi;part of computer science theory
and applications. CSP is a model for problems in which a seanébles is constrained in some
way by a set of constraints on the variables’ values. A soifutd a CSP is one which satisfies all
the constraints.

CSP has traditionally been solved in a centralized fastlunm, single computer. However, this
is fairly limiting because it does not extend well to largstdbuted networks. Multi-agent systems
are becoming increasingly important given their many ayapions in business, military planning,
team-based games and other areas. The Distributed ConS§edisfaction Problem (DisCSP) [2]
models these types of problems for a distributed framewditkis allows us to solve CSP in a
distributed system.

The constraint satisfaction model is still somewhat restue because it only applies to prob-
lems which can be represented in a way where success is a yesdecision. Satisfaction is a
boolean solution which often does not apply in real worldaiions - solutions can fall along a
large range of qualities, where almost-perfect may be aemable answer.

In reality, we want to optimize the solution to a given coastt problem - we want to find the
best possible solution, even if a fully satisfying solutismot possible. Constraint optimization,
which is more general than constraint satisfaction, allog/$o do exactly that. Distributed Con-
straint Optimization Problems (DCOP), as defined in [1]vme a formal model for optimizing a
set of variables in a distributed manner.

A DCOP is defined as:

e setof N agents A = {A;, As,..., An}.

e set ofn variables V = {z1,29,...,2,}.

e set ofdomainsD = {Ds, D,,..., D,}, where the value of; is taken fromD,. EachD; is
assumed finite and discrete.

e set ofcost functionsf = {fi, ..., f} where eacly; is a functionf; : D;; x -+ x D, ; —
N U oco. Cost functions are also callednstraints

e adistribution mapping? : V' — A assigning each variable to an agef{z;) = A; means
that A; is responsible for choosing a value fgr A; is given knowledge of;, D; and all f;
involving z;.

e anobijective functiorF’, generally defined as the total cost of constraints for argsadution



An optimal solution to a DCOP is an assignment of values to#nables” such that total cost
F'is minimized. DCOP is known to be NP-Complete, making it aleinging and rich problem,
particularly when we try to scale to large problems.

In some domains centralization of external constraints\degirable because of privacy con-
cerns. In meeting scheduling, a model called Private Evesntgariables (PEAV) [3] takes into
account the fact that human agents often do not want to shkeafendar information with other

participants.

1.2 Taxonomy of Centralization

Definition: Centralizationof a DCOP refers to the aggregation of problem informa-
tion in a single agent. This aggregation results in a largeall search space at the
agent. A problem can be fully centralized, or partially catized if only certain parts

of the problem are shared.
In this thesis we define two types of centralization:

e algorithmic centralizationr a DCOP algorithm actively centralizes parts of the problem
structure that are not already naturally centralized. This allow the algorithm to use a

centralized search procedure on the information that wasalezed within an agent.

e domain centralization the domain inherently has some of the problem structurgalered
at each agent. In other words, the problem is presented tbaslg partially centralized.
The meeting scheduling domain is an example in which straasipartially centralized,
since agents can have control over multiple meetings. Egehtdas knowledge of all the

meetings within its own calendar and the constraints bettleese meetings.

These two types of centralization can be used to classify P@lgorithms and domains along a
spectrum ranging from fully distributed to fully centradid. Figure 1.1 graphically represents these
two dimensions, with several algorithms and domains platéacations along the spectrum. For
example, Adopt is at the low end of algorithmic centraliaatbecause it doesn’t actively centralize
the problem. On the other hand, a DCOP algorithm that comeated the problem structure and
then used a Branch & Bound search is a fully centralized amtro OptAPO is roughly in the

3
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Figure 1.1: This figure shows the two dimensions of DCOP centratinat algorithmic and domain, along
with labels marking approximately where certain algorighon domains fall on the spectrum.

middle because it uses partial centralization. Along thmaio centralization spectrum, graph
coloring with one variable per agent is a fully distributeshwhin, while traditional CSP is a fully
centralized domain. Meeting scheduling is somewhere iwéen because parts of the problem
can be centralized.

Sometimes an algorithm handles domain centralization dyaieg the problem into a fully
distributed problem which can be solved as a typical DCOPekample, the individual variables
controlled by an agent can be represented as pseudo-atjents¢h each control a single variable

and act independently.

1.3 Thesis Overview and Contributions

This thesis makes several contributions to our understgrafidistributed constraint optimization

problems:

e We define algorithmic and domain centralization, two dini@ms along which DCOP algo-
rithms and domains can be classified. This taxonomy proadgsde for classifying types
of centralization, and emphasizes that centralizatiomigvgortant aspect to consider in

DCOP research.



e We explore both dimensions of centralization: Algorithroentralization is studied by em-
pirically comparing three algorithms which use differeatéls of centralization (Adopt,
OptAPO, and Branch & Bound) [Chapter 2]. We study domain redizition by formulat-
ing a modified Adopt algorithm called AdoptMVA which uses ity centralized search to

take advantage of problem structure [Chapter 3].

e We develop the CBR performance metric, which takes both comeation cycles and lo-
cal computation time into account. The metric provides asdeers with a tool to more

accurately compare performance of DCOP algorithms. [Giredjt

e We empirically study meeting scheduling problems, and flrat tneeting size can be an

equally important performance factor as the number of agerthe problem. [Chapter 3]

The work here addresses the graph coloring and meeting waingdiomains. Some of the
results may extend to other domains, and we will attempt teenmate of ways in which they may
or may not extend to other domains.

The data used in developing this thesis represent over 3060af meeting scheduling prob-
lems, totaling over 800 hours of processor time, and closked@ame in graph coloring. It there-
fore provides an unprecedented view of these domain’s etsayarticularly the effects of algo-
rithmic and domain centralization on performance.

This document consists of two main sections. Chapter 2tifitess the effect of algorithmic
centralization by comparing three DCOP algorithms whidfedin amount of centralization. We
present results from graph coloring problems using a newienghich more accurately represents
the runtime of distributed algorithms. Chapter 3 extendsimtgrest in centralization by examin-
ing domain centralization which occurs naturally in prabtesuch as meeting scheduling. A new
algorithm based on Adopt is proposed for taking advantagheoproblem structure that is natu-
rally available to agents. A key difference between Chap2eand 3 is that the first deals solely
with agents that control a single variable, while the seadeals with agents that control multiple

variables. Chapter 4 presents our conclusions and discpsssible future directions.






Chapter 2

Algorithmic Centralization in DCOPs

In this chapter we discuss several metrics which are usegitaae DCOP algorithms, and formu-
late a new metric which addresses problems with the onesasemusly. We then use this metric
to compare three DCOP algorithms which differ in the amodraigorithmic centralization they
utilize. We show the effects of centralization on algoritperformance, and provide an analysis

of performance at several different levels of communicaéficiency.

2.1 Evaluation Metrics

Often, DCOP algorithms are initially evaluated on graplodolg problems, since they provide a
simple testbed for comparing performance. Graph colosng well studied domain and can be
easily compared to prior results. We follow prior work byngsi3-coloring problems and varying
the number of variables and link density to affect solutighadilty.

Ideally, one would test DCOP algorithms in a truly distridisetup, which is the setting they
are designed for in practice. However, there are severatipahissues that make it difficult to test

an algorithm fully distributed across a cluster of compstter

e hardware availability - researchers often do not have adoascluster of a sufficient number

of computers.

e communication variability - inter-agent communicatiotelacy may be more variable across

a network than it would be within a single computer.

e inconsistency of execution - due to the large number of randgecution paths that can

be taken when executing an algorithm asynchronously, esstugon will produce slightly
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different performance times. This makes it difficult to grefiable performance estimates

and comparisons to other algorithms.

The most realistic method for providing repeatable execus to use synchronous timesteps.
For example, the Multi Agent Survivability Simulator (MAB$!] is an event-based simulator
which can distribute agents across a cluster of computetsthle execution is synchronized in
order to avoid consistency problems. They use a simulatidsepto represent time and to tell

agents when to execute.

2.1.1 Cycles

The acknowledged method of measuring synchronous exeadstwith discretecycles[5], where

a cycle is defined as such:

Definition: A cycleis defined as one unit of algorithm progress in which all agent
in parallel, process their incoming messages, perform agyired computation, and
send their outgoing messages. Importantly, a messagerseytle: is not received

until cyclei + 1.

Cycles are convenient for comparing DCOP algorithms bex#usy are independent of ma-
chine speed, network conditions, and other factors extesriae algorithm. They provide us with
a method for measuring the amount of communication perfdroyean algorithm. However, this
does not measure the amount of pure computation done by arthtg. In other words, the to-
tal cycle count does not tell us anything about the length ofa@e or the total runtime of the
algorithm.

On initial consideration it might seem that the amount of patation could be accurately
measured by the process’s runtime on a single computer. ¥owsince the agents must take
turns using the processor and cannot execute in parallekegisatould in a distributed system, the
runtime may not accurately reflect the actual distributedopsance. If the agents solving the
problem do not share the computational burden relativedynlgythen they will not take advantage

of the parallelism of distributed problem solving.

8
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agent1
OO/)) constraint checks (cc)

agent2 _|

agent3 _|

Figure 2.1: When agents execute in parallel, the length of the gglmeasured by concurrent constraint
checks is determined by the maximum number of constraintkshef the agents.

2.1.2 Concurrent Constraint Checks

A common measure of computation in traditional constrapttization algorithms is theon-
straint checkwhich is the act of evaluating a constraint between N végbConstraint checks
are considered representative of computational cost Bedduey are the most basic operator of
constraint optimization and scale in proportion to the sizthe problem. When extended to dis-
tributed algorithms, this measure is calleahcurrent constraint chec$] and is computed by
selecting the maximum constraint checks from the agenisglarcycle. The maximum is used
because the length of a cycle in a distributed algorithm isrdeined by the slowest agent during

that cycle (see Fig 2.1).

2.1.3 Cycle-Based Runtime

Given that synchronous cycles as discussed previously taagmount for the local computation
performed in a DCOP algorithm, we desire a metric that moceitately approximates the total
runtime of an algorithm. Intuitively, we can capture an mstie of local computation costs by
formulating a metric that includes concurrent constralmgtaks. We begin with a simple definition
of runtime:

m

total runtime of m cycles = Z time for cycle k (2.1)
k=0

Now, we need a definition for the time of a cycle. A cycle imnadwommunication followed

by computation (see Fig 2.2). Létdenote the time required in a cycle to deliver all messagds se

9
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[ J J
L ccc

Figure 2.2: We model a cycle as being composed of communicatiomggsepted by L) and computation
(measured with concurrent constraint checks).

in the previous cycle. We call this tha&tencyof the underlying communication environmeitis

algorithm independent. So we have:

time for cycle k = L + computation time in cycle k (2.2)

We can now define the time to complete a cycle in terms of thebeuraf constraint checks
made in that cycle. Letc(x;, k) be the number of constraint checks performed by aggintcycle

k. Then the computation time of cycle k is defined as:

computation time in cycle k = max ce(zs, k) x t (2.3)

z;€
wheret is the time required for one constraint chetks a property of the underlying comput-
ing hardware and is algorithm independent. The max ovegalhts is used to compute concurrent
constraint checks because the agents are conceptuallytexgem parallel. The length of a cycle
is determined by how long the longest running agent took toptete. Substituting 2.3 into 2.2,

we have

time for cycle k = L 4+ max cc(z;, k) X t (2.4)

z; €V
Now substituting 2.4 in 2.1,
total runtime of m cycles = Z(L + max ce(zi, k) X 1) (2.5)
k=0 i
Finally, the total number of concurrent constraint checks) performed by an algorithm over
m cycles is defined as:

m

cce(m) =) max ce(xs, k) (2.6)

k=0 %i€

10



Substituting 2.6 in 2.5, we arrive at our final equation fa ttme ofm cycles, called Cycle-
Based Runtime (CBR):

CBR(m) =L x m+ cce(m) x t (2.7)

Note that the CBR metric is parameterized according to twarenmental factors: the com-
munication latency between cyclek)(@nd the speed of computatian.(Using this parameterized
model, we can evaluate algorithm performance over a rangevafonments that vary in their rel-
ative speeds of communication and computation. Time reduiv transmit a message is usually
greater than the time for a constraint check in most enviemts) so for simplicity we assume that
a constraint check is the smallest atomic unit of tihe-(1), and assumé is given relative ta.
We will explore four types of environments where communaratosts are increasing by order of
magnitude relative to computation, i.é.= t, L = 10t¢, L = 100¢, L = 1000t.

Note that CBR does not take into account number of messaghe time required to process
messages. In other words, we assume that message prod@s&mgr cycle is not a significant
differentiating feature between algorithms under congmari We believe this is true for the al-
gorithms compared in this paper. While Adopt uses many massages than OptAPO, this is
explained by its higher cycle count, i.e, the number of mgas@ommunicated per cycle is about
the same between the two algorithms. Also, we assume thddiprecess each message is similar

for both algorithms.

2.2 DCOP Algorithms

We used two DCOP algorithms in our work - Adopt, and OptAPO.Wileprovide background

on the algorithms and explain how they differ.

2.2.1 Adopt Algorithm

Adopt [7], or Asynchronous Distributed OPTimization, is @xplete and asynchronous DCOP
algorithm developed by Jay Modi et al. The algorithm is figgneral and can work with unary,
binary, and n-ary constraints.

Adopt is a backtracking search that maintains a lower aneippund at each variable during

its search. It progressively narrows the range between thesrder to arrive at the optimal so-

11



lution, and terminates execution when the lower bound eqiir@ upper bound at the root agent.
Adopt constructs a priority ordering of the variables dgranm initialization phase. This ordering,
which can be structured as a tree or as a simple chain, detesrthe parent and children of each
variable.

Agents communicate their current value to all neighboriggrds lower in the priority tree by
passing down VALUE messages (agents are neighbors if they d@onstraint between them).
After locally computing a lower and upper bound based onlalvks knowledge, an agent sends
a COST message up to its parent. The COST message contaimsvhyecomputed lower and
upper bounds, and the variable context that those costsependent on (variables that were used
to compute the cost).

The stored costs can then be used in future iterations tdajeeemore accurate estimate of
the optimal solution cost. These costs are dependent orathes/of the agent’s ancestor variables
at the time the cost was computed. Therefore, when an amogsdnges its value, the costs
dependent on it become invalid and are deleted. This candnspéution time because costs need
to be recomputed; Adopt’s variable ordering heuristic teimaed to reduce the negative impact of
these context switches. The variable ordering used by Aukpa large impact on search difficulty,
and thus it is important to choose a good order. The impoetahgariable ordering was observed

experimentally in this thesis and will be discussed in Caapt

2.2.2 OptAPO Algorithm

OptAPO [8], or Optimal Asynchronous Partial Overlay, is dtermative complete and asyn-
chronous DCOP algorithm designed by Mailler and Lesser.algparithm uses an approach termed
cooperative mediatiom which an agent is dynamically chosen as a mediator anddsamty put
in charge of collecting constraints for a subset of the mwbl OptAPO thus partially centralizes
the problem within the mediator, and then uses a centraizacch to optimize the subproblem.
Election of the mediator is done in an intelligent way usingpamic priorities determined
during problem solving. The mediator uses the centralizeshéh & Bound search of Freuder and
Wallace [9] to compute the optimal solution for the variabdad constraints it has knowledge of.
Agents in OptAPO use a novel cost justification techniqueriteedhe communication of con-
straints. This technique avoids centralization when itegrded unjustified based on problem

structure. As an OptAPO agent receives constraints fromr@gents in the problem, it adds the

12



other agents to a data structure calledyasdlist The goodlist is a list of all the agents centralized
within a given agent during problem solving, and we will fatise this to measure the amount of

centralization in OptAPO.

2.2.3 Level of Centralization in Adopt and OptAPO

A key difference between Adopt and OptAPO is the level of Atgmic centralization each use.

OptAPO communicates information about variables and caimss that are not directly connected
to the agent - i.e., the agent gains information about viesthat are not within its set of neighbors.
This relies on the assumption that an agent can communictt@llvother agents in the problem.
While in practice this is not true of all domains, it can beauogplished by using a multi-hop

message passing strategy, at the cost of increased conatianic

OptAPOQO’s centralization gives an agent broader knowleddbeoproblem, potentially allow-
ing it to take advantage of this in its local optimization.djd on the other hand, does not centralize
problem structure because agents only use knowledge ofdinect neighbors, which can be as-
sumed to be freely available. Adopt and OptAPO are two painta spectrum of centralization,
with Adopt at the no centralization end, a fully centralizdgorithm like Branch & Bound at the
other end, and OptAPO somewhere in the middle.

This centralization property has significant implicatiamsload balancing and the amount of
computation that each agent must perform during problewirspl In the case of OptAPO, as
the size of an agent’s subproblem grows, more local computéearch) is required to find the
optimal solution to the larger subproblem. In OptAPO, we regyect that the computational load
at some agents will grow as problem solving progresses aidsiib-problems grow. On the other
hand, in an algorithm which does not communicate conssasnich as Adopt, we may expect that

the computational load at each agent will remain constarnnhgyroblem solving.

2.3 Results

We evaluated Adopt and OptAPO in a simulator framework umagnted to measure concurrent
constraint checks and cycles. Following previous work [1w& then ran OptAPO and Adopt on a
set of randomly generated 3-coloring problems. The probleere generated with problem sizes

of n=8, 12, 16, or 20, and a link density of either 2n or 3n. Eadblem size had 50 generated
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problems (for a total of 8*50 = 400). The same set of randonelgegated graphs was used for

each algorithm.

e Adopt e Adopt

5000 4 —x—Adopt —a— Opt& PO 5000000
—E-OptPO 30900 1 @ —=— OpAPO
50000 4 2
4000 4 * T 4000000
70000 - &
» 3000 4 EOO00 4 7 sconn00
% Q50000 4 o
> Q [x]
< 2000 % Q40000 4 I 2000000
/ 30000 4 E
1000 4 . 20000 | = 1moo00
o 10000 4 —
i ; : ; . P -l i : - 0 =
8 12 18 20 ] 12 18 20 8 12 16 20
Varkables Variables Varialles
(a) Number of Cycles (b) Concurrent Constraint Checks (c) Cycle-Based Runtime

Figure 2.3: Main result: (a) OptAPO requires fewer cycles than Adeg shown in previous research,
(b) But requires an increased amount of computation as megdy constraint checks. (c) When both
constraint checks and communication latency (with L=108)eecounted for, Adopt outperforms OptAPO.

2.3.1 Cycle-Based Runtime of Adopt and OptAPO

Constraint checks and cycle counts were logged and usedripute the value of CBR in Equa-
tion 2.7 for four different values of.. As described in Section 2.1.3, represents the time re-
quired by the communication environment to deliver messdgtween cycles specified relative
to the time for a constraint check. For examplé i&= 1, we are assuming communication is very
fast and on the same order of magnitude as a constraint cliedk.= 1000, we are assuming

communication takes three orders of magnitude longer tteammstraint check.

Our experiments showed that OptAPO completes in fewer syttlean Adopt (see Fig 2.3a),
as would be expected given prior research [8] and the fattQp#APO is partially centralized.
However, from Figure 2.3b we see that OptAPO actually repuimany more constraint checks

than Adopt and this results in a higher CBR at L=100.
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Figure 2.4: Comparison of Adopt and OptAPO using the CBR metric @plgs of low density. Each graph
represents a different L value.

Figures 2.4 and 2.5 show four graphs generated from a siegtef €xperiments on problems
of link density 2n and 3n respectively. Each datapoint regmés the average of the 50 problems.
In Figure 2.4, we see that whéehis 1, 10, and 100, Adopt outperforms OptAPO. At= 1000,
Adopt performs slower than OptAPO on the four problem sizegegted. However, we extended
the experiment to 24 variables for a smaller set of proble2fispfoblems at density 2, and 10 at
density 3). We used a smaller dataset because the largepreblave much longer runtimes. The
performance on these problems has been shown with a datedt thel, = 1000 graph, and

indicates that Adopt may outperform OptAPO on large prolsienren at. = 1000.

We conclude that while Adopt requires more cycles than OgtA®ach OptAPO cycle takes
significantly longer than each Adopt cycle provides a parameter to vary the relative cost between

number of cycles and length of each cycle. For a significargeafL, Adopt performs better than
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OptAPO, and as problem size grows this range increases.
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Figure 2.5: Comparison of Adopt and OptAPO using the CBR metric @plgs of high density. Each graph
represents a different L value.

2.3.2 Centralization in OptAPO

We have hypothesized that the degree of centralizationeisghson that OptAPQ’s cycles take
much longer than an Adopt cycle. To verify this, we recordezldmount of centralization that the
OptAPO agents reached by termination, as represented lsyzthef the OptAP@oodlist which
contains the other agents whose constraints have beemlcagdrwithin an agent.

We computed the average, minimum, and maximum goodlis$ sigess the agents in a prob-
lem at termination. We obtained similar results to the adiztation data reported in Mailler’s
thesis [10]. As seen in Figure 2.6, on low density problemsAP® agents on average have cen-
tralized at least half of the problem by the time a soluticioisnd. On highly dense graphs, which

are more difficult and time-consuming to solve, OptAPO orrage centralizes nearly all of the
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Figure 2.6: OptAPO centralization as measured by goodlist sizedifday the minimum, maximum, and
average amount of centralization of all the agents in a prablThe upper line above each bar marks n (#

of variables), which is the maximum possible centralizatid each problem size. Each measurement is the
average of 50 problems.

The Max bars show that in high density graphs, almost all lerab had at least one agent
that fully centralized the problem. In low density problems average there was at least one
agent who centralized about 75% of the problem. These sesaittfirm our belief that OptAPO’s
centralization is a dominant feature of the algorithm whighbelieve explains the computational

characteristics seen when computing CBR.

2.3.3 Distribution of Computation in Adopt and OptAPO

So far we have found that OptAPO does more computation, basenur measurement of the
concurrent constraint checks performed across the agaritggceach cycle. However, we would
also like to determine whether the higher maximum condtichiecks is due to OptAPO simply
doing more computation iall the agents during a cycle, or if it is due to uneven distrdoutf the

computational load.
As discussed in Section 2.13(z;, k) is the number of constraint checks performed by agent
z; in cyclek. Then, the distribution of computation within a cycle, whiwe will call load(k),

can be represented by the ratio of the maximum constraimtkshe the total constraint checks in

acycle:
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Figure 2.7: A measure of the distribution of computation in Adopd @ptAPO. The peaks on the OptAPO
line indicate that in those cycles a single agent did most@icomputation.

MaXy, c Agents CC(CCi, k)

load(k) =
o ( ) ZwieAgents CC(QSZ',k)

(2.8)

This equation represents the fraction of work that the marintcomputing agent did during
the cycle. A value of 1.0 means one agent did all of the contioutan that cycle, and a lower

value indicates the load was more balanced.

In Figure 2.7, the load ratio for OptAPO and Adopt is graphadiie execution of one repre-
sentative graph coloring problem with 8 variables and aithiené2n. The x-axis is the execution
time in cycles, and the y-axis is the load as defined in EqnTh8.line for OptAPO shows spikes
at cycles where an agent, the mediator, did a Branch & Bouatts@nd accounted for most or all
of the computation in that cycle. On the other hand, Adoptieg consistent distribution of com-
putation, with most agents doing a similar number of comstinecks for most of the algorithm’s

duration.

This chart illustrates that OptAPO finished in a fewer numtfecycles than Adopt, but the
computation during those cycles is less evenly distribatedng the agents, which results in longer

time per cycle.
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Figure 2.8: Adopt, OptAPO, and centralized search at 4 differentalues. Each graph is based on 50
random problems of 20 variables.

2.3.4 Tradeoffs Between Communication Latency and Centraation

As our analysis has shown, a non-centralized algorithm Aikept uses more communication
cycles but has a lower computational cost per cycle. OptAdQartially centralized algorithm,
has relatively low communication cycles but higher compatel cost per cycle. We now ask
how does a partially centralized approach like OptAPO andcendtralized approach like Adopt,
compare with a completely centralized approach using CB&hassaluation metric?

For the centralized approach, we assume one agent starégthrthm with full knowledge
of the problem, and simply invokes an optimization seardtg@dure. We used OptAPO’s imple-
mentation of centralized Branch & Bound search and measteedumber of constraint checks
required to find the optimal solution. We ignored the ovedaast that would be required in a truly
distributed setting of electing a centralizer and all ageammunicating the problem information
to it. In the worst case, this cost is only some small factothef width of the communication
graph.

Figure 2.8 shows the three algorithms at different L valuks.expected, the centralized al-
gorithm is insensitive to varying L values because no comoation is required. For both graph
densities, Adopt is the best performing algorithm at L valless than 100. The crossover point
occurs between L=100 and L=1000. These crossover pointsng@tant because they tell us
at what point communication becomes too expensive for Atmpperate efficiently, and tell us
which algorithm should be used for a given communicationrenvnent.

For density 2, the OptAPO performance curve outperformswts centralized solver using
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the CBR metric. These results agree qualitatively with gmults using a serial runtime metric
reported by Mailler and Lesser [8]. On density 3, the fullptralized approach had a lower CBR
than OptAPO, which we believe may be explained by the fadt@APO does repeated multi-
ple Branch & Bound searches, which could become more costlyemse graphs. The OptAPO
searches partially reuse past searches, but this partise does not completely recover the cost
of the previous searches. From our analysis, we concludeothhigh density graphs OptAPO
eventually centralizes most of the problem, but does so witligher cost than doing a simple
centralization in the first step of the algorithm.

Figure 2.8 provides initial guidance to a researcher seekirapply a DCOP algorithm to a
new domain. The figure gives an estimate of which algorithmldide the most efficient for a

given communication model and constraint density, althaegults in other domains may vary.

2.4 Conclusions

We have investigated two algorithms for DCOP - OptAPO andpidahat vary in the amount
they centralize the problem in order to find the optimal solut We developed a metric, CBR,
for more accurately comparing these algorithms by taking account communication latency
between cycles and the length of each cycle. We have showmthie OptAPO requires fewer
cycles than Adopt, OptAPQO’s cycles are longer because tgyire more computation. For do-
mains with low communication latency compared to time to domputation, Adopt outperforms
OptAPO because in such domains agents are able to commnauaftiatently and Adopt is able to
take advantage of it by more evenly distributing the workafgg the DCOP. We have created
graphs of the relative performance of Adopt, OptAPO, andreéred search under environments
with varying communication latencies, providing the apitio choose the most effective level of

centralization for each environment.
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Chapter 3

Domain Centralization in DCOPs

As discussed in section 1.2, domain centralization is aifeaif the problem as it is presented to us,
and is essentially free to take advantage of since therelisssof privacy and no communication
is necessary. This led to our interest in determining whegheodified DCOP algorithm could
benefit from the natural centralization in meeting scheduli
In this chapter we present an alternative Adopt algorithftedaAdoptMVA which takes ad-

vantage of domain centralization by using a local searchgmtore within agents that control mul-
tiple variables. The details of the algorithm are covered, several heuristics for both the agent
ordering and the intra-agent search ordering are compahashow that when agent ordering
is controlled for, AdoptMVA completes in fewer cycles thandpt. We then present empirical
analysis of the meeting scheduling domain showing its perémce as the number of agents and

meetings increases and as meeting size increases.

3.1 Motivating Domain: Meeting Scheduling

In many organizations, scheduling meetings among a groygeople with busy schedules is a
difficult and time consuming task. It usually involves a eerof communications over email or
phone to settle on a time that works for all required atteadékhe negotiation becomes more
complicated when participants have to bump around otheting=ein order to accommodate the
present one.

Furthermore, there are inherent privacy constraints iredaling because some participants
are unable or unwilling to reveal their entire schedule toeas. In hierarchical organizations,

members at certain levels may not want all of their availdiohees to be known, and may have
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varying degrees of flexibility towards accommodating a nmgedepending on how important it is.
Given the natural distributed nature of this problem, distied optimization algorithms are well
suited for it.

Distributed optimization allows us to automatically schiedmeetings using computer pro-
cesses, and still preserve the privacy of a user’s infoonatirhis would save valuable time in
the workplace, and might even result in schedules that are ojtimal than what humans would
devise. However, there are a number of challenging issagsthst be addressed first. Scheduling
algorithms need to be fast enough to solve large optimiggiroblems in a reasonable amount of
time. This is a difficult problem given that scheduling is @Bmplete and grows exponentially
as problems become larger. The good news is that there isagatdimit on the size of meeting
problems that will need to be solved. It is unlikely that angavill ever have an infinite number of
meetings (though it might seem so), so we can assume an aveémiton calendar size (eg., 100,
or 1000). With the help of good DCOP algorithms and heusstptimal meeting scheduling may
become a very tractable problem.

Another research area for scheduling is that algorithmd tebe flexible enough to model the
diverse types of scheduling situations that occur. Mestoften have varying levels of importance,
attendance may be optional rather than required, and soieeth substitute person (an assistant
for example) can go in place of the requested person.

While the graph coloring domain has been explored fairlyeesively with several DCOP
solvers, meeting scheduling has not been explored as thlpuln some sense, the domain is
more interesting because it has a slightly greater numbeomplexity dimensions which can be

varied:

e N, number of agents
e M, number of meetings per agent
e D, domain size (number of hours available for scheduling)

e A, number of attendees per meeting (size of the meeting)

We have explored several of these dimensions, using Cyased@Runtime (CBR) [11] as the

metric for comparing performance. Since the distributeggbathms were run in a synchronous
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mode on a single computer, CBR is appropriate for taking bdothcycles and local computation
into account.

The meeting scheduling domain is also interesting becausasia distribution of problem
structure in which several variables (meetings) are ctadtat individual agents. In other words,
while graph coloring is generally treated in a fully distribd manner with each agent controlling
only one variable, meeting scheduling agents control pleltvariables. A primary focus of this

chapter concerns exploring ways in which this domain cén#idon can be taken advantage of.

3.1.1 Multiagent Agreement Problem

Recent work in meeting scheduling has led to the developwfeatformal model for problems
in which multiple agents must agree on a set of decisions. Mhiéagent Agreement Problem
(MAP) [12] is a special class of DisCSP [2] in which a variabbn be shared among multiple
agents. The model can be made equivalent to DisCSP howevanipyy giving copies of the
variable to each agent and using inter-agent equality caingd to ensure agreement. The compo-

nents of MAP are defined as follows:

o A={A,A,,..., A} is aset ofagents

V ={V1,Va, ...,V } is a set olvariables
e D ={dy,ds,...,dy} is a set olvalues Each value can be assigned to any variable.

e participantgV;) C A is the set of agents assigned the varialjle The participants are

responsible for choosing the valuelgf
e varg(4;) C Vis the set of variables assigned to agént

e For each agend;, C; is anintra-agentconstraint that evaluates to true or false. It must be

definedonly over the variables inarg A;).

e For each variabl&;, aninter-agent'agreement” constraint is satisfied if and only if the same

value fromD is assigned td; by all the agents iparticipantgV;).

We will use the MAP definitions to aid in explaining experinexescribed in this chapter.

The MAP model can be used to represent the meeting scheduloidem, with the variables
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VY analogous to meetings, and the dom@irequal to the set of timeslots that meetings can be
scheduled for. The attendees of a meetldgare represented byurticipants(V;). Inter-agent
equality constraints are used to ensure that attendees @gthe meeting start time, and inequality
constraints within an ageninfra-agen) are used to ensure that none of the agent’s meetings

conflict.

3.2 Adopt with Multiple Variables per Agent (AdoptMVA)

As discussed in section 1.2, the current Adopt algorithietgreariables within an agent as pseudo-
agents, running them in separate processes which are vesnadependent agents. However, this
approach does not allow sharing of information beyond whado@ already communicates and
does not take full advantage of domain centralization.

A natural modification to this approach would be to createnglsi Adopt process for each
scheduling agent, allowing it to control all of the meetiraygned by that agent. Then, a local
search procedure could be used to find the optimal localisaltdr the agent’s calendar. We call
this AdoptMVA , for Multiple Variables per Agent, since a single Adopt ageontrols multiple
variables. Figure 3.1 shows the new approach, in contraftetgstandard Adopt pseudo-agent
approach. The intuitive conjecture is that by breaking thabjem up into smaller subproblems
which are solved locally, the overall task could perhapsdieesl quicker.

The algorithm was designed with meeting scheduling in ntwticould apply to other domains
which have multiple variables per agent. We model AdoptM\#Aam extension of the Adopt
algorithm, but it requires a few new definitions in order toneert from a one variable per process
paradigm to multiple variables.

In the Adopt formalism, a value assignment to a set of vaemlid called a context and is

defined by Jay Modi in his thesis [7] as:

¢ Definition: A contextis a partial solution of the fornf(z;, d;), (zx, di)...}. A variable can
not appear in a context more than once. Two contexts@mgatiblef they do not disagree
on any variable assignmenCurrentContextis a context which holds an agent’s current

knowledge of variable values for higher priority neighbors

As defined in MAP, we levars(4;) C V denote the variables owned by agefhit We then
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Original Problem Adopt Hierarchy AdoptMVA Hierarchy
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agent2

Figure 3.1: We show the original formulation of a meeting schedyulmoblem, and then a possible hi-
erarchy of pseudo-agents that Adopt would use. We then shomsgant hierarchy that could be used by
AdoptMVA.

denote a context € S whereS is the set of all possible assignments to variablesits (A4;) and
s is a particular one of those assignments.

Whereas previously the local cost of an agent was deternsimegly by its constraints with
other agents, we now must define a function that also incltitee€ost of constraints between
variableswithin an agent. We define tHecal costé for a particular value assignmesitnade by

agentA; for the variables it owns:

é(s)= > > fildi,dj)+ > > fijldi,dy) (3.1)

(z5,d;)€s (x5,d;)€Es (zj,d;)€CurrentContext (x;,d;)Es
The first half of the definition sums the constraints betweamyepossible pairing of variables
within an agent, and the second half evaluates the contsttzétween each of the agent’s variables
and all of the external variables in @urrentContext
An agent computes lwer bound for a solution ssing lower bound costs received from its

children, denoted a#(s, ;).

o Definition: LB(s) = 0(s) + Xz cchiaren (0(s, 71) iS alower boundfor the subtree rooted at

A; whenA; chooses solutios € S.

Similarly for anupper bound on solution s
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e Definition: UB(s) = 6(s) + X4, ccnitaren ub(s, 71) is anupper boundor the subtree rooted

at A, whenA; chooses solutiom € S.

The overall lower and upper bounds fdy are the minimums over the bounds for all possible

solutions inS:

e Definition: LB = minssLB(s) is alower boundfor the subtree rooted at;.
e Definition: UB = min,sU B(s) is anupper boundor the subtree rooted at;.

The above definitions are based on the original Adopt dediméti[7] with the main change
being that lower and upper bounds are now conditioned onutignlcontext rather than a single
variable value. Also, the most important change to the looats is that it now includes the cost

of intra-agent constraints.

3.2.1 Details of AdoptMVA Algorithm

We implemented AdoptMVA by using the existing Adopt code amodifying it to assign all of
an agent’s variables to a single Adopt process. In orderdpgrty communicate the values of an
agent’s variables to the other agents in the problem, we datightly modify Adopt’s VALUE
messages and its handling of COST messages.

VALUE messages must now include the values of all variablassal by the agent, rather than

just a single variable value. Therefore, we extend VALUE sages to include a solution context:

e Definition: VALUE(s; = {(zj, d;), (zx, dk), ...} ) is the form of the new VALUE messages

sent to neighbors lower in the tree.

No change needs to be made to the content of the COST mesisap®s,do need to change the
way receiving agents process them. The lower and upper bmstd reported in a COST message
are now dependent on the aggregate of variables owned byatbatpagent. Therefore we store
children’s costs attached to a solution context S, which is equal to the set of the current agent’s
variables assigned to the values that were used when i otwhputed its reported cost. This
previous assignment of values can be retrieved from theegbregported in the COST message.

Note that the set of all possible solution conteXis the set of all permutations of the values

of the variables irnvars(A;). The total number of permutations is equal to:
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Algorithm 1: AdoptMVA Branch & Bound search

depth «— 0
cost +— 0
bestCost <+— oo

procedure search(s € S, depth, cost):
if depth == s.size(Jhen

bestSolution <+— s

bestCost «+— cost

return ;
end
V; «+— variable adepth(order determined by variable ordering)
Domain +— D;
ReorderDomain with best-first heuristic (move current valuelgfin best known solution
to be first)
for d; € Domain do
cost+ = Z(wj d;)€Es f'ij (di’ d]) + E(wj,dj)ECurrentContewt fij (dl7 d])
if depth == s.size() — 1 then
cost <— cost + 3, conitdren 10(5, 1)
end
if cost < bestCost then
search( s, depth+1, cost)
end
s{Vi} «— null
end

total solution contexts for agent A; = |D|IVarSA (3.2)

This number is potentially much higher than the number ofitsmh contexts in traditional
Adopt, which is limited to|D|. From our experiments it appears that in some cases, tlge lar

number of contexts slows down the algorithm’s progress.

3.2.2 Discussion of Branch & Bound search

The agent uses a local Branch & Bound search [9] to find thegbsolution to its variables, given

the values of its ancestors in the Adopt hierarchy, and kedge of the costs of its children. The
search is used to calculate both the lower and upper bourilarfd UB) on the agent’s variables.
Algorithm 1 shows pseudo code for the lower bound searchgiuppund search is identical except

Ib(s, ;) is replaced withub(s, z;)).
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Note that the cost function used within the search is nottex#lte same as thé function
in Equation 3.1. Rather, cost for each variable is accuradlas the search proceeds down the
tree, so that we don’t redundantly calculate the entire abstach recursion. The actual cost of
0 is reached at the bottom of the recursion, and we then addnerlor upper bounds from our
children to get the actual bound (if a bound for a child at thvemg solutions is not known, the
lower bound defaults to 0 and the upper bounaxtp. Efficiency of the search could possibly
be improved by attempting to apply the children’s bound$érgn the search, to allow greater
pruning of the tree. However, in order to compute a correcindousing a partial solution, the
agent must have knowledge of all (or most) bounds for thefgaagsible solution contexts, which
appears to happen fairly infrequently based on our observat the algorithm.

We observed that although the algorithm must do a separatelsir lower and upper bounds,
there are some cases where these bounds are equal. We thstude basic optimizations to avoid
doing the upper bound search in certain cases. There areases gvhere we skip the upper bound

search:

e If the agent has no children in the hierarchy (it is a leaB,upper bound can automatically

be set to equal the lower bound.

e If all known upper bounds received from children are alreselytooco, then the upper bound

can automatically be set t.

However, it would be possible to further improve the searEbr example, a memoization
structure could be used to cache results from previous yttieing the algorithm’s progression.
There are also known search heuristics which might furthgarove the Branch & Bound effi-
ciency [13].

Despite not having the fastest possible search proceduwasisufficient for producing a num-
ber of interesting experimental results, which we beliewgél@d be improved even more with faster

search techniques.

3.2.3 Intra-agent variable ordering heuristics

We included two heuristics in the Branch & Bound algorithnttmtrol: 1) ordering of variables,

and 2) ordering of domain values. The value ordering is a l@rbpst-first heuristic that puts the
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best domain value first in the search order for a given vagjabhere the best value is taken from
the current best solution (if known).

The variable ordering heuristic determines the searcthddpthich each variable is optimized,
and thus influences how much pruning can be done. We testedasdeuristics, and present

experimental results on them in section 3.3.3. The hecsistie:

1. Lexicographic - variables are ordering alphabetically.

2. Random - ordering is randomly selected each time a search is peefbrridnlike the other
heuristics we used, this order is different each time a beiarexecuted and we therefore

call it a randomly varying heuristic, as opposed to a statieo

3. Brelaz - This is based on the Brelaz heuristic [14]. We order by nunabdinks to other
variables within the agent, with higher link counts meartigher ordering. We first com-
pare number of links with already chosen variables, andefehs a tie we order by links

with unchosen variables.

This is only used for graph coloring. It is not useful for megtscheduling with multiple
variables per agent because within an agent, all agentsthewame number of intra-agent

constraints and the ordering would be arbitrary.

4. MVA-AllVars - order by number of links to external variables, considg@at external

variables in the problem. Higher link counts are ordered. firs

5. MVA-LowerVars - order by number of links to external variables, considgionly lower

priority variables.

6. MVA-HigherVars - order by number of links to external variables, considgonly higher

priority variables.

These heuristics cover several qualitative dimensionsuéi;ed in Table 3.1. The random
heuristic is interesting because it is the only one that hddferent ordering each time search
is executed, and might have some success in finding soluéiths gthat the other ones were not
fortunate enough to find. We did not develop a heuristic thabth informed and randomly varies,

but this would be an avenue for future work.
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| [ informed | uninformed |

static MVA-*, Brelaz | Lexicographic
stochastically varying - Random

Table 3.1: A comparison of the differing characteristics of thedaragent search ordering heuristics.

The MVA heuristics are novel as far as we know, and were desigmaddress the fact that the
Brelaz heuristic is not applicable to meeting schedulimnghdoptMVA. In meeting scheduling, the
MVA-AlIVars heuristic mirrors meeting size, since the nuentof links a variable has to external
variables is equal to the number of attendees in that meelimg results in ordering large meetings
at the top of the order, with smaller meetings at the bottom.

The other two MVA heuristics serve to investigate whethkeexternal variables have impact on
search cost, or if it is only lower priority or higher prigrivariables (where priority is determined
by the AdoptMVA agent ordering). Our hypothesis was thatNh@-HigherVars heuristic would
perform the best. In the AdoptMVA algorithm, higher prigntariables are more influential on an
agent’s local search because the agent knows the valueghartpriority variables (from VALUE
messages) but does not directly know the values of lowerifyrigariables (COST messages are
only used at the bottom of the search). Section 3.3.3 presaperimental results which show that

this hypothesis held true.

3.2.4 Inter-agent ordering heuristics

Another important performance factor for AdoptMVA is theeagjordering - i.e., the macro-level
variable ordering which determines the Adopt hierarchy.0My tested chain orders; this simpli-
fied our analysis, and tree hierarchies have been studigtién eesearch [3].

We present experimental results in section 3.3.2 for tHeviahg four heuristics:

e Lexicographic - Agents are ordered alphanumerically by agent name. Thisuminformed

heuristic.

e Inter-agent links heuristic - this is a modification of Adopt’s regular ordering, whiclders
by the number of links to chosen variables, and then by thebeurof links to unchosen
variables. This heuristic is the same, expect we only caokslto other agents (i.e., inter-
agent links). It is analogous to the popularity of the agemperson involved in many large

meetings will be ordered higher because he will have moeg-agent links.
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e AdoptToMVA-Max - Adopt’s standard variable ordering is computed, and tleverted
into an agent ordering for AdoptMVA. The agent prioritiegrespond to thenaximunpri-

ority variable within each agent in the Adopt ordering.

e AdoptToMVA-Min - This is the same as AdoptToMVA-Max except that agent piEsi

correspond to theninimumpriority variable within each agent.

The AdoptToMVA orderings were created based on the theat gimce the Adopt variable
ordering works fairly well, converting it to an agent orawyimight produce similar results for
AdoptMVA. We convert an Adopt variable ordering to an agertesing by assigning agent pri-
orities based on the Adopt variable priorities (higher ptyoindicates higher placement in the
chain). For an agem;, using AdoptToMVA-Max priority(A;) = matyy, cvars(a;) priority(V;).
For the AdoptToMVA-Min heuristic we simply replace the maxttion in the above equation
with min. The AdoptToMVA-Min ordering was introduced besaunitial experiments indicated

that it sometimes performed better than AdoptToMVA-Max.

3.3 Results

We conducted an extensive number of experiments on bothaipé goloring and meeting schedul-
ing domains, with the goals of: a) determining the best Is¢ias for AdoptMVA, and b) gaining a
more general understanding of meeting scheduling perfocetor a variety of DCOP algorithms.

We now discuss the experimental methodology used. Datalimesults are based on the
average of at least 20 randomly varied problems. Statigtiests are used to determine whether
differences are significant, and we will present the resiltisese tests. We used scripts to generate
problems which have a randomized constraint structureaieiéping the problem size and density
that was specified. For meeting scheduling problems, an Bdayuis modeled by using 8 discrete
timeslots, and the number of attendees in each meeting donally generated from a geometric
progression. Unless otherwise noted, all meeting schegiplioblems are fully schedulable (zero
unscheduled meetings in the optimal solution) and graptrice problems range from a solution
cost of 0 up to 3 constraint violations.

The experiments were run on several Pentium 4 dual 3.0GHAimes. We present results in
terms of the Cycle-Based Runtime metric, which is indepahdéprocessor speed. As described

in Equation 2.7, the formula for CBR S6BR = Cycles x L + CCC, where cycles is the number
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Figure 3.2: Using equivalent lexicographic agent orderings, @hlidensity meeting scheduling problems
with 4 meetings per agent, AdoptMVA outperforms Adopt imisrof cycles and in CBR at L=1000. 20
problems per datapoint. Y-axis is on a log scale.

of synchronous cycles, L is a factor indicating the relateenmunication speed, and CCC is the
total concurrent constraint checks.

On some of the largest problems that we tested on, they ditermatnate within our test time
limit, which was set to 5 hours (in order to insure that expents finished in a reasonable amount
of time). This only occurred on a small number of cases, arlkddse cases we still collected cycle
and CCC counts from the job. These counts are a lower bountdeoruntime of the problem.
Therefore they still provide an estimate of the job lengtig at worst the true counts would be
higher than the measured ones. In general this would onlyeroakresults stronger because the
high runtimes from non-terminations generally occurrethweference heuristics (eg., random)

which we have concluded are the least efficient (and hengectiesed the long runtimes).

3.3.1 Performance of AdoptMVA versus Adopt

Our initial tests showed when we compared AdoptMVA to Adaeyth each one using their own
agent ordering heuristics, the results were inconcludiVe therefore wanted to compare Adopt-
MVA to Adopt on a level playing field, controlling for agentdering so that any performance
difference could not be attributed merely to the differerdesing heuristics. We used a static
lexicographic agent ordering for both algorithms, givilgrn exactly the same ordering on all
problems. The intra-agent search heuristic used in AdoptMés the MVA-HigherVars heuris-

tic.
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Figure 3.3: Using equivalent lexicographic agent orderings, @aphrcoloring problems with 4 variables
per agent and link density 2, AdoptMVA outperforms Adopténms of cycles and in CBR at L=1000. 20
problems per datapoint. Y-axis is on a log scale.

We found that when agent ordering is controlled for, Adopf\Vhés a lower cycle count than
Adopt in high density meeting scheduling and graph colopraplems (see Figs 3.2a and 3.3a).
This result is consistent with our understanding of ceiaéibn, since in general, algorithms that
use more centralization can terminate in a lower number desy(but with higher total constraint
checks). Since AdoptMVA uses fewer communication cyckespuld perform better than Adopt
in systems with a high communication cost (eg., L=1000 inFRp). The difference in CBR was
statistically significant (p< 0.05) for all problem sizes except one case. For meetingdsding
at # agents = 5, high variance on the larger problem size dehigber p values. We ran a larger
dataset of 40 problems for that problem size which broughtativalue down from 0.22 to 0.09.
We believe a larger dataset of around 100 problems woulcceethe p value to below 0.05.

We did not present results for AdoptMVA on low density megtscheduling because the
improvement in cycles for that class of problems is minorthdinly 2 variables per agent, it is
nearly the same as Adopt’s 1 variable per agent. This is afe@tonsider when choosing a DCOP

algorithm; AdoptMVA is more beneficial when agents have nthen 2 variables per agent.

AdoptMVA compared to OptAPO

Note that our results with AdoptMVA are similar to our findimgChapter 2 that OptAPO would
be more efficient than Adopt at high communication costs (QG€lor higher). AdoptMVA, like

OptAPO, uses partial centralization to reduce the comnatioic cycles. However, the important
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difference between these algorithms is that AdoptMVA onlkes use of the centralization that
already exists in the problem, while OptAPO centralizesaldes external to an agent. Another
difference is that the cost of local search in AdoptMVA is moontrolled, because the local search
will never be larger than the number of meetings owned by ama@ptAPO, on the other hand,
can centralize up to as many variables in the entire probhgnch can be much more costly than
AdoptMVA's smaller searches. If OptAPO could be modifiedia future to restrict its centralizing
action to only variables that are already available to amgemight be a viable alternative to
AdoptMVA.

Agent ordering

In this experiment we used a lexicographic ordering for badtlopt and AdoptMVA and found
that AdoptMVA had fewer cycles than Adopt. In other initialperiments where we used different
agent ordering heuristics for each algorithm, it was intusice whether Adopt or AdoptMVA
performed better. In some cases Adopt performed bettegrbother cases AdoptMVA performed
better.

This raised the question: does there exist a heuristic fapfdVA which on average will
outperform Adopt? Our experiment in section 3.3.2 brougbgpess towards determining a good
heuristic for AdoptMVA, but the heuristics there do not yensistently outperform Adopt’s best

heuristic.

We hypothesize that the reduced granularity of the AdoptMigént ordering could prevent
it from attaining an optimal ordering on par with the finer muéarity Adopt ordering. An agent
ordering inherently has a coarser granularity than therorgéhat can be used in traditional Adopt.
This was illustrated previously in Figure 3.1 which showlealttAdopt has the ability to construct
an ordering on the agents’ variables, including the polssibif interleavingtwo agent’s variables.
The AdoptMVA ordering is more limited because it can onlyardgents. It is conceivable that
this makes it impossible in some cases to capture the fingr gpastraint relationships that Adopt
can account for. However, it is also possible that furtheeaech on heuristics for AdoptMVA

could reveal one that addresses this problem.
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Figure 3.4: Performance of four agent ordering heuristics on lomsitg (a) and high density (b) meeting
scheduling problems. Datapoints are based on the aver&feprbblems.

3.3.2 Comparison of agent ordering heuristics

One of the important components of an Adopt based algorisithe ordering of the agents. During

initial tests of AdoptMVA we found the ordering had a largéeet on performance.

To gain a better understanding of the heuristics (impleseatcording to the descriptions in
section 3.2.4), we compared their performance on meetihgdsding and graph coloring prob-
lems. For the Branch & Bound intra-agent ordering, we usedMNA-HigherVars heuristic be-

cause the experiment discussed in the next section showelatthe most efficient.

We compared four agent ordering heuristics, on low and higisily meeting scheduling
(Fig. 3.4), and graph coloring (Fig. 3.5). As expected, we Haat the agent ordering can make
a tremendous difference - for some of the problems in Figude tBe difference between two

heuristics is one or two orders of magnitude in size.

As can be seen in Tables 3.2 and 3.3, AdoptToMVA-Min was trst performing heuristic on
8 out of the 11 problem sizes tested. This difference wadgfgignt in some of the cases. On the
other cases, wide variance in the runtimes caused the psvaduze greater than 0.05. From this
we believe the AdoptToMVA-Min heuristic is a good agent adg heuristic, though future work

may find one that does better with less variability.
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# Agents Best Heuristic Lexicographic | Inter-agent links | AdoptToMVA-Max | AdoptToMVA-Min
4 AdoptToMVA-Min 0.11 0.05 0.29 -
8 AdoptToMVA-Min 0.21 0.20 0.20 -
12 AdoptToMVA-Min 0.04 0.15 0.03 -
16 AdoptToMVA-Min <0.001 0.14 0.01 -
2 none - - - -
3 AdoptToMVA-Max 0.26 0.02 - 0.10
4 AdoptToMVA-Min 0.09 0.09 0.31 -
5 AdoptToMVA-Min 0.20 0.72 0.21 -

Table 3.2: A list of the best performing agent ordering heuristicgigure 3.4, with low density meeting
scheduling at the top followed by high density meeting salied. The p value presented is the paired
t-test value when comparing the best heuristic to each afttier heuristics. Bold text indicates statistically
significant results (pc 0.05).
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[ Inter-agent links
B AdoptTobdya ks
[ AdaoptTohMhiehdn

100000 4

=10

CBR atls

10000+

1000

2 3 4
# Agents

Figure 3.5: Performance of four agent ordering heuristics on gepbring problems with 4 variables per
agent. Datapoints are based on the average of 20 problems.

# Agents Best Heuristic Lexicographic | Inter-agent links | AdoptToMVA-Max | AdoptToMVA-Min
2 AdoptToMVA-Min 0.21 0.33 0.34 -
3 AdoptToMVA-Min 0.04 0.12 0.93 -
4 AdoptToMVA-Max 0.08 0.02 - 0.15

Table 3.3: A list of the best performing agent ordering heuristesgraph coloring problems from Fig-
ure 3.5. The p value presented is the paired t-test value whparing the best heuristic to the next best

heuristic.
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Figure 3.6: Intra-agent search heuristics on low density meetatngduling (2 meetings per agent). 20
problems per datapoint.
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3.3.3 Comparison of intra-agent search heuristics

In order to reduce the number of constraint checks used bddbptMVA Branch & Bound search,
we experimented with the intra-agent variable orderingis&as described in section 3.2.3. For
all of the tests, the inter-agent ordering was the AdoptTéMWin order since our previous exper-

iment indicated it performed best more often than the oteeriktics.

# Agents Best Heuristic Lexicographic | Random | MVA-AllVars | MVA-LowerVars | MVA-HigherVars
4 MVA-HigherVars 0.03 0.002 0.59 0.005 -
8 MVA-HigherVars 0.005 0.01 0.13 0.001 -
12 MVA-HigherVars 0.005 <0.001 0.44 <0.001 -
16 MVA-HigherVars <0.001 0.002 0.13 <0.001 -
20 MVA-HigherVars 0.02 <0.001 0.02 0.001 -
24 MVA-HigherVars <0.001 <0.001 0.13 0.055 -

Table 3.4: A list of the best performing intra-agent search omgrnheuristics on low density meeting
scheduling, according to the average CCC per cycle fromrEigub. The p values are for a paired t-test
between the best heuristic and each of the other heuristics.

To determine the efficiency of each heuristic at improving slearch pruning, we collected
the total CCC. However, constraint checks are correlated thie number of total cycles (since
more cycles will result in more constraint checks). Since loeuristics affected the number of
cycles, we can compare their actual computational effigieyasing their average CCC per cycle

(TotalCCC/TotalCycles).
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Figure 3.7: Intra-agent search heuristics on high density meedafgeduling (4 meetings per agent). 20
problems per datapoint.

Meeting Scheduling

From Figures 3.6b and 3.7b, we see that MVA-HigherVars hadawest average CCC per cycle
in all cases. This difference is statistically significamniearly all cases (see Tables 3.4 and 3.5),
excluding comparison to MVA-AllVars. MVA-AllVars was fragently almost as efficient as MVA-
HigherVars because MVA-AllVars is the combination of hetids MVA-LowerVars and MVA-
HigherVars. Therefore it is sometimes able to benefit fromitifluence of MVA-HigherVars.
We can see that the MVA-LowerVars heuristic does not conteiluseful information because it
performed the worst in most cases. We can conclude that MigkétVars is the best intra-agent

search heuristic of the five we compared, because it haswest@verage computation per cycle.

Another interesting result this experiment produced i¢$ tha intra-agent heuristics slightly
affected the number of cycles which it took the algorithmennttinate (see Fig 3.6a). Since the
variable ordering within the Branch & Bound search only dileaffects the search, not the exter-
nal Adopt algorithm, one might expect that the ordering wloarly influence constraint checks,
not cycles. However, the heuristics do in fact affect cytlesause they change the optimal solu-
tions which are produced by the search. There often may leraesolutions that have the same
cost, and a different variable ordering can enable us to firalternative one that provides a faster

path to the final solution.
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# Agents Best Heuristic Lexicographic | Random | MVA-AllVars | MVA-LowerVars | MVA-HigherVars
2 MVA-HigherVars 1.0 <0.001 1.0 1.0 -
3 MVA-HigherVars 0.001 0.005 0.18 <0.001 -
4 MVA-HigherVars 0.04 <0.001 0.98 0.01 -
5 MVA-HigherVars 0.08 <0.001 0.44 0.02 -
6 MVA-HigherVars 0.004 <0.001 0.07 <0.001 -

Table 3.5: A list of the best performing intra-agent search orgrneuristics on high density meeting
scheduling, according to the average CCC per cycle fromrEi§u7. The p values are for a paired t-test
between the best heuristic and each of the other heurigtesresults for # Agents = 2 were not significant

because most of the heuristics on such a small problem wen¢igdl.

From the high density meeting scheduling (Fig 3.7a) we satttte random heuristic took
fewer cycles in several cases, particularly the problerassizith agents = 5 and 6. Although
random is an uninformed heuristic, the fact that it picksfeedent random order each cycle may
help it to find the optimal solution faster simply becauseoit ‘4ucky” and found a good solution

path. Indeed, researchers have found that randomizatiorsties sometimes outperform the best

known informed heuristics [15].

750

ERandom
600 ICBrela

4504

Cycles

1504

[F Lexicographic

However, our random heuristic did not have the lowest camdtchecks, and from it’s high
average CCC per cycle we can conclude that it is not effic@mtinimizing computational cost.
A interesting future task would be to attempt creating aonmied heuristic with a small amount of

randomness, which might maintain efficiency while also liigng from the random exploration.
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Figure 3.8: Intra-agent search heuristics on graph coloring probl 20 problems per datapoint.




Graph Coloring

For graph coloring problems, we tested only with the lexrepiic, random, and Brelaz heuristics,

since the MVA heuristics are not intended for graph colaring

From Figure 3.8b it is apparent that the Brelaz heuristibésrost efficient computationally,
and this difference is statistically significant (Table)3.%his confirms that the Brelaz heuristic,
as we would expect, is a good heuristic for graph colorindlemms with multiple variables per

agent.

# Agents| Best Heuristic| Lexicographic| Random| Brelaz
2 Brelaz 0.04 0.01 -
3 Brelaz 0.04 0.006 -
4 Brelaz 0.01 0.008 -

Table 3.6: A list of the best performing intra-agent search omgheuristics on graph coloring, according
to the average CCC per cycle from Figure 3.8. The p valuesoaiefaired t-test between the best heuristic
and each of the other heuristics.

3.3.4 Meeting Scheduling as agents and meeting size are szhl

In order to gain a better understanding of meeting scheglpknformance as certain properties are
scaled, we also conducted experiments in which the numbattexidees per meeting was varied.
We constructed a set of meeting scheduling problems with &ings per agent (M), and varied
the number of agents (N) and the number of attendees pernmgdaf). Increasing the number of
attendees per meeting increases the link density of thégumolrhe dataset included 10 problems

per problem size.

Figure 3.9a shows the CBR measurements for Adopt at 3 differmdues of A. Several of the
initial points for Adopt at A=3 and A=4 are very high because @r two of the problems in each
dataset were outliers. They took two orders of magnitudgdorthan the other problems in the
same class, so we believe that the inter-agent orderingingedse cases was detrimental. When
we remove the outliers from the dataset, we have Figure 3l8bhais easier to interpret. We

define outliers as cases which were more than two standaratides away from the mean.
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Figure 3.9: Meeting scheduling as number of agents and numberesfdges per meeting (A) are increased.
Adopt’'s CBR (at L=10) for three levels of A (2, 3, and 4) is shiowa) shows the original results, and (b)
shows the results after several outliers were removed. iZee$the meetings appears to have a significant
effect on performance.

From Figure 3.9b we see that increasing the number of atésrdrises performance to become
slower at all problem sizes. In many cases, increasing ttee &fi the meetings detriments the
runtime more than increasing the number of agents. For ebearap# Agents = 32 and A=2,
increasing the meeting size to A=4 has as much of a perforenamgact as if we had doubled the
number of agents to 64. We therefore believe that meetirgisian important factor to consider
when designing meeting scheduling problems, since it cae hasurprisingly large effect on

solution difficulty.

3.4 Related Work

A good deal of prior work has been done in building personsistants [16][17][18]. Although
most have not used fully complete optimization algorithtney address many of the human-
computer interface issues that arise. The Electric EIV@sd@ent assistance technology identified
the importance of “adjustable autonomy” - the need for agjémtvary their level of autonomy,
sometimes leaving important decisions to humans.

The CMRADAR project [19] is engaged in building tools for antatically scheduling meet-
ings and determining the user interfaces that will work besthis application. It also aims to
account for individual scheduling preferences (for examphe may prefer meetings in the after-
noon).

Oh and Smith have developed methods for learning a userts piraferences for schedul-
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ing [20]. Their learning agents observe a user’s decisiamsgd scheduling, and use this infor-
mation to construct an accurate statistical model of the’'sipeeferences. Preferences such as
these could be applied to the algorithms used in this thesigsh are modeled as a DCOP. Since
a DCOP is based on a cost function which allows us to assigtrampbcosts to variables, it can
easily model meeting scheduling situations in which megtimave different priorities (costs).

Modi and Veloso have investigated the effect of reschedular bumping meetings, on the
scheduling problem[12]. Bumping refers to the act of redcliag a previously scheduled meet-
ing in order to accommodate a new meeting. They found thahommed heuristic based on
scheduling difficulty can reduce the total number of bumpdud he scheduling difficulty of an
agent is computed from the density of its calendar, follgyom the intuition that participants
with sparser schedules are easier to reschedule and treeagéopreferred bump candidates.

An extension to the MAP model called Private, Incremental M@IMAP) [12] takes into
account the incremental nature of meeting scheduling am@tikacy concerns. The incremental
aspect allows for new variables and constraints to be add#gktproblem over time. The privacy
requirement says that any agenpinrticipants(V;) can not communicate information about vari-
ableV; to any agent who is not iparticipants(V;). In other words, the agents participating in a
given meeting can not provide information about that megiinagents who are not involved with

the meeting.

Adopt improvements

Research on Adopt has found preprocessing techniques rinatlp agents with improved ini-
tial lower bounds that can speed up the algorithm by an orfleragnitude [21]. The authors
used dynamic programming techniques which reduced the euailpartial solutions that Adopt
generates and revisits in graph coloring and distributed@enetworks.

The Adopt algorithm has recently been applied by Maheswanteal. to the meeting schedul-

ing domain, with two particularly notable results [3]:

e Meeting scheduling problems took much longer to solve thraplgcoloring problems with
comparable number of variables and constraints. This ndigate that the applied problem
of meeting scheduling is fundamentally different from thestaact graph coloring domain

from a computational perspective.
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e Preprocessing and runtime heuristic optimizations altbau@ order of magnitude speedup.

The authors use passupheuristic to precompute lower bounds estimates in a diggtbman-
ner, and thus decrease the amount of search that the Adapitexeneeds to do. Each variable in
the constraint tree performs local optimizations to deteema lower bound, and then passes up the
estimate to its parent which can use it to make a more inforeséichate of its own lower bound.
They also use an improved tree hierarchy for the constraagty Since Adopt’s normal DFS tree
may not be a minimum depth tree, they use MLSP trees whichfme shorter and experimentally
were shown to speed up the Adopt algorithm.

The results we presented here do not include the authorsisties, but we use several other
simple optimizations which were sufficient to support ounaasions. The precomputation of
bounds and improved tree hierarchy could still be applie€utare applications to gain larger

improvements.

3.5 Conclusions

We have developed a modified algorithm called AdoptMVA for @ domains that have mul-
tiple variables per agent. When applied to meeting schegulsing a generic agent ordering,
AdoptMVA completes in fewer cycles than Adopt, and has a lo@gcle-Based Runtime at high
communication latencies. Although none of the agent onderiested were decisively superior,
future work may uncover a heuristic to address this.

We empirically determined a meeting scheduling Branch & iebgearch heuristic that is
statistically better than the other heuristics that weséet This finding is supported by logically
reasoning that higher priority variables, the ones theibgcrconsiders, have a more important
impact on the local search. Finally, we have provided a dnatpsf how the meeting scheduling

problem scales as number of agents and meeting size arasecke
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Chapter 4

Conclusions

This work has focused on the effect of centralization in DECd&hd makes several contributions

to our understanding in that area. The key conclusions weheshwere:

e Algorithmic centralization can reduce communication eg¢lbut increases local computa-
tion costs, potentially making the algorithm more expeashvan one that communicates
more. We contributed the Cycle-Based Runtime (CBR) metriaitl in comparing algo-
rithms that use differing amounts of centralization. Us@BR we found that the Adopt
algorithm performs better than OptAPO on graph colorindofgms, assuming reasonably

inexpensive communication is available.

e Domain centralization, such as in meeting scheduling, rafijulends itself to algorithms
that take advantage of local information. We outline anraliive algorithm called Adopt-
MVA which uses centralized search within agents to makeebeite of the problem struc-
ture. When we control for inter-agent ordering, AdoptMVAhgoletes in fewer cycles than
Adopt. We also develop a Branch & Bound search heuristic feeting scheduling which

empirically is the most efficient of the ones tested.

e Based on the results of our work, we believe that in order éotiglly centralized algorithms
to be practical, we need ways of limiting the amount that rsredized. Otherwise, as was
seen in Chapter 2 with OptAPO, the search problem can groar¢e Isizes which are very
expensive to solve. AdoptMVA on the other hand limits itstcalization to the number of
variables that are already available within an agent arggttvides a cap on the size of the
local search. Future work involving DCOP centralizationwd continue to consider ways

of limiting the size of the centralized search.

45



4.1 Future Work

Meeting scheduling, due to its exponential nature, wileljkremain a challenging problem for
some time. An important direction will lie in finding the righeuristics and algorithms to be able
to solve very large scheduling problems in a reasonable time

We believe improvements to AdoptMVA could be made by furthesearching the search

heuristics:

e During our experiments with agent ordering heuristics fdoptMVA, it was observed that
certain heuristics worked well sometimes, but not all timeeti While there was no clear
superior heuristic, it might be possible to combine heizsdb obtain the best aspects of all
of them. A future task would be to identify what features,nfacould be used to determine

which heuristic to use.

e For the Branch & Bound search heuristics for meeting scliegluit would be worth de-
veloping a heuristic that is both informed and randomly e@wri This could help reduce
communication cycles by increasing the chances of findirmsadolution path, while still

keeping the computational costs efficient by using an inémtmrdering.

It would also be interesting to test DCOP algorithms in ayfdlistributed setting. This might
confirm whether CBR holds up as a good representation oflalis#d runtime, and would provide

an estimate of what communication overhead (L value) isstal
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