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Abstract

We present an algorithm by which nodes arranged in a tree, with each node initially knowing only its parent
and children, can construct a fault-tolerant communication structure (an expander graph) among themselves
in a distributed and scalable way. Tree structures arise naturally in many distributed applications, in which a
node “joins” the system by contacting a node already present in the system: the joining node then becomes
a child of the node it contacts for entry. Our algorithm enables nodes to construct an expander graph
incrementally without propagating membership information globally. At the core of our construction is a
novel distributed mechanism that samples nodes uniformly at random from the tree. In the event of node
joins, node departures or crash failures, our graph self-stabilizes to a state where it still achieves the required
fault tolerant properties. We present simulation results to quantify the convergence of our algorithm to a
fault tolerant network having both good vertex connectivity and expansion properties.
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1 Introduction

In this paper we consider the problem of constructing a fault-tolerant communication network—i.e., one
having redundant paths between any pair of nodes—among nodes that are initialized in a tree topology.
Tree structures are commonly seen in network applications because of their resemblance to organizational
hierarchies (e.g., the DNS name space). Tree structures, however, exhibit poor fault tolerance properties,
in that a single node or link failure can partition the tree. It is therefore prudent to build from this initial tree
structure a logical communication network that has better ability to tolerate faults.

Here we present a distributed algorithm to do this by building an expander from the tree. Expanders are
an important class of graphs that have found applications in the construction of error correcting codes [28],
de-randomization [1], and in the design of fault tolerant switching networks [26]. The fault tolerant prop-
erties of expanders [13][4] are precisely what motivated this research. Our algorithm starts with nodes
connected in a logical tree structure and proceeds to add edges to achieve an expander. However, because
explicit constructions of expanders are generally very complex, we specifically present a construction that
“approximates” a d-regular random graph, i.e., a random graph in which every node has almost d neighbors.
A d-regular random graph is, with an overwhelming probability, a good expander [10].

The contributions of this work rest primarily in two features. First, our algorithm is completely dis-
tributed. Though expander graphs have been studied extensively, distributed construction of expander net-
works remains a challenging problem. Each node in the network keeps state for only its neighbors and the
algorithm uses local information at each node. A direct consequence of this is scalability—our algorithm
is capable of generating expanders efficiently even with a large node population. We bootstrap this algo-
rithm using a novel technique that samples nodes uniformly at random from the tree regardless of the tree
size—most previous attempts at distributed uniform sampling require the number of nodes to be sufficiently
large and otherwise resort to centralized or broadcast-based approaches. This bootstrapping technique is
also decentralized but requires nodes to propagate some information across the tree. We show that this can
be done with low message complexity.

Second, our algorithm adapts to dynamic node joins and leaves, converging back to an expander after
such a perturbation. Previous attempts at distributed construction of random expanders [17][12] try to
construct d-regular random graphs where every node has exactly d neighbors. Such graphs are difficult
to construct and maintain in a dynamic distributed setting. We follow a more pragmatic approach, in that
we only require that nodes have “close” to d neighbors. This gives us more flexibility in dealing with
the dynamic nature of our network, while still achieving the fault tolerant properties. One consequence
of using this approach is that we do not require nodes to notify others when leaving the network, thereby
accommodating crash failures. To the best of our knowledge, distributed construction of expander networks
that self-stabilize even when a large fraction of nodes crash, is an open problem that has not been addressed
previously.

While our algorithm has application in any scenario in which building a fault-tolerant network from
an initially minimally connected system is warranted, we arrived at this problem in an effort to enhance
the fault tolerance of a particular mechanism. This mechanism, called capture protection [23], protects a
cryptographic key from being misused even if an adversary captures and reverse engineers the device (e.g.,
laptop) on which the key resides. Capture protection achieves this property by requiring the consent of a
remote capture protection server in order for the cryptographic key to be used, which the server will give
only if it can authenticate the current user of the device as the proper owner. This server, however, does
not need to be fixed; rather, one server can delegate the authority to perform this role to a new server [22],
giving rise to a tree structure in which the new server is a child of the server that delegated to it [27]. The
need for a more fault-tolerant structure arises from the need to disable the device globally when its capture
is discovered, to eliminate any risk that the adversary finds a way to impersonate the authorized user to a



server. As we would like this disable operation to succeed globally despite server failures (possibly attacker-
induced) in the tree of authorized servers, we approached the problem that we address in the present paper.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 intro-
duces some background material. Section 4 describes our system model and briefly outlines the goals of
this work. Section 5 presents the expander construction algorithm and related proofs. Section 6 describes
simulation results. We conclude in Section 7.

2 Related work

Expander graphs are a well studied design for fault-tolerant networks. Both randomized [29],[15] and
explicit [24], [11] constructions of expanders have been known for sometime. However, little has been done
to construct expander networks in a distributed setting.

Law and Siu [17] presented a distributed construction of expander graphs based on 2d-regular graphs
composed of d hamiltonian cycles. However, to sustain expansion properties of the graph in the event of
nodes leaving the system, they require that a leaving node send its state to some other node. This approach
cannot tolerate crash failures. Furthermore, their approach requires obtaining global locks on the hamilto-
nian cycles when new nodes join, which can be impractical in a large distributed system. Finally, they revert
to employing either a centralized approach or using broadcast when the number of nodes is small since their
mechanism can only sample uniformly at random from a sufficiently large number of nodes.

Gkantsidis, Mihail and Saberi [12] extend the mechanisms presented by Law and Siu [17] to construct
expanders more efficiently, i.e., with constant overhead. However, their approach uses d processes in a 2d-
regular graph, called “daemons”. These daemons move around in the topology. Every joining node must be
able to find and query such a process. Thus their system is not completely decentralized.

Pandurangan, Raghavan and Upfal [25] present a distributed solution to constructing constant degree
low diameter peer-to-peer networks that share many properties with the graphs we construct here. However,
their proposal also employs a centralized server, known to all nodes in the system, that helps nodes pick
random neighbors.

Loguinov et al. [19] present a distributed construction of fault resilient networks based on de Bruijn
graphs that achieve good expansion properties. However, they also require nodes leaving the system to
contact and transfer state to existing nodes and thus cannot tolerate crash failures.

3 Background material

In this section we present some known results from the theory of random regular graphs and random walks.
These concepts are used in the subsequent sections.

3.1 Random regular graphs

Let S(n,d) denote the set of all d-regular graphs on » nodes and G, 4 be a graph sampled from S(n,d)
uniformly at random. Then G/, 4 is a random regular graph. It is known that random regular graphs have
asymptotically optimal expansion properties with high probability [10].

Configuration model [6] is the standard method for generating random d-regular graphs on n nodes
v1, V2, ..., Un, though not in a distributed setting. In this model each vertex is represented as a set containing
d points, resulting in n such sets, y(v1),7y(v2),...,¥(v,). A perfect matching of these nd points is a set
of %nd pairs of points such that no two pairs share a common point. Assuming nd is even, many perfect
matchings exist for these points. A uniform random perfect matching is a perfect matching chosen uniformly



at random from the set of all possible perfect matchings. To construct a random d-regular graph on n
vertices, a uniform random perfect matching on these nd points is computed and an edge is inserted in the
graph between vertices v; and v; if and only if the perfect matching pairs a point in y(v;) to a point in y(v;).
This model allows self loops and parallel edges and is very inefficient if the goal is to construct a simple
graph, i.e., one without self loops and parallel edges. A refinement [29] of this model constructs random
d-regular simple graphs by pairing points, one pair at a time, from the uniform distribution over all available
pairs, i.e., those that do not result in self loops and parallel edges. Graphs generated using this approach are
asymptotically uniform for any d < n!/3=¢,for any positive constant e [15].

3.2 Uniform sampling using random walks

A random walk on a graph can be modeled as a Markov chain. For a graph containing n nodes, the prob-
ability transition matrix M of the random walk is an n x n matrix where each element M;; specifies the
probability with which the random walk moves from node i to node j. Let 7, be a vector such that [
is the probability with which the random walk visits vertex 4 at step ¢. Then w1 = 7;M = moM!t1. A
vector  is called the stationary distribution of the random walk if # = 7w M, i.e., the stationary distribution
remains the same after the random walk takes a step, or any number of steps for that matter. It is known that
a random walk on a connected undirected graph with an odd cycle has a unique stationary distribution [20].
Mixing time is the time required for the random walk to reach its stationary distribution and it depends on
the expansion properties of the graph: the walk reaches stationary distribution quickly if the graph is a good
expander. A random walk on a graph can be used to sample nodes from the walk’s stationary distribution if
the walk is run long enough to mix properly.

Let I'¢(x) denote the set of neighbors of node z in graph G (we define this formally later). Then a
simple random walk is a walk which, at each step, moves from a node z in G to one of its neighbors in
T¢(z) with probability 1/|T'¢(z)|. The stationary distribution of a simple random walk on a regular graph
is uniform, i.e, # = %[1, 1,...,1] . In case the graph is not regular, the stationary distribution of a simple
random walk is a function of the nodes’ degrees. One of the known ways (recently also discussed in [3],[7])
to sample uniformly at random from an irregular graph G with maximum degree dma iS t0 run a random
walk on G that takes a step from node z to node y with probability:

ﬁ ify#zandy € Tg(zx)
Py =1- @y, — 4 (1)
0 otherwise

We call such a random walk a maximum degree random walk and denote it as MDwalk. An MDwalk has a
uniform stationary distribution even on irregular graphs but it suffers from two main issues: (i) In a dynamic
distributed system it might be difficult to estimate the maximum degree of the graph. (ii) Low degree nodes
imply higher self transition probabilities (see Equation 1) which result in longer mixing times for MDwalks.
If MDwalks are not run long enough to achieve sufficient mixing, they are biased towards low-degree nodes.

4 System model and goals

Our system consists of a set of nodes distributed over a network that is structured as a rooted tree and
denoted as T' = (V, Er) (vertex set remains the same across the different graphs discussed here but the
edge sets differ, hence the subscript). For any subset S C V we define the set of neighbors of S in T as
I'r(S) ={y € V |3z € S,(z,y) € Er}. Nodes are initialized only with the identities of their neighbors
and do not have access to any central database containing information about 7T'.



Nodes are allowed to join and leave the tree. We further allow nodes to crash. A crashed node may
recover and re-join the tree at a later time. Crash failures are modeled as nodes leaving the tree, so nodes
are not required to send any special messages when leaving.

We work in an asynchronous model, i.e., messages may take arbitrarily long to reach destinations and
nodes do not have a common clock. We assume the existence of an unreliable failure detector [9] at each
node z that is used only to detect crashes among the neighbors of z in the tree; detecting failures elsewhere
in the tree is not required. We assume that during the execution, there are “periods of stability” when
our network is static, the failure detector achieves strong completeness and most correct processes are not
suspected (a very weak form of accuracy). Such an unreliable failure detector can be easily implemented in
practice using a timeout mechanism.

We present some notation used to define expander graphs.

Definition 1. Given a graph G = (V, E), the vertex boundary dg(S) ofaset S C Vis 0g(S) = {y €
V\S|3zes, (z,9) € Eg}.

Definition 2. A graph G = (V, Eg) is an a-expander if for every subset S C V of size [S| < |V]/2,
|0c(S)| > «|S]|, for some constant a > 0.

Our goals can be summarized as follows: Construct an expander graph with the same vertex set as T
using a distributed algorithm that scales well. New nodes should be able to join the expander quickly without
incurring a high messaging cost and existing nodes should not be required to send special messages when
leaving. Finally, the network should self-stabilize even after a large fraction of nodes crash.

5 Expander construction

Our approach is to construct a random graph among vertices in V' (nodes in our network) such that nodes in
the graph have degrees close to some constant d. Such a graph is much easier to construct and maintain in a
dynamic distributed system than a d-regular random graph while still achieving good expansion.

5.1 Random almost-regular graphs

We say a graph is (d, €)-regular if the degrees of all nodes in the graph are in the range [d — €,d + €]. Let
S(n,d, €) be the set containing all (d, €)-regular graphs on n nodes, then sampling uniformly at random
from S(n,d, ) results in a (d, €)-regular random graph, denoted G, 4. Note that one way to construct
G4, s to first construct G, 4—, i.., a (d — €)-regular random graph, and then add some random edges
such that the degrees stay within [d — €, d + €]. Therefore, the expansion of G, 4 . is lower bounded by the
expansion of G, 4, since adding edges to a graph does not decrease its expansion.

Our distributed construction generates (d, €)-regular random graphs by approximating the refinement
[29] of the configuration model (see Section 3.1) as shown in Figure 1. Note that nodes continuously sample
new neighbors from the tree but maintain a maximum of d + ¢ neighbors.

A simple probabilistic argument shows that if all nodes sample and add neighbors with the same fre-
quency, then the probability of a node having degree less than d — e decreases exponentially in e. Using
e = d/2 gives a reasonably high confidence that all nodes will have degree greater than d — e even for
small values of d like d = 10. Note that in case of crash failures, the degrees at some nodes may go below
d — €, but the fault-tolerant properties of the expander will ensure that most nodes remain connected in a
component that has high expansion. In this case, nodes with low degrees recover quickly when the network
stabilizes.

Continuously sampling and refreshing expander neighbors (lines 2-5 of Figure 1) is needed for two
reasons: 1) We expect the failure detector at node z to eventually detect the failure of nodes in ' (x) (z’s
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Every node x € V executes the following:

Initialization: Upon receiving (Add : y):
1. Tg(z)« 0 7. ify=zoryeTlg(x)
8. do nothing
Main: 9. else
2. repeat forever 10. if Pg(z)|=d+e
3. uniformly sample node y from V 11. pick z from I'(z) at random
4. send (Add : y) to z 12. remove z from ' (z)
5. wait for a specified period 13. send (Remove : z) to z
14. add y to ' (x)
Upon receiving (Remove : y): 15. send (Add : z) to y

6. remove y from I'g(x)

Figure 1: Algorithm to generate (d, €)-regular random graph

neighbors in the tree) but not of nodes in Iz (x) (x’s neighbors in the expander). It may be easier for the fail-
ure detector to detect crashes among neighbors in the tree because in most applications neighbors in the tree
will be “close” to each other, either geographically or according to some network metric. Examples of such
applications are recently proposed location aware peer-to-peer architectures [18],[8],[21]. Continuously re-
freshing the neighbor set I';(z) allows z to replace crashed nodes in this set without having to explicitly
detect failures of possibly far-flung nodes. We delay further discussion on crash failures until Section 5.5. 2)
Continuous sampling and refreshing allows us to ignore periods where we might be unknowingly sampling
from a biased distribution (e.g., because the failure detector has not yet detected a crash) as these neighbors
will later be replaced by nodes sampled from a distribution closer to uniform during stable periods.

These mechanisms reduce the problem of constructing G, 4 to that of a node « € V' choosing another
node uniformly at random from the tree (line 3 of Figure 1), i.e., with probability 1/|V|. A sampling
procedure that picks a node in the tree uniformly at random could be used by z to construct and maintain
G4, as described above.

5.2 Biased irreversible random walks

For a node, choosing another node uniformly at random from the tree is challenging due to the specific
structure of the tree and the fact that each node only knows about its neighbors.

We approach this problem by assuming that every node = knows about the number of nodes in the tree
in the direction of each of its neighbors (we relax this assumption in Section 5.3): For each child, z knows
about the size of the subtree rooted at the child and for the parent, = knows about the number of nodes in
the tree that are not in the subtree rooted at z. Then, to choose a node uniformly at random from the tree,
x starts a biased irreversible random walk, Blwalk. At each step, the Blwalk either (i) moves from a node
to one of its neighbors in the tree, except the neighbor where it came from or (ii) picks the current node. In
case (i), the probability of choosing a neighbor is directly proportional to the number of nodes in the tree in
the direction of that neighbor (we make this formal below). In case (ii), we say the Blwalk terminates. The
node where the Blwalk terminates adds x to its neighbor set and notifies . Upon receiving this notification,
z also adds the sampled node to its neighbor set, thus forming an undirected edge. We prove that a Blwalk
samples nodes uniformly at random from the tree during periods of stability when the tree is static and
failure detectors satisfy strong completeness.

Let (z,y) be an edge in Er (Er is the edge set of 7) and F(V, Er \ {(z,y)}) be the forest containing



two components formed by removing (z,y) from 7. Then, we define C(z — y) to be the component of F
that contains node y. The ‘—’ notation captures the intuition that this is z’s view of the tree in the direction
of its neighbor y. Let V' denote the vertex set of C(z — y), then W (z — y) = |V’|. Intuitively, W (z — y)
represents z’s view of the “weight” of the tree in the direction of its neighbor y, i.e., the number of nodes in
the tree in the direction of y. For convenience, we define W(z — y) = |V]ifz ¢ V and y € V (the view
from outside the tree), and W (z — y) = 1 if x = y (the view when z looks down at itself).

We denote a Blwalk as a sequence of random variables X, X», ..., Y, where each X; represents the
node that initiates the ** step of the Blwalk (X starts the Blwalk) before the Blwalk terminates at node Y.
Note that by definition a Blwalk terminates if and only if it picks the same node twice, i.e., X; = X1
and in this case we denote Y = X_;. For notational convenience we define Xo = z¢ ¢ V, so for any
z € V,W(zy — z) = |V|. Note that there is a unique Blwalk between every pair of nodes in V, since there
iS a unique path between every pair of nodes in the tree and the Blwalk only travels over edges in the tree.

Say the Blwalk moves from node z to node x at the i** step, i.e., X;_1 = z and X; = z. Then the
probability that the Blwalk moves to a node i € V at the (i + 1) step is given as:

0 ify {Tr(z) U{z}}ory =2
P X pr— X = ’X'_ = = .
K1 =y Xi =2, Xim1 = 7] {%gjgg otherwise
If y = z, i.e., z chooses itself, then by definition the Blwalk terminates at z and Y = z. It is easy to see
from Equation 2 that the Blwalk takes a maximum of ¢max Steps to terminate where ¢ = “Diameter of 7.

We now prove that the Blwalk samples nodes from V' (nodes in the tree 7°) uniformly at random.

Theorem 1. For every Blwalk, P[Y = zjag] = 1/|V| for all zja4 € V.

()

Proof: We prove this claim by induction on the size of the tree, |V'|. For the base case |V| = 1, the claim
holds trivially since x| is the only node in the tree (by assumption) and so P[Y = zjag] = 1.

Assume the claim holds for all trees of size up to &, i.e., for all trees 7' = (V, Er) such that |V| < k. We
prove that it holds for |V'| = k + 1. Say the Blwalk starts at some node =’ € V, i.e., X; = z'. Then there
are two possible cases: (i) z' = zja¢. From Equation 2 the probability that the Blwalk terminates at =’ given
that it starts at 2’ is P[Y = 2’ | X; = 2/, X = 2o ¢ V] = 1/|V]|, since by definition W(z' — z') =1
and W(zg — z') = |V|. (ii) ' # Zias. Since zjag € V' (by assumption), zja must be in a component
C(z' — y) for some y € T'p(z'). Then from Equation 2 and the definition W(zq — ') = |V|, the
probability that the Blwalk enters the component C'(z' — y), i.e., steps from z’ to y is given by:

W(z' — y)
14
Note that C'(z’ — ) is a tree of size at most &, since |V| = k+ 1, 2’ € V and z' is not contained in

C(z' — y). So by assumption once the Blwalk enters the component C'(z’ — y), it terminates at s With
probability

PXo=y|Xi =2, Xo=20¢ V] = 3)

1
4
Wz = y) “)
Node ¥ is in the path from z’ to xjo and there is a unique Blwalk over the path between every pair

of nodes. Therefore, the probability that the Blwalk terminates at zag When z’ # xja¢ and zjag is in the
component C(z" — y) for some y € T'r(z'), is given by:

P[Y = s | Blwalk reaches y] =

P[Y = zj5¢] = P[Y = zja% | Blwalk reaches y] x P[Blwalk reaches y]
1 W(z' — vy) 1

W(z' — y) vl V]




5.3 Reducing message complexity

The mechanisms described in Section 5.2 assume that each node z in the tree 7" knows the weight W (z — y)
for each neighbor y € T'p(z). At the start of the execution, this can be achieved by an initial messaging
round. However, once all the weights are known, the addition or removal of a node would require multi-
casting this information to keep the weights updated at all nodes. This is not acceptable due to the large
message complexity of multicast. Furthermore, if multicast is being employed then a trivial solution for
uniform sampling from the tree exists: the joining node multicasts its arrival and all existing nodes reply
with their identities allowing the new node to choose neighbors uniformly at random from the set of all
existing nodes.

Our goal is to sample nodes uniformly from the tree using an algorithm that requires a much lower
messaging cost than multicast. To achieve this we modify the mechanism described in Section 5.2 as follows:
To choose a node uniformly at random from the tree, a node z first sends a request called Blrequest to the
root of the tree. The root node then starts a Blwalk on behalf of z. As before, if this Blwalk terminates on
a node y, then y adds z to I';(y) and z adds y to I'(x). Theorem 1 proves that irrespective of where this
Blwalk originates from, it chooses y uniformly at random.

To understand the effects of this minor change, we first note that Equation 2 can also be expressed as:

0 ify & {Tr(z)U{z}}ory=2
PXip1=y|Xi=2X;1=2]= { W(z—y) otherwise
1+Eu€FT(m),u;&z W(wﬂu)

Thus to compute the transition probabilities, a node z that is currently hosting a Blwalk needs to know
the weights of all of its neighbors u € T'r(z) except the neighbor z where the Blwalk came from. In context
of the new mechanism this implies that each node only needs to know the weights of its children and not the
parent, since the Blwalk always comes from the parent—the Blwalk originates at the root and is irreversible.
Therefore, a join or leave operation at node x, i.e., a node joins as a child of = or some child of = leaves the
tree, now requires updating the weights only at nodes that are in the path from z to the root. This takes only
O(logn) messages, a substantial improvement to the multicast required earlier.

5.4 Load balancing

The optimization described in Section 5.3 reduces message complexity considerably for each update but
increases the load on the root as every Blwalk originates at the root. We reduce this load by interleaving
Blwalks with MDwalks that run on the expander. Our algorithm constructs the expander incrementally,
initially consisting of a small set of nodes and growing in size as new nodes join the expander by sampling
enough neighbors from the tree. We say a node z is an expander node if |I'(z)| > d — e. Once an expander
is constructed, nodes can be sampled from the expander using MDwalks, in addition to sampling from the
tree using Blwalks.

MDwalks are a good match to our setting because they have a uniform stationary distribution even on
irregular graphs (our expander is an irregular graph), the maximum degree of the expander graph is known
to be dmax = d + ¢, and the mixing time is small due to high expansion. For our application, MDwalks mix
sufficiently in 5 % log(m) steps, where m is the number of expander nodes; a detailed analysis of mixing
times on different graphs appears in [3]. Nodes can estimate the logarithm of expander size using only
local information through mechanisms described in [14]. The main assumption in [14] is that a new node
joining the network has a randomly chosen existing node as its first contact point. This fits well with our
construction as the expander neighbors are chosen uniformly at random anyway.



Using MDwalks in our system, however, can be problematic in two cases: First, MDwalks sample from
a uniform distribution only if the expander is sufficiently large. Second, if the tree contains many nodes that
are not expander nodes—e.g., if they just joined the tree or if their neighbors crashed—then the MDwalks
will only be sampling from a subset of nodes, since MDwalks only sample from the expander. To address
these issues, we develop a “throttling mechanism” shown in Figure 2 that uses more MDwalks as the tree
becomes large and more stable—a large, stable tree implies a large expander covering most nodes in the
tree. When the tree is large, there are more nodes in path to the root and thus a higher probability of starting
an MDwalk (lines 7 and 8). When the tree is stable most nodes are expander nodes and so MDwalks are
not interrupted (lines 9-12). An MDwalk stepping on a node that is not an expander node implies that there
might be a non-negligible fraction of such nodes in the tree. Hence, in this case the MDwalk is interrupted
and a special request Blrequest’ is deterministically sent to the root that results in a Blwalk (lines 13-16).

Every node x € V executes the following:

Initialization (addendum to Figure 1): Upon receiving (MDwalk : y):
1. set parent to z’s parent in T 9. ifTg(z)|<d—ce
10. send (Blrequest’ : y) to parent
Upon receiving (Blrequest : y): 11. else
2. ifzisroot 12. send (MDwalk : y) using Eq. 1
3. send (Blwalk : y) using Eq. 2
4. elseif |Tg(z)| <d—e Upon receiving (Blrequest’ : y):
5. send (Blrequest : y) to parent 13. if z is root
6. else 14. send (Blwalk : y) using Eq. 2
7. with prob. p, send (Blrequest : y) to parent 15. else
8. with prob. 1 — p, send (MDwalk : y) using Eq. 1 16. send (Blrequest’ : y) to parent

Figure 2: Interleaving MDwalks with Blwalks to reduce load on the root

We note that our algorithm cannot add or remove undirected edges to the expander graph instantaneously
due to the distributed setting. This could be done using some global locking mechanism but at a considerable
performance cost, and therefore we avoid that. As a result our expander has some directed edges, e.g., hode
x has added y to I'¢(z) but y has not yet added z to I'¢(y). The results concerning MDwalks discussed in
Section 3.2 relate to undirected graphs. Therefore, when an MDwalk reaches a node y from a node z such
that z ¢ T'¢(y), y sends the MDwalk back to z and x chooses another neighbor from the set I';(z) \ {y}
according to the transition probabilities in Equation 1. This ensures that MDwalks effectively only step from
a node to another node if there is an undirected edge between them.

5.5 Tree maintenance

Maintaining the tree 7" is not essential when the expander is large, since most Blrequests would result in
MDwalks. However, in dynamic scenarios we still need to perform some Blwalks. Since Blwalks move
across edges of the tree, we need to maintain the tree as a connected component even when some nodes
crash.

When a node x crashes, the parent y of z simply removes the crashed child from I'(y) and sends the
updated weight to its own parent; similar to the case of a node joining. It would seem that a child z of z also
only needs to remove z from I'7(z) and connect itself as a child of some randomly chosen node in I' ¢ (2)
to keep the tree connected. However, the astute reader would notice that if this randomly chosen node is



in the subtree rooted at the crashed node z, i.e., in the component C'(y — z), then connecting the children
of z to this node would still leave the tree partitioned. Therefore, z must find a node 2z’ € T'¢(z) such that
z' € C(z — y), i.e., 2’ is in the component that contains the root of the tree. If z cannot find any such node
then it would have to re-join the tree. Note that nodes in the subtree rooted at z do not have to re-join, they
will be connected to the tree through z.

Figure 3 shows the algorithm run by node z in case the failure detector suspects z’s parent to have
crashed. The failure detector communicates with = through Suspect and Unsuspect messages. To find a
neighbor in T'¢(z) that is in the component containing the root, = uses special tokens (lines 5 and 6) that
traverse the path from neighbors of z in T'¢(z) to the root (line 26). If = gets one of these tokens back
from the root, it knows that the corresponding neighbor in ' (z) has a path to the root. x then connects as
a child of this neighbor (lines 19-22). To avoid cycles that could be formed using this approach, nodes in
path to the root add their identifiers to the token and locally store the identifier of the node that created this
token in list. list at a node =’ represents nodes that could possibly connect as a child to a node in the subtree
of z’. To avoid cycles, =z’ must not connect as a child of a node that is in the subtree of any node in list.
Therefore, z discards a token from root if this token and list have a common node identifier. This ensures
that the “patched” tree does not contain any cycles. The mechanism is efficient since it only takes O(logn)
time and sends at most (d + €) * log n messages.

Every node x € V executes the following:

Initialization (addendum to Figure 2): Upon receiving (Tok : i, j):
1. list < 0 12. if z is root
2. suspected < false 13. send (Tok : 4,7) to4
14. else if z = i and (Tok : 7, ) is sent by root
Upon receiving (Suspect : parent): 15. if (Tok : 7, ) and list have a common id
3. start timer 16. discard (Tok : ,7)
4. suspected < true 17. else if suspected = false
5. foreachy € I'g(z) 18. discard (Tok : 4, 5)
6. send (Tok : z,y) toy 19. else
20. parent < j
Upon receiving (Unsuspect : parent): 21. notify j and send weight to j
7. suspected <« false 22. stop timer
8. stop timer 23. else
24, add my id to (Tok : 4, 7)
Upon receiving (TimerExpired : ): 25. add 4 to list
9. if suspected = true 26. send (Tok : 7, j) to parent
10. re-join the tree, set parent to new parent
11. suspected <« false

Figure 3: Maintaining a connected tree in the presence of crash failures

5.6 Summary
Here we summarize the construction of expander graphs from the tree:

e We construct random (d, €)-regular graphs from a tree. Each node uniformly samples nodes from the
tree and makes edges with them. This is done continuously so that the network self-stabilizes after
crash failures or periods of biased sampling.



e We use a combination of Blwalks and MDwalks to sample nodes from the tree uniformly at random.
Blwalks step across edges of the tree and require nodes to know the “weight” of the tree in the direction
of each neighbor. This results in a high messaging cost for each update. To reduce this cost, we start all
Blwalks from the root. As the expander grows, we can reduce this load on the root by using MDwalks.
MDwalks step across edges of the expander. Our algorithm results in more Blwalks when nodes in the
tree are not part of the expander or when the expander is small, since in these cases MDwalks sample
from a biased distribution.

e Our algorithm patches the tree after a node crashes to retain the ability to do Blwalks. The patching is
done such that the tree stays as a single connected component with no cycles.

6 Simulation results

We present simulation results measuring graph expansion and connectivity under different conditions. These
results validate our construction and prove that the resulting graphs are tolerant to node failures. We also
show that using the mechanisms described in Section 5.4, the load is equally distributed among all nodes
in the tree during stable periods, since most Blrequests result in MDwalks. When the tree is more dynamic
thus causing more Blwalks, the load on the root is only a constant fraction higher than the load on other
nodes as the number of nodes increases. These two results provide evidence that our system scales well.

Verifying if a graph is an expander is co-NP-complete [5] since it requires verifying the expansion of
an exponentially large number of subsets of vertices. However, we can estimate a graph’s expansion by
computing eigenvalues of some graph-related matrices. Let A be the adjacency matrix of the graph, i.e.,
each element A;; represents the number of edges between vertices 7 and j. Since we only consider simple
graphs so A;; € {0,1}. Let D be the degree matrix of the graph, i.e., D;; = 0 for i # j and D;; = |T'g(4)|
for 4 = j. Then the Laplacian matrix L is defined as . = D — A. The second smallest eigenvalue A of
L is related to the graph expansion: a graph is a %-expander, where A is the maximum degree of the
graph [2], in our case A = d + . We find the Laplacian matrix of the graph, compute its second smallest
eigenvalue and find the expansion. The eigenvalue X also gives a lower bound on the vertex connectivity of
the graph. However, we use Kleitman’s algorithm [16] to find the exact vertex connectivity of our networks;
the algorithm computes the vertex connectivity in reasonable time for small n. We note that the theory
behind the relation of eigenvalues to expansion and connectivity only deals with undirected graphs. To use
these well studied results we ignore all the directed edges when computing the Laplacian matrix of our
graph. Therefore, the expansion and vertex connectivity results reported here are pessimistic in the sense
that our graphs actually have more edges which are not represented in these results and adding more edges
can only improve expansion and connectivity.

We developed a round-based simulator in Java. The simulator sets up an initial topology by constructing
a random tree containing d + 1 nodes. The simulator constructs (d, €)-regular random graphs with ¢ = d/2
overlayed on this random tree using mechanisms described in earlier sections. n agg nodes are added to the
random tree after every Tqyq rounds until the total number of nodes in the tree becomes n. Each of the
nadg Nodes is added as a child to an existing node chosen from a distribution that picks more recently added
nodes with a higher probability. This is done so that the experiments measuring the load on each node are
not affected due to a node having a lot more children than other nodes. We want to see the load caused
by the specifics of our algorithm and not due to such anomalies in the tree. To simulate crash failures, we
remove nremove NOdes, chosen uniformly at random from the tree, after every Tremove Founds. Nodes in the
tree send Blrequests to their parents every Tywak rounds. Blrequests are forwarded by expander nodes to
their parents with probability p = 0.5 (the choice is arbitrary, smaller p will obviously reduce load on root)
and otherwise they initiate MDwalks on the expander. We specify values for 7, n aqd, Tiremove, @5 Tadd, Tremove
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and T,qx for different experiments as these are all tunable parameters in our system.

Figure 4 plots the graph expansion and connectivity for different values of T}WTZ": In this experiment we
use n = 200, d = 15, nag = 20, Tagg = 200 and values 10, 20, 30 and 50 for Tiyak. We compute the
expansion and connectivity of the graph every single round. The graph plots expansion and connectivity
after the first 100 nodes have already been added (only to make the figure more visible). Each point in the
plot is a mean of 30 tests, each starting from a new random tree. Expansion and connectivity are determined
for all nodes in the tree, not just the expander nodes so that we can see the time it takes for the system to
self-stabilize. When new nodes are added to the tree, expansion and connectivity go down to 0 since the
new nodes do not have any neighbors in the expander yet. A larger % ratio implies that nodes look for
random neighbors slowly while the graph is changing fast. This results in the graph taking a longer time to
stabilize to better expansion and connectivity as shown in the figure.
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Figure 4. Expansion and Connectivity for various values of J;WT?: Shows how quickly new nodes join the
expander after being added to the tree.

Figure 5 shows network properties in the presence of crash failures. We simulate perfect failure detection
at each node for its neighbors in the tree. Nodes run the algorithm from Section 5.5 to connect the tree
after their neighbors crash. For this experiment we use n = 150,d = 15, nrgmove = 10, Twak = 10 and
Tremove = 300. All 150 nodes are first added to the tree and the expander is allowed to stabilize for 1000
rounds (this period is not shown in the plot). We then start measuring the expansion and connectivity every
single round and remove 10 nodes after every 300 rounds until we are left with 100 nodes. Each point in
the plot is a mean of 15 tests, each test starting from a different random tree. The figure shows that crashed
nodes have almost no impact on graph expansion and affect vertex connectivity very slightly. This plot like
Figure 4 also shows the self-stabilizing nature of our network during stable periods.
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Figure 5: Expansion and Connectivity as nodes in the network crash
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Figure 6 plots graph expansion and connectivity against different values of d. We use n = 200, nayq =
20, Tagg = 100, Tiwak = 10 and varied d = 4,7,10,13,16,19,22 and 25. For each value of d, we waited
1500 rounds after adding all nodes to the graph (to give it enough time to stabilize) and then measured
expansion and connectivity at 30 different points separated by 1000 rounds each. The plot shows mean
expansion and connectivity of these 30 rounds for each d. As shown in the figure, expansion and connectivity
increase with d. Our graphs achieve reasonable fault-tolerance even for small values of d like d = 10.
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Figure 6: Expansion and Connectivity for various values of d. The actual degrees are between [d+¢,d — €].

Figure 7-(a) compares the load (number of messages handled) on the root node with the mean load on
other nodes (and the standard deviation) in the tree. For this experiment we used n = 3000,d = 15, naq =
10, Tagqg = 100 and Tywgx = 10. We start measuring the load from the first round by counting the number
of messages received by each node every 1000 rounds. We stop the experiment when all nodes are added to
the system, i.e., after 30, 000 rounds. Each point in the plot is a mean of 30 tests with each test starting from
a different random tree. The dashed curve plots the mean load seen by all nodes except the root along-with
the standard deviation. This standard deviation is high since nodes closer to the root have a higher load
than nodes closer to the leaves. The plot shows a slight increase in the load on all nodes as the number of
nodes in the graph increases. This is because the MDwalks run longer as the number of nodes increases (see
Section 5.4). However, this effect becomes less visible when the number of nodes is large. Also note that the
load on the root remains only a constant fraction more than the load on other nodes as the number of nodes
increases. This constant can also be controlled using the parameter p. We use p = 0.5 in all experiments,
a smaller value would reduce the constant difference between the load on root and other nodes. For lack of
space we do not present these results here.

Figure 7-(b) plots the load on the nodes against the level of these nodes in the tree, with root at level 0.
We use the same values for all the parameters as in Figure 7-(a). For the dynamic case, i.e., when nodes are
being added to the graph, load on the nodes is measured every 1000 rounds like before and the mean load
for each node in computed over all rounds in which the node was in the tree. This mean load for each node
is used to compute the mean load for each level in the tree which is plotted. For the static case, we start
measuring load on the nodes after all nodes have been added to the tree. The expander is given some time
to stabilize (500 rounds) from the last addition and then 15 different measurements are taken, one every
1000 rounds, of the load seen by all nodes. Mean of these 15 measurements is computed for each node
and the result is used to compute the mean load for each level. For the dynamic case, i.e., when nodes are
being added to the tree every Tayq period, the load increases as we go up the tree. This is a result of more
Blwalks due to the dynamic scenario. For the static case the load is distributed almost uniformly across
different levels in the tree, since most walks are MDwalks. These graphs show the graceful degradation in
our algorithms, i.e., load on the root and higher levels in the tree increases as the tree becomes more dynamic
and remains uniform in static scenarios.
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Figure 7: Load on root node compared to other nodes

7 Conclusions

We present a distributed construction of an expander graph given a tree structure. Following a pragmatic
approach, we construct an almost-regular random graph that is much easier to construct and maintain than
a strictly-regular random graph but achieves the required connectivity and expansion properties. Our con-
struction tolerates crash failures under realistic assumptions using a self-healing approach. We also present
a novel distributed technique to sample nodes perfectly uniformly at random from a tree even when the
number of nodes in the tree is small. This technique is used to bootstrap the process of generating random
almost-regular graphs. Our simulation results show that the graphs generated have high expansion and con-
nectivity and our construction yields almost constant load on all nodes under various dynamic and static
conditions.
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