
Compiler Optimization of Value

Communication

for Thread-Level Speculation

Antonia Zhai

January 13, 2005
CMU-CS-05-103

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Todd C. Mowry, Chair

Seth C. Goldstein
Peter Lee

Wen-mei W. Hwu, UIUC

Copyright c© 2005 Antonia Zhai

This research was sponsored by the National Aeronautics and Space Administration (NASA)
under grant nos. NAG2-6054 and NAG2-1230, the National Science Foundation (NSF) under grant

no. CCR-0219931, and the Intel Corporation.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring

institution, the U.S. government or any other entity.

Keywords: Thread-Level Speculation, Architecture, Compiler Optimization, Au-
tomatic Parallelization, Dataflow Analysis, Dependence Profiling

Abstract

In the context of Thread-Level Speculation (TLS), inter-thread value
communication is the key to efficient parallel execution. From the com-
piler’s perspective, TLS supports two forms of inter-thread value commu-
nication: speculation and synchronization. Speculation allows for maxi-
mum parallel overlap when it succeeds, but becomes costly when it fails.
Synchronization, on the other hand, introduces a fixed cost regardless of
whether the dependence actually occurs or not. The fixed cost of synchro-
nization is determined by the critical forwarding path, which is the time
between when a thread first receives a value from its predecessor to when a
new value is generated and forwarded to its successor. In the baseline im-
plementation used in this dissertation, we synchronize all register-resident
values and speculate on all memory-resident values. However, this naive
approach yields little performance gain due to the excessive cost from
inter-thread value communication. The goal of this dissertation is to de-
velop compiler-based techniques to reduce the cost of inter-thread value
communication and improve the overall program performance.

This dissertation proposes to use the compiler to orchestrate inter-
thread value communication for both memory-resident and register-resident
values. To improve the efficiency of inter-thread value communication, the
compiler must first decide whether to synchronize or to speculate on a po-
tential data dependence based on how frequently the dependence occurs.
If synchronization is necessary, the compiler will then insert the corre-
sponding signal and wait instructions, creating a point-to-point path to
forward the values involved in the dependence. Because synchronization
could serialize execution by stalling the consumer thread, we use the com-
piler to avoid such stalling by applying novel dataflow analyses to schedule
instructions to shrink the critical forwarding path.

This dissertation reports the performance impact of several compiler-
base value communication optimization techniques on a four-processor
single-chip multiprocessor that has been extended to support thread-level
speculation. Relative to the performance of the original sequential pro-
gram executing on a single processor, for the set of loops selected to max-
imize program performance, parallel execution with the proposed baseline
implementation results in 1% performance degradation for integer bench-
marks and 21% performance improvement for floating point benchmarks,
while with the optimization techniques we developed, parallel execution
achieves 22% and 42% performance improvement for integer benchmarks
and floating point benchmarks, respectively.

ii

Acknowledgements

After generating several gigabytes of compilation intermediate files and parsing through
hundreds of simulation outputs, I am amazed that this document has finally come
together. Now, looking back to all my years at CMU, one thing is for sure: I could
not have done this alone and I owe my thanks to many people.

First and foremost, I am deeply indebted to my advisor, Todd Mowry, for providing
continuous guidance and support for the part ten (!) years (I have been working with
Todd since I was a wee undergraduate). Words fail to describe the extend to which he
has so patiently shaped my technical thinking, research abilities, presentation skills,
among other things. Thank you, Todd!

I would also like to thank the other members of my thesis committee—Seth Gold-
stein, Peter Lee, and Wen-Mei Hwu—for providing invaluable assistance at all stages
of this thesis. Their criticisms and advices are vital in making this thesis more accu-
rate, more complete, and easier to read.

Furthermore, I also owe many thanks to my fellow STAMPeders for providing
inspirations, criticisms, etc., during the meetings, and for sitting through so many
practice talks! My special thanks go towards Chris Colohan and Greg Steffan, with
whom I have worked closely, for building infrastructures and tools that make my
research possible.

Last, but not least, I would also like to thank my family and friends for their love
and support without which I would not have survived the Ph.D. process.

iii

iv

Contents

1 Introduction 1

1.1 TLS and Inter-Thread Communication 2

1.2 Estimating the Performance Impact of Optimizing Inter-Thread Value
Communication . 5

1.3 Related Work . 7

1.3.1 Hardware-Based Schemes for Improving Inter-Thread Value Com-
munication . 7

1.3.2 Improving Inter-Thread Value Communication Using Compiler
Techniques . 10

1.4 Dissertation Contributions . 11

2 Hardware and Software Support for TLS 13

2.1 Execution Model . 13

2.1.1 Inter-Thread Value Communication 15

2.2 Hardware Support . 17

2.3 Hardware/Software Interface . 19

2.3.1 Thread Creation and Termination 21

2.3.2 Homefree Token . 22

2.3.3 Speculative State Manipulation 23

2.3.4 Stack Management . 23

2.3.5 Exception Handling . 25

2.3.6 Inter-Thread Value Communication 27

2.4 Compiler Support . 29

2.4.1 Parallel Loop Selection . 32

2.4.2 Parallelization . 34

2.4.3 Optimization . 35

v

2.4.4 Code Generation . 35

2.5 Chapter Summary . 36

3 Automatic Synchronization 37

3.1 Synchronization Versus Speculation 37

3.2 Related Work on Automatic Synchronization 41

3.3 Compiler-Inserted Synchronization 42

3.4 Synchronizing Register-Resident Values 44

3.4.1 Constraints on Synchronization Insertion 45

3.4.2 Synchronization Insertion Algorithm 45

3.4.3 Proof of Correctness . 47

3.5 Synchronizing Memory-Resident Values 50

3.5.1 Hardware Support . 51

3.5.2 Compiler Support . 54

3.6 Chapter Summary . 59

4 Instruction Scheduling 61

4.1 Critical Forwarding Path . 61

4.1.1 Instruction Scheduling . 63

4.1.2 Aggressive Instruction Scheduling 63

4.2 Related Work . 64

4.3 Instruction Scheduling Algorithms . 66

4.3.1 Conservative Scheduling . 67

4.3.2 Aggressive Instruction Scheduling 73

4.4 Chapter Summary . 80

5 Performance Evaluation 81

5.1 Simulation Framework . 81

5.2 Benchmark Characteristics . 83

5.2.1 Benchmark Input . 83

5.3 Estimating the Performance Upper Bounds for Value Communication
Optimizations on All Loops . 86

5.3.1 Evaluation Methodology . 86

5.3.2 Reducing Critical Forwarding Path for Register-Resident Values 88

5.3.3 Avoiding Speculation Failures for Memory-Resident Values . . 92

vi

5.4 Loop Selection . 92

5.5 Evaluating Value Communication Optimizations 95

5.6 Program Performance . 98

5.7 Reducing the Critical Forwarding Path 100

5.7.1 Impact of Conservative Scheduling 101

5.7.2 Comparing Conservative Scheduling with the Multiscalar Algo-
rithm . 103

5.7.3 Impact of Aggressive Scheduling 105

5.7.4 Comparison with Hardware-Based Optimizations 105

5.8 Automatically Synchronizing Memory Accesses 107

5.8.1 Comparing Compiler-Based and Hardware-Based Automatic Syn-
chronization . 110

5.8.2 Impact of Instruction Scheduling on Memory-Resident Values 113

5.9 Sensitivity to the Accuracy of Profiling Information 114

5.10 Chapter Summary . 117

6 Conclusions 123

6.1 Future Work . 124

A Profiling Methodology 127

A.1 Control Dependences . 128

A.2 Data Dependences . 130

B Selected High Coverage Loops 133

C Estimating the Performance Upper Bounds for Value Communica-
tion Optimizations on All Loops 139

C.1 Avoiding Frequently Occurring Speculation Failures 139

C.2 Avoiding Speculation Failures on the First Occurrences of Loads . . . 140

C.3 Impact of Optimizing Data Dependences in Callee Procedures 142

C.4 Impact of Optimizing Distance One Dependences 144

C.5 Search for the Threshold of Frequently Occurring Data Dependences . 144

C.6 Impact of False Sharing . 149

D Loops with No Inter-Thread Data Dependences for Memory-Resident
Values 155

vii

viii

List of Figures

1.1 Loops with potential inter-thread data dependences can be parallelized
under TLS. 3

1.2 Synchronization vs. speculation under TLS. 4

1.3 Program performance potential of optimizing inter-thread value com-
munication. U is unoptimized for inter-thread value communication,
all register-resident values are synchronized and all memory-resident
values are speculated; O assumes a perfect value predictor for all val-
ues. 6

2.1 Basic architecture and execution model for TLS. 14

2.2 TLS execution model. 16

2.3 TLS value communication model. 17

2.4 Hardware support for TLS. 19

2.5 A simple while loop. 20

2.6 Interface for thread creation and termination. 21

2.7 Interface for managing homefree token. 22

2.8 Interface for managing speculative modes. 24

2.9 Interface for stack manipulation. 26

2.10 Interface for handling exception. 28

2.11 Interface for value communication. 30

2.12 Compiler infrastructure. 31

2.13 Region selection process. 34

2.14 Converting a program into a loop graph. 35

3.1 Performance trade-off between speculation and synchronization. . . . 39

3.2 Inserting synthetic nodes to eliminate critical edges. 47

3.3 Example of how waits and signals are inserted. 48

ix

3.4 Program transformation to synchronize frequently occurring memory-
resident dependences between threads. 52

3.5 Compiler-directed procedural cloning and synchronization insertion. . 55

3.6 An example dependence graph. Each vertex represents a load or store,
identified by the combination of a unique number and call stack. Each
edge shows a true data dependence between memory references. Ignor-
ing infrequent data dependences, a group is formed with two vertices:
ld 1 and st 2 (both having call stack (call 3)). Accounting for infre-
quent data dependences would result in an overly large group. 58

4.1 Impact of scheduling on the critical forwarding path. 62

4.2 Illustration of the transfer function (parts (a), (b), and (c)) used for
computing the value of the stack in equation (4.1) and the lattice (part
(d)) over which the stack dataflow analysis is defined. 68

4.3 Applying conservative scheduling algorithm to the codes in Figure 3.3. 71

4.4 Modified meet operator for speculatively scheduling instructions across
control dependence. 74

4.5 Control dependence speculation for regions with an inner loop, and
each node is labelled with a unique identification. Edges are labeled
with number of times that edge is followed during execution. Both
branch #1 and branch #2 are biased branches. 77

4.6 Modified dataflow analysis for speculatively scheduling instructions
across data dependence. 78

4.7 Illustration of how speculation on control and data dependences can
be complementary. 79

5.1 Compilation and simulation framework for studying performance po-
tential of different optimizations. 88

5.2 Comparing the impact of optimization A vs. optimization B. Each
data point in the graph represents a loop. Its x-coordinate is the loop’s
speedup when optimization A is applied, and its y-coordinate is the
loop’s speedup when optimization B is applied. 1© represents a loop
with less than 5% coverage that performs better with optimization B;
2© represents a loop with more than 5% coverage that performs equally
well with both optimizations; and 3© represents a loop with more than
5% coverage that performs better with optimization A. 89

5.3 Impact of reducing the critical forwarding path for register-
resident values. In each graph, the x-axis is the speedup with
no value predictor, and the y-axis is the speedup with a prefect value
predictor for all register-resident values. Loops that do not speed up
in both cases are omitted from the graph for clarity. 90

x

5.4 Impact of avoiding speculation failures for memory-resident
values. In each graph, the x-axis is the speedup with a prefect value
predictor for all register-resident values, and the y-axis is the speedup
with a perfect value predictor for both register-resident and memory-
resident values. Loops that do not speed up in both cases are omitted
from the graph for clarity. 91

5.5 Region Selection Process . 95

5.6 Potential impact of optimizing inter-thread value communi-
cation. For each benchmark, three sets of results are presented, cor-
responding to the register, the realistic, and the idealistic loop sets,
respectively. Bars represent execution time of the parallel loops on a
four-processor CMP normalized to the sequential program execution
time. U is unoptimized, all register-resident values are synchronized
and all memory-resident values are speculated; N assumes a perfect
value predictor for all register-resident values; and O assumes a per-
fect value predictor for all values. 96

5.7 Speedup achieved with TLS on a four processors CMP with previously
described optimizations. P is program speedup, R is region speedup,
and O is outside-region speedup. 99

5.8 Impact of instruction scheduling on reducing critical forward-
ing path for register-resident values. For each benchmark, three
sets of results are presented, corresponding to the performance of the
register, the realistic, and the idealistic loop sets, respectively. Bars
represent execution time of the parallel loops on a four-processor CMP
normalized to the sequential program execution time and the reference
line represents the coverage of each loop set. U is unoptimized, in
which all register-resident values are synchronized at first use and last
definition; I corresponds to only optimizing critical forwarding path
introduced by induction variables; S corresponds to reducing critical
forwarding paths for all register-resident values. 102

5.9 Comparison with the Multiscalar scheduling algorithm. 104

5.10 Impact of speculative instruction scheduling on reducing criti-
cal forwarding path for register-resident values. For each bench-
mark, three sets of results are presented, corresponding to the perfor-
mance of the register, the realistic, and the idealistic loop sets, respec-
tively. Bars represent execution time of the parallel loops on a four-
processor CMP normalized to the sequential program execution time
and the reference line represents the coverage of each loop set. S sched-
ules instructions using conservative instruction scheduling algorithm;
C schedules instructions across control dependences; D schedules in-
structions across data dependences; A schedules instructions across
both control and data dependences. 106

xi

5.11 Impact of hardware optimization vs. compiler optimization
for reducing critical forwarding path. For each benchmark, three
sets of results are presented, corresponding to the performance of the
register, the realistic, and the idealistic loop sets, respectively. Bars
represent execution time of the parallel loops on a four-processor CMP
normalized to the sequential program execution time and the reference
line represents the coverage of each loop set. U is unoptimized, in
which all register-resident values are synchronized at first use and last
definition; H uses hardware optimization but not compiler optimiza-
tion; S uses compiler optimization but not hardware optimization; G
uses both the hardware and the compiler. 108

5.12 Impact of compiler-inserted synchronization on reducing spec-
ulation failures. For each benchmark, three sets of results are pre-
sented, corresponding to the performance of the register, the realistic,
and the idealistic loop sets, respectively. Bars represent execution time
of the parallel loops on a four-processor CMP normalized to the sequen-
tial program execution time and the reference line represents the cov-
erage of each loop set. S has no synchronization for memory-resident
values; M has compiler-inserted synchronization for memory-resident
values, as described in Section 3.5.2. 109

5.13 Impact of compiler-inserted vs hardware-inserted synchro-
nization. For each benchmark, three sets of results are presented,
corresponding to the performance of the register, the realistic, and the
idealistic loop sets, respectively. Bars represent execution time of the
parallel loops on a four-processor CMP normalized to the sequential
program execution time and the reference line represents the coverage
of each loop set. S has no synchronization for memory-resident values;
M has compiler-inserted synchronization for memory-resident values,
as described in Section 3.5.2; R has hardware-inserted synchroniza-
tion for memory-resident values, as described in [64]; and T has both
compiler and hardware-inserted synchronization. 111

5.14 Impact of instruction scheduling for memory-resident value
synchronization. Results shown are for the realistic and idealistic
sets. M has compiler-inserted synchronization for memory-resident
values; W has compiler-inserted synchronization for memory-resident
values with signal instructions scheduled using the algorithms described
in Section 4.3. 115

xii

5.15 Impact of profiling accuracy on speculatively scheduling in-
structions across data dependences. Results are shown for the
register set only. Bars represent execution time of the parallel loops on
a four-processor CMP normalized to the sequential program execution
time and the reference line represents the coverage of each loop set. S
schedules instructions using conservative instruction scheduling algo-
rithm; D schedules instructions across data dependences, profiled with
the ref input set; Y schedules instructions across data dependences,
profiled with the train input set. 117

5.16 Impact of profiling accuracy on speculatively scheduling in-
structions across control dependences. Results are shown for the
register set only. Bars represent execution time of the parallel loops
on a four-processor CMP normalized to the sequential program execu-
tion time and the reference line represents the coverage of each loop
set. S schedules instructions using conservative instruction scheduling
algorithm; C schedules instructions across control dependences, pro-
filed with the ref input set; X schedules instructions across control
dependences, profiled with the train input set. 118

5.17 Impact of profiling accuracy on compiler-inserted synchro-
nization. Results are shown for the realistic set only. S has no syn-
chronization for memory-resident values; M has compiler-inserted syn-
chronization for memory-resident values profiled with the ref input
set; Z has compiler-inserted synchronization for memory-resident val-
ues profiled with the train input set. 119

A.1 Data structure maintained at runtime to keep track of branch behavior. 129

A.2 Data structured maintained at runtime to keep track of data dependences.132

C.1 Impact of only avoiding speculation failures caused by loads
of frequently occurring inter-thread data dependences. In each
graph, the x-axis is the speedup with a perfect value prediction for
register-resident values and loads that depend on previous threads in
more than 1% of all threads, and the y-axis is the speedup with a pre-
fect value predictor for all register-resident values and memory-resident
values. Loops that do not speed up in both cases are omitted from the
graph for clarity. 141

xiii

C.2 Impact of only perfectly predicting values for loads on its
first occurrence within a thread. In each graph, the x-axis is the
speedup with a perfect value predictor for register-resident values and
loads of frequently occurring data dependences on the first occurrences
of these loads, and the y-axis is the speedup with a perfect value predic-
tor for register-resident values and loads of frequently occurring data
dependences on all occurrences. Loops that do not speed up in both
cases are omitted from the graph for clarity. 143

C.3 Impact of optimizing loads in the callee procedures. In each
graph, the x-axis is the speedup with a perfect value predictor for all
register-resident values and for loads of frequently occurring depen-
dences regardless of their location, and the y-axis is the speedup with
a perfect value predictor for all register-resident values and loads of
frequently occurring dependences that can be reached from the paral-
lelized loop with at most ten levels of procedural calls. Loops that do
not speed up in both cases are omitted from the graph for clarity. . . 145

C.4 Impact of optimizing loads in the callee procedures. In each
graph, the x-axis is the speedup with a perfect value predictor for all
register-resident values and for loads of frequently occurring depen-
dences regardless of their location, and the y-axis is the speedup with
a perfect value predictor for all register-resident values and loads of
frequently occurring dependences that can be reached from the paral-
lelized loop with at most five levels of procedural calls. Loops that do
not speed up in both cases are omitted from the graph for clarity. . . 146

C.5 Impact of optimizing loads in the callee procedures. In each
graph, the x-axis is the speedup with a perfect value predictor for all
register-resident values and for loads of frequently occurring depen-
dences regardless of their location, and the y-axis is the speedup with
a perfect value predictor for all register-resident values and loads of
frequently occurring dependences that can be reached from the paral-
lelized loop without going through any procedural calls. Loops that do
not speed up in both cases are omitted from the graph for clarity. . . 147

C.6 Impact of only optimizing loads of distance one. In each graph,
the x-axis is the speedup with a perfect value predictor for register-
resident values and loads that frequently depend on its immediate pre-
decessor (e.g., distance one dependences), and the y-axis is the speedup
with a perfect value predictor for register-resident values and loads that
frequently depend on all of its predecessors. Loops that do not speed
up in both cases are omitted from the graph for clarity. 148

xiv

C.7 Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value
predictor for all dependences occurring in more than 1% of all threads,
the y-axis is the speedup with a perfect value predictor for all depen-
dences occur in more than 2% of all threads; Loops that do not speed
up in both cases are omitted from the graph for clarity. 150

C.8 Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value
predictor for all dependences occurring in more than 1% of all threads,
and the y-axis is the speedup with a perfect value predictor for all de-
pendences occurring in more than 4% of all threads. Loops that do
not speed up in both cases are omitted from the graph for clarity. . . 151

C.9 Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value
predictor for all dependences occurring in more than 1% of all threads,
the y-axis is the speedup with a perfect value predictor for all depen-
dences occurring in more than 8% of all threads. Loops that do not
speed up in both cases are omitted from the graph for clarity. 152

C.10 Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value
predictor for all dependences occurring in more than 1% of all threads,
the y-axis is the speedup with a perfect value predictor for all depen-
dences occurring in more than 16% of all threads. Loops that do not
speed up in both cases are omitted from the graph for clarity. 153

C.11 Impact of avoiding speculation failures caused by false shar-
ing. In each graph, the x-axis is the speedup with a perfect value
predictor for loads of all real frequently occurring dependence, the y-
axis is the speedup with a perfect value predictor for loads of all real
frequently occurring dependence and false sharing. Loops that do not
speed up in both cases are omitted from the graph for clarity. 154

xv

xvi

List of Tables

5.1 Simulation parameters. 82

5.2 Benchmark descriptions. 84

5.3 Truncation of benchmark execution. 85

5.4 Fraction of execution being parallelized. 94

A.1 Profiling routines that mark the beginning and the end of a region. . 128

A.2 Profiling routines to collect control dependence information. 129

A.3 Profiling routines to collect data dependence information. 131

B.1 Speedup for High Coverage Loops in go. 134

B.2 Speedup for High Coverage Loops in ijpeg. 134

B.3 Speedup for High Coverage Loops in gzip decomp. 134

B.4 Speedup for High Coverage Loops in vpr. 135

B.5 Speedup for High Coverage Loops in mcf. 135

B.6 Speedup for High Coverage Loops in parser. 135

B.7 Speedup for High Coverage Loops in perlbmk. 136

B.8 Speedup for High Coverage Loops in bzip comp. 136

B.9 Speedup for High Coverage Loops in bzip decomp. 136

B.10 Speedup for High Coverage Loops in twolf. 136

B.11 Speedup for High Coverage Loops in swim. 137

B.12 Speedup for High Coverage Loops in mgrid. 137

B.13 Speedup for High Coverage Loops in mesa. 137

B.14 Speedup for High Coverage Loops in art. 138

B.15 Speedup for High Coverage Loops in equake. 138

B.16 Speedup for High Coverage Loops in ammp. 138

D.1 Fraction of execution being parallelized. 157

xvii

Chapter 1

Introduction

As technology advances, microprocessors that support multiple threads of execution

are becoming increasingly common [18–20, 22, 35, 38, 66]. One way to fully utilize the

computational power of such processors to speed up a single application is to cre-

ate parallel programs by finding independent threads [5, 33, 65]. However, automatic

parallelization for many general-purpose applications (e.g., compilers, spreadsheets,

games, etc.) is very difficult due to pointer and indirect references, complex data

structures and control flow, and input-dependent program behaviors. Thread-Level

Speculation (TLS) [1, 14, 24, 29, 31, 32, 36, 40, 43, 51, 53, 54, 63, 67] facilitates the par-

allelization of such applications by allowing potentially dependent threads to execute

in parallel while maintaining the original sequential semantics of the programs. To

ensure correct execution under TLS, all true (read-after-write) inter-thread data de-

pendences must be satisfied through some form of inter-thread value communication.

However, inter-thread value communication, if not properly managed, may become

the performance bottleneck by serializing parallel execution. This thesis reports the

design, implementation and evaluation of several compiler techniques that mitigate

such effects on performance.

1

1.1 TLS and Inter-Thread Communication

In TLS, the compiler partitions a program into parallel speculative threads without

having to prove that they are independent, while at runtime the underlying hard-

ware checks whether inter-thread data dependences are preserved and re-executes

any thread for which they are not. This TLS execution model allows the paral-

lelization of programs that were previously non-parallelizable. The following example

demonstrates the basic principles of TLS. With TLS, the loop in Figure 1.1(a) can

be parallelized by the compiler without proving that pointer p does not point to the

same memory location as pointer q from previous iterations for all executions of the

loop. Figure 1.1(b) shows how the program is executed speculatively in parallel on a

four-processor, shared-memory multiprocessor that supports TLS, where each thread

of execution corresponds to a single iteration of the loop. A thread is allowed to

execute until completion if the the load through pointer p in this thread does not

load from the addresses stored to by pointer q in the previous threads. However, in

the example, the load through pointer p in thread 4 loads from the address stored to

by thread 1, creating a read-after-write data dependence and causing the speculation

to fail. Consequently, while threads 1, 2 and 3 have been successfully parallelized,

thread 4 has to be re-executed.

TLS is very efficient when speculation always succeeds since it would allow maxi-

mum parallel overlap as shown in Figure 1.2(a), while it becomes very inefficient when

speculation fails often since re-execution has to be invoked frequently, as shown in

Figure 1.2(b). Thus, for frequently occurring data dependences, we must have some

alternative methods to avoid speculation failures. One approach is to synchronize

them by inserting a wait operation before load *p and a signal operation after

store *q to forward the stored value explicitly between the two threads, as shown in

Figure 1.2(c). On the other hand, synchronization has its own problem—it stalls the

2

do {
...
load *p;
...
store *q;
...

} while (condition)

(a) Pointer-based code example.

store 0x88

load 0x84

load . . .

store . . .

Thread 1

Thread 5

load 0x56

store 0x76

load . . .

store . . .

Thread 2

Thread 6T
im

e

load 0x64

store 0x62

load . . .

store . . .

Thread 3

Thread 7

load 0x88

store 0x92

store 0x92

load 0x88
Restart

Thread 4

Thread 4

Processor 2Processor 1 Processor 3 Processor 4

violation

Memory

(b) Speculatively parallel threads.

Figure 1.1: Loops with potential inter-thread data dependences can be parallelized
under TLS.

3

store *q

load *p

store *q

p!=q

store *q

load *p
p!=q

Thread 1
Thread 2

Thread 3

(a) Speculating on a data depen-

dence that always succeeds.

T
im

e

store *q

store *q

load *p

store *q

load *p

load *p

load *p

Thread 1
Thread 2

Thread 3

p==q

p==q

Violation

Violation

Restart Restart

Restart

(b) Speculating on a data dependence that

always fails.

forward *q

forward *q

load *p

load *p

store *q
signal

store *q

store *q

signal

signal

st
al

l

st
al

l

Thread 1
Thread 2

Thread 3

wait
waitload *p

Critical forwarding path

(c) Synchronizing a data dependence

with a long critical forwarding path.

T
im

e forward *q

forward *q

Thread 1
Thread 2

Thread 3
st

al
l

st
al

l

signal
store *q

load *p

load *p

store *q
signal

wait
wait

Critical forwarding path

load *p
store *q

signal

(d) Synchronizing a data dependence

with a shortened critical forwarding

path.

Figure 1.2: Synchronization vs. speculation under TLS.

4

consumer threads. The amount of time the consumer threads sit idle during parallel

execution is determined by the critical forwarding path, which is the time between

when a thread first receives a value from its predecessor to when a new value is gen-

erated and forwarded to its successor. The shorter the critical forwarding path, the

more parallel overlap the parallel threads have, as shown in Figure 1.2(c) and 1.2(d).

To summarize, from the perspective of the compiler, there are two ways to commu-

nicate values between threads under TLS. The compiler can either (i) pretend that

the dependence does not exist, and completely rely on the underlying hardware to

detect dependence violations, and invoke recovery operations when necessary; or (ii)

schedule an explicit synchronization using the wait/signal instruction pair to forward

a value between the threads. We refer to the former as value communication via

speculation and the latter as value communication via synchronization.

1.2 Estimating the Performance Impact of Opti-

mizing Inter-Thread Value Communication

To quantify the importance of optimizing inter-thread value communication, we esti-

mate the performance potential of compiler optimization for inter-thread value com-

munication by simulating TLS execution using an optimal inter-thread value commu-

nication model. For this experiment, a set of loops is selected to maximize program

performance when the cost of inter-thread value communication could be completely

eliminated. These loops are parallelized by synchronizing all dependences between

register-resident values and speculating on all dependences between memory-resident

values. This inter-thread value communication scheme is chosen as the default im-

plementation because the dependences between register-resident values are easy to

analyze statically and are often dependent, while memory-resident values are difficult

5

|0

|50

|100

|150

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U
14

6

O
60

go

U
13

6

O
11

7

m88ksim

U
10

1

O
60

ijpeg

U
13

4

O
76

gzip_comp

U
16

4

O
76

gzip_decomp

U
11

9

O
33

vpr_place

U
11

7

O
53

gcc

U
86

O
49

mcf

U
10

9

O
86

parser

U
10

0

O
96

gap

U
11

0

O
70

bzip2_comp

U
12

4

O
67

bzip2_decomp

U
13

8

O
33

twolf

U
96

O
36

swim

U
79

O
54

mgrid

U
97

O
31

mesa

U
11

3

O
73

art

U
96

O
28

equake

U
10

6

O
63

ammp

Figure 1.3: Program performance potential of optimizing inter-thread value commu-
nication. U is unoptimized for inter-thread value communication, all register-resident
values are synchronized and all memory-resident values are speculated; O assumes a
perfect value predictor for all values.

to analyze statically and less likely to be dependent.

This experiment is conducted using a detailed simulator that implements a four-

processor single-chip multiprocessor with TLS support. Detailed description of the

underlying hardware can be found in Chapter 2. Two sets of simulations are stud-

ied, the first simulating the costs of inter-thread value communication, including the

costs of both re-executions and synchronization, and the second set estimating the

performance upper bound by implementing an oracle that always applies the optimal

strategy of inter-thread value communication. The best possible optimization for re-

ducing the cost of value communication is a perfect value predictor that prevents any

data dependence speculation from failing and any synchronization from stalling. The

results are shown in Figure 1.3, in which each bar represents the program execution

time normalized to that of the original sequential program. Bars less than 100 are

speedups. The U bars, which are the execution time when no value communica-

tion optimization is applied, indicate that our baseline spends a significant amount

of time on inter-thread value communication, slowing down integer benchmarks by

21.8% while speeding up floating point benchmarks by a mere 1% on average relative

to sequential execution. With a perfect value predictor eliminating the cost of inter-

6

thread value communication, integer benchmarks and floating point benchmarks can

potentially speed up performance by 33.6% and 52.5% respectively relative to the

sequential program execution. The performance gap between the U bars and the O

bars is pursued in this dissertation.

This dissertation proposes to use the compiler to orchestrate inter-thread value

communication for both memory-resident and register-resident values. The compiler

first decides whether to synchronize or to speculate on a potential data dependence.

If synchronization is necessary, the compiler will then insert the corresponding signal

and wait instructions, creating a point-to-point path to forward the values involved

in the dependence. The compiler is also used to avoid stalling the consumer threads

by scheduling instructions to reduce the critical forwarding path.

1.3 Related Work

Many schemes have been proposed for improving the efficiency of inter-thread value

communication, some hardware-based [15, 39, 43, 47, 64] and others software-based [32,

67, 68, 72, 73, 75]. This section explains value communication issues raised from both

hardware-based and software-based previous investigations. More detailed descrip-

tions of the related work for each compiler optimization technique can be found in

the corresponding chapters.

1.3.1 Hardware-Based Schemes for Improving Inter-Thread

Value Communication

For inter-thread value communication, hardware-based approaches usually treat register-

resident values and memory-resident values with different strategies. Hardware-

based automatic synchronization [15, 47, 64] was proposed specifically for inter-thread

7

memory-resident value communication. Dedicated hardware register-resident value

forwarding [39] and reorder buffer prioritization [64] were proposed specifically for

improving register-resident values communication. We will also discuss hardware-

based value prediction techniques [15, 44, 64] that target both memory-resident and

register-resident values.

Hardware Support for Automatic Synchronization for Memory-Resident

Values

To detect inter-thread data dependences for memory resident values, Multiscalar [25,

26, 58] proposed using a centralized address resolution buffer (ARB). Based on such a

centralized scheme, Moshovos et al. [47] used a centralized hardware lookup table to

automatically synchronize frequently occurring data dependences by matching depen-

dent load/store pair and demonstrated that the number of speculation failures can

be reduced. This approach, however, requires a special functionality that is unique

to the Multiscalar proposal—that is, the memory location causing data dependence

violation is made available to the consumer immediately after the producer has fin-

ished modifying this location. For TLS proposals that are based on a distributed

memory coherence protocol, implementing this feature implies performing complex

version management. In addition, this scheme could limit performance and is difficult

to scale due to the need of centralized structures.

To avoid the centralized structures required in Moshovos’ work, Cintra et al. [15]

and our group [64] both proposed approaches using only decentralized hardware

lookup tables for automatically synchronizing memory-resident values. Cintra et al. [15]

implemented hardware lookup tables to determine whether speculation is likely to fail

for a certain cache line, while our proposal [64] used a fully associative buffer to keep

track of load instructions rather than memory lines. Although it is relatively easy

8

to identify the cache lines and/or the load instructions that cause speculation to fail,

it is more difficult to identify the corresponding store instructions that produce the

value. For the producer to identify such store instructions, it must be able to predict

(i) the memory locations causing data dependence violations in the consumer thread

and (ii) the last stores modifying these memory locations. Thus, both proposals could

over-synchronize parallel execution by requiring the consumer thread to stall until the

previous threads commit.

The compiler, having a global view of the entire program, could help in this

case, and thus this research uses the compiler to identify not only load instructions

that cause speculation to fail, but also the corresponding stores. Consequently, load

instructions could be issued as soon as their corresponding store instructions are

executed. Details are presented in Section 5.8.

Hardware Support for Fast Inter-Thread Register-Resident Value For-

warding

The critical forwarding path introduced by synchronizing register-resident values can

serialize parallel execution and degrade performance. It includes two components,

(i) the time required to compute the forwarded value and (ii) the time required to

forward the value between two processors. Our group’s previous work [64] proposed

to reduce the former by prioritizing instructions required to compute forwarded value

in the reorder buffer and computing the forwarded value early. Krishnan et al. [40]

proposed to reduce the latter using a dedicated distributed register file system that

is referred to as the distributed scoreboard. Since synchronization for register-resident

value is often the performance bottleneck during parallel execution, both approaches

have been demonstrated to be effective. However, we believe that the compiler,

having the global knowledge of the entire program, can schedule instructions across

9

a larger distance and can thus reduce the critical forwarding path more aggressively.

In addition, the compiler-based approach eliminates the need for expensive hardware

support. Details are presented in Section 5.7.

Value Prediction for Register-Resident and Memory-Resident Values

Hardware can also avoid the costs of inter-thread value communication through value

prediction [15, 43, 44, 64]. Previous work [44] has shown that value prediction can

be used efficiently to communicate register-resident values, but it is less efficient

at communicating memory-resident values. Cintra et al. [15] and our group’s [64]

previous studies have also pointed out that since incorrect value prediction can incur

expensive recovery operations, it should be applied only to values that are predictable.

1.3.2 Improving Inter-Thread Value Communication Using

Compiler Techniques

In this section, we briefly discuss two previous proposals that rely on the compiler to

manage inter-thread values communication.

Multiscalar [25, 26, 58] developed compiler algorithms to insert synchronization

and to move signals and their dependent instructions early within a thread (which

is also referred to as a task in Multiscalar). However, the Multiscalar scheduler was

designed specifically for Multiscalar tasks, which usually consist of only a few basic

blocks and do not contain procedure calls or loops. In contrast, the work in this

dissertation targets threads that are much larger on average and may contain complex

control flow. We propose and implement a dataflow-based scheduler that is able

to move instructions past inner loops and procedure calls. More implementation

details and a contrast to Multiscalar are presented in Section 4.2 and the performance

comparison is in Section 5.7.2.

10

The Superthreaded architecture [67] proposed a different execution model. In this

model, each thread first computes the addresses stored to by the current thread on

which later threads could be dependent (a.k.a target store addresses), and forwards

these addresses to its successors. It then forwards the contents of these addresses as

they become available. The consumer thread, on the other hand, will stall before

it loads a value from a forwarded target store address. However, computing all the

target store addresses early requires significant instruction reordering by the compiler,

which is not always possible. Thus, it is difficult to obtain the desired parallel overlap.

Concurrently with our work, Zilles and Sohi [75, 76] proposed the master/slave

speculative execution paradigm by having a master thread execute a distilled version

of the program that orchestrates and predicts the values for slave threads. In this

scheme, communicated values are pre-computed by the master thread and distributed

to the slave threads (as opposed to being updated and forwarded between consecutive

speculative threads). Generating the distilled code for the master thread essentially

requires us to identify the critical forwarding path for all values that require commu-

nication, and the instruction scheduling techniques described in Section 4.3 can be

used for this purpose.

1.4 Dissertation Contributions

The primary contributions of this dissertation are the following:

• The proposal of using profiling-based compiler techniques to automatically syn-

chronize frequently occurring memory-resident value dependences to avoid spec-

ulation failure. This approach, which aims to improve performance by synchro-

nizing frequently occurring data dependences, trades off the costs of the recov-

eries from failed speculations with the costs of synchronization stalls. Because

11

the existence of potential aliasing between memory accesses makes accurate

static analysis difficult, this research relies on profiling information to identify

instructions that need synchronization and on hardware support to ensure cor-

rect execution.

• The proposal of using dataflow-based instruction scheduling algorithms to re-

duce the critical forwarding path. This research identifies the critical forwarding

path introduced by register-resident value synchronization as a key performance

bottleneck for many applications and presents novel dataflow-based instruction

scheduling algorithms to reduce the length of the critical forwarding path. With

the proper hardware support, this technique has also been extended to spec-

ulatively schedule instructions across control and data dependences within a

thread.

• A thorough evaluation of the proposed compiler algorithms on a detailed ar-

chitectural model with the help of a simulator. The evaluation shows that the

proposed compiler-based techniques are effective in reducing the cost of inter-

thread value communication.

• A comparison between compiler-based and hardware-based inter-thread value

communication techniques. This demonstrates that compiler-based instruction

scheduling techniques are more effective in reducing the critical forwarding path

than hardware-based techniques, since the compiler, having global knowledge of

the entire program, is able to schedule instructions across a larger distance. On

the other hand, this study also shows that the compiler and the hardware should

work in tandem to avoid speculation failures, since each of the two techniques

benefits a different set of benchmarks.

12

Chapter 2

Hardware and Software Support

for TLS

This chapter presents a thorough description of the hardware and software require-

ments for implementing thread-level speculation. It begins with a high-level intro-

duction of the TLS execution model to establish the background for the rest of this

chapter, followed by a section on the necessary hardware support. It then defines the

hardware and software interface that allows the compiler to manipulate speculative

execution. Finally, it demonstrates how various compiler passes can be combined to

generate optimized parallel programs from sequential applications.

2.1 Execution Model

This section describes the TLS execution model targeted by the compiler, with par-

ticular focus on inter-thread value communication. This execution model targets a

single-chip multiprocessor in which each processor has its own private first-level cache

while sharing a second-level cache, as shown in Figure 2.1. A sequential program is

13

while(continue cond) {
...
load *q;
...
store *p;
...

}

(a) Example loop with am-
biguous inter-thread data de-
pendence.

�
�
�

�
�
�

C

P1

�
�
�

�
�
�

C

P4

�
�
�

�
�
�

C

P3

�
�
�

�
�
�

C

P2

Caches

Shared
Memory

Private

load *q load *q load *q

store *p store *p store *p

load *q

store *p

Thread 1 Thread 2 Thread 3 Thread 4

Memory

T
im

e

(b) TLS execution.

Figure 2.1: Basic architecture and execution model for TLS.

14

divided into threads, and each thread is assigned to a different processor. These par-

allel threads can be potentially dependent, but are executed speculatively in parallel.

We rely on the underlying hardware to detect inter-thread data dependences and re-

cover from incorrect execution. Figure 2.2(a) shows the life cycle of a single thread:

each thread is first created by its predecessor through a lightweight fork, called a

spawn, and executed in parallel with its predecessor. All threads must be committed

sequentially to preserve the original execution order. This is achieved with the help

of a homefree token: by obtaining this token, a thread can ensure that all previous

threads have made all of their speculative modifications visible to the memory system

and hence it is safe to commit. The thread that holds the token is homefree, and spec-

ulation succeeds if there is no inter-thread data dependence. This execution model

allows us to exploit thread-level parallelism, as shown in Figure 2.2(b). However,

when there is an inter-thread data dependence, the hardware will detect the depen-

dence violation, and restart the thread containing the consumer of the dependence.

All logically later threads must also be restarted, as shown in Figure 2.2(c).

2.1.1 Inter-Thread Value Communication

The goal of this section is to examine the value communication mechanisms available

under TLS from the compiler’s perspective. TLS supports two forms of communi-

cation and the compiler can decide which mechanism is appropriate for a particular

data dependence to obtain maximum parallel overlap:

Synchronization explicitly forwards a value between the source and the destination

of a data dependence, as shown in Figure 2.3(a). It allows for partial parallel

overlap and is thus suitable for frequently occurring data dependences that can

be clearly identified. However, if the instructions that compute the communi-

cating value are sparsely located in a thread, explicit synchronization could also

15

Spawn a New Thread

Initialization

Wait for Homefree Token
Commit
Pass Homefree Token

T
im

e

(a) A single thread.

Thread 1

Thread 2

Thread 3

(b) Parallel threads: succeeded.

T
im

e

Thread 1

Thread 2

Thread 3
Dependence

Violation

Restart

Restart

(c) Parallel threads: violated.

Figure 2.2: TLS execution model.

16

store *p
signal

Thread 1 Thread 2

St
al

l

wait

load *q

Memory

(a) Value communica-

tion via synchroniza-

tion.

T
im

e

Memory

load *q

store *p

Thread 1
Thread 2

(b) Value Communi-

cation via speculation.

Figure 2.3: TLS value communication model.

limit performance by stalling the consumer threads more than necessary.

Speculation relies on the underlying hardware to detect data dependence violations

at runtime and trigger re-execution when necessary, as shown in Figure 2.3(b).

It allows for maximum parallel overlap when speculation always succeeds, how-

ever, if speculation always fails, this mechanism would introduce a significant

performance penalty. Thus, this form of value communication is suitable for

data dependences that are difficult to analyze and occur rarely.

2.2 Hardware Support

This section describes the hardware required to support speculative threads. There

has been many proposals on hardware support for TLS [1, 15, 29, 31, 32, 43, 51, 63, 67],

and a thorough treatment is beyond the scope of this dissertation. We will describe

only the TLS hardware support used as the framework of this study.

17

TLS support has two key components: (i) recovering from incorrect execution

when speculation fails, and (i) detecting inter-thread data dependences at runtime.

Our hardware support uses the private first-level cache to keep track of speculative

accesses to the memory system. Each cache-line is extended in the first-level cache

with two extra bits: a speculatively modified bit (SM) and a speculatively loaded

bit (SL). When a thread is executing speculatively, all speculative modifications are

buffered in the first-level cache and these modifications only affect the memory system

when the thread becomes non-speculative.

Detecting inter-thread data dependences involves comparing the addresses of load

and store instructions belonging to different threads and checking whether they have

violated data dependence constraints defined by the sequential execution. This can

be done by having the producer thread report to the consumers the locations that it

has modified and by having the consumer check whether these locations have been

speculatively consumed. We have extended the invalidation-based cache coherence

protocol to implement this functionality: whenever a cache line shared by multiple

first-level caches is modified, an invalidation message is sent to the cache that has

a copy of the line along with an identification number of the thread that performs

the modification. The identification number is a logical time-stamp that corresponds

to the sequential order of the threads. The consumer thread records the locations it

has speculatively loaded, and whenever a logically earlier thread modifies the same

location (as indicated by an invalidation message from a logically earlier thread), a

violation is issued. This process is illustrated in Figure 2.4, with three speculative

threads, thread 1, thread 2 and thread 3. Thread 1 and thread 3 both per-

form a speculative load from address 0x88, so the speculatively modified bit is set

for the corresponding cache line. When thread 2 stores to that same cache line, it

generates an invalidation message containing its thread identification number to

the other two processors. Processors that have speculatively loaded from this cache

18

C

Cache States SMSL

C

Cache States SMSL

C

Cache States SMSL

load *p

 load 0x88

Processor 2

SL: speculatively loaded
SM: speculatively modified

0x88 0x88 T F

store *q

store 0x88

Processor 1

F T

 load 0x88

Processor 0

M

0x88

load *p

FT

Thread 1 Thread 2 Thread 3

Thread 2: Invalidation Thread 2: Invalidation

Figure 2.4: Hardware support for TLS.

line, in this case thread 1 and thread 3, are potential candidates for speculation

failure. However, data dependence is violated only when the invalidation message

comes from a logically earlier thread; for instance, thread 3 is violated in the figure.

With this implementation, TLS can be supported with minimum hardware.

2.3 Hardware/Software Interface

For the compiler to initiate and maintain parallel execution, it is necessary for the

underlying system to provide the compiler with the ability to manage parallel threads,

manipulate speculative states, and schedule inter-thread value communication. For

this purpose, a set of simple primitives [61, 62] are defined. There are a number of

19

counter = 0;
value = 77;
do {

value = work(value);
counter++;

} while (loop test());

(a) The original loop.

counter = 0;
value = 77;
do {

value = work(value);
counter++;
next iteration = loop test();
if (!next iteration)

break;
} while (1);

(b) The test for loop termination is folded

in the loop body to ease parallel transfor-

mation.

Figure 2.5: A simple while loop.

issues to consider for such an interface. While some issues are analogous to those for

traditional parallel applications, such as creating threads and managing the stacks,

others are unique to TLS, such as passing the homefree token and recovering from

failed speculation.

In this section, we describe the primitives used to perform each task by the com-

piler. We will illustrate how a simple while loop, written in sequential language, as

shown in Figure 2.5(a), is transformed into a parallel program. This loop has: (i)

undetermined loop bounds, (ii) ambiguous data dependences since the computations

residing in work() and loop test() can be aliased, and (iii) scalar dependences through

two variables, counter and value. The test for loop termination is folded into the

loop body to ease parallel transformation, as shown in Figure 2.5(b).

20

do {
tls td = spawn(); . a©
if (tls td != 0) {
value = work(value);
counter++;
next iteration = loop test();
if (tls td != SPAWN FAILED) {

if (next iteration)
end thread(); . b©

else
break;

}
else if (!next iteration)

break;
}

} while (1)

Figure 2.6: Interface for thread creation and termination.

2.3.1 Thread Creation and Termination

The compiler can initiate a parallel thread using spawn(). Spawn() returns twice,

once to the parent and once to the child. In the parent, the thread descriptor of

the child thread is returned, and in the child, 0 is returned if the fork succeeds.

Each thread creates its successor at the beginning of execution to maximize parallel

overlap, as shown in line a© in Figure 2.6. The thread descriptor is an identifier

which can be used for further communication from the parent to the child. When

the thread has completed its work, it invokes end thread() to terminate, as shown

in line b©. If the fork fails, due to insufficient resources (such as no more processors

being available), it returns the special value SPAWN FAILED to the parent. The spawn

mechanism forwards initial parameters to the appropriate processor.

21

do {
tls td = spawn();
if (tls td != 0) {
value = work(value);
counter++;
next iteration = loop test();
wait for homefree token(); . c©
commit speculative writes(); . e©
if (tls td != SPAWN FAILED) {

if (next iteration) {
pass homefree token(tls td); . d©
end thread();

}
else

break;
}
else if (!next iteration)

break;
}

} while (1)

Figure 2.7: Interface for managing homefree token.

2.3.2 Homefree Token

To ensure that speculative threads are committed in sequential order as defined by

the sequential program, a homefree token is passed between the active threads using

the primitives shown in Figure 2.7. The compiler is responsible for (i) waiting for

homefree when it has completed execution, as shown in line c©; (ii) committing its

speculative states to the memory system once it holds the homefree token, as shown in

line e©; (iii) and passing the homefree token to its successor before thread termination,

as shown in line d©. The thread that holds the homefree token is the oldest thread

and is referred to as the homefree thread.

22

2.3.3 Speculative State Manipulation

A thread can execute in one of two modes, the speculative mode or the non-speculative

mode. When a thread is executing in the speculative mode, all modifications made

to the memory system stay in the local cache and do not affect the value in the main

memory. When a program is executing in non-speculative mode, all modifications

made to the memory system are shared with all the other threads using standard

memory consistency mechanisms.

When a thread is created, it executes in the non-speculative mode by default. The

thread continues this mode of execution as long as the compiler is able to determine

that this thread is independent of all active earlier threads. When the compiler

decides that there is not enough static information to ensure independence, it switches

to the speculative execution mode by invoking become speculative(), as shown in

line f© in Figure 2.8. All load operations that are performed in the speculative

execution mode of the thread are subject to violation if the address from which a

load operation retrieved a value was written to by a store in an earlier thread. When

a thread decides to commit all speculative modifications to the memory, it invokes

become nonspeculative(), as shown in line g© in Figure 2.8. At this point, the

thread is ready to commit all speculative loads and stores by waiting for the homefree

token.

2.3.4 Stack Management

A key design issue in TLS is the management of references to the stack. A naive

implementation would maintain a single stack pointer (shared among all threads)

and a stack in memory that is kept consistent by the underlying data dependence

tracking hardware. The problem with this approach is that speculation would fail

frequently and unnecessarily: for example, whenever multiple threads store values

23

do {
tls td = spawn();
if (tls td != 0) {
become speculative(); . f©
value = work(value);
counter++;
next iteration = loop test();
wait for homefree token();
become nonspeculative(); . g©
commit speculative writes();
if (tls td != SPAWN FAILED) {

if (next iteration) {
pass homefree token(tls td);
end thread();

}
else

break;
}
else if (!next iteration)
break;

}
}

}

Figure 2.8: Interface for managing speculative modes.

24

to the same location on the stack. These dependence violations would effectively

serialize execution. In addition, whenever the stack pointer is modified, the new

value must be forwarded to all successive threads. An alternative approach is to

create a separate stacklet [28] for each thread to hold local variables, spilled register

values, return addresses, and other procedure linkage information. These stacklets

are created at the beginning of the program, assigned to each of the participating

processors, and re-used by the dynamic threads. The stacklet approach allows each

thread to perform stack operations independently, allowing speculation to proceed

unhindered. Figure 2.9 shows how to switch between stacklet and the regular stack:

before entering a parallel region, the stack pointer is saved, as shown in line h©, and

after exiting a parallel region, the regular stack pointer is restored, as shown in line i©.

2.3.5 Exception Handling

In this section, we will discuss how three different types of exceptions, cancel-thread,

violate-thread, and hardware exception, are handled. The cancel thread exception can

only be invoked explicitly by the compiler with the cancel thread instruction. This

instruction takes one argument, a thread descriptor, and it will send a signal that

causes an exception at the targeted thread. The cancel thread exception is very useful

in the following scenario: for an unbounded loop, a thread can be spawn beyond the

last iteration of the loop. When the loop iteration test fails and a thread realizes

that it has reached the last iteration of a loop, it has to kill all its successors. This

can be done with a cancel thread instruction specified by the compiler, as shown in

line j© in Figure 2.10. A thread must first register a cancel thread handler, as shown

in line l©, and asynchronously jump to it when a cancel thread exception occurs. The

exception handler defines the operation to perform when the exception is invoked. In

the case of handling an unbounded loop, it is necessary to cancel all successors and

25

saved sp = save sp(); . h©
do {
tls td = spawn();
if (tls td != 0) {
become speculative();
value = work(value);
counter++;
next iteration = loop test();
wait for homefree token();
become nonspeculative();
commit speculative writes();
if (tls td != SPAWN FAILED) {

if (next iteration) {
pass homefree token(tls td);
end thread();

}
else

break;
}
else if (!next iteration)

break;
}

}
restore sp(saved sp); . i©

Figure 2.9: Interface for stack manipulation.

26

then terminate, as shown in lines k©. When no actions are defined, the default action

is taken, which erases all speculative states and restarts the execution from the first

speculative instruction.

The violate-thread exception can be invoked either by an explicit violate thread

instruction or by the hardware when a data dependence violation is detected. Violate-

thread exceptions and hardware exceptions can be handled in a similar manner as the

cancel thread exceptions. Although the default action for a thread upon receiving a vi-

olate thread exception is to restart all speculative execution, the set violation handler()

primitive could offer an alternative re-start point. The set violation handler()

and the set cancel handler() instructions are similar to the semantics of the Unix

set jmp() instruction: when called normally from the program, the function returns

-1; when returned from an exception, it returns the violation distance, which is the

difference between the thread identification number of the consumer and that of the

producer. Hardware exceptions, such as null-pointer-deferences and divided-by-zero

occurring in speculative threads, should not cause the entire program to terminate,

since they could be caused by inconsistent speculative states. Hence, if a hardware

exception occurs during speculative execution, speculation will fail and the thread is

re-executed.

2.3.6 Inter-Thread Value Communication

The underlying TLS hardware is able to check and ensure that all memory depen-

dences are preserved at execution time without explicit directions from the compiler.

An alternative mechanism for inter-thread value communication, namely explicit syn-

chronization, is also available for communicating values. This mechanism provides the

compiler with the ability to perform point-to-point synchronization between the pro-

ducer and the consumer threads of a data dependence through a forwarding frame.

27

saved sp = save sp();
do {
tls td = spawn();
if (tls td != 0) {
become speculative();
if (set cancel handler() == -1) { . l©
cancel thread(tls td); . k©
end thread(); . k©

}
value = work(value);
counter++;
next iteration = loop test();
wait for homefree token();
become nonspeculative();
commit speculative writes();
if (tls td != SPAWN FAILED) {

if (next iteration) {
pass homefree token(tls td);
end thread();

}
else {
cancel thread(tls td); . j©
break;

}
}
else if (!next iteration)

break;
}

} while (1)
restore sp(saved sp);

Figure 2.10: Interface for handling exception.

28

The forwarding frame is a structure on the stack where all data items are thread-

private. In this case, the synchronization mechanism is used to communicate value

for the two scalar dependences.

A program with such synchronization inserted is shown in Figure 2.11. Be-

fore entering the speculatively parallelized region, the forwarding frame is first de-

clared (lines m© and n©). The initial values are also loaded onto the forwarding frame

(line o©). Upon exiting the speculatively parallelized region, values are copied from

the forwarding frame back to the registers (line p©). The entire forwarding frame

is copied from the parent to the child thread when the child is created. During

the execution of a thread, explicit communication can be performed on individual

data items on the forwarding frame by specifying the offset of the data item on the

forwarding frame. In this example, two scalar values, counter and value, are com-

municated through synchronization between the speculative threads. Counter is an

inductive variable, and thus it is computed before the successor is spawned so that

its value is available when thread is created, as shown in lines q©. However, the value

of value is not available until much later in the thread. So, the producer thread

uses the send value(destination thread, offset, value) instruction, as shown

in line r©, to remotely write value to the forwarding frame of the destination thread

at the location specified by offset and set a flag to indicate that the value is available.

The consumer of the data dependence, on the other hand, checks if the flag is ready

with the wait for value(offset) instruction, as shown in line s©.

2.4 Compiler Support

We rely on the compiler to define where and how to speculate. Our compiler infras-

tructure is based on the Stanford SUIF 1.3 compiler system [65], which operates on C

29

saved sp = save sp();
struct forwarding frame { int counter; int value; } ff; l©
forwarding frame(&ff); . m©
forwarding size(sizeof(forwarding frame)); . n©
ff.counter = 0; . o©
ff.value = 77; . o©
while(1) {
tls td = spawn();
local counter = ff.counter; . q©
ff.counter = local counter + 1; . q©
if (tls td != 0) {
become speculative();
if (set cancel handler() == -1) {
cancel thread(tls td);
end thread();

}
wait for value(4); . s©
ff.value = work(ff.value);
send value(tls td, 4, ff.value); . r©
next iteration = loop test();
wait for homefree token();
become nonspeculative();
commit speculative writes();
if (tls td != SPAWN FAILED) {

if (next iteration) {
pass homefree token(tls td);
end thread();

} else {
cancel thread(tls td);
break;

}
}
else if (!next iteration)

break;
}

}
counter = ff.counter; . p©
value = ff.value; . p©
restore sp(saved sp);

Figure 2.11: Interface for value communication.

30

Selecting
Parallel
Regions

Creating
Parallel
Threads

Optimizing
Value
Communication

Compiler
Backend

foo.exe

foo.c

Optimization
Techniques

Compiler
Frontend

P
ar

al
le

liz
in

g
C

om
pi

le
r

Figure 2.12: Compiler infrastructure.

31

code. For Fortran applications, the source files are first converted to C using sf2c1

and then converted to SUIF format. Our infrastructure is illustrated in Figure 2.12.

The parallelizing compiler consists of the following passes: (i) selecting a set of loops

that is likely to maximize program performs, (ii) inserting parallelization primitives

to create parallel programs, and (iii) optimizing inter-thread value communication to

create efficient codes.

2.4.1 Parallel Loop Selection

One of the most important tasks in a thread-speculative system is to decide which

portions of code to speculatively parallelize [16]. Because a thorough treatment of

region selection is beyond the scope of this work, only a brief discussion of the issues

involved is provided. This dissertation focuses on loops for two reasons: first, loops

take up a significant portion of the execution time (coverage) and hence can have large

impact on program performance; and second, loops are fairly regular and predictable,

hence straightforward to transform into threads.

Here is a brief description of the loop selection process. First the following filter is

applied to remove from consideration loops that have no potential for speedup under

TLS:

• coverage (fraction of dynamic execution) is less than 0.1% of execution time;

• there is less than one iteration per invocation (on average);

• the number of instructions per iteration is more than 16000 (on average);

• the total number of instructions per loop invocation is less than 30 (on average);

• loops contain calls to alloca().2

1We have made minor manual modifications to limit the scope of certain variables.
2alloca would interfere with stack management.

32

All loops that have passed this filter are evaluated twice, the first time running

sequentially to estimate the performance baseline, the second time running in parallel

to estimate the performance of parallel execution. Thus, for each loop there is a gain

factor that is the performance improvement obtainable for the entire program if this

loop is executed in parallel. The gain factor is used to decide which loops are best

to parallelize for maximizing program performance. The decision must take into

consideration loop nesting: two loops that can both speed up relative to sequential

execution can be nested. This relationship is represented by loop graphs, as shown

in Figure 2.14, in which each node is a loop in the original program. A directed edge

indicates loop nesting either in the form of directly nested loops or nested through

procedure calls. To identify the set of loops that maximize total gain, the following

gain-distribution procedure is applied to each node in the graph in reverse depth-

first-search order.

1. Calculate the performance improvement if this node is parallelized.

2. Sum the performance gain at all child nodes.

3. Choose the greater of the two values to be the gain at this node.

4. If the value of parallelizing this node is greater, disconnect all out going edges.

5. Remove nodes with zero or negative gain at the graph.

6. For nodes with multiple parents, divide the gain equally between its parents by

assuming all path are equally likely (a simplification).

Once this procedure is completed, the leaf nodes of the graph are selected for paral-

lelization.

The last piece of the puzzle for region selection lies in estimating the parallel

execution time for each loop. Note that, on one hand, the parallel execution time

33

Sequentual
Executable

Simulator

Parallel
Compiler

GCC Parallel
Executable

SUIF

GCC

Region
SelectorFoo.c Gain

Simulator
Idealized

Loop
Tree

Figure 2.13: Region selection process.

used for region selection must be optimized for value communication; on the other

hand, what optimizations are appropriate depends on the set of loops chosen by the

region selection process. Thus, the region selection and optimization selection are

interdependent. To break the deadlock, we equip the region selection pass with the

knowledge of the available optimization techniques, as shown in Figure 2.12.

The actual implementation uses a hypothetical simulation model, as illustrated

in Figure 2.13: (i) a sequential and a parallel version (with no optimization for value

communication) of a program are created; (ii) the sequential version runs through

a simulator to obtain the sequential execution time for each loop; (iii) the parallel

version runs through the hypothetical simulation model to obtain the upper-bound of

parallel execution time for each loop; (iv) the execution time from the two simulations

are compared and a gain factor for each loop is generated. The hypothetical simulation

model ignores the cost of communication for a subset of data dependences that could

potentially be optimized; These gain factors are fed into the region selector algorithm

described earlier.

2.4.2 Parallelization

Once speculative regions are chosen, the compiler inserts the TLS instructions (de-

scribed in Section 2.3) that interact with hardware to create and manage the specu-

34

void foo() {
for (i = 0; i < 10; i++)

printf("%d\n", moo(i));

}

void bar() {
for (i = 0; i < 20; i++)

printf("%d\n", moo(i));

}

int moo(int i) {
sum = 1;

for (j = 0; j < i; j++)

sum = sum + moo(j);

return sum;

}

(a) Source code.

foo_for1

moo_for1

bar_for1

(b) Loop graph.

Figure 2.14: Converting a program into a loop graph.

lative threads and forward values.

2.4.3 Optimization

Without optimization, execution can be unnecessarily serialized due to either ex-

cessive data dependence violations or over-synchronization. To address these issues,

two optimization techniques are applied. The first optimization is identifying and

synchronizing frequently occurring data-dependences since they correspond to the

majority of violations. This optimization is described in detail in chapter 3. The

second optimization is scheduling instructions to reduce the critical forwarding path

since synchronization could also serialize execution by stalling the consumer thread

longer than necessary. This optimization is described in detail in Chapter 4.

2.4.4 Code Generation

Our compiler takes a sequential program and produces C source code which includes

the TLS instructions as in-line MIPS assembly code using gcc’s “asm” statements.

35

This source code is then compiled with gcc v2.95.2 using the “-O3” flag to produce

optimized, fully functional MIPS binaries containing new TLS instructions.

2.5 Chapter Summary

This chapter has provided the details of the hardware and software support for thread-

level speculation. It has explained how the cache coherence protocol is extended

to detect data dependence violations and buffer speculative execution. It has also

described the compiler infrastructure that creates speculative parallel executables

from sequential programs. With the help of an example loop, it has demonstrated

how the compiler can manipulate speculative execution and schedule inter-thread

value communication using simple primitives. The rest of this dissertation is built

upon the infrastructure described in this chapter.

36

Chapter 3

Automatic Synchronization

In TLS, it is desirable to synchronize frequently occurring data dependences and

to speculate on infrequently occurring ones for performance purposes. This chapter

describes the compiler techniques for automatically inserting synchronization for both

register-resident and memory-resident values.

3.1 Synchronization Versus Speculation

In thread-level speculation, speculation failures incur high costs and thus should be

invoked only occasionally. Consequently, alternative methods to deal with frequently

occurring data dependences between speculative threads must be sought. One way

to reduce speculation failures caused by data dependence violations is to synchronize

frequently occurring data dependences. Figure 3.1 shows an example loop that the

compiler has speculatively parallelized by turning each loop iteration into a thread.

In each thread, a value is loaded through the pointer p and another value is stored

through the pointer q. When p in a later thread points to the same memory loca-

tion as q in an earlier thread, there is a read-after-write dependence. Figure 3.1(b)

and 3.1(c) show two methods of communicating a value between these two threads.

37

The first method is speculation: the consumer thread executes as if there were no

data dependence with previous thread and is re-executed if the hardware detects a

dependence violation. The second method is synchronization: the consumer thread

stalls and waits for the producer thread to produce and forward the correct value.

Synchronization serializes parallel execution and only allows partial overlap between

parallel threads, but is more efficient than speculation when data dependences occur

frequently, since restarts are avoided.

Value communication for register-resident values and memory-resident values are

handled differently. Register-resident value dependences are likely to occur frequently,

and thus it makes sense to always synchronize them. Furthermore, since TLS does

not preserve data dependences between register-resident values, compiler scheduled

synchronization for register-resident scalars is not only a performance issue, but also a

correctness constraint. Fortunately, automatic synchronization of scalar values is rela-

tively straightforward, since scalar values are explicitly named. Even though complex

control flow is pervasive in general purpose applications, it is still relatively easy to

identify the first use and the last definition of each scalar and to insert synchronization

with the help of data-flow analysis.

Memory-resident values are more difficult to synchronize due to aliasing. Fig-

ure 3.4(a) on page 52 shows three threads running speculatively in parallel. Load *p

can potentially depend on any of the five stores in the figure, although each access to

the memory uses a different pointer. The compiler must prove that load *p depends

on store *q in all possible executions before synchronizing the two instructions and

directly forwarding a value between them. However, for general-purpose applications,

such proofs are difficult and sometimes impossible to construct. If the compiler de-

cides to synchronize store *q and load *p without such a proof, we must confirm

at runtime that (i) p and q refer to the same memory location, and that (ii) stores

through pointers y and z do not modify this location.

38

do {
work1();

...= *p;

work2();

*q = ...;

work3();

} while (1);

(a) Code with communication through memory-

resident values.

restart

restart

restart

store *q

store *q

load *p
load *p

load *p
load *p

load *p

p==q
violate

p==q
violate

Thread 1
Thread 2

Thread 3

(b) Communicating through specula-

tion: if p and q alias between threads

then the later threads are violated and

restarted with the correct value.

T
im

e

st
al

l

st
al

l

load *p

load *p

signal
store *q

signal
store *q wait

wait

Thread 1
Thread 2

Thread 3

(c) Communicating through synchro-

nization: the later threads always stall

until the value is available.

Figure 3.1: Performance trade-off between speculation and synchronization.

39

Previously, a number of studies [15, 47, 64] proposed using hardware implemen-

tations to dynamically insert synchronization for frequently occurring and unpre-

dictable data dependences in TLS. Moshovos et al. [47] demonstrated how to identify

frequently occurring data dependences with a centralized structure. However, a cen-

tralized structure can limit performance [30] and is difficult to scale. On the other

hand, using distributed structures to perform the same task is much more compli-

cated, since it involves replicating and updating the tables that predict/synchronize

load-store pairs via broadcast. In a distributed environment, it is relatively easy for

the hardware to identify dynamically loads that frequently cause speculation to fail

using hardware lookup tables, but it is more involved to identify the corresponding

stores. To dynamically identify an inter-thread dependence pair, the hardware has

to (i) compare the addresses accessed by loads and stores in different threads, and

(ii) dynamically determine whether a store is the last store that modifies an address

in a thread. To avoid this complexity, recent proposals for hardware-inserted syn-

chronization [15, 64] choose to delay the load instructions until previous threads have

committed. However, such simplification tends to stall the consumer threads more

than necessary and reduces time spent on failed speculation while incurs a higher syn-

chronization cost. In contrast, compilers have the advantage of thoroughly analyzing

the entire program, and thus can speculate on which stores are more likely to produce

the desired value and therefore only stall the consumer until the value is produced

(rather than wait for the entire producer thread to complete). Compilers can also

schedule instructions to produce the forwarded value early to reduce synchronization

time. Furthermore, compiler-inserted synchronization avoids hardware complexity by

eliminating lookup tables.

40

3.2 Related Work on Automatic Synchronization

Previous work on synchronizing loop-carried data dependences for DOACROSS loops [3,

9, 21, 53, 70] only focuses on array-based numeric codes. The techniques described in

this chapter apply to arbitrary control flow and memory access patterns in general-

purpose programs and is able to (i) forward data for dependences that may or may

not occur and (ii) ensure correct execution if subsequent stores invalidate the data

that have already been forwarded.

To avoid excessive failed speculations when using TLS, two types of hardware

mechanisms have been proposed: value prediction [15, 44, 47, 51, 54, 64] and synchro-

nization [15, 47, 64]. Value prediction allows the consumer of a potential data depen-

dence to use a predicted value whenever possible to avoid a dependence violation.

Automatic synchronization uses the hardware to identify store-load dependences that

frequently cause violations and synchronize them dynamically.

Dynamic synchronization of memory accesses can benefit both uniprocessors and

multiprocessors. In superscalars, loads are usually issued as early as possible, but no

earlier than prior stores that write to the same memory address to avoid memory-

order violations. Chrysos and Emer [13] present a design that uses a prediction table

for synchronizing dependent store-load pairs in an out-of-order issue uniprocessor.

Moshovos et al. [47] demonstrate how to implement a hardware-based synchroniza-

tion mechanism in the context of a Multiscalar processor (a thread-speculative chip-

multiprocessor) using centralized lookup tables to match dependent load/store pairs

from different processing units.

A major drawback of previous proposals is the need for centralized lookup ta-

bles, which can limit performance and are difficult to scale in the context of TLS.

Two groups [15, 64] propose alternative implementations to manage synchronization

information in a distributed manner. Cintra and Torrellas [15] propose building a

41

distributed hardware lookup table to keep track of frequently occurring violations.

Cintra and Torrellas divide data dependences into three categories and handle them

accordingly. For violations caused by false dependences, they optimistically allow the

consumer to proceed and use the per-word access bits in its cache hierarchy to check

for correctness before committing. In the case of a true dependence where the value

is predictable, the consumer uses a predicted value and later verifies the value before

committing. In the case of a true dependence with an unpredictable value, violations

are avoided by stalling the consumer until the producer has committed. Their evalu-

ation shows that these optimizations can substantially improve value communication

for floating point benchmarks.

Our previous work [64] use two hardware-based techniques to avoid violation,

value prediction for predictable values and dynamically inserted synchronization for

unpredictable values. We found that value prediction and dynamic synchronization

can incur a significant cost and should only be applied to those dependences that limit

performance. Loads that frequently cause violations are delayed until the producer

thread commits rather than until the desired value is produced, due to the difficulty

in identifying dependent stores. Thus, such dynamically inserted synchronization can

serialize parallel execution more than necessary.

3.3 Compiler-Inserted Synchronization

This dissertation proposes to use the compiler to automatically insert synchroniza-

tion for two purposes: (i) to satisfy inter-thread data dependences for scalar values,

and (ii) to reduce speculation failures caused by memory-resident values. Since the

TLS mechanism ensures that data dependences between memory-resident values are

preserved, the sole purpose of compiler-inserted synchronization for memory-resident

values is to improve performance. However, the TLS mechanism does not track de-

42

pendences for register-resident values, and thus compiler-inserted synchronization for

these values must ensure correctness.

Traditional data-flow analyses are employed to decide where to insert synchro-

nization for register-resident values. Traditional data-flow analyses can (i) identify

all the uses and definitions of all scalars, (ii) extract inter-thread data dependences

and (iii) compute the necessary synchronization. Details of these algorithms can be

found in Section 3.4.

Automatic synchronization for memory-resident values aims only to improve the

efficiency of inter-thread value communication for frequently occurring data depen-

dences, since the hardware is responsible for ensuring correctness. This approach first

identifies frequently occurring data dependences using profiling information, then in-

serts signal and wait instruction pairs—the same synchronization primitives used for

communicating scalars—to create point-to-point synchronization to forward values

between threads. Hardware support is used to verify that the synchronized loads and

stores are indeed dependent at runtime and to recover from incorrect synchronization

if otherwise. Details of this hardware support can be found in Section 3.5.

Although the research in this dissertation uses an instrumentation-based profiling

tool to match up all dependent load/store pairs and to identify frequently occurring

data dependences, pointer analysis [46, 69], especially probabilistic, inter-procedural

and context-sensitive pointer analysis [4, 11, 42, 50], could potentially help us obtain

this information with less detailed profiling information. Detailed description of the

compiler passes that insert synchronization can be found in Section 3.5.2, and the

details of these profiling tools are described in Appendix A.1.

43

3.4 Synchronizing Register-Resident Values

Register-resident values have the following characteristics which make them easy to

synchronize: (i) there is no aliasing in accessing these values, since all accesses (reads

or writes) must explicitly refer to the same variable name; and (ii) static instructions

that access these values occur only in the body of the loop being optimized, never in

the procedures called from the loop. Therefore, it is straightforward to identify all

accesses to these values and to determine their last definitions and the first exposed

uses using data-flow analysis. This section targets the set of register-resident values

that are defined in the enclosing scope of the parallelized loop and satisfy one of the

following criteria: i) any register-resident value in the intersection of the set of values

with a downward-exposed definition and an upward-exposed use (i.e., the value is live

between threads); ii) any register-resident value that is defined in the loop and is live

when the loop exits. These values are also referred to as communicating scalars. In

contrast with local scalars, global scalars and values referenced with pointers may be

modified by instructions from the outside of the loop body; synchronization for this

type of references is addressed in Section 3.5.

The compiler uses two value communication primitives, wait and signal, to for-

ward values. The wait instruction stalls execution until the value is produced by the

previous thread, which communicates that value through the signal instruction as

described in Section 2.3.6. For the first thread of a speculatively parallelized loop, the

wait instruction does not stall (since there is no producer). This section presents a

general algorithm for inserting synchronization to communicate scalar values between

threads.

44

3.4.1 Constraints on Synchronization Insertion

Properly inserted wait and signal instructions must ensure correct execution by

satisfying the following constraints. First, the last write to a scalar in the producer

thread must occur before the consumer thread reads that scalar, regardless of the

execution path taken by either thread, formally,

1. A wait must occur before any use of the scalar on any path;

2. A signal must occur after the last definition of the scalar on any path.

In addition, the producer must ensure that a correct value is forwarded to the con-

sumer thread despite the execution path taken, formally,

3. A signal must occur for all synchronized scalars on all possible execution paths.

Given these three constraints, a correct program can be created by trivially placing

all wait instructions at the beginning of each thread and all signal instructions at

the end of each thread. However, such a transformation would completely serialize

execution. To remedy this situation, two additional constraints are used for the sake

of improving performance:

4. Wait instructions should be placed as late as possible;

5. Signal instructions should be placed as early as possible.

3.4.2 Synchronization Insertion Algorithm

Intuitively, a synchronization insertion algorithm for wait instructions would involve

placing a wait for a scalar at the beginning of the thread, and then pushing the

wait towards the end of the thread. When a branch is encountered, the wait can

45

be replicated on both sides of the branch. The motion stops when a use of the

scalar is encountered. For the insertion of signal instructions, the converse of this

algorithm is used. To decide which basic blocks to insert waits and signals, we have

implemented dataflow analyses (described in detail below). Within a basic block, the

waits are placed directly before the first use of the scalar, and the signal is placed

directly after the last definition of the scalar.

The following describes the dataflow algorithm for placing wait and signal in-

structions in accordance with the above constraints. While only the algorithm for

inserting signal instructions is shown, the converse of this algorithm is used to place

wait instructions.

The dataflow analysis is defined over the set of communicating scalars V on the

control flow graph G = (N, E, s, e) of a thread where N is the set of nodes which

represent basic blocks, E is the set of edges, and s and e are the unique start node and

end node of G (the start node and end node contain no code). Critical edges (i.e., any

edge connecting a node with more than one successor to a node with more than one

predecessor) would make it difficult to prove the correctness of our algorithm; thus,

any such edges are eliminated by inserting synthetic nodes [37]. Figure 3.2 illustrates

how synthetic nodes are inserted.

At each node n ∈ N , a predicate LocalDef (n) is defined, which is the set of

communicating scalars that are defined at n. Since the signal instruction that for-

wards the value of v ∈ V must occur after the last definition to v on all possible

execution paths, No-More-Definitions is defined at node n (NMD(n)) to be the set

of scalars that are not defined on any execution path from n to e. This function can

be computed using dataflow analysis as described in the following equation:

NMD(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{V } if n = e

⋂
s∈succ(n)

(NMD(s) − LocalDef (s)) otherwise
(3.1)

46

Critical Edge

(a) A control flow graph with a critical edge.

Synthetic Node

(b) Synthetic node inserted to eliminate the

critical edge.

Figure 3.2: Inserting synthetic nodes to eliminate critical edges.

For the example shown in Figure 3.3, the shaded boxes in Figure 3.3(c) indicate where

NMD(n) is true for the scalar a.

While it would be correct to insert signal instructions for a scalar at all nodes

n for which NMD(n) contains that scalar, this may result in multiple signals being

issued on a single execution path. To avoid such redundant signals, we constructed

the function signal(n) which determines the final insertion of signal instructions:

signal(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{} if n = s

NMD(n) − ⋂
p∈pred(n)

NMD(p) otherwise
(3.2)

Figure 3.3(c) shows the synchronization points for variables a and b for the piece of

code shown in Figure 3.3(a).

3.4.3 Proof of Correctness

This section provides the proof of correctness for the synchronization insertion algo-

rithm described in Section 3.4.2.

47

while (condition()) {
if (a > b + c) {

if (++a > 10)

b = b + 2;

else
b = b + 3;

b = b + 4;

}
else {

do {
b = b + 5;

}
while (condition2());

++a;

}
}

(a) Original code.

b = b + 5
condition2()

a = a + 1

a > b + c

b = b + 2

b = b + 4

end

start

b = b + 3

a > 10
a = a + 1

(b) Control flow graph.

b = b + 5
condition2()

start

a > b + c
wait(b)
wait(a)

end

a = a + 1
signal(a)

signal(b)

b = b + 4
signal(b)

b = b + 3b = b + 2

synthetic

synthetic
a > 10
signal(a)
a = a + 1

NMD(n) contains a

(c) Inserting waits and signals.

Figure 3.3: Example of how waits and signals are inserted.

Lemma 1 On every execution path from s to e, no definition for scalar v ∈ V occurs

after the signal for this scalar.

Proof: Let (s, . . . , ni, . . . , nj , . . . , e) be an execution path, with v ∈ signal(ni) and

v ∈ LocalDef (nj). v ∈ LocalDef (nj) implies that v /∈ NMD(ni), while v ∈ signal(ni)

48

implies v ∈ NMD(ni). This is a contradiction, thus the assumption must be false.

Therefore, there does not exist an execution path from s to e where v ∈ signal(ni)

and v ∈ LocalDef (nj) are both satisfied.

Lemma 2 On every execution path from s to e, there exists one and only one signal

for every v ∈ V .

Proof: Existence: NMD(e) contains v, by the definition of NMD , while NMD(s)

does not contain v because there is a definition for v somewhere in the thread and the

start node (s) dominates all nodes in the control flow graph. Thus, for every scalar

v, on every execution path through the thread, there must exist an edge (ni, nj) such

that NMD(ni) does not contain v but NMD(nj) does. Furthermore, for every such

edge, signal(nj) contains v. Thus, there must exist at least one node for which the

signal function contains v on every execution path from e to s.

Uniqueness: Let (s, . . . , ni, . . . , nj, . . . , e) be an execution path, with v ∈ signal(ni)

and v ∈ signal(nj). v ∈ signal(ni) implies v ∈ NMD(ni). The definition of NMD()

implies that v ∈ NMD(m) for all m on the execution path (ni, nj). v ∈ signal(nj)

implies that ∃x, a predecessor of nj , such that v /∈ NMD(x). However, since x cannot

be on the execution path (ni, . . . , nj), nj has two predecessors. But, critical edges

are removed, x can only have one successor, which is nj . v /∈ NMD(x) implies that

v /∈ NMD(nj) or v ∈ LocalDef (nj). Now we have a contradiction and the assumption

must be false. Therefore, there is only one signal for v on any execution path from

s to e.

49

3.5 Synchronizing Memory-Resident Values

Synchronizing frequently occurring memory-resident values is much more complicated

than synchronizing register-resident scalar values due to the existence of potential

aliasing (i.e., a pointer through which the memory location in question is unexpectedly

modified). The mechanism for forwarding register-resident scalar values with signal

and wait instructions cannot be directly applied to forwarding memory-resident val-

ues for the following reasons. First, it is difficult or even impossible to decide, using

traditional data-flow analysis, whether two memory accesses refer to the same data

item when the same location can be accessed using different names through point-

ers [4, 11, 69]. Furthermore, the existence of potential aliasing also makes it hard to

determine the last definition and the first exposed use of a data item within a thread.

As opposed to synchronizing dependences at definite program points for register-

resident values, we synchronize probable data dependences that could occur anywhere

in the program in the case of memory-resident values.

Here is a detailed description on how aliasing in memory accesses makes it more

difficult to synchronize memory-resident values. An inter-thread dependence occurs

between a store and a load when: (i) the store occurs in a logically earlier thread,

(ii) both the store and the load access the same memory location, and (iii) no other

store, between the store and load in question, modifies this location. Figure 3.4(a)

shows three threads executing speculatively in parallel. Assuming that load *p could

depend on any of the five store instructions and it depends on store *q most fre-

quently, a way to synchronize and forward a value between store *q and load *p

is needed. Traditional pointer analysis [4, 11, 69] can help reduce the set of pointers

that p aliases to, but cannot provide the set of frequently dependent load/store pairs

that are needed for synchronization. For instance, must-alias pointer analysis would

claim that store *q and load *p are not always dependent, and hence would not

50

synchronize them. On the other hand, may-alias pointer analysis would indicate that

load *p may depend on any of the five store instructions, hence synchronizing all of

them. Since neither provides the desired information in this situation, profiling-based

tools are to used to identify likely dependences [11, 12]. Furthermore, it is also essen-

tial to provide mechanisms that allow synchronization for frequently occurring data

dependences while ensuring correct execution for whatever dependences that may ac-

tually occur at runtime. The rest of this section first describes the hardware support

necessary for communicating memory-resident values, then the compiler algorithms

for inserting explicitly synchronization.

3.5.1 Hardware Support

This section describes the hardware mechanism for synchronizing memory-resident

values while preserving correct execution, illustration in detail in Figure 3.4.

The producer of the forwarded value must (i) store the value to the memory

location, since loads from other parts of the program may read this value; (ii) for-

ward the value being stored to the consumer; (iii) forward the address to which the

values is stored to to the consumer; and (iv) enter the forwarded address to the

signal address buffer. The signal address buffer, a small per-cpu buffer, is-

sues a violation to the consumer thread whenever the processor attempts to modify

a memory location whose address is already in the buffer.

The consumer of the forwarded value must wait for the value and its address

to arrive through the wait instructions. Intuitively, the consumer thread then per-

forms a list of checks to decide whether to use the forwarded value or to use the

value loaded from the memory system—the forwarded value is used only when the

forwarded address matches the load address and there is no prior modification to

this location. The consumer first checks to see if the forwarded address matches the

51

T
im

estore *w store *x

store *q

store *y

store *z

load *p

Thread 3

Thread 2

Thread 1

(a) Original program: load *p often depends on store *q.

q

si
gn

al
 a

dd
r

bu
ff

er

to_buffer(q)
signal(*q)
signal(q)
store *q

memory_value = *p

st
al

l

forwarded_value = wait()
check(p, forwarded_addr)

forwarded_addr = wait()

resume()

value = select(memory_value,
 forwarded_value)

Thread 2
Thread 3

(b) Transformation: synchronizing load *p and store *q.

Synchronization operation Description

store *q; The original store operation.
signal(q); Forward the address q to the next thread.
signal(*q); Forward the value stored as well.
to buffer(q); Save the address q in the signal address buffer.

forwarded addr = wait(); Wait for the address to arrive from the previous thread.
check(p, forwarded addr); If p equals forwarded addr set the use forwarded value flag. Loads issued

while this flag is set will not cause violations.
forwarded value = wait(); Wait for the value to arrive from the previous thread.
memory value = *p; Load a value from the memory system using the load operation. If the address

p has been previously modified by the current thread, this instruction clears
the use forwarded value flag. If the use forwarded value flag is set when this
load is issued, this instruction only accesses the speculative cache and will not
cause a violation.

value = select If use forwarded value flag is set, select
(memory value, forwarded value, otherwise, select memory value.
forwarded value); The selected value is placed in value.
resume(); Reset the use forwarded value flag.

(c) Description of operations inserted for synchronization.

Figure 3.4: Program transformation to synchronize frequently occurring memory-
resident dependences between threads.

52

load address (to make sure a useful value is received), and if so, sets a cpu-local

flag called use forwarded value. The consumer then issues the actual load. If the

use forwarded value flag is set, the load is issued as a non-speculative load that

only accesses the first-level cache, which maintains the speculative states. Since this

instruction only accesses the first-level cache, it will not cause a dependence viola-

tion. This load also checks to see if the value has been overwritten locally and clears

the use forwarded value flag if it has. The value of the use forwarded value flag

determines whether the forwarded value or the value loaded from memory is used in

subsequent computations. Once the decision is made, the use forwarded value flag

is reset.

Figure 3.4 shows how correctness is ensured by enumerating all possible data de-

pendences and describing how each case is handled. When a true data dependence oc-

curs between store *q and load *p, the forwarding mechanism forwards the correct

address and value, and the forwarded value is used by load *p. If load *p depends

on store *w or store *x, the forwarded address q cannot point to the same location

as p. Thus, the use forwarded value flag is not set by the check instruction, and

the select instruction chooses the memory value for subsequent computations. In

this case, the forwarded value is not used, and the underlying hardware support for

TLS ensures correct execution. If p, q and y all point to the same memory location,

the forwarding instruction will forward the correct address, but an incorrect value.

The producer thread will notice that it stores to an address that is already in the

signal address buffer and send a signal to restart the consumer thread. If load *p

depends on store *z, the use forwarded value flag is reset by the load instruction

and the value loaded from the memory is used. This will not cause dependence vio-

lation, since this memory access is not exposed and the local cache holds the correct

value.

It is possible that on some paths through a thread, the forwarded value is never

53

produced. In this case, the producer thread should still signal the consumer thread

by sending a NULL value in the address field so that the consumer does not wait

indefinitely. If p points to a valid address, it will not match this NULL address, and

the load in the consumer thread will be read from memory. If p happens to be a

NULL pointer, the program will de-reference this NULL pointer as it is intended in the

original program and cause an exception.

The size of the signal address buffer is equal to the number of forwarded val-

ues. In practice, this number is quite small and a buffer with 10-entries suffices in all

the experiments.

3.5.2 Compiler Support

With the hardware support described in Section 3.5, the compiler is able to synchro-

nize probable dependences without concerns about correctness. Using the example

in Figure 3.5, this section describes how the compiler inserts synchronization. In

the example, a loop, which calls the procedures free element() and use element() to

add and remove members of a linked list called free list, is to be parallelized. In ev-

ery iteration of the loop, the global variable free list is read and modified, potentially

causing frequent data dependences and speculation failure unless prevented by proper

synchronization. Note that this example is complicated by the fact that the variable

free list can be accessed using other names (i.e., aliases). The compiler performs the

following steps to synchronize the accesses to this variable.

Profiling Dependences: The compiler identifies frequently occurring, memory-

resident data dependences by profiling all inter-thread data dependences for

every parallelized loop. (This profile information is context-sensitive but flow-

insensitive.) To acquire the profile information, we first associate a unique

identifier with each static load and store instruction and each procedure call

54

void free element(element) {
element->next = free list; st 1, ld 1
free list = element; st 2, ld 2

}

int use element() {
element = free list; st 3, ld 3
free list = element->next; st 4, ld 4
return element;

}

void work() {
if(condition()) call 1

use element(some element); call 2
}

main() {
do {

free element(some element); call 3
work(); call 4

} while (test);

}

free_element()
work()

condition()

loop

use_element()

(a) The original program and the corresponding call tree. Function calls, loads and stores are instru-

mented with labels to identify them.

void free element cloned(element) {
f addr = wait();

check(f addr, &free list);

f value = wait();

m value = free list;

actual value = select(f value, m value);

resume();

element->next = actual value;

free list = element;

signal(&free list);

signal(free list);

}

...free element(), use element() and work()

functions omitted for brevity...

main() {
do parallel {

free element clone(some element);

work();

} while (test);

}

free_element_cloned()

use_element()

work()

condition()

loop

(b) The cloned call tree and the program with synchronization inserted.

Figure 3.5: Compiler-directed procedural cloning and synchronization insertion.

55

point. During execution, each load and store instruction can be named by a

combination of the instruction identifier and the current call stack. (The call

stack for an instruction, rooted at the parallelized loop, is the list of proce-

dure calls invoked when that instruction is executed.) During profiling, each

load is matched with any store on which it depends, and the frequency of each

dependence is recorded. In Figure 3.5(a), ld 1, ld 3, st 2 and st 4 all access

the same memory location denoted by free list, and their dependence relation

is illustrated in Figure 3.6. Note that two memory references with the same

identification number but different call stacks are treated separately (i.e., rep-

resented by two different vertices in the graph). Detailed description of this

profiling tool can be found in Appendix A.2.

Identifying Frequently Occurring Dependences: Unlike scalar values, the

same memory-resident value can be accessed with multiple names through

pointer aliasing. To overcome this difficulty, we collect loads and stores that

frequently access the same memory location into groups. It is important to

understand that a group is different from an alias set. An alias set of pointers

is defined conservatively to be a set of pointers that may point to the same

memory locations. In contrast, (i) pointers in a group will definitely access the

same memory locations frequently, and (ii) pointers that access the same loca-

tion might not be in the same group if the corresponding data dependences are

infrequent.

The compiler chooses groups of pointers using the dependence profiling infor-

mation described above to construct a dependence graph, where each load or

store instruction with a different call stack is represented by a vertex, and each

frequently occurring dependence is represented by an edge. In the resulting

graph, each connected component represents a group, and all loads and stores

belonging to the same group are then synchronized by the compiler as a single

56

entity. Infrequently occurring dependences are ignored for performance reasons:

synchronizing infrequently occurring data dependences in the graph could cre-

ate large groups (as shown in Figure 3.6) and lead to over-synchronization and

poor performance.

Cloning: For best performance, two instructions are only synchronized if they are

frequently dependent. For example, when a load with a particular call stack

is chosen for synchronization, the corresponding synchronization code would

ideally be executed only when the load is reached on a path matching that call

stack, i.e., the synchronization code should not be executed when the load is

reached through a different call path.

The compiler uses the following steps to implement this code specialization,

which basically clones the appropriate procedures on the call stack of a syn-

chronized memory reference. First, a call tree with the parallelized loop as the

root and each call instruction as a decedent of this loop is created, as shown

in Figure 3.5(a). Second, the locations of all frequently occurring data de-

pendences are identified on the call tree: for any node containing frequently

occurring dependences, that node and its parents are cloned, and the original

call instructions are modified to reflect this. In this example, the synchronized

load and store occurs on the call stack call 3; hence the procedure free element

is cloned as shown in Figure 3.5(b). There is an upper bound on the total num-

ber of procedures that can be cloned for a given parallel loops; optimization is

abandoned if this limit is exceeded.

Inserting Synchronization: Wait instructions are inserted before the synchro-

nized load instructions, as shown in Figure 3.4(b). However, signal instructions

cannot be inserted after every store instruction, since multiple store instructions

belonging to the same group could occur on a single execution path. A signal

57

(call_4, call_2)
ld_4ld_1

(call_3) (call_3)
ld_2

(call_4, call_2)
ld_3

(call_4, call_2)
st_4

(call_4, call_2)
st_3

(call_3)
st_2

(call_3)
st_1

Infrequently
occurring
dependence

Frequently
occurring
dependence

Figure 3.6: An example dependence graph. Each vertex represents a load or store,
identified by the combination of a unique number and call stack. Each edge shows a
true data dependence between memory references. Ignoring infrequent data depen-
dences, a group is formed with two vertices: ld 1 and st 2 (both having call stack
(call 3)). Accounting for infrequent data dependences would result in an overly large
group.

instruction must be issued once after the last store instruction from that group

has been issued for every group on every execution path through the thread.

Thus, the same data-flow analyses for synchronizing scalar values can be applied

by treating loads and stores belonging to the same group as accesses to a single

scalar and treating each synchronized load/store instruction as a use/definition

of that scalar, respectively. To deal with the fact that synchronization may

be scheduled in callee procedures, results of these data-flow analyses are propa-

gated through the call tree. LocalDef information is collected by traversing the

call tree in post-order: LocalDefs are first calculated at the callee procedures,

and the union of LocalDefs in a callee procedure represents the LocalDef of

the calling instruction in the parent’s control-flow graph. The NMD and the

signal problem are solved through a pre-order traversal of the call tree. We first

solve the data-flow analyses at the root node and then for each callee procedure

using the subset of groups that need synchronization on its calling instruction

in the parent.

58

3.6 Chapter Summary

This chapter describes the compiler and hardware support required for synchronizing

register-resident and memory-resident values. In the case of register-resident val-

ues, the compiler is responsible for ensuring that all data dependences are preserved

through explicit synchronization, since the underlying hardware does not track data

dependences between register-resident values. Dataflow analyses are used to find ap-

propriate program points to insert synchronization. In the case of memory-resident

values, the compiler inserts synchronization to reduce speculation failures. The com-

piler uses profiling information to decide which load/store pairs to synchronize, and

the hardware checks if the synchronized dependences really do occur at runtime and

ensures recovery from incorrect synchronization.

59

60

Chapter 4

Instruction Scheduling

In Chapter 3, we described compiler-based techniques for inserting synchronization

in speculatively parallelized programs. Such synchronization creates a point-to-point

communication to forward values between speculative threads and reduces speculation

failure. However, it may also serialize execution by stalling the consumer thread more

than necessary. This chapter introduces instruction scheduling algorithms to address

this problem.

4.1 Critical Forwarding Path

We will begin with an example. Figure 4.1(a) shows a loop the compiler has specu-

latively parallelized by partitioning the loop into speculative threads. The scalar A is

not only register-resident, but also read and written in every iteration; thus, it has

to be synchronized by the compiler for both correctness and performance. Synchro-

nization is established by inserting a wait operation before the first use of A, and a

signal operation after the last definition of A; the algorithm for inserting such syn-

chronization is described in Section 3.4. The synchronization results in the partially

parallel execution shown in Figure 4.1(a), where each thread stalls until the value of

61

do {
wait(A);

if (condition(A)) {
A = A + *p;

}
else{

B = 2;

work2();

}
A = A + 1;

signal(A);

} while (1);

T
im

e

st
al

l

st
al

lC
ri

tic
al

 P
at

h = A

A=

C
ri

tic
al

 P
at

h = A

A=

C
ri

tic
al

 P
at

h = A

A=
signal(A)

wait(A)wait(A)

signal(A)

signal(A)

Thread 3Thread 2Thread 1

(a) Before instruction scheduling.

do {
wait(A);

if (condition(A)) {
A = A + *p + 1;

signal(A);

}
else {

A = A + 1;

signal(A);

B = 2;

work2();

}
} while (1);

T
im

e

= A

st
al

l

st
al

l

= A

= A

A=

A=

A=

wait(A)

signal(A)

signal(A)

wait(A)

signal(A)

Thread 3Thread 2Thread 1

(b) After instruction scheduling.

Figure 4.1: Impact of scheduling on the critical forwarding path.

A is produced by the previous thread. The flow of the value of A between threads

serializes the parallel execution, and is referred to as the critical forwarding path. Al-

though synchronization is better than speculation for a data dependence that occurs

frequently, the resulting serialization can still limit performance. We have developed

instruction scheduling techniques to address this issue.

62

4.1.1 Instruction Scheduling

The key to avoiding over-synchronization and improve performance is to reduce the

critical forwarding path. What can the compiler do? The idea is to reduce the number

of instructions between each wait/signal pair. However, this becomes more difficult

in the presence of conditional control flows. Figure 4.1(b) shows the example loop

after the compiler has scheduled the code to reduce the critical forwarding path. The

scheduling algorithm has duplicated the computation of A=A+1 as well as the signal

and moved them into the if-then-else structure. If the condition on A is rarely

true, then less work will be performed before reaching each signal (by deferring the

computation of B=2 and work2()). As shown in the figure, this reduces the stall

time for each thread, thereby improving overall execution time. We have devised an

algorithm for reducing the critical path, which is elaborated in Section 4.3.1.

4.1.2 Aggressive Instruction Scheduling

All of the transformations that have been described so far, including all synchroniza-

tion insertion and instruction scheduling algorithms, preserve the control and data

dependences within each thread: the transformed codes perform the same operations

as the original ones, but possibly reordered within each control structure and be-

tween ambiguous data dependences. It may potentially be beneficial to move code

across control and data dependences [6, 23, 27, 49] to further reduce the critical for-

warding path. For example, if a certain path is executed more frequently than the

other paths, then it is advantageous to speculatively schedule the critical forwarding

path to exploit this fact. To illustrate, if the else clause is more frequently executed

than the then clause in Figure 4.1(b), “A=A+1;signal(A);” could be moved from the

else clause to before the if structure to further shrink the critical forwarding path

in the common case. This new scheme requires the ability to recover whenever the

63

speculation is incorrect. Similarly, codes from the critical forwarding path can be

scheduled across ambiguous data dependences, given additional hardware support to

detect when such speculation fails. This algorithm and the hardware support are

both described in Section 4.3.2.

The rest of this chapter focuses on reducing the critical forwarding path created

by synchronizing register-resident scalar values, although the techniques can also be

applied to memory-resident values.

4.2 Related Work

Parallelizing loops with loop-carried data dependences is known as DOACROSS

parallelization [21, 52], which has been exploited in previous works [8, 45, 74]. Al-

most all schemes for TLS support include some form of DOACROSS synchroniza-

tion [15, 32, 39, 43, 47, 64, 67, 68, 72, 73, 75], although fewer use the compiler to opti-

mize such synchronization [68, 72, 73, 75].

The most relevant work is the Wisconsin Multiscalar [25, 58, 68] compiler, which

synchronizes register-resident values and schedules instructions for performance [68].

The Multiscalar scheduler was designed with Multiscalar tasks in mind, and these

tasks usually consist of a few basic blocks that do not contain procedure calls or

loops. In contrast, the speculative threads in this research are much larger on average

than Multiscalar tasks and often contain more complex control flows. This inspires the

dataflow-based scheduler presented in this chapter, which is able to move instructions

across inner loops and procedure calls. The Multiscalar compiler does not schedule

codes beyond the point within a task where it is no longer critical, which is determined

by a simplified machine model. In contrast, we schedule producer instructions as early

as possible, because accurately determining such points at compile-time is difficult.

64

Our work also evaluates the benefits of speculatively scheduling code past control and

data dependences while Multiscalar does not (as discussed later in Section 4.3.2).

Other schemes for TLS hardware support provide the means to synchronize and

forward values between speculative threads but do not use the compiler to optimize

loop-induction variables or synchronize frequent dependences [1, 31, 32, 43], while oth-

ers provide such support but do not schedule instructions to reduce the critical for-

warding path [15, 67]. Research on TLS hardware support has shown the importance

of the critical forwarding path and how the prediction of forwarded values may be

used to increase parallelism [44, 64]; it also shows that hardware is ineffective at im-

proving performance by scheduling the critical forwarding path [64]. Other hardware

techniques for improving the efficiency of speculation include prediction of loads to

memory, dynamic synchronization, and squashing of silent stores (which overwrite

memory with the same value that is already there) [1, 15, 43, 64].

Concurrent with our work, Zilles and Sohi [75] recently proposed decomposing a

program into speculative threads by having a master thread execute a distilled ver-

sion of the program that orchestrates and predicts values for slave threads. In this

scheme, values are pre-computed by the master thread and distributed to the slave

threads (as opposed to being updated and forwarded between consecutive specula-

tive threads). A potential advantage of this master/slave approach is that it effec-

tively removes interprocessor communication from the critical forwarding path. The

scheduling techniques presented later in this chapter could potentially be applied to

the distilled code in the master thread.

Given two parallel threads, the producer and the consumer, the set of instructions

that need to be scheduled backward in the producer is essentially a slice of the pro-

ducer with respect to the forwarded value and the instruction that produces it [48, 56].

However, our algorithm must go one step further and decide where these instructions

65

should be scheduled to so that the critical forwarding path is reduced.

Our algorithm for reducing the critical forwarding path builds upon previous

dataflow approaches to code motion, namely partial redundancy elimination [37],

path-sensitive dataflow analysis [34], and hot paths [2]. Relevant previous work on

speculative code motion also includes trace scheduling [23] and superblock schedul-

ing [6].

There has also been work on aggressive load/store reordering where the runtime

check and recovery are performed entirely in software [49] or through hardware and

software hybrid [27]. These transformations can be classified into three main types:

control flow speculation, data dependence speculation, and value speculation. Control

flow based optimizations typically involve hoisting operation across basic-blocks, in-

troducing them onto paths on which they were not originally presented [7, 17, 23, 57].

Data dependences based optimizations are employed to hoist load operations above

store operations that could potentially alias [27, 55]. Value-speculation [41, 44] relies

on the fact that loaded values are frequently predictable, and it supplies the load

instructions with values from a value predictor.

4.3 Instruction Scheduling Algorithms

Compilers can improve the performance of speculatively parallelized codes by using

scheduling techniques to move the signal operations (and the codes that these op-

erations depend upon) upward through the control flow graph to reduce the length

of the critical forwarding path and to expose more parallelism. For example, closer

examination of Figure 3.3 reveals that the forwarded value for variable a depends only

on the result of a single addition. While the forwarding path between the wait and

the signal shown in Figure 3.3 contains many instructions, only the following three

66

instructions are really necessary to wait for, compute, and forward the new value of

a:

wait(a);

a = a + 1;

signal(a);

In the rest of this section, we describe a scheduling algorithm that achieves this

minimum critical forwarding path for this example.

4.3.1 Conservative Scheduling

This section describes two dataflow analysis algorithms to insert synchronization for

each forwarded value: (i) the stack analysis to determine how to compute the for-

warded value, and (ii) the earliest analysis to determine where to insert the syn-

chronization. Similar to the synchronization algorithms described in Section 3.4, the

conservative scheduling algorithm is defined over the set of communicating scalars V

on the control flow graph G = (N, E, s, e), with critical edges broken by synthetic

nodes as described in the Section 3.4.2. We initialize the algorithm by placing all

signals at the exit node e. (It is equivalent to start all signals in the position in-

dicated by the placement algorithm, but placing them at the end node simplifies the

proof of correctness.) Although we only describe the algorithms for moving signal

instructions (and the instructions they depend upon) earlier in the control flow graph,

the converse of this algorithm can be applied to moving wait instructions (and the

instructions that depend upon them) later in the control flow graph.

When scheduling the instructions, the computation that the eventual signal de-

pends upon must be identified. Since it is difficult to represent a list of computations

as binary values, bit-vector analysis is inadequate. Hence at each node n, a stack

of computations—denoted as stack(n, v)—must be maintained for each communicat-

67

a = b+c

v = a

a = b + c
v = a

signal(v)

signal(v)

(a) Dependence exists.

q = b+c

v = a

v = a
signal(v)

signal(v)

(b) No dependence.

*q = b

v = *p
signal(v)

(c) Unresolved depen-

dence.

.a = b+c
signal(a) signal(a)

a = q
signal(a)

(d) Lattice.

Figure 4.2: Illustration of the transfer function (parts (a), (b), and (c)) used for
computing the value of the stack in equation (4.1) and the lattice (part (d)) over
which the stack dataflow analysis is defined.

68

ing scalar. This stack records the computations necessary to produce the value of a

communicating scalar v if it is to be sent from the corresponding node.

The domain of the stack dataflow problem is the set of all possible configurations of

the computation stack. This domain, along with the meet operator (described later),

defines a semi-lattice, shown in Figure 4.2(d). Before data-flow analysis begins, all

nodes are initialized to �. If a given node is found to be a safe place for the signal

instruction, then stack returns a non-empty stack of computations; otherwise stack

returns ⊥. The following dataflow equation computes stack(n, v) at the exit of each

node:

stack(n, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

signal v if n = e

∏
m∈succ(n)

transfer (m, v, stack (m, v)) otherwise

(4.1)

where the transfer function is defined as follows:

• If stack(m, v) = �, then transfer = �.

• If the computation chain for v in the stack stack(m, v) depends on a value w

produced by node m, then the computation that produces w is added to the

computation stack, as illustrated in Figure 4.2(a).

• If the computation chain in the stack stack(m, v) does not depend on a value

produced by the computation at node m, then transfer = stack(m, v), as illus-

trated in Figure 4.2(b).

• If the dependence between the computation chain for v and the computations

in node m cannot be resolved statically by the compiler (e.g., due to ambiguous

pointer references), the code motion should be stopped; hence transfer = ⊥, as

illustrated in Figure 4.2(c).

• If a wait is issued for any exposed scalar in the computation chain, the code

motion should stop; hence transfer = ⊥.

69

The meet operator
∏

for the stack problem is defined over the set of all possible

configurations of the computation stack. The lattice shown in Figure 4.2(d) defines the

following operations for meet: (i) the meet operator is communicative and associative;

(ii) the meet operator returns ⊥ if one of its operand is ⊥; (iii) the meet operator

returns ⊥ if the two operands differ and neither is �; (iv) the meet operator returns

X if both operands equal to X; (v) the meet operator returns X if one operand is

X and the other operand is �. The meet operator combined with the domain of the

stack function defines a semi-lattice of height three, thus this dataflow problem is

well-defined.

The stack analysis tells us only what computations are needed to compute for-

warded values, we must now determine where to insert these computations. The

dataflow problem, earliest , is formulated to find the synchronization point to compute

the forwarded value as early as possible. Earliest is a bit-vector problem defined over

the set of communicating scalars V on the control flow graph G. The earliest(n, v)

function is true at node n for v if no node prior to n is a safe place to schedule the

signal on some execution path starting at s:

earliest(n, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if n = s

∨
m∈pred(n)

(¬safe(m, v) ∧ earliest(m, v)) otherwise

(4.2)

where safe(m, v) = (stack(m, v) �= ⊥), and all nodes are initialized to false.

Code Transformation: For each node that is both safe and earliest for a vari-

able v, the contents of v’s stack are inserted either at the beginning of the node

or immediately after the computation that stops code motion (a wait instruction

or ambiguous pointer reference) if it exists. All references to v are replaced with

the temporary variables, and all unscheduled computations are updated to use these

temporaries.

Figure 4.3(a) illustrates solutions for stack and earliest for the example shown ear-

70

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(b)

earliest(a)

earliest(a)

a > b + c
wait(b)
wait(a)

start

b = b + 2

signal(b)

b = b + 4 signal(a)

b = b + 4

signal(a)signal(b)

end

a > 10
a = a + 1

signal(b) signal(a)

signal(a)

a = a + 1

signal(a)

b = b + 3

signal(b)

b = b + 4 signal(a)

signal(a)

a = a + 1

b = b + 5
condition2()

signal(a)

a = a + 1

a = a + 1

signal(b) signal(a)

signal(a)

a = a + 1

(a) Solutions to the stack and earliest problems.

b = b + 5
condition2()

a > b + c
wait(b)

wait(a)
t1 = a + 1
signal(a, t1)

start

end

a > 10

b = t3
a = t1
signal(b, b)

t2 = b + 3

signal(b, t3)
b = t2

t3 = t2 + 4
t2 = b + 2

signal(b, t3)
b = t2

t3 = t2 + 4

(b) After code transformation.

Figure 4.3: Applying conservative scheduling algorithm to the codes in Figure 3.3.

71

lier in Figure 3.3. Earliest is true for variable a only at the entry node. The stack for

the variable a at the entry node contains only the two instructions required to com-

pute a—this matches the optimal result we derived manually at the beginning of this

section. Figure 4.3(b) is the transformed program. Note that this transformation can

either expand code size (by duplicating computations at join points) or reduce code

size (by performing a form of common subexpression elimination at branch points).

In all experiments, the code size is increased by less than 1.3% for all benchmarks.

Lemma 3 If node n is safe, then the computations in the computation stack deliver

the correct forwarding value.

Proof: By induction on the length of the execution path from (e, n).

Lemma 4 On every execution path from the start node s to the end node e, there is

one and only one node that is both safe and earliest for v, the communicating scalar.

Proof: Existence: Node e is safe for v by the definition of safe, and node s is earliest

for v by the definition of earliest . Assume that no node is both safe and earliest for

v on the path [s, e], s is not safe, since s is earliest for v. Thus, its successor must

be earliest . However, by the assumption, the successor must not be safe for v. By

induction on the length of execution path, we can show that all nodes on the path

to e, including e, are not safe for v. Hence, we have established a contradiction.

Therefore, there is at least one node that is both safe and earliest on the path [s, x].

Uniqueness: Consider a path [s, e]. We want to show that only one node on this

path is both safe and earliest . Assume that there are two distinct nodes, ni and nj ,

that are both safe and earliest for v. Since ni is safe for v, we know that all nodes

m on any path between ni and e are safe for v and that transfer(m, v, stack(m, v))

is also safe for v. Since nj is earliest , the definition of earliest ensures that it has a

72

predecessor q that is both ¬safe and earliest . And q is not on the path between ni

and nj since ni is safe for v. By the definition of the meet function, if q is ¬safe , it

must have a successor r that is ¬safe for v or transfer(r, v, stack(r, v)) is not safe for

v. However, since all critical edges are eliminated from the graph, q can only have

one successor, nj. But nj is safe and that transfer(nj , v, stack(nj , v)) is also safe. A

contradiction is established. Therefore, there is no node nj , which is different from ni,

that is both safe and earliest if there already exists ni that is both safe and earliest .

4.3.2 Aggressive Instruction Scheduling

In the scheduling algorithms described so far, the backward motion of signal opera-

tions (and the instructions on which they depend) can be obstructed for the following

two reasons:

Control Dependences: If incompatible computation stacks from multiple execu-

tion paths meet at a single node during the backward dataflow analysis, then

code motion stops. This implies that the conservative scheduling algorithm

cannot move instructions out of the then or else parts of an if-then-else

statement unless those same instructions are executed along both conditional

paths.

Data Dependences: A computation stack cannot be moved across a store instruc-

tion whose target address may alias locations referenced in the computation

stack. This scenario often arises when a load instruction is placed on the stack.

Similarly, the code motion also stops at any call instruction in the absence of

information on the side-effect of that call).

Consequently, instructions can only be issued at after all intra-thread control and

data dependences are resolved and it is desirable to schedule more aggressively. In

73

a = b + 1
signal(a)

signal(a)

a = b + 1

signal(a)

a = b + 1

signal(a)

a = b + 2

Si SjSi

signal(a)

violate_epoch(a)
a = b + 2

N

frequently executed path

infrequently executed path

Figure 4.4: Modified meet operator for speculatively scheduling instructions across
control dependence.

this section we will discuss both the compiler techniques and the hardware support

necessary to allow for instruction scheduling beyond intra-thread control and data

dependences.

Scheduling Across Control Dependences

Dataflow analyses conservatively assume that all execution paths are possible and

find the minimal solution that satisfies all possible execution paths. In practice,

however, only a small number of execution paths are frequently executed at runtime.

By taking this into account, instructions can be scheduled more aggressively for the

common cases at the cost of possibly incurring an expensive recovery operation on

the less-frequently executed paths.

When the less-frequently executed paths are taken at runtime, the signal in-

structions could have forwarded incorrect values to the next thread; thus, a recovery

mechanism is needed to ensure correct execution when this happens. To recover, a

correct value is first forwarded to the consumer thread, then the consumer is noti-

74

fied of the invalid value. At this point, the consumer can either choose to restart

the speculative execution immediately or check to see if the incorrect value has al-

ready been consumed and restart if so. Instructions speculatively scheduled across

control dependences can cause exceptions that will otherwise not have occurred (e.g.,

NULL pointer checks). Thus, if exceptions occur in a speculative thread with instruc-

tions speculatively scheduled, speculation should fail and the thread should restart

execution with a non-speculatively scheduled version of the code to ensure that the

exception is real. Hence, some code duplication is necessary.

The scheduling algorithm from Section 4.3.1 can be modified to speculate on

control dependences. The algorithm is made more aggressive by modifying the meet

operator
∏

used in the stack dataflow analysis in equation (4.1), and add new nodes

containing recovery codes on the infrequent edges. Frequently occurring execution

paths are identified with the help of profiling information. (Detailed descriptions of

the profiling tools can be found in Appendix A.1.) At each merge point, a decision

on whether to speculatively schedule instructions across this branch must be made.

The meet operator
∏

for the stack dataflow analysis is modified as shown in Fig-

ure 4.4. At every node n, the meet operator first operates on successor si where (n, si)

is on some frequently executed paths. Then for each node sj , where (n, sj) is not on

any frequently executed path, the meet operator verifies whether transfer(sj, v, stack(sj, v))

is compatible with the partially evaluated stack(n, v). If this verification fails, a new

node is inserted on the edge (n, sj), which contains a single violate thread in-

struction. A minor change is also made to the definition of earliest : earliest(sj) is

set to true for all newly inserted violate thread nodes. By doing so, the instruc-

tion scheduling algorithm can automatically regenerate signal instructions on all

execution paths starting from (sj). Figure 4.4 illustrates how the two compatible

computations on the frequently executed nodes are scheduled above node N, while a

violate thread mode is inserted on the infrequently executed path on the right.

75

It makes sense to speculate on a branch if it is biased, although not all biased

branches should be speculated on. For instance, in the example shown in Figure 4.5,

assuming the outer loop is the speculatively parallelized loop, it is not desirable to

speculatively schedule instructions across branch #2 even though it is an extremely

biased branch. Since speculatively scheduling instructions across this branch will in-

sert a violate thread instruction on the exiting edge of the inner loop, this edge is

taken on every execution path before the thread is terminated. Thus, more informa-

tion is needed to decide whether to speculate across a certain branch. Our algorithm

only speculates on a branch if the less-frequently taken path is infrequent relative to

the total number of threads. The largest benefit of speculating across control depen-

dences comes from speculating across branches typified by branch #1 in Figure 4.5.

Without speculation instruction scheduling, the signal for modified can only occur

at node 6, after the inner loop has been completed. With speculative instruction

scheduling, the signal for modified can be scheduled at node 1, before entering the

inner loop. As a result, parallel overlap is increased significantly.

Scheduling Across Data Dependences

This section considers how the conservative scheduling algorithm can be extended to

allow code motion beyond potential data dependences. Using the output from an

automatic data dependence profiling tool (Detailed descriptions of the profiling tools

can be found in Appendix A.2.), the compiler can reason about the likelihood of a

data dependence. (The compiler can also reason about the likelihood of a data depen-

dence using other information, such as, the results of pointer alias analysis.) If a data

dependence is involved in generating a particular signal operation but this depen-

dence is unlikely to occur at runtime, we can choose not to add this dependence onto

the computation stack. At runtime, we must check if this data dependence is violated

and perform recovery operation if it does. Two new instructions, ‘‘mark load’’ and

76

modified = 1

501000

0 1000
Branch #1

Branch #2

work(modified); 1

2

3 4

5

6

Figure 4.5: Control dependence speculation for regions with an inner loop, and each
node is labelled with a unique identification. Edges are labeled with number of times
that edge is followed during execution. Both branch #1 and branch #2 are biased
branches.

77

= speculatively scheduled past
a possibly dependent instruction

signal(a)

a = *p

signal(a)

a = *p

signal(a)

*q = 5

a = *p

(a) Modified transfer func-

tion for data speculation.

*q = 5

t1 = *p
signal(a, t1)
mark_load(p)

unmark_load(p)
a = t1

(b) Code generation for data

speculation.

Figure 4.6: Modified dataflow analysis for speculatively scheduling instructions across
data dependence.

‘‘unmark load’’, are used for detecting data dependence violations: the mark load

instruction instructs the hardware to remember the speculatively loaded memory lo-

cation. If any subsequent store modifies a marked location, the speculation fails.

Once the potential data dependence is resolved, the unmark load clears the mark at

that memory location. If a speculation fails or when an exception occurs, the recovery

action is invoked—i.e., the current thread will be violated—so that when the thread

restarts, it runs a different version of the thread where no instruction is speculatively

scheduled. It is worth noting that this architectural support for speculative loads is

quite similar to the LD.A and CHK.A instructions [27] implemented in the Intel IA-64

architecture. One important difference, however, is that when the speculative code

motion fails in this case, the underlying TLS recovery mechanism rewinds execution

to the start of the thread; in contrast, under IA-64 the results of an LD.A instruction

must be explicitly validated by a CHK.A instruction.

To implement scheduling across potential data dependences, the transfer function

78

while (cond1()) {
if (cond2(a))

a = a + 1;

else

*q = 5;

a = *p + a;

}

(a) Original code.

cond2(a)
wait(a)

a = a + 1 *q = 5

a = *p + a

end

start

(b) Control-flow graph for the original

code.

infrequently executed path

frequently executed path

Control speculation

Data speculation

end

start

violate_epoch(a)

a possibly dependent instruction
= speculatively scheduled past

a = a + 1 *q = 5

signal(a)

signal(a)

a = *p + a

cond2(a)
wait(a)

signal(a)

a = *p + a

signal(a)

a = *p + a

signal(a)

a = *p + a

(c) Control flow graph.

short critical path}

recovery code{

start

cond2(a)

wait(a)

signal(a, t1)
mark_load(p)

t1 = *p + a

unmark_load(p)
violate_epoch(a)

signal(a, t1)
t1 = *p + a
a = a + 1

a = t1

end

*q = 5
unmark_load(p)

(d) Transformed code.

Figure 4.7: Illustration of how speculation on control and data dependences can be
complementary.

described earlier in Section 4.3.1 (and used in equation (4.1)) is modified as shown

in Figure 4.6(a). When scheduling a stack of instructions across a potentially depen-

dent store, all potentially conflicting loads are marked in the stack as being possibly

conflicting. When two stacks are merged at node n through the meet operator
∏

,

any possibly conflicting marks are merged using logical OR. At the time of code gen-

79

eration, a mark load instruction is added after each possibly conflicting load. For all

load instructions that are marked as possibly conflicting, an unmark load is inserted

at the original location of the load instruction.

Complementary Effects

Control dependence speculation and data dependence speculation can be complemen-

tary. Figure 4.7 shows an example where the combination of a control dependence

and a data dependence prevents the code from being scheduled early, and where spec-

ulation on either type of dependence alone will not yield any benefit. By speculating

on both control and data dependences in tandem, the computation of variable a can

be moved backwards next to the wait operation, thereby resulting in a much shorter

critical forwarding path.

4.4 Chapter Summary

When the compiler inserts wait/signal instructions to synchronize speculative threads,

it can potentially create critical forwarding paths that stall the consumer thread and

serialize execution. This chapter describes a dataflow analysis algorithm that moves

the signal operation and the instructions that are dependent on it backward in the

control flow to reduce the critical forwarding path. Such backward code motion

is sometimes stopped by intra-thread control and data dependences, and therefore

we have developed aggressive instruction scheduling algorithms to move instructions

across them to reduce the critical forwarding paths even further.

80

Chapter 5

Performance Evaluation

This chapter presents the results of a detailed simulation designed to evaluate the

effectiveness of the value communication optimization algorithms described in the

previous chapters. It begins with a description of the simulation framework and the

characteristics of all targeted benchmarks, then thoroughly examines the performance

impact of various compiler optimizations on all loops in all benchmarks, from SPEC95

integer, SPEC2000 integer and SPEC2000 floating point benchmark suits, to establish

a set of region selection criteria and design parameters. Once the region selection

criteria and design parameters are established, several sets of regions are selected for

parallelization. The performance impact of all compiler optimizations on the selected

regions and the entire programs is carefully evaluated and discussed. Finally, the

major findings of these experiments are summarized at the end of this chapter.

5.1 Simulation Framework

The evaluations presented in this chapter are performed using a detailed machine

model that simulates 4-way issue, out-of-order, superscalar processors similar to the

MIPS R10000 [71], but modernized to have a 128-entry reorder buffer. Each proces-

81

Table 5.1: Simulation parameters.

Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

sor has its own physically private data and instruction caches connected to a unified

second-level cache by a crossbar switch. Register renaming, the reorder buffer, branch

prediction, instruction fetching, branching penalties, and the memory hierarchy (in-

cluding bandwidth and contention) are all modeled and parameterized, as shown in

Table 5.1.

82

5.2 Benchmark Characteristics

This section describes and analyzes the benchmark applications that are used to gen-

erate the results of this research. All benchmarks in the SPECint95, SPECint2000,

and SPECfp2000 benchmark suites [59] are evaluated, with the following excep-

tions: 252.eon, which is written in C++ and not supported by SUIF; 178.gal-

gel, 187.facerec, 189.lucas, and 191.fma3d, which are written in Fortran90 and

not supported by SUIF; 168.wupwise, 173.applu, 200.sixtrack, and 301.apsi,

for which SUIF compilation fails; 126.gcc, which is similar to 176.gcc; 147.vor-

tex, which is identical to 255.vortex; and 129.compress, 130.li, 134.perl,

186.crafty, and 255.vortex which lack the loops that both comprise an in-

teresting portion of execution and is able to speed up with an oracle that per-

fectly predicts all values that cause inter-thread data dependences. Two compres-

sion/decompression benchmarks from SPECInt2000, 164.gzip and 254.bzip2, are

divided into two phases, compression and decompression, and are evaluated sepa-

rately since the two phases behave very differently. For 175.vpr, only the placing

phase of the benchmark is evaluated due to compilation errors in evaluating the rout-

ing phase. A brief description of each remaining benchmark is given in Table 5.2.

5.2.1 Benchmark Input

For each benchmark, the ref input set is used to measure the performance while both

the train and the ref input sets are used to collect profiling information. In the case

of multiple input files, only the first input set is chosen. To ensure a reasonable speed

for profiling and simulation, the initialization portion of execution for all appropriate

benchmarks has been skipped and simulation begins with a “warmed-up” memory

system loaded from a pre-saved snapshot. Only a maximum of roughly one billion

instructions are simulated for each benchmark. Since the sequential and TLS versions

83

Table 5.2: Benchmark descriptions.

Benchmark Description

SP
E

C
in

t9
5

099.go game playing

124.m88ksim microprocessor simulator

132.ijpeg image processing

SP
E

C
In

t2
00

0

164.gzip compression/decompression

175.vpr FPGA placing and routing

176.gcc compiler

181.mcf combinatorial optimization

197.parser natural language parsing

253.perlbmk perl interpreter

254.gap group theory interpreter

256.bzip2 compression/decompression

300.twolf placing and routing

SP
E

C
fp

20
00

171.swim weather simulation

172.mgrid computational fluid dynamics multigrid solver

177.mesa an OpenGL 3-D graphics library

179.art thermal image recognition with a neural network

183.equake earthquake simulation with an unstructured mesh

188.ammp models molecular dynamics

84

Table 5.3: Truncation of benchmark execution.

Simulation Profiling Cycles Instruction

Input Input Simulated Simulated

SP
E

C
in

t9
5

099.go ref train 709M 1003M

124.m88ksim ref train 617M 1000M

132.ijpeg subset of ref train 350M 649M

SP
E

C
In

t2
00

0

164.gzip comp subset of ref train 549M 1000M

164.gzip decomp subset of ref train 616M 991M

175.vpr place ref, place phase train, place phase 656M 949M

176.gcc subset of ref train 746M 1010M

181.mcf ref train 3311M 1065M

197.parser ref train 874M 980M

253.perlbmk subset of ref subset of train 764M 1058M

254.gap ref train 535M 1010M

256.bzip2 comp ref train 606M 962M

256.bzip2 decomp ref train 674M 987M

300.twolf ref train 1035M 987M

SP
E

C
fp

20
00

171.swim ref train 744M 815M

172.mgrid ref train 602M 872M

177.mesa ref train 553M 992M

179.art ref train 974M 1016M

183.equake ref train 527M 1019M

188.ammp ref train 1655M 1004M

85

of each benchmark are compiled differently, the compiler instruments them to ensure

that they terminate at the same point in their executions relative to the source codes

so that the executions are comparable. Table 5.3 shows the inputs used both for

profiling and for simulation, as well as the number of cycles and instructions simulated

for each benchmark.

5.3 Estimating the Performance Upper Bounds for

Value Communication Optimizations on All Loops

This section evaluates the importance of value communication optimizations by ex-

amining the performance upper bounds of all loops in all benchmarks when different

value communication oracles are applied. We first outline the details of our evalua-

tion methodology, then present the potential performance benefit for all loops in all

benchmarks when the communication of register-resident and memory-resident values

has been optimized.

5.3.1 Evaluation Methodology

For all evaluations in this section, value communication optimizations are not actually

implemented in the compiler, but rather estimated by implementing various value

prediction oracles in the simulator. This allows us to establish the performance upper

bound for each optimization since the best possible way for reducing the cost of

communicating a value is to use a perfect value predictor that always provides the

desired value on time. Each value communication optimization is implemented with

a different predictor in an oracle simulator to emulate the effects of that optimization.

The speedups achieved by these oracle simulators are compared.

This study is conducted by following the process shown in Figure 5.1. Each loop

86

is compiled twice to create a sequential executable and a parallel executable. In the

parallel executable, all register-resident values are communicated by synchronizing

them at their first use and last definition while all memory-resident values are com-

municated by speculation. Each loop is executed multiple times—first sequentially,

then in parallel with various value communication oracles—to obtain a speedup for

every loop and every value communication optimization. To take loop nesting into

consideration, all the loops in the same benchmark are partitioned into loop sets,

where loops belonging to the same set are not nested during executions, and hence

can be parallelized together without interference. To compare two optimizations, A

and B, three distinct execution times are extracted for every loop: (i) sequential exe-

cution time, tseq; (ii) parallel execution time when optimization A is applied, tA; (iii)

parallel execution time when optimization B is applied, tB. For each loop, the paral-

lel speedups achieved, with the two optimizations individually applied, are calculated

relative to sequential execution: SpeedupA = tseq/tA and SpeedupB = tseq/tB.

To visually compare the effects of the two optimizations, the results are plotted

on a two-dimensional graph, as shown in Figure 5.2. Every parallelized loop is rep-

resented as one data point in this graph, where its x-coordinate is the speedup for

optimization A and its y-coordinate is the speedup for optimization B. A 45-degree

reference line is also plotted on the graph. Points above the 45 degree reference line

correspond to loops that perform better when optimization B is applied; points below

the reference line correspond to loops that perform better when optimization A is

applied; and points on the reference line correspond to loops that perform equally

well under the two optimizations. Points with x- or y-coordinates greater than one

represent loops that speed up relative to the sequential execution. Loops with differ-

ent coverage1, are differentiated on the graph using different symbols—loops with less

1Coverage is the fraction of execution time spent executing instructions from the parallelized

loops in the original sequential execution.

87

Loop Speedups

"B"

Loop Speedups

"A"

SUIF

GCC

GCC foo.par.exe

foo.seq.exe

Simulator
Oracle

Oracle

 "A"

Simulator

 "B"
Simulator

Parallelization

Optimization
&

Loop Set #1

Loop Set #2

Figure 5.1: Compilation and simulation framework for studying performance potential
of different optimizations.

than 5% coverage are represented by dots, and loops with greater than 5% coverage

are represented by circles. In the rest of this evaluation, a separate graph is generated

for each benchmark.

5.3.2 Reducing Critical Forwarding Path for Register-Resident

Values

The impact of reducing the critical forwarding path for register-resident values is

shown by the results in Figure 5.3. The best possible inter-thread value communica-

tion for register-resident values is a perfect value predictor that always provides the

consumer with the correct values and never results in synchronization stalls. This is

the oracle implemented in this experiment. In this figure, the x-axis is the speedup due

to TLS for each loop when no optimization is applied, and the y-axis is the speedup

when register-resident values are perfectly predicted and thus cause no stall. Across

all benchmarks, a large number of loops are located above the 45-degree reference

line, indicating that optimizing register-resident value communication has a signif-

icant impact on them. It also shows that without reducing the critical forwarding

path, few loops are able to speedup relative to sequential execution.

88

0 1 2 3

1

2

3

4
O

pt
im

iz
at

io
n

"B
"

Sp
ee

du
p

Optimization "A" Speedup

1 2

3

Figure 5.2: Comparing the impact of optimization A vs. optimization B. Each
data point in the graph represents a loop. Its x-coordinate is the loop’s speedup
when optimization A is applied, and its y-coordinate is the loop’s speedup when
optimization B is applied. 1© represents a loop with less than 5% coverage that
performs better with optimization B; 2© represents a loop with more than 5% coverage
that performs equally well with both optimizations; and 3© represents a loop with
more than 5% coverage that performs better with optimization A.

89

0 2 4
0

2

4
go

0 2 4
0

2

4
m88ksim

0 2 4
0

2

4
ijpeg

0 2 4
0

2

4
gzip_comp

0 2 4
0

2

4
gzip_decomp

0 2 4
0

2

4
vpr_place

0 2 4
0

2

4
gcc

0 2 4
0

2

4
mcf

0 2 4
0

2

4
parser

0 2 4
0

2

4
perlbmk

0 2 4
0

2

4
gap

0 2 4
0

2

4
bzip2_comp

0 2 4
0

2

4
bzip2_decomp

0 2 4
0

2

4
twolf

0 2 4
0

2

4
swim

0 2 4
0

2

4
mgrid

0 2 4
0

2

4
mesa

0 2 4
0

2

4
art

0 2 4
0

2

4
equake

0 2 4
0

2

4
ammp

Figure 5.3: Impact of reducing the critical forwarding path for register-
resident values. In each graph, the x-axis is the speedup with no value predictor,
and the y-axis is the speedup with a prefect value predictor for all register-resident
values. Loops that do not speed up in both cases are omitted from the graph for
clarity.

90

0 2 4
0

2

4
go

0 2 4
0

2

4
m88ksim

0 2 4
0

2

4
ijpeg

0 2 4
0

2

4
gzip_comp

0 2 4
0

2

4
gzip_decomp

0 2 4
0

2

4
vpr_place

0 2 4
0

2

4
gcc

0 2 4
0

2

4
mcf

0 2 4
0

2

4
parser

0 2 4
0

2

4
perlbmk

0 2 4
0

2

4
gap

0 2 4
0

2

4
bzip2_comp

0 2 4
0

2

4
bzip2_decomp

0 2 4
0

2

4
twolf

0 2 4
0

2

4
swim

0 2 4
0

2

4
mgrid

0 2 4
0

2

4
mesa

0 2 4
0

2

4
art

0 2 4
0

2

4
equake

0 2 4
0

2

4
ammp

Figure 5.4: Impact of avoiding speculation failures for memory-resident val-
ues. In each graph, the x-axis is the speedup with a prefect value predictor for all
register-resident values, and the y-axis is the speedup with a perfect value predictor
for both register-resident and memory-resident values. Loops that do not speed up
in both cases are omitted from the graph for clarity.

91

5.3.3 Avoiding Speculation Failures for Memory-Resident Val-

ues

The impact of avoiding speculation failures for memory-resident values is illustrated

by the results shown in Figure 5.4. The best possible inter-thread value communi-

cation for memory-resident values is a perfect value predictor that always provides

the consumer with the correct value without any speculation failure, and this is the

oracle implemented in this experiment. In this figure, the x-axis is the speedup when

only register-resident values are perfectly predicted, and the y-axis is the speedup

when both register-resident values and memory-resident values are predicted, thus

causing neither stalls nor speculation failures. Across all benchmarks, a large number

of loops are located above the 45-degree reference line, indicating that optimizing

memory-resident value communication has a significant impact for a large number of

loops.

5.4 Loop Selection

Deciding on which loops to parallelize and which value communication optimizations

to apply are two inter-dependent problems. The loops selected for parallelization

affect the effectiveness of the value communication optimization passes, while the

value communication optimization passes enable more loops to speed up under TLS.

Therefore, the loop selection criteria should be adjusted according to the availability

of the value communication optimization passes. This circular dependence is broken

by providing the loop selection algorithm with an estimation of the performance

impact of the optimization passes, as shown in Figure 2.12. Such an estimation can

be obtained by executing an unoptimized parallel executable on an oracle simulator

that emulates the effects of the compiler optimization passes. For instance, if the

92

compiler optimization pass is able to optimize inter-thread value communication for

all register-resident values, this effect can be emulated with an oracle simulator that

perfectly predicts all register-resident values. The performance achieved by this oracle

simulator is compared with the sequential execution time to obtain a speedup that

reflects the performance upper bound achievable by this optimization. This region

speedup is used in the loop selection algorithm described in Section 2.4.1. This entire

process is illustrated in Figure 5.5.

Three sets of loops, requiring increasingly more aggressive inter-thread value com-

munication optimizations, are selected for performance evaluation,

Register set is the set of loops that maximize program performance when the costs

of communicating all register-resident values are completely eliminated (a.k.a.

the register set);

Realistic set is the set of loops that maximize program performance when the costs

of communicating all register-resident values and frequently dependent memory-

resident values are completely eliminated (a.k.a. the realistic set). A data

dependence is considered frequently occurring if it occurs in more than 4% of

all threads, Appendix C.5 describes how this threshold is established.

Idealistic set is the set of loops that maximize program performance when the costs

of communicating all values are completely eliminated (a.k.a. the idealistic set);

As more aggressive value communication optimizations are implemented, the cov-

erage for each region set also increases, as shown in Table 5.4.2 For most benchmarks,

the coverage of the realistic set is larger than or equal to that of the register set, and

the coverage of the idealistic set is larger than or equal to that of the realistic set.

2With hardware support for speculative execution, we are able to parallelize a large set of loops

that are previouly not parallelizable. Detailed discussion can be found in Appendix D.

93

Table 5.4: Fraction of execution being parallelized.

Benchmark Register Idealistic Realistic

Set Set Set

099.go 17.9% 93.0% 24.5%

124.m88ksim 6.1% 97.9% 13.5%

132.ijpeg 84.5% 84.5% 97.6%

164.gzip comp 10.3% 99.9% 47.3%

164.gzip decomp 32.0% 99.6% 99.6%

175.vpr place 72.6% 99.7% 73.1%

176.gcc 26.6% 88.4% 34.9%

181.mcf 96.8% 96.8% 96.8%

197.parser 56.7% 89.8% 88.5%

253.perlbmk 20.6% 18.9% 18.9%

254.gap 51.9% 94.0% 53.1%

256.bzip2 comp 68.2% 70.4% 70.5%

256.bzip2 decomp 13.5% 99.7% 100.0%

300.twolf 7.3% 100.0% 100.0%

171.swim 99.8% 99.9% 99.9%

172.mgrid 99.1% 88.8% 99.4%

177.mesa 87.3% 99.0% 99.0%

179.art 46.3% 100.0% 100.0%

183.equake 100.0% 100.0% 100.0%

188.ammp 6.8% 94.8% 94.8%

94

SUIF

GCC

GCC foo.par.exe

foo.seq.exe Simulator

Parallelization

Optimization
& Simulator

Oracle

Loop
Speedups

Potential Loop
Selector

Loop

Loop
Set #2

Set #1

Figure 5.5: Region Selection Process

5.5 Evaluating Value Communication Optimizations

All performance evaluations are conducted on the three sets of loops that are se-

lected to maximize program performance under different optimizations, as described

in Section 5.4. A four-processor chip multiprocessor that supports TLS (detailed in

Chapter 2) is implemented in the simulator. All figure shows the speedups or the

execution time of the benchmarks normalized to the execution time of the original

sequential executable (i.e. without any TLS instructions or overheads) running on

a single processor. Hence our speedups are absolute speedups and not self-relative

speedups. Every bar in Figures 5.6 and Figure 5.8-5.17 is broken down into four

segments explaining what happens during all potential graduation slots. The number

of graduation slots is the product of (i) the issue width (4 in this case), (ii) the num-

ber of cycles, and (iii) the number of processors (4 in this case). The fail segment

represents all slots wasted on failed thread-level speculation, and the remaining three

segments represent slots spent on successful speculation. The busy segment is the

number of slots where instructions graduate; the sync segment represents slots spent

waiting for synchronization for scalar values (scalar values are communicated using

explicit synchronization); and the other segment is all other slots where instructions

cannot graduate. Both the sync segment and the fail segment represent the amount

95

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|10

|20

UNO

|0

|50

|100

UNO

|0

|2

|4

|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|5

|10

|15

|20

UNO

|0

|20

|40

|60

|80

UNO

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

|60

|80

UNO

|0

|20

|40

|60

|80

UNO

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20
|40

|60

UNO

|0

|50

|100

UNO

go m88ksim ijpeg gzip comp

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

|150

UNO

|0

|50

|100

|150

UNO

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

|60

|80

UNO

|0

|50

|100

UNO

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|10

|20

|30

|40

UNO

|0

|50

|100

UNO

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

|60

|80

UNO

|0

|20

|40

|60

|80

UNO

gzip decomp vpr place gcc mcf

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

|60

|80

UNO

|0

|20

|40

|60

|80

UNO

|0

|5

|10

|15

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|5

|10

|15

UNO
|0

|5

|10

|15

UNO

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

UNO

|0

|20

|40

|60

|80

UNO

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

|60

UNO

|0

|20

|40

|60

UNO

parser perlbmk gap bzip2 comp

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

|0

|2

|4
|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

bzip2 decomp twolf swim mgrid

|0

|20

|40
|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|20

|40

|60

|80

UNO

|0

|20

|40

|60

|80

UNO

|0

|10

|20

|30

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UNO

|0

|50

|100

UNO

|0

|50

|100

UNO

mesa art equake ammp
Left bar group: Register Set
Middle bar group: Realistic Set
Right bar group: Idealistic SetSync Fail Other Busy

Reference line
(Coverage)

Figure 5.6: Potential impact of optimizing inter-thread value communica-
tion. For each benchmark, three sets of results are presented, corresponding to the
register, the realistic, and the idealistic loop sets, respectively. Bars represent execu-
tion time of the parallel loops on a four-processor CMP normalized to the sequential
program execution time. U is unoptimized, all register-resident values are synchro-
nized and all memory-resident values are speculated; N assumes a perfect value pre-
dictor for all register-resident values; and O assumes a perfect value predictor for all
values.

96

of time the application spends communicating values. For each figure, a reference

line (the dotted horizontal line) is drawn corresponding to the sequential execution

time of the parallelized loops, i.e., the coverage of the parallelized loops. Hence, the

bars below the reference line represent benchmarks that speed up when parallelized.

In Figures 5.6-5.12, we show three sets of performance corresponding to the register

set, the realistic set, and the idealistic set, respectively. (The selection criteria of

these loop sets were described earlier in Section 5.4.)

Figure 5.6 shows the speedup potential for inter-thread value communication for

each set of loops. We begin with an un-optimized executable, in which all register-

resident values are communicated by inserting synchronization at their first uses and

last definitions, while all memory-resident values are communicated through spec-

ulation. The bars labeled with U show that all benchmarks without optimization

spend a significant amount of time on inter-thread value communication as shown by

the first two segments (e.g., Sync and Fail) in each bar. The best possible optimiza-

tion for reducing the cost of value communication is to prevent any data dependence

speculation from failing and any synchronization from stalling. This ideal behavior

is measured by simulating the same executables with a hypothetical model that per-

fectly predicts the values needed by all consumer instructions of inter-thread data

dependences. The results are shown as O bars in the figure.3 The N bars represent

the execution time of the benchmarks when only register-resident values are perfectly

predicted to prevent synchronization stalls. Figure 5.6 shows significant performance

potential for optimizing inter-thread value communication for all three sets of loops.

By completely eliminating synchronization stalls for register-resident values with per-

fect value predictors, the parallelized portion of the three sets of loops can potentially

speed up by 38%, 5% and 10%, respectively. On top of that, by completely elimi-

3For some of the benchmarks, the other segment for the O bars has increased relative to the U

bars. Such increases are due to second order effects such as increasing in data cache miss rate.

97

nating speculation failures with perfect value prediction for memory-resident values,

the three sets of loops can potentially speed up by an additional 8%, 34%, and 27%,

respectively.

The rest of this chapter first summarizes the speedup achieved by the entire pro-

gram and the parallelized regions (Section 5.6), then presents the results of the com-

piler optimizations to reduce the critical forwarding paths due to register-resident

values (Section 5.7) and the results for the compiler optimizations to automatically

synchronize frequently occurring memory-resident values (Section 5.8).

5.6 Program Performance

Figure 5.7 summarizes the speedup achieved by each benchmark with respect to the

original sequential executable on a four-processor chip-multiprocessor with conserva-

tive instruction scheduling for register-resident values and with a hybrid of hardware-

based and compiler-based automatic synchronization for memory-resident values. The

P bars show the speedups achieved by the entire program, the R bars show the

speedups achieved by the parallelized loops, and the O bars show the speedups for

the portion of the program not parallelized. For some benchmarks, such as go, the

parallelized loops speed up relative to the sequential execution, while the program

performance is pulled down by the slowdowns in the non-parallelized portion of the

program. This behavior is caused by: (i) the hampered compiler optimization (due

to instructions inserted to transform the sequential programs into parallel programs),

and (ii) the decreased data-cache locality (due to the spreading of data items across

multiple first-level caches during parallel execution). A more detailed discussion of

this behavior can be found in Steffan’s thesis [60].

Speedups achieved by different benchmarks vary greatly: some benchmarks, such

98

|0

|1

|2

 S
p

ee
d

u
p

P
0.

94
R

1.
21

O
0.

90

go

P
0.

94
R

1.
31

O
0.

92

m88ksim

P
1.

90
R

2.
36

O
0.

91

ijpeg

P
0.

98
R

0.
82

O
1.

00

gzip_comp

P
0.

96
R

0.
82

O
1.

04
gzip_decomp

P
1.

20
R

1.
38

O
0.

89

vpr_place

P
0.

97
R

1.
06

O
0.

94

gcc

P
1.

15
R

1.
16

O
0.

98

mcf

P
1.

04
R

1.
08

O
0.

99

parser

P
1.

04
R

1.
16

O
1.

02

perlb
mk

P
0.

98
R

0.
99

O
0.

97

gap

P
1.

11
R

1.
16

O
1.

00

bzip2_comp

P
1.

08
R

2.
47

O
0.

99

bzip2_decomp

P
1.

00
R

0.
91

O
1.

01

twolf

P
2.

80
R

2.
80

O
0.

66

swim

P
1.

77
R

1.
79

O
0.

39

mgrid

P
1.

01
R

1.
03

O
0.

87

mesa

P
1.

28
R

1.
90

O
1.

00

art

P
1.

76
R

1.
76

O
0.

54

equake

P
1.

18
R

1.
94

O
1.

15

ammp

(a) Register set

|0

|1

|2

 S
p

ee
d

u
p

P
0.

93
R

1.
09

O
0.

89

go

P
0.

89
R

0.
70

O
0.

92

m88ksim

P
1.

90
R

2.
35

O
0.

91

ijpeg

P
0.

86
R

0.
75

O
1.

00

gzip_comp

P
1.

08
R

1.
08

O
0.

85

gzip_decomp

P
1.

24
R

1.
39

O
0.

95

vpr_place

P
0.

95
R

0.
98

O
0.

94

gcc

P
1.

15
R

1.
16

O
0.

98

mcf

P
0.

95
R

0.
95

O
0.

96

parser

P
1.

01
R

1.
17

O
0.

98

perlb
mk

P
0.

96
R

0.
98

O
0.

94

gap

P
1.

04
R

1.
07

O
0.

97

bzip2_comp

P
0.

83
R

0.
83

O
0.

72

bzip2_decomp

P
0.

79
R

0.
79

O
0.

94

twolf
P

2.
80

R
2.

80
O

0.
66

swim

P
1.

77
R

1.
79

O
0.

39

mgrid

P
1.

49
R

1.
50

O
0.

97

mesa

P
1.

65
R

1.
65

O
0.

56

art

P
1.

76
R

1.
76

O
0.

54

equake

P
1.

34
R

1.
37

O
0.

95

ammp

(b) Realistic set

|0

|1

|2

 S
p

ee
d

u
p

P
0.

71
R

0.
71

O
0.

85

go

P
0.

83
R

1.
20

O
0.

06

m88ksim

P
1.

90
R

2.
35

O
0.

91

ijpeg

P
0.

82
R

0.
82

O
1.

00

gzip_comp

P
1.

08
R

1.
08

O
0.

85

gzip_decomp

P
1.

10
R

1.
11

O
1.

02

vpr_place

P
0.

90
R

0.
90

O
0.

91

gcc

P
1.

15
R

1.
16

O
0.

98

mcf

P
0.

94
R

0.
93

O
0.

94

parser

P
1.

01
R

1.
17

O
0.

98

perlb
mk

P
1.

00
R

1.
00

O
0.

97

gap

P
1.

04
R

1.
07

O
0.

97

bzip2_comp

P
0.

83
R

0.
83

O
0.

98

bzip2_decomp

P
0.

79
R

0.
79

O
0.

94

twolf

P
2.

80
R

2.
80

O
0.

66

swim

P
1.

79
R

1.
80

O
0.

32

mgrid

P
1.

49
R

1.
50

O
0.

97

mesa

P
1.

65
R

1.
65

O
0.

56

art

P
1.

76
R

1.
76

O
0.

54

equake

P
1.

34
R

1.
37

O
0.

95

ammp

(c) Idealistic set

Figure 5.7: Speedup achieved with TLS on a four processors CMP with previously
described optimizations. P is program speedup, R is region speedup, and O is outside-
region speedup.

99

as gzip comp, gap and twolf, are unable to speed up at all relative to sequential ex-

ecution; while some other benchmarks, such as ijpeg, swim, mgrid, mesa, art and

equake show more than 40% program speedup. One interesting question is which

loop set achieves the best program performance when parallelized with inter-thread

value communication optimizations. Intuitively, the realistic set and the idealistic set,

having a much higher coverage than the register set, would be expected to achieve bet-

ter program performance. However, nine out of fourteen integer-benchmarks achieve

the best performance with the register set and two benchmarks achieve the same

performance with all loop sets. Only three benchmarks, gzip decomp, vpr place,

and gap, achieve the best performance with the idealistic set or the realistic set. The

floating point benchmarks, on the other hand, almost always achieve best perfor-

mance with the idealistic set or the realistic set. Thus, selecting the right set of loops

to parallelize is very important for overall program performance.

Since the goal of this dissertation is to improve the performance of parallelized

regions by improving inter-thread value communication, we focus on the performance

improvement achieved by the parallelized loops in the rest of this dissertation.

5.7 Reducing the Critical Forwarding Path

This section presents the experimental results that quantify the performance impact

of the scheduling algorithms described in Chapter 4 using the three sets of loops

selected in Section 5.4. We also compare our approach against previously proposed

techniques that intend to reduce the critical forwarding paths: (i) hardware-based

instruction scheduling techniques [64]; and (ii) the Multiscalar instructions scheduling

techniques [68].

100

5.7.1 Impact of Conservative Scheduling

Figure 5.8 shows the performance impact of the conservative scheduling algorithm de-

scribed in Section 4.3 on parallelized loops. Note that in most cases, the unscheduled

version (U) slows down relative to the original sequential version (i.e., the U bars are

almost always above the reference line).

When the scheduling algorithm is applied to loop induction variables alone (I), the

time spent on synchronization stalls decreases significantly, which results in signifi-

cant parallel loop speedup: 24% for the register set, 19% for the realistic set, and 13%

for the idealistic set. The register set responds most positively to this optimization,

since its execution is previously dominated by synchronization stalls. By scheduling

instructions to reduce the critical forwarding path for all forwarded values, as de-

scribed in Section 4.3, seven benchmarks from the register set enjoy an additional

7% speedup on parallel loops on average, as shown by the S bars. The same trends

are observed in the other sets of loops, although not as pronounced because their

execution is dominated by other performance bottlenecks, such as speculation fail-

ures. gzip comp and gzip decomp of the register set are the only two benchmarks

that spend significant amount of time on synchronization but are unable to speed up

with this optimization. This is because the complex control flow structures that are

inherent in gzip prevent instructions from being scheduled further back.

It is worth noting that the reduction in synchronization stall time does not al-

ways translate directly into improved performance. For example, in the register set,

synchronization time is greatly reduced for bzip2 comp with instruction scheduling

for all forwarded values rather than just for induction variables. However, the perfor-

mance of the resulting program does not improve proportionally. The reason behind

this behavior is that other inter-thread data dependences are exposed as the critical

forwarding path shrinks, causing speculation to fail more often.

101

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|10

|20

U I S

|0

|50

|100

U I S

|0

|2

|4

|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|5

|10

|15

|20

U I S

|0

|20

|40

|60

|80

U I S

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

|60

|80

U I S

|0

|20

|40

|60

|80

U I S

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20
|40

|60

U I S

|0

|50

|100

U I S

go m88ksim ijpeg gzip comp

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

|150

U I S

|0

|50

|100

|150

U I S

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

|60

|80

U I S

|0

|50

|100

U I S

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|10

|20

|30

|40

U I S

|0

|50

|100

U I S

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

|60

|80

U I S

|0

|20

|40

|60

|80

U I S

gzip decomp vpr place gcc mcf

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

|60

|80

U I S

|0

|20

|40

|60

|80

U I S

|0

|5

|10

|15

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|5

|10

|15

U I S
|0

|5

|10

|15

U I S

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

U I S

|0

|20

|40

|60

|80

U I S

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

|60

U I S

|0

|20

|40

|60

U I S

parser perlbmk gap bzip comp

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

|0

|2

|4
|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

bzip2 decomp twolf swim mgrid

|0

|20
|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|20

|40

|60
|80

U I S

|0

|20

|40

|60

|80

U I S

|0

|10

|20

|30

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

U I S

|0

|50

|100

U I S

|0

|50

|100

U I S

mesa art equake ammp
Left bar group: Register Set
Middle bar group: Realistic Set
Right bar group: Idealistic SetSync Fail Other Busy

Reference line
(Coverage)

Figure 5.8: Impact of instruction scheduling on reducing critical forwarding
path for register-resident values. For each benchmark, three sets of results are
presented, corresponding to the performance of the register, the realistic, and the
idealistic loop sets, respectively. Bars represent execution time of the parallel loops
on a four-processor CMP normalized to the sequential program execution time and
the reference line represents the coverage of each loop set. U is unoptimized, in
which all register-resident values are synchronized at first use and last definition;
I corresponds to only optimizing critical forwarding path introduced by induction
variables; S corresponds to reducing critical forwarding paths for all register-resident
values.

102

5.7.2 Comparing Conservative Scheduling with the Multi-

scalar Algorithm

Since the Multiscalar scheduler [68] is essentially a dataflow algorithm that only tra-

verses the control flow graph once, its operation can be estimated by constraining

our conservative scheduling algorithm as follows: by modifying the meet operator

such that it returns ⊥ whenever � meets with any value that is not �—this way, the

modified dataflow analysis converges during the first iteration.

Figure 5.9(b) shows a simplified version of a loop in gcc (at line reorg.c:2680)

that highlights the advantage of the more general dataflow approach of our conser-

vative scheduling algorithm over the Multiscalar algorithm [68]. While the original

version of this loop has multiple variables that are forwarded, this experiment fo-

cuses on the variable insn. The Multiscalar scheduler cannot move the assigning and

forwarding of insn above the inner loop in the case statement, while our approach

iterates to a dataflow solution where it can.

Figure 5.9(b) compares the performance of our conservative scheduling technique

with that of the Multiscalar algorithm for two benchmarks from the register set where

there is a significant difference in performance (i.e. gcc and go). Compared with the

Multiscalar algorithm, for the parallelized portion of the programs, our conservative

scheduling approach used here reduces synchronization time by 6% for gcc and by

35% for go, which in turn reduces the respective region execution times by 4% and 2%

relative to the Multiscalar approach. This result is not surprising since the Multiscalar

algorithm was designed for smaller, simpler regions.

103

for (insn = target; insn; insn = next) {
rtx this jump insn = insn;

next = NEXT INSN(insn);

switch (GET CODE(insn)){
case ...: ...

case INSN:

if (GET CODE(PATTERN(insn)) == USE){
...; continue;

} else if (GET CODE(PATTERN(insn)) == CLOBBER){
continue;

} else if (GET CODE(PATTERN(insn)) == SEQUENCE){
for (i=0; i<XVECLEN(PATTERN(insn),0); i++){

...

}
}

}
}

(a) An example.

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

V S

|0

|10

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

V S

go gcc

Sync Fail Other Busy
Reference line
(Coverage)

(b) Execution time of gcc and go

normalized to sequential program ex-

ecution for the register set. V ap-

proximates the Multiscalar scheduling

technique, and S uses the conservative

scheduling algorithm described in Sec-

tion 4.3.

Figure 5.9: Comparison with the Multiscalar scheduling algorithm.

104

5.7.3 Impact of Aggressive Scheduling

Figure 5.10 shows the impact of aggressive instruction scheduling. The first bar

(S) for each benchmark shows the performance of the conservative scheduling (as

seen earlier in Figure 5.8). The sync portion of these bars shows the potential gain

from better scheduling. The following discussion focuses on the register set, since

it has the most performance potential. Comparing with conservative instruction

scheduling, perlbmk achieves 9% parallel loop speedup when speculating on control

dependences (“C” bars), and gcc and twolf achieve 8% and 22% parallel loop

speedup when speculating on data dependences (“D” bars). However, bzip decomp

slows down when instructions are speculatively scheduled across data dependences.

This behavior suggests that aggressively instruction scheduling should be applied

only when synchronization stall is the main performance bottleneck. We should also

point out that control dependence speculation and data dependence speculation are

complementary, and by combining the two techniques, we are always able to get the

benefits of both optimizations (“A” bars).

5.7.4 Comparison with Hardware-Based Optimizations

This section discusses the effectiveness of the compiler versus the hardware at optimiz-

ing the critical forwarding paths and attempts to answer two questions: (i) without

compiler-based instruction scheduling, whether hardware is effective in reducing the

critical forwarding path, and (ii) with compiler-based instruction scheduling algo-

rithm, whether the hardware can offer additional performance improvement. The

hardware can reduce the critical forwarding path by predicting the forwarded values

and by giving high priorities to instructions that produce forwarded values in the

reorder buffer. Detailed descriptions of the hardware techniques can be found in our

previous work [64].

105

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|10

|20

SCDA

|0

|50

|100

SCDA

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|5

|10

|15

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20
|40

|60

SCDA

|0

|50

|100

SCDA

go m88ksim ijpeg gzip comp

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

|150

SCDA

|0

|50

|100

|150

SCDA

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60

SCDA

|0

|50

|100

SCDA

|0

|10

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA
|0

|10

|20

|30

SCDA

|0

|50

|100

SCDA

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|20

|40

|60

|80

SCDA

gzip decomp vpr place gcc mcf

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|5

|10

|15

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|5

|10

|15

SCDA
|0

|5

|10

|15

SCDA

|0

|20

|40

 T

im
e

(N
o

rm
al

iz
ed

 t
o

 S
eq

)
SCDA

|0

|20

|40

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60

SCDA

|0

|20

|40

|60

SCDA

parser perlbmk gap bzip comp

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

SCDA

|0

|50

|100

SCDA

|0

|2

|4
|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

SCDA

|0

|50

|100

SCDA

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

SCDA

|0

|50

|100

SCDA

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

SCDA

|0

|50

|100

SCDA

bzip2 decomp twolf swim mgrid

|0

|20
|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60
|80

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|10

|20

|30

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

SCDA

|0

|50

|100

SCDA

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|50

|100

SCDA

|0

|50

|100

SCDA

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCDA

|0

|20

|40

|60

|80

SCDA

|0

|20

|40

|60

|80

SCDA

mesa art equake ammp
Left bar group: Register Set
Middle bar group: Realistic Set
Right bar group: Idealistic SetSync Fail Other Busy

Reference line
(Coverage)

Figure 5.10: Impact of speculative instruction scheduling on reducing critical
forwarding path for register-resident values. For each benchmark, three sets of
results are presented, corresponding to the performance of the register, the realistic,
and the idealistic loop sets, respectively. Bars represent execution time of the parallel
loops on a four-processor CMP normalized to the sequential program execution time
and the reference line represents the coverage of each loop set. S schedules instructions
using conservative instruction scheduling algorithm; C schedules instructions across
control dependences; D schedules instructions across data dependences; A schedules
instructions across both control and data dependences.

106

The first two bars for each benchmark in Figure 5.11 answer the first question:

they show the performance of the unoptimized executables running speculatively in

parallel without (U bars) and with hardware-based optimization (H bars), respec-

tively. For all benchmarks in all loop sets, the H bars show no significant performance

improvement over the U bars. The next two bars evaluate whether the compiler and

the hardware are complementary by showing an optimized executable running specu-

latively in parallel without (S bars) and with hardware-based optimization (G bars),

respectively. Once again, the G bars show no significant performance improvement

over the B bars. Thus, the hardware-based technique is not effective in reducing the

critical forwarding path.

5.8 Automatically Synchronizing Memory Accesses

After eliminating time spent in synchronizing register-resident values, we now study

the other performance bottleneck: time wasted on failed speculation. This sec-

tion presents the experimental results that quantify the performance impact of the

compiler-based techniques for automatically inserting synchronization to avoid spec-

ulation failures, as described in Section 3.5.2. The effectiveness of these techniques is

also compared with related hardware-based approaches [15, 64].

Figure 5.12 shows the performance impact of compiler-based automatic synchro-

nization for frequently occurring memory-resident data dependences. It shows the

time spent on parallelized regions normalized to the execution time of the original

sequential programs. The S bars, the same as in Figure 5.8, are the baselines in this

experiment, where no synchronization is inserted for memory-resident values, but

while register-resident scalars are synchronized. The M bars show the performance of

these parallelized regions when frequently dependent memory accesses are synchro-

nized. In this experiment, data dependences are considered frequent-occurring if they

107

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|10

|20

UHSG

|0

|50

|100

UHSG

|0

|2

|4

|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|5

|10

|15

|20

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20
|40

|60

|80

UHSG

|0

|50

|100

UHSG

go m88ksim ijpeg gzip comp

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

|150

UHSG

|0

|50

|100

|150

UHSG

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|50

|100

UHSG

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG
|0

|10

|20

|30

|40

UHSG

|0

|50

|100

UHSG

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|20

|40

|60

|80

UHSG

gzip decomp vpr place gcc mcf

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|5

|10

|15

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|5

|10

|15

UHSG
|0

|5

|10

|15

UHSG

|0

|20

|40

 T

im
e

(N
o

rm
al

iz
ed

 t
o

 S
eq

)
UHSG

|0

|20

|40

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20

|40

|60

UHSG

|0

|20

|40

|60

UHSG

parser perlbmk gap bzip comp

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

|0

|2

|4
|6

|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

bzip2 decomp twolf swim art

|0

|20
|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|20

|40

|60
|80

UHSG

|0

|20

|40

|60

|80

UHSG

|0

|10

|20

|30

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

UHSG

|0

|50

|100

UHSG

|0

|50

|100

UHSG

mesa art equake ammp
Left bar group: Register Set
Middle bar group: Realistic Set
Right bar group: Idealistic SetSync Fail Other Busy

Reference line
(Coverage)

Figure 5.11: Impact of hardware optimization vs. compiler optimization for
reducing critical forwarding path. For each benchmark, three sets of results are
presented, corresponding to the performance of the register, the realistic, and the
idealistic loop sets, respectively. Bars represent execution time of the parallel loops
on a four-processor CMP normalized to the sequential program execution time and
the reference line represents the coverage of each loop set. U is unoptimized, in which
all register-resident values are synchronized at first use and last definition; H uses
hardware optimization but not compiler optimization; S uses compiler optimization
but not hardware optimization; G uses both the hardware and the compiler.

108

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|10

|20

S M

|0

|50

|100

S M

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|5

|10

|15

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

|80

S M

|0
|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40
|60

S M

|0

|50

|100

S M

go m88ksim ijpeg gzip comp

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

|150

S M

|0

|50

|100

|150

S M

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

S M

|0

|50

|100

S M

|0

|10

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|10

|20

|30

S M

|0

|50

|100

S M

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

|80

S M

gzip decomp vpr place gcc mcf

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

|80

S M

|0

|5

|10

|15

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|5

|10

|15

S M

|0

|5
|10

|15

S M

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

S M

|0

|20

|40

|60

S M

parser perlbmk gap bzip2 comp

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

S M
|0

|50

|100

S M

|0

|2

|4

|6
|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

S M

|0

|50

|100

S M

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

S M

|0

|50

|100

S M

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

S M

|0

|50

|100

S M

bzip2 decomp twolf swim mgrid

|0

|20

|40
|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

|80

S M

|0

|10

|20

|30

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

S M

|0

|50

|100

S M

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|50

|100

S M

|0

|50

|100

S M

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

S M

|0

|20

|40

|60

|80

S M

|0

|20

|40

|60

|80

S M

mesa art equake ammp
Left bar group: Register Set
Middle bar group: Realistic Set
Right bar group: Idealistic SetSync Fail Other Busy

Reference line
(Coverage)

Figure 5.12: Impact of compiler-inserted synchronization on reducing spec-
ulation failures. For each benchmark, three sets of results are presented, corre-
sponding to the performance of the register, the realistic, and the idealistic loop sets,
respectively. Bars represent execution time of the parallel loops on a four-processor
CMP normalized to the sequential program execution time and the reference line rep-
resents the coverage of each loop set. S has no synchronization for memory-resident
values; M has compiler-inserted synchronization for memory-resident values, as de-
scribed in Section 3.5.2.

109

occur in more than 4% of all threads, and we synchronize all load/store instructions

that can be reached from the parallelized loops within five function calls. Appendix C

provides detailed information about how these thresholds are selected.

Different loop sets respond differently. When comparing the S bars with the M

bars, we observe that, in the register set, although four benchmarks, mcf, parser,

perlbmk and twolf, are able to speed up but none by more than 5%. This is

because the loops included in this loop set do not suffer from excessive speculation

failures to begin with. Thus, we focus on the realistic set and the idealistic set for

the rest of this discussion. For the realistic set, seven benchmarks, go, m88ksim,

gzip decomp, mcf, twolf, art and ammp, are able to achieve parallel loop

speedup. Among them, m88ksim speeds up by 5%, gzip decomp by 41%, twolf

by 6%, art by 16%, and ammp by 28%. Unfortunately, bzip decomp slows down

by as much as 15% due to improper synchronization. Section 5.9 will discuss how

improving profiling accuracy can help us avoid such performance degradation. The

idealistic set also responds well to the optimization—nine benchmarks, gzip comp,

gzip decomp, vpr, gcc, mcf, perlbmk, twolf, art and ammp, are able to speed

up and the the exceptional performers from the realistic set are among them.

5.8.1 Comparing Compiler-Based and Hardware-Based Au-

tomatic Synchronization

Previous research [15, 64] proposed two hardware techniques to reduce the cost of failed

speculation due to memory-resident values: prediction and synchronization. Neither

of the proposed techniques requires centralized structures to match dependence pairs;

however, they differ in complexity, from a 2KB violation prediction table [15] to

two 32-entry tables that track loads that are exposed and loads that have caused

speculation to fail [64]. In the approach described in [64], the hardware identifies

110

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|10

|20

SMRT

|0

|50

|100

SMRT

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|5

|10

|15

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

|80

SMRT

|0
|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40
|60

SMRT

|0

|50

|100

SMRT

go m88ksim ijpeg gzip comp

|0

|10

|20

|30

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

|150

SMRT

|0

|50

|100

|150

SMRT

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

SMRT

|0

|50

|100

SMRT

|0

|10

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|10

|20

|30

SMRT

|0

|50

|100

SMRT

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

|80

SMRT

gzip decomp vpr place gcc mcf

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|5

|10

|15

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|5

|10

|15

SMRT

|0

|5
|10

|15

SMRT

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

SMRT

|0

|20

|40

|60

SMRT

parser perlbmk gap bzip2 comp

|0

|5

|10

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

SMRT
|0

|50

|100

SMRT

|0

|2

|4

|6
|8

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

SMRT

|0

|50

|100

SMRT

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

SMRT

|0

|50

|100

SMRT

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

SMRT

|0

|50

|100

SMRT

bzip2 decomp twolf swim mgrid

|0

|20

|40
|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|10

|20

|30

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

SMRT

|0

|50

|100

SMRT

|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|50

|100

SMRT

|0

|50

|100

SMRT

|0

|2

|4

|6

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SMRT

|0

|20

|40

|60

|80

SMRT

|0

|20

|40

|60

|80

SMRT

mesa art equake ammp
Left bar group: Register Set
Middle bar group: Realistic Set
Right bar group: Idealistic SetSync Fail Other Busy

Reference line
(Coverage)

Figure 5.13: Impact of compiler-inserted vs hardware-inserted synchroniza-
tion. For each benchmark, three sets of results are presented, corresponding to the
performance of the register, the realistic, and the idealistic loop sets, respectively.
Bars represent execution time of the parallel loops on a four-processor CMP nor-
malized to the sequential program execution time and the reference line represents
the coverage of each loop set. S has no synchronization for memory-resident values;
M has compiler-inserted synchronization for memory-resident values, as described in
Section 3.5.2; R has hardware-inserted synchronization for memory-resident values,
as described in [64]; and T has both compiler and hardware-inserted synchronization.

111

loads that frequently cause violations with a load address table and stalls these loads

until the previous threads complete. To avoid over-synchronization of infrequently

dependent loads, the load tables are periodically reset. This is the hardware technique

that we compare against.

In Figure 5.13, the M bars show the execution time breakdown for compiler-

inserted synchronization, while the R bars show the execution time breakdown for

hardware-inserted synchronization. A comparison between compiler-inserted and

hardware-inserted synchronization techniques reveals that each of the techniques wins

in some cases, but neither technique is consistently better. For the realistic set,

eight benchmarks (gzip comp, gcc, parser, bzip2 comp, bzip2 decomp, twolf,

mgrid, and mesa) perform better using hardware-inserted synchronization by 14% on

average for the parallel loops; six benchmarks (m88ksim, gzip decomp, vpr place,

mcf, art, and ammp) perform better with compiler-inserted synchronization by 12%

on average for the parallel loops. Similarly, in the idealistic set, ten benchmarks per-

form better using hardware-inserted synchronization, and six benchmarks perform

better using compiler-inserted synchronization. We will now present some insights

for why benchmarks perform differently.

First, for some benchmarks, (e.g., M88ksim), violations are not caused by true

data dependences, but rather by false sharing. The compiler attempts to synchro-

nize only true dependences, while the hardware is able to synchronize both true data

dependences and false sharing. Although the compiler could also track data depen-

dences at a word granularity, other techniques (such as memory layout optimizations

or loop unrolling) are better suited to address false sharing in the compiler.

Second, for some benchmarks, such as gzip decomp, the compiler and the hard-

ware both insert synchronization; however, the compiler is able to speculatively

forward the desired value much earlier than the hardware can. This reduces over-

112

synchronization, resulting in better performance.

The hardware-based and the compiler-based techniques each benefits a different

set of benchmarks and for almost all benchmarks at least one optimization is able to

improve region performance over the unoptimized case. This suggests that a hybrid of

the two techniques may be able to achieve a better overall performance. To evaluate

such a compiler-hardware hybrid, both hardware-inserted synchronization and the

compiler-inserted synchronization are enabled. The results are shown in Figure 5.13

as bar T. With the hybrid, twelve benchmarks are able to speed up relative to the

unoptimized cases in the realistic set. The hybrid approach is able to captures the

performance of the better of the two techniques: M88ksim benefits from hardware-

inserted synchronization and avoids the cost of false sharing, while Gzip decomp

benefits from having values be forwarded early by compiler-inserted synchronization.

Therefore, it is possible for us to implement a hybrid that can improve the performance

of a larger set of programs by taking advantage of both compiler and hardware inserted

synchronization.

5.8.2 Impact of Instruction Scheduling on Memory-Resident

Values

Reduction in the time spent on failed speculation does not always translate directly

into improved performance; sometimes, it is traded with the time spent on synchro-

nization. Five benchmarks (gzip decomp, vpr, bzip2 decomp, art, and ammp)

from the realistic set and the idealistic sets demonstrate significant increases in the

time spent on synchronization after synchronizing data dependences for memory-

resident values (“M” bars). This section describes an attempt to reduce the cost

of synchronizing memory-resident values using the same instruction scheduling tech-

niques that have been developed to reduce the cost of synchronizing register-resident

113

values.

Figure 5.14 shows the results of scheduling signal instructions and their depen-

dent instructions as early as possible within a thread for those benchmarks suffering

from synchronization stalls due to memory-resident value synchronization. As shown

by the “W” bars, for three benchmarks, vpr place, art and ammp, instruction

scheduling is able to significantly reduce time spent on synchronization stalls and

improve performance by 5.5%, 7.7% and 17.4%, respectively.

Forwarding memory-resident values before the corresponding stores are issued in-

troduces extra complexity compared with forwarding register-resident values. From

the compiler’s perspective, addresses and data values must both be forwarded upon

synchronization, and thus the dataflow analysis algorithm must propagate both ad-

dress computations and value computations through the control flow graph. At run-

time, we use a send addr buffer to record the addresses that have been forwarded,

and the next thread is restarted when a forwarded address is modified. If the signal

instructions always occur after their corresponding stores, the forwarded addresses

can be entered into the send addr buffer when signals are issued. However, if the

signal instructions occur before their corresponding store instructions, the forwarded

addresses should not be entered into the send addr buffer until the stores are issued.

Hence, extra to buffer instructions must be inserted after the stores.

5.9 Sensitivity to the Accuracy of Profiling Infor-

mation

All the experiments in previous sections have assumed realistic profiling information:

i.e., profiling information is collected with the train input set and performance eval-

uation is done using the ref input set. Can we further improve program performance

114

|0

|50

|100

M W

|0

|50

|100

M W

|0

|20

|40

|60

M W

|0

|50

|100

M W

|0

|50

|100

M W

|0

|50

|100

M W

gzip decomp vpr place bzip2 decomp

|0

|50

|100

M W

|0

|50

|100

M W

|0

|20

|40

|60
|80

M W

|0

|20

|40

|60

|80

M W

art ammp

Sync Fail Other Busy
Reference line
(Coverage)

Figure 5.14: Impact of instruction scheduling for memory-resident value syn-
chronization. Results shown are for the realistic and idealistic sets. M has compiler-
inserted synchronization for memory-resident values; W has compiler-inserted syn-
chronization for memory-resident values with signal instructions scheduled using the
algorithms described in Section 4.3.

115

with more accurate profiling information? This section demonstrates the sensitivity

of our optimization techniques to the accuracy of profiling information with a new set

of experiments that perform optimizations using accurate profiling information col-

lected with the ref input set. The results of these experiments are compared with the

results obtained when realistic profiling information is used. The rest of this section

discusses the sensitivity of two optimizations, speculative instruction scheduling for

register-resident values and automatic synchronization for memory-resident values.

The impact of profiling accuracy on speculative instruction scheduling is studied

by focusing on the register set, which is the set of loops that have shown significant

performance improvement with this technique. Speculative instruction scheduling

is relatively insensitive to the accuracy of data dependence profiling information.

Only three out of twenty benchmarks schedule instructions differently with different

data dependence profiling information and the results for these three benchmarks are

shown in Figure 5.15. Their performance is not affected by improving profiling accu-

racy. Speculative instruction scheduling is also insensitive to the accuracy of control

dependence profiling. Although nine benchmarks schedule instructions differently

with different profiling information, Figure 5.16 shows that none of these nine bench-

marks is able to obtain a significant performance gain with the more accurate profiling

information. Thus, with the help of more accurate profiling information, we can po-

tentially improve inter-thread value communication ever further for memory-resident

values (detailed discussion in Section 6.1.

To study the impact of profiling accuracy on automatic synchronization for memory-

resident values, we focus on the realistic set, which is the set of loops that demon-

strate significant performance improvement under this technique. Twelve bench-

marks schedule synchronization differently with different profiling information and

five benchmarks obtain better performance with more accurate profiling information.

The performance comparison for these twelve benchmarks is shown in Figure 5.17.

116

|0

|10

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SDY

|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SDY
|0

|50

|100

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SDY

gcc gap mgrid

Sync Fail Other Busy
Reference line
(Coverage)

Figure 5.15: Impact of profiling accuracy on speculatively scheduling in-
structions across data dependences. Results are shown for the register set only.
Bars represent execution time of the parallel loops on a four-processor CMP nor-
malized to the sequential program execution time and the reference line represents
the coverage of each loop set. S schedules instructions using conservative instruction
scheduling algorithm; D schedules instructions across data dependences, profiled with
the ref input set; Y schedules instructions across data dependences, profiled with
the train input set.

There are two reasons for how less accurate profiling information degrades perfor-

mance: (i) the forwarded addresses are frequently modified after the values have

been forwarded, such is the case for gzip comp, bzip comp and bzip decomp; (ii)

the compiler synchronized data dependences that do not occur very frequently, such

is the case for perlbmk and art. Thus, by improving profiling accuracy, we can

potentially improve the efficiency of inter-thread value communication even further.

(Details discussed in section 6.1.)

5.10 Chapter Summary

This chapter presents the results of detailed simulations designed to evaluate the ef-

fectiveness of the value communication optimization algorithms described in previous

chapters. The chapter begins with a description of the simulation framework and

117

|0

|5

|10

|15

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

|0

|10

|20

|30

 T

im
e

(N
o

rm
al

iz
ed

 t
o

 S
eq

)
SCX

|0

|20
|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

|0

|10

|20

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

go ijpeg gzip decomp vpr place gcc

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX
|0

|20

|40

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

|0

|20

|40

|60

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

|0

|20

|40

|60

|80

 T
im

e
(N

o
rm

al
iz

ed
 t

o
 S

eq
)

SCX

mcf gap bzip comp mesa

Sync Fail Other Busy
Reference line
(Coverage)

Figure 5.16: Impact of profiling accuracy on speculatively scheduling in-
structions across control dependences. Results are shown for the register set
only. Bars represent execution time of the parallel loops on a four-processor CMP
normalized to the sequential program execution time and the reference line represents
the coverage of each loop set. S schedules instructions using conservative instruction
scheduling algorithm; C schedules instructions across control dependences, profiled
with the ref input set; X schedules instructions across control dependences, profiled
with the train input set.

118

|0

|10

|20

SMZ

|0

|20

|40

|60

SMZ

|0

|50

|100

|150

SMZ

|0

|10
|20

|30

SMZ

|0

|20

|40

|60

|80

SMZ

|0

|20

|40

|60

|80

SMZ

go gzip comp gzip decomp gcc mcf parser

|0

|5

|10

|15

SMZ
|0

|20

|40

SMZ

|0

|20

|40

|60

SMZ

|0

|50

|100

SMZ

|0

|50

|100

SMZ

|0

|50

|100

SMZ

perlbmk gap bzip2 comp bzip2 decomp twolf art

Sync Fail Other Busy
Reference line
(Coverage)

Figure 5.17: Impact of profiling accuracy on compiler-inserted synchro-
nization. Results are shown for the realistic set only. S has no synchronization
for memory-resident values; M has compiler-inserted synchronization for memory-
resident values profiled with the ref input set; Z has compiler-inserted synchroniza-
tion for memory-resident values profiled with the train input set.

119

characteristics of all targeted benchmarks.

The performance impact of instruction scheduling techniques for reducing the

critical forwarding paths introduced by register resident values is evaluated, finding

the following:

• The proposed instruction scheduling technique is effective in reducing critical

forwarding path and improve parallel loop performance for the register set, the

realistic set and the idealistic set by 25%, 19% and 13%, respectively.

• The proposed algorithm’s ability to handle complex control flows performs well

in the presence of inner loops.

• The proposed compiler-based techniques are capable of examining the entire

program and scheduling instructions across a very long distance, and thus they

eliminate the need for hardware-based techniques targeting the same problem.

• Speculative instruction scheduling algorithms that move instructions across

intra-thread control and data dependences are useful, especially when the criti-

cal forwarding path is still significant after the conservative instruction schedul-

ing has been applied. With speculative instruction scheduling, we are able to

obtain: 9% performance improvement for perlbmk, 8% for gcc and 22% for

twolf, for the register set.

• Overall, speculative instruction scheduling is insensitive the accuracy of profiling

information: only gzip decomp slows down significantly with less accurate

profiling information.

The performance impact of automatically synchronizing memory-resident values

has also been evaluated, producing the following findings,

120

• The proposed automatic synchronization algorithms are effective in reducing

speculation failures.

• The proposed compiler-based techniques and hardware-based techniques each

benefit a different set of benchmarks. However, when they work in tandem,

more benchmarks are able to speed up;

• Instruction scheduling techniques that reduce the critical forwarding path also

work on memory-resident values. Three benchmarks, vpr place, art and

ammp, speed up with instruction scheduling by 5.5%, 7.7% and 17.4%, respec-

tively.

• For most benchmark, profiling-based automatic synchronization is insensitive

to profiling accuracy. Although the compiler synchronizes different instructions

when inaccurate profiling information is used, the performance is unaffected

for most benchmarks. However, for a few benchmark, gzip comp, perlbmk,

bzip comp, bzip decomp and art, more accurate profiling information can

lead to small performance improvement.

The speedup obtained by different set of loops vary greatly. For the integer bench-

marks, the register set achieves the best performance: 28% average parallel loop

speedup and 9% average program speedup. For the floating point benchmarks, the

realistic set and the idealistic set both achieved the best performance: 81% average

parallel loop speedup and 80% average program speedup (all floating point bench-

marks have close to 100% coverage).

121

122

Chapter 6

Conclusions

Under the context of TLS, efficient inter-thread value communication is the key to

achieving good performance. The main contribution of this dissertation is the design,

implementation, and evaluation of several compiler-based techniques that improve

the efficiency of inter-thread value communication.

Value communication for register-resident values and memory-resident values are

handled separately, since register-resident values are usually predictable and easy to

analyze statically, while memory-resident values are the opposite. As a baseline, we

rely on the compiler which inserts explicit synchronization to communicate register-

resident values, and on the hardware, which detects inter-thread data dependences to

ensure correct execution for memory-resident values. The key results of this disserta-

tion are the following:

1. Using compiler-inserted synchronization to communicate memory-resident val-

ues that would otherwise cause frequent dependence violations does improve

TLS performance in many cases: a subset of the benchmarks enjoy significant

region speedups, while others are unaffected.

2. By comparing our compiler-based approach with our hardware-based approach [64]

123

for synchronizing memory-resident values, we observe that both approaches are

useful, and that neither one consistently outperforms the other. By combining

the two approaches, we obtain a hybrid that tracks the better performer.

3. Scheduling instructions, with our conservative instruction scheduling algorithm,

reduces the critical forwarding path for all synchronized register-resident scalars,

and improves performance significantly.

4. The instruction scheduling techniques are also effective in reducing the criti-

cal forwarding path created by synchronizing frequently occurring data depen-

dences between memory-resident values.

5. Comparing our compiler-based approaches and our hardware-based approaches

demonstrates that the compiler can be effective in mitigating the performance

penalty from the critical forwarding path without requiring additional hardware

support beyond what is normally needed for TLS.

6. Speculatively scheduling instructions across control and data dependences yields

additional performance improvement and the their performance effects are com-

plementary. We believe if hardware resources are to be devoted to reduce the

critical forwarding path, they are best spent on implementing the instructions

necessary to support speculative instruction scheduling.

6.1 Future Work

The goal of our research is to improve the efficiency of inter-thread value communica-

tion under the context of TLS. In this section, we briefly describe how our work can

be further extended.

In this dissertation, the compiler is presented with two mechanisms to communi-

124

cate values between speculation threads: speculation and synchronization. Specula-

tion is suitable for satisfying infrequently occurring data dependences, while synchro-

nization is suitable for satisfying frequently occurring data dependences. Most data

dependences are bi-modal, i.e., they either occur very frequently or rarely, and thus

these two value communication mechanisms suffice. However, there are some cases

in which data dependences cause enough speculation failure to degrade performance

if speculated upon, but stall the program more than necessary if synchronized. For

these cases, we can efficiently communicate values to satisfy these data dependences

using a recovery mechanism that execute only the minimal set of instructions neces-

sary, identified by the compiler, when speculation fails. This approach is especially

beneficial for large threads, and thus it would encourage extracting parallelism at

coarser granularity.

Several techniques presented in this dissertation rely on profiling information to

identify optimization opportunities, however, collecting profiling information, espe-

cially data dependence profiling information, is a very time consuming process. One

potential solution for speeding up this process is to utilize the hardware. Chen and

Olukotun [10] has proposed hardware support in order to dynamically tracks the data

dependence pairs that would serialize parallel execution the most (a.k.a. the critical

forwarding path). Similar hardware support can be used for fast profiling: for each

loop, the compiler marks the beginning of each iteration and load/store instruction

to be profiled; while the hardware records all data dependences between the marked

instructions in a buffer. The other possible approach is to statically determine which

loops to parallelize by first identifying dependent instructions using pointer analy-

sis [4, 11, 42, 46, 50, 69], and then estimating the potential performance gain with this

information.

Section 5.9 has shown that accurate profiling information leads to better per-

formance, however, it is unrealistic to always expect perfect profiling information.

125

One potential solution is to dynamically adjust the inter-thread value communication

strategy at runtime. In the current infrastructure, once the compiler has decided to

synchronize a certain data dependence, it does so for the entire duration of execution.

However, data dependence patterns of a parallelized loop may change depending on

the input data and/or the phase of the program. The compiler could insert synchro-

nization instructions for all possible data dependences and let the hardware decide

which synchronization instructions to use at runtime.

Overall, we believe that the compiler, being able to analyze the entire program,

and the hardware, being able to adjust to the dynamic behavior of the program,

should work in tandem to optimize the efficiency of inter-thread value communication

mechanisms for TLS.

126

Appendix A

Profiling Methodology

The compiler optimization passes make extensive use of profiling information. In this

appendix, we present a detailed description of how to collect such information. Our

approach is to instrument the source code by inserting calls to profiling routines next

to each object that we are interested in profiling. When the instrumented program

is executed, it maintains a hash table to collect profiling information and prints out

the contents of this data structure at the end of the execution.

Profiling information is kept separately for each parallel region. A unique identifi-

cation number is assigned to each region and the beginning and the end of the region

is marked using the two profiling routines in Table A.1. When the enter region rou-

tine is invoked with a region identification number, the data structure associated with

the region is initialized; when the exit region routine is invoked, the data structure

is summarized if necessary.

127

Table A.1: Profiling routines that mark the beginning and the end of a region.

Profiling Routine Usage Parameters

enter region Marks the beginning of a region Region identification number

exit region Marks the end of a region Region identification number

A.1 Control Dependences

This dissertation uses control dependence profiling information to facilitate specula-

tive instruction scheduling across conditional branches and indirect jumps. For this

purpose, we assign a unique identification number to each branch/indirect jump in-

struction and count the number of times each branch/indirect jump instruction is

executed. Two profiling routines, shown in Table A.2, are used to collect control

dependence profiling information. A branch routine is inserted with a unique branch

identification number before each branch instruction indicating that a branch is about

to be executed; a branch target routine is inserted at all possible targets with the

branch identification number and the target identification number. A single target can

be the destination of several branch instructions; however, whenever control reaches

this target, it should only be counted towards the last branch taken, if there is one.

Thus, at every destination, a call to the branch target routine is inserted for every

branch instruction that can potentially jump to this destination. To resolve this issue,

we keep track of the identification number of the last branch instruction executed.

A branch target instruction only records a branch if the last unmatched branch

identification number matches the branch identification number in its parameter.

The data structure maintained for collecting control dependence information is

illustrated in Figure A.1. In this data structure, branches are kept in a hash table

indexed by the branch identification number. Every entry in the table corresponds

128

Table A.2: Profiling routines to collect control dependence information.

Profiling Routine Usage Parameters

branch Marks an upcoming branch Branch Identification number

branch target Marks a target of a branch Branch Identification number

Target Identification number

Hash Table Indexed By Branch Id

Targets

Branch Id = 200

Target Id = 1
Counter = 1000

Target Id = 0
Counter = 20

Targets
Counter = 1000
Branch Id = 9

Target Id = 1
Counter = 500

Target Id = 0
Counter = 200

Counter = 1020

Last Branch = 2000

Figure A.1: Data structure maintained at runtime to keep track of branch behavior.

to a branch. It also contains a list of targets and the number of times each target

is reached from that particular branch. For instance, branch #200 is executed 1020

times and has two targets. Assuming branch #200 is a conditional branch instruction

and target #1 corresponds to branch taken, then this branch is a biased branch; it is

taken 1000 times and falls through 20 times.

129

A.2 Data Dependences

This dissertation uses data dependence profiling information to identify and synchro-

nize frequently occurring inter-thread data dependences and to facilitate speculative

instruction scheduling across potential intra-thread data dependences. To collect this

information, all loads and stores are instrumented to match up dependent pairs at

runtime. My approach is to assign a unique identification number to each load and

store instruction and insert a call to the profiling routines before the actual memory

access. The profiling routines, prof load and prof store, are described in detail in

Table A.3. Each routine takes two parameters, the address accessed and the unique

identification number associated with the load/store instruction. During execution,

a data structure is maintained, as illustrated in Figure A.2(a). For each memory

location, all the store instructions that have stored to this address are kept track of.

For each unique store, the load instructions that are dependent on it are also kept

track of. Dependence distance between a load and a store instruction is calculated

using an induction variable that is unique for each region. The induction variable is

initialized upon entering a region and incremented at the end of each iteration (as-

suming every iteration of a loop corresponds to one thread of execution). When a

store occurs, its corresponding entry is moved to the head of the link list, its counter

is incremented, and the value of the induction variable at the time is assigned to

Last Access Iteration. When a load accesses a memory location, the last store

that has modified this location is at the head of the link list. Thus, we can update

the dependence table with the newly discovered dependent pair. The distance of the

dependence is the difference between the value of the current induction variable and

the value of Last Access Iteration in the store entry.

This data structure can become large and impractical to maintain during exe-

cution. Thus, the table is compressed at the end of each region. This is done by

130

Table A.3: Profiling routines to collect data dependence information.

Profiling Routine Usage Parameters

init ind Initializes induction variable Induction Variable Name

inc ind Increments induction variable Induction Variable Name

load Marks an upcoming load instruction Load Identification

Load Address

store Marks an upcoming store instruction Store Identification

Store Address

merging all entries into a new table indexed by store identification number, as shown

in Figure A.2(b). The contents of the compressed table are printed at the end of the

execution.

So far, only unique identification numbers have been used to represent static

branches, load and store instructions. However, there are occasions where it is de-

sirable to collect context-sensitive profiling information, e.g., the call path leads us

to the branch or memory access instruction. In such cases, each profiled object is

identified not only by an identification number, but also by the call path that leads to

it. To incorporate this information into the profiling framework, we assign a unique

identification number to each procedure, instrument the beginning and the end of

each procedure, and then maintain a calling stack during execution. When a pro-

filed object is encountered, it can be identified not only by the unique identification

number and but also by the contents of the calling stack at the time.

131

Hash Table Indexed By Memory Location

Dependent Loads

Counter = 1000

Dependent Loads

Addr= 0x1088
Store Id = 9
Counter = 1000
Last Access Iteration = 1099

Load Id = 100
Dependence Table
43 55 2 0 0

Dependence Table

Dependent Loads

Store Id = 9

Load Id = 100
Dependence Table

Store Id = 20
Addr= 0x2088

Addr= 0x2068

Counter = 50
Last Access Iteration = 109

Last Access Iteration = 1000

Load Id = 107

10 99 9 0 0

 0 5 1 0 0

Current Iteration Counter = 1200

(a) Dependence Table Indexed by Memory Locations.

Dependent Loads

Hash Table Indexed By Store Id

Store Id = 20
Counter = 1000

Dependent Loads

Load Id = 100
Dependence Table

Dependence Table
Load Id = 107

 0 5 1 0 0

Store Id = 9
Counter = 1050

53 154 11 0 0

(b) Dependence Table Indexed By Store Id.

Figure A.2: Data structured maintained at runtime to keep track of data dependences.

132

Appendix B

Selected High Coverage Loops

This section provides a detailed description of the set of loops that are selected by

our region selection algorithm and demonstrate significant speedup under TLS. For

each loop that speeds up under TLS after optimization and has a greater than 5%

coverage, we provide the following information:

• corresponding source file and line number;

• the coverage of the loop;

• best speedup achieved when register-resident value communication is optimized;

• best speedup achieved when memory-resident value communication is opti-

mized.

The information is displayed separately for different benchmarks, and we display only

loops that speed up by more than 5%.

133

Table B.1: Speedup for High Coverage Loops in go.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

g23.c:3565 5.7% 0.91 1.25 1.24

Table B.2: Speedup for High Coverage Loops in ijpeg.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

jdhuff.c:576 6.2% 1.00 2.92 2.92

jidctint.c:373 7.6% 0.94 2.74 2.74

jccolor.c:138 10.3% 1.19 3.08 3.08

jchuff.c:468 15.2% 1.00 3.05 3.05

jdmerge.c:304 5.4% 1.13 2.59 2.59

jcdctmgr.c:207 22.4% 0.99 2.17 2.17

Table B.3: Speedup for High Coverage Loops in gzip decomp.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

inflate.c:513 99% 0.60 0.66 1.09

134

Table B.4: Speedup for High Coverage Loops in vpr.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

place.c:902 11.6% 1.03 1.17 1.10

place.c:951 62.2% 0.86 1.52 1.44

place.c:501 99.2% 0.84 0.84 1.10

Table B.5: Speedup for High Coverage Loops in mcf.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

mcfutil.c:80 72.2% 1.17 1.20 1.05

pbeampp.c:186 14.9% 1.94 2.47 2.20

mcfutil.c:80 7.9% 0.63 1.12 1.13

Table B.6: Speedup for High Coverage Loops in parser.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

parse.c:290 43.1% 1.03 1.01 1.03

135

Table B.7: Speedup for High Coverage Loops in perlbmk.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

toke.c:5597 10.4% 1.03 1.39 0.98

Table B.8: Speedup for High Coverage Loops in bzip comp.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

bzip2.c:1253 6.4% 0.91 1.31 1.41

bzip2.c:2296 5.7% 1.11 2.55 2.55

bzip2.c:2186 5.1% 0.95 1.10 0.99

Table B.9: Speedup for High Coverage Loops in bzip decomp.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

bzip2.c:2637 13.3% 1.45 2.48 2.48

Table B.10: Speedup for High Coverage Loops in twolf.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

dimbox.c:82 6.9% 0.93 1.15 1.15

136

Table B.11: Speedup for High Coverage Loops in swim.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

swim.f:316 41.3% 1.06 2.87 2.87

swim.f:115 29.8% 0.99 3.30 3.30

swim.f:262 28.8% 1.05 2.36 2.36

Table B.12: Speedup for High Coverage Loops in mgrid.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

mgrid.f:364 17.2% 1.00 2.31 2.31

mgrid.f:191 62.7% 1.49 1.53 1.67

mgrid.f:234 9.6% 1.04 2.79 2.79

Table B.13: Speedup for High Coverage Loops in mesa.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

osmesa.c:693 5.6% 1.73 1.86 1.86

vbrender.c:905 85.9% 1.01 1.21 1.44

137

Table B.14: Speedup for High Coverage Loops in art.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

scanner.c:409 5.1% 1.06 1.23 1.23

scanner.c:471 20.6% 1.01 2.44 2.41

scanner.c:479 54.5% 0.77 0.80 1.42

Table B.15: Speedup for High Coverage Loops in equake.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

quake.c:317 96% 1.04 1.75 1.78

Table B.16: Speedup for High Coverage Loops in ammp.

Loop Coverage Initial Register-Resident Memory-Resident

Speedup Value Optimization Value Optimization

eval.c:347 6.8% 0.94 1.94 1.94

atoms.c:178 83.2% 0.97 0.95 1.75

138

Appendix C

Estimating the Performance Upper

Bounds for Value Communication

Optimizations on All Loops

This section determines various optimization parameters using the evaluation tech-

niques described in Section 5.3.

C.1 Avoiding Frequently Occurring Speculation Fail-

ures

Since it is neither realistic nor desirable to eliminate all speculation failures, we eval-

uate the impact of predicting values only for frequently occurring data dependences.

The results are shown in Figure C.1. In each graph, the x-axis is the speedup with a

perfect value predictor for register-resident values and loads that frequently depend

139

on previous threads,1 and the y-axis is the speedup when all register-resident values

and memory-resident values are perfectly predicted. The benchmarks respond very

differently: (i) for some benchmarks, such as mcf, swim and art, only perfectly pre-

dicting values for frequently occurring dependences is as good as perfectly predicting

values for all dependences; (ii) for some other benchmarks, such as go, gcc, and

equake, perfectly predicting values for all dependences performs better than only

perfectly predicting values for frequently occurring dependences; (iii) for still other

benchmarks, such as gzip and bzip2 (both compression and decompression phases),

only perfectly predicting values for frequently occurring loads performs better than

predicting values for all dependences. This counter-intuitive behavior is the result of

changing data cache access patterns when violations are avoided. Unfortunately, this

phenomenon cannot be explored within the scope of this dissertation. Overall, with

a large number of loops located close to the 45-degree reference line, we are able to

conclude that being able to capture only frequently occurring data dependences still

offers a significant enough performance improvement for all benchmarks.

C.2 Avoiding Speculation Failures on the First Oc-

currences of Loads

Since the synchronization mechanisms supported by the underlying hardware allow

for only one value to be communicated between two designated program points, load

instructions that reside in inner loops and access multiple memory locations in a single

thread cannot be synchronized on all occurrences. In other words, the underlying

hardware is unable to forward a stream of values between two threads. To evaluate

the impact of this disability, a perfect value predictor that predicts values only for

1Loads that depend on previous threads in more than 1% of all threads are considered frequent

in this experiment.

140

0 2 4
0

2

4
go

0 2 4
0

2

4
m88ksim

0 2 4
0

2

4
ijpeg

0 2 4
0

2

4
gzip_comp

0 2 4
0

2

4
gzip_decomp

0 2 4
0

2

4
vpr_place

0 2 4
0

2

4
gcc

0 2 4
0

2

4
mcf

0 2 4
0

2

4
parser

0 2 4
0

2

4
perlbmk

0 2 4
0

2

4
gap

0 2 4
0

2

4
bzip2_comp

0 2 4
0

2

4
bzip2_decomp

0 2 4
0

2

4
twolf

0 2 4
0

2

4
swim

0 2 4
0

2

4
mgrid

0 2 4
0

2

4
mesa

0 2 4
0

2

4
art

0 2 4
0

2

4
equake

0 2 4
0

2

4
ammp

Figure C.1: Impact of only avoiding speculation failures caused by loads of
frequently occurring inter-thread data dependences. In each graph, the x-axis
is the speedup with a perfect value prediction for register-resident values and loads
that depend on previous threads in more than 1% of all threads, and the y-axis is the
speedup with a prefect value predictor for all register-resident values and memory-
resident values. Loops that do not speed up in both cases are omitted from the graph
for clarity.

141

loads on their first occurrence in a thread is implemented. The results of this study

are shown in Figure C.2. In each graph, the x-axis is the speedup with a perfect

value predictor for register-resident values and loads of frequently occurring data

dependences on the first occurrences of these loads; and the y-axis is the speedup

with a perfect value predictor for register-resident values and loads of frequently

occurring data dependences on all occurrences. The results show that although a few

loops are located above the 45-degree reference line, for a large majority of loops, this

disability does not reduce parallelism.

C.3 Impact of Optimizing Data Dependences in

Callee Procedures

Although all instructions that could cause dependences between register-resident val-

ues are located in the body of the parallelized loop, instructions that could cause de-

pendences between memory-resident values could be located in either the parallelized

loop or in the procedures called from the loop. This experiment tries to determine how

deep into to the call tree we have to search to find the loads of all frequently occurring

dependences. This experiment uses a prefect values predictor that predicts only the

value for a load if that load can be reached from the parallelized loop with at most

ten, five or zero levels of procedural calls. The results are shown in Figure C.3, Fig-

ure C.3 and Figure C.3. We observe that if loads of frequently occurring dependences

in the callee procedures are not taken into consideration, the performance degrades

for a significant number of loops, as shown in figure C.3, however, we also observe

that only optimizing loads that can be reached with five levels of procedural calls is

as good as optimizing all loads, as shown in Figure C.3. Thus, we conclude, although

it is necessary to search for loads of frequently occurring dependences in the callee

142

0 2 4
0

2

4
go

0 2 4
0

2

4
m88ksim

0 2 4
0

2

4
ijpeg

0 2 4
0

2

4
gzip_comp

0 2 4
0

2

4
gzip_decomp

0 2 4
0

2

4
vpr_place

0 2 4
0

2

4
gcc

0 2 4
0

2

4
mcf

0 2 4
0

2

4
parser

0 2 4
0

2

4
perlbmk

0 2 4
0

2

4
gap

0 2 4
0

2

4
bzip2_comp

0 2 4
0

2

4
bzip2_decomp

0 2 4
0

2

4
twolf

0 2 4
0

2

4
swim

0 2 4
0

2

4
mgrid

0 2 4
0

2

4
mesa

0 2 4
0

2

4
art

0 2 4
0

2

4
equake

0 2 4
0

2

4
ammp

Figure C.2: Impact of only perfectly predicting values for loads on its first
occurrence within a thread. In each graph, the x-axis is the speedup with a
perfect value predictor for register-resident values and loads of frequently occurring
data dependences on the first occurrences of these loads, and the y-axis is the speedup
with a perfect value predictor for register-resident values and loads of frequently
occurring data dependences on all occurrences. Loops that do not speed up in both
cases are omitted from the graph for clarity.

143

procedures, search only five levels into the call tree is enough for most benchmarks.

C.4 Impact of Optimizing Distance One Depen-

dences

The compiler-based synchronization insertion pass described in Section 3.5 forwards

and synchronizes data dependences only between two consecutive threads, which are

referred to as data dependences of distance one. The assumption that this optimiza-

tion is able to capture almost all data dependence violations is verified by the results

shown in Figure C.4. In each graph, the x-axis is the speedup with a perfect value

predictor for register-resident values and loads that frequently depend on its immedi-

ate predecessor (e.g. distance one dependences); and the y-axis is the speedup with a

perfect value predictor for register-resident values and loads that frequently depend

on any of its predecessors. Predicting only loads that frequently suffer distance one

violations is found to be as good as predicting loads that frequently suffer violations

of all distances.

C.5 Search for the Threshold of Frequently Occur-

ring Data Dependences

In all the above experiments, a data dependence is defined as frequently occurring if

it occurs in more than 1% of all threads. To determine if 1% is a good threshold, a set

of experiments were conducted to quantify the threshold for frequently occurring data

dependence. In these experiments, a prefect value predictor was used to predict only

loads that depend on previous threads in more than a certain percentage of threads.

The performance was measured with the threshold set to 2%, 4%, 8%, and 16% against

144

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.3: Impact of optimizing loads in the callee procedures. In each
graph, the x-axis is the speedup with a perfect value predictor for all register-resident
values and for loads of frequently occurring dependences regardless of their location,
and the y-axis is the speedup with a perfect value predictor for all register-resident
values and loads of frequently occurring dependences that can be reached from the
parallelized loop with at most ten levels of procedural calls. Loops that do not speed
up in both cases are omitted from the graph for clarity.

145

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.4: Impact of optimizing loads in the callee procedures. In each
graph, the x-axis is the speedup with a perfect value predictor for all register-resident
values and for loads of frequently occurring dependences regardless of their location,
and the y-axis is the speedup with a perfect value predictor for all register-resident
values and loads of frequently occurring dependences that can be reached from the
parallelized loop with at most five levels of procedural calls. Loops that do not speed
up in both cases are omitted from the graph for clarity.

146

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.5: Impact of optimizing loads in the callee procedures. In each
graph, the x-axis is the speedup with a perfect value predictor for all register-resident
values and for loads of frequently occurring dependences regardless of their location,
and the y-axis is the speedup with a perfect value predictor for all register-resident
values and loads of frequently occurring dependences that can be reached from the
parallelized loop without going through any procedural calls. Loops that do not speed
up in both cases are omitted from the graph for clarity.

147

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.6: Impact of only optimizing loads of distance one. In each graph,
the x-axis is the speedup with a perfect value predictor for register-resident values
and loads that frequently depend on its immediate predecessor (e.g., distance one
dependences), and the y-axis is the speedup with a perfect value predictor for register-
resident values and loads that frequently depend on all of its predecessors. Loops that
do not speed up in both cases are omitted from the graph for clarity.

148

the case when the threshold is set to 1%. The results are shown in Figures C.5, C.5,

C.5 and C.5. Across the four graphs, we see that for most benchmarks, only perfectly

predicting loads that cause violations in 16% of all threads is as good as perfectly

predicting loads that occur in more than 1% of all threads. This indicates that data

dependence behavior follows a bi-model pattern—they either occur very frequently

or very infrequently. However, when the threshold is increased from 4% and 8%, the

performance for a few high coverage loops starts to degrade, as shown in Figures C.5

and C.5. Taking all these observations into account, 4% is shown to be a good

compromise.

C.6 Impact of False Sharing

The underlying hardware used in this study tracks inter-thread data dependences at

cache line granularity, and thus false sharing could cause speculation to fail even when

there is no real data dependence between two threads. The impact of false sharing is

shown in Figure C.6. In this figure, the x-axis is the speedup with a perfect value pre-

dictor for loads of all real frequently occurring dependences; the y-axis is the speedup

with a perfect value predictor for loads of all real frequently occurring dependences and

false sharing. The results show that although most benchmarks are not affected by

false sharing, some benchmarks, such as gcc, bzip2 comp and bzip2 decomp, could

lose speedup loops if false sharing is not handled properly. Although the compiler-

based techniques cannot handle such cases, hardware-based techniques are able to

capture such dependences (see detailed evaluation in Section 5.8).

149

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.7: Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value predictor for all
dependences occurring in more than 1% of all threads, the y-axis is the speedup with
a perfect value predictor for all dependences occur in more than 2% of all threads;
Loops that do not speed up in both cases are omitted from the graph for clarity.

150

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.8: Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value predictor for all
dependences occurring in more than 1% of all threads, and the y-axis is the speedup
with a perfect value predictor for all dependences occurring in more than 4% of all
threads. Loops that do not speed up in both cases are omitted from the graph for
clarity.

151

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.9: Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value predictor for all
dependences occurring in more than 1% of all threads, the y-axis is the speedup with
a perfect value predictor for all dependences occurring in more than 8% of all threads.
Loops that do not speed up in both cases are omitted from the graph for clarity.

152

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.10: Impact of optimizing loads with different dependence frequen-
cies. In each graph, the x-axis is the speedup with a perfect value predictor for
all dependences occurring in more than 1% of all threads, the y-axis is the speedup
with a perfect value predictor for all dependences occurring in more than 16% of all
threads. Loops that do not speed up in both cases are omitted from the graph for
clarity.

153

0 2 4
0

1

2

3

4
go

0 2 4
0

1

2

3

4
m88ksim

0 2 4
0

1

2

3

4
ijpeg

0 2 4
0

1

2

3

4
gzip_comp

0 2 4
0

1

2

3

4
gzip_decomp

0 2 4
0

1

2

3

4
vpr_place

0 2 4
0

1

2

3

4
gcc

0 2 4
0

1

2

3

4
mcf

0 2 4
0

1

2

3

4
parser

0 2 4
0

1

2

3

4
perlbmk

0 2 4
0

1

2

3

4
gap

0 2 4
0

1

2

3

4
bzip2_comp

0 2 4
0

1

2

3

4
bzip2_decomp

0 2 4
0

1

2

3

4
twolf

0 2 4
0

1

2

3

4
swim

0 2 4
0

1

2

3

4
mgrid

0 2 4
0

1

2

3

4
mesa

0 2 4
0

1

2

3

4
art

0 2 4
0

1

2

3

4
equake

0 2 4
0

1

2

3

4
ammp

Figure C.11: Impact of avoiding speculation failures caused by false sharing.
In each graph, the x-axis is the speedup with a perfect value predictor for loads of
all real frequently occurring dependence, the y-axis is the speedup with a perfect
value predictor for loads of all real frequently occurring dependence and false sharing.
Loops that do not speed up in both cases are omitted from the graph for clarity.

154

Appendix D

Loops with No Inter-Thread Data

Dependences for Memory-Resident

Values

In this appendix, we attempt to determine the coverage of the set of loops that do

not contain any inter-thread dependences; for these loops, the hardware support for

recovering from speculative failures is never invoked. The coverage of these loops

represents the upper bound of the fraction of loops that can be parallelized without

either hardware or compiler support to satisfy inter-thread data dependences for

memory-resident values.1

To conduct this experiment, we first identify all loops that do not contain any data

dependences for memory-resident values of distance 1, 2 or 3 (e.g., data dependences

between two consecutive threads is of distance 1). From these loops, we then select a

new set of loops using the same algorithm that has been used to select the register set.

We refer to this set of loops as the no speculation set. Table D.1 shows the coverage

1We assume inter-thread data dependences for register-resident scalars are handled by the com-

piler.

155

of this set of loops as well as the coverages of the register set, the idealistic set and the

realistic set. We observe that the coverage of the no speculation set is much smaller

than that of the other sets, which indicates that by allowing speculative execution, we

would be able to parallelize a much larger set of loops without complicated compiler

analyses.

156

Table D.1: Fraction of execution being parallelized.

Benchmark Register Idealistic Realistic No Speculation

Set Set Set Set

099.go 17.9% 93.0% 24.5% 4.9%

124.m88ksim 6.1% 97.9% 13.5% 4.8%

132.ijpeg 84.5% 84.5% 97.6% 60.4%

164.gzip comp 10.3% 99.9% 47.3% 10.3%

164.gzip decomp 32.0% 99.6% 99.6% 31.6%

175.vpr place 72.6% 99.7% 73.1% 74.0%

176.gcc 26.6% 88.4% 34.9% 10.1%

181.mcf 96.8% 96.8% 96.8% 9.8%

197.parser 56.7% 89.8% 88.5% 51.7%

253.perlbmk 20.6% 18.9% 18.9% 15.4%

254.gap 51.9% 94.0% 53.1% 54.7%

256.bzip2 comp 68.2% 70.4% 70.5% 7.0%

256.bzip2 decomp 13.5% 99.7% 100.0% 0.1%

300.twolf 7.3% 100.0% 100.0% 0.0%

171.swim 99.8% 99.9% 99.9% 70.0%

172.mgrid 99.1% 88.8% 99.4% 82.6%

177.mesa 87.3% 99.0% 99.0% 7.1%

179.art 46.3% 100.0% 100.0% 45.5%

183.equake 100.0% 100.0% 100.0% 3.8%

188.ammp 6.8% 94.8% 94.8% 0.0%

157

158

Bibliography

[1] H. Akkary and M. Driscoll. A dynamic multithreading processor. In MICRO-31,
December 1998.

[2] Glenn Ammons and James R. Larus. Improving data-flow analysis with path
profiling. In Proc. ACM SIGPLAN 98 Conference on Programming Language
Design and Implementation, 1998.

[3] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Norwell, Mass., 1988.

[4] Anasua Bhowmik and Manoj Franklin. A fast approximate interprocedural anal-
ysis for speculative multithreading compiler. In 17th Annual ACM International
Conference on Supercomputing, 2003.

[5] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence,
J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel
programming with polaris. IEEE Computer, 29(12):78–82, 1996.

[6] P. P Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu. Three su-
perblock scheduling models for superscalar and superpipelined processors. Tech-
nical Report CRHC-91-29, Center for Reliable and High-Performance Comput-
ing, University of Illinois, Urbana-Champaign, 1991.

[7] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Water, and Wen
mei W. Hwu. IMPACT: An architectural framework for multiple-instruction-
issue processors. In Proceedings of the 18th ISCA, May 1991.

[8] D. K. Chen and P. C. Yew. Statement re-ordering for DOACROSS loops. In
International Conference on Parallel Processing, pages 24–28, August 1994.

[9] D. K. Chen and P. C. Yew. Redundant synchronization elimination for
DOACROSS loops. IEEE Transactions on Parallel and Distributed System,
10(5):459–470, 1999.

[10] Mike Chen and Kunle Olukotun. TEST: A tracer for extracting speculative
threads. In The 2003 International Symposium on Code Generation and Opti-
mization, March 2003.

159

[11] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. Ju, and J. K. Lee. Compiler support
for speculative multithreading architecture with probabilistic points-to analy-
sis. In ACM SIGPLAN 2003 Symposium on Principles and Practice of Parallel
Programming, 2003.

[12] T. Chen, J. Lin, X. Dai, W.-C. Hsu, and P.-C.Yew. Data dependence profil-
ing for speculative optimization. In 13th International Conference on Compiler
Construction, Barcelona, Spain, March 2004.

[13] George Chrysos and Joel Emer. Memory dependence prediction using store sets.
In Proceedings of the 25th ISCA, June 1998.

[14] M. Cintra, J. F. Mart́ınez, and J. Torrellas. Architectural support for scalable
speculative parallelization in shared-memory multiprocessors. In Proceedings of
the 27th ISCA, June 2000.

[15] Marcelo Cintra and Josep Torrellas. Eliminating squashes through learning cross-
thread violations in speculative parallelization for multiprocessors. In Proceedings
of the 8th HPCA, Feb 2002.

[16] C. B. Colohan, J. G. Steffan, A. Zhai, and T. C. Mowry. The impact of thread
size and selection on the performance of thread-level speculation, 2004. Ongoing
Work.

[17] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth, and
Paul K. Rodman. A VLIW architecture for a trace scheduling compiler. IEEE
Transactions on Computers, 37:967 – 979, August 1988.

[18] Broadcom Corporation. The Sibyte SB-1250 Processor.
http://www.sibyte.com/mercurian.

[19] Intel Corportation. Hyper-threading technology on the intel xeon processor fam-
ily for servers. http://www.intel.com/technology/hyperthread/.

[20] Intel Corportation. Intel pentium 4 processor with ht technology.
http://www.intel.com/personal/products/pentium4/hyperthreading.htm.

[21] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Interna-
tional Conference on Parallel Processing, 1986.

[22] J. Emer. Ev8: The post-ultimate alpha.(keynote address). In International
Conference on Parallel Architectures and Compilation Techniques, 2001.

[23] J. A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, 13, June 1981.

[24] M. Frank, C. A. Moritz, B. Greenwald, S. Amarasinghe, and A. Agarwal. Suds:
Primitive mechanisms for memory dependence speculation. Technical Report
MIT-LCS-TM-591, MIT/LCS, January 1999.

160

[25] M. Franklin. The Multiscalar Architecture. PhD thesis, University of Wisconsin
– Madison, 1993.

[26] M. Franklin and G. S. Sohi. ARB: A hardware mechanism for dynamic reordering
of memory references. IEEE Transactions on Computers, 45(5), May 1996.

[27] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W.
Hwu. Dynamic memory disambiguation using the memory conflict buffer. In
Proceedings of the 6th ASPLOS, pages 183–195, October 1994.

[28] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: Implementing
a fast parallel call. journal of Parallel and Distributed Computing, 37(1):5–20,
August 1996.

[29] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning cache.
In Proceedings of the 4th HPCA, February 1998.

[30] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning
cache. Technical Report 1334, Computer Sciences Department, University of
Wisconsin-Madison, July 1997.

[31] M. Gupta and R. Nim. Techniques for speculative run-time parallelization of
loops. In Supercomputing ’98, November 1998.

[32] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip
multiprocessor. In Proceedings of ASPLOS-VIII, October 1998.

[33] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Preliminary experi-
ences with the Fortran D compiler. In Supercomputing ’93, 1993.

[34] L. Howard Holley and Barry k. Rosen. Qualified data flow problems. IEEE
Transactions on Software Engineering, 7(1), January 1981.

[35] J. Kahle. Power4: A Dual-CPU Processor Chip. Microprocessor Forum ’99,
October 1999.

[36] T. Knight. An architecture for mostly functional languages. In Proceedings of
the ACM Lisp and Functional Programming Conference, pages 500–519, August
1986.

[37] Jens Knoop and Oliver Ruthing. Lazy code motion. In Proc. ACM SIGPLAN
92 Conference on Programming Language Design and Implementation, 92.

[38] Kevin Krewell. UltraSPARC IV Mirrors Predecessor. Microprocessor Report,
November 2003.

[39] V. Krishnan and J. Torrellas. The need for fast communication in hardware-
based speculative chip multiprocessors. In Proceedings of PACT ’99, October
1999.

161

[40] Venkata Krishnan and Josep Torrellas. A chip multiprocessor architecture with
speculative multithreading. IEEE Transactions on Computers, Special Issue on
Multithreaded Architecture, September 1999.

[41] M. Lipasti, C. Wilkerson, and J. Shen. Value locality and load value prediction.
In Proceedings of the 7th ASPLOS, Boston, MA, October 1996.

[42] V. B. Livshits and M. S. Lam. Tracking pointers with path and context sensi-
tivity for bug detection in c programs. In 11th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE-11), September
2003.

[43] Pedro Marcuello and Antonio Gonzalez. Clustered speculative multithreaded
processors. In 15th Annual ACM International Conference on Supercomputing,
Rhodes, Greece, June 1999.

[44] Pedro Marcuello, Jordi Tubella, and Antonio Gonzalez. Value prediction for
speculative multithreaded architectures. In Proceedings of Micro-32, Haifa, Is-
rael, November 1999.

[45] Samuel P. Midkiff and David A. Padua. Compiler algorithms for synchronization.
IEEE Transactions on Computers, C-36(12):1485–1495, 1987.

[46] Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers. Dynamic
points-to sets: A comparison with static analyses and potential applications in
program understanding and optimization. In SIGSOFT workshop on on Program
analysis for software tools and engineering Snowbird, June 2001.

[47] Andreas I. Moshovos, Scott E. Breach, T.N. Vijaykumar, and Gurindar S. Sohi.
Dynamic speculation and synchronization of data dependences. In Proceedings
of the 24th ISCA, June 1997.

[48] M.Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, July 1984.

[49] A. Nicolau. Run-time disambiguation: Coping with statically unpredictable de-
pendencies. IEEE Transactions on Computers, 38:663–678, May 1989.

[50] E. M. Nystrom, H. S. Kim, and W.-M. Hwu. Bottom-up and top-down context-
sensitive summary-based pointer analysis. In The proceedings of the 11th Static
Analysis Symposium, August 2004.

[51] J. Oplinger, D. Heine, and M. S. Lam. In search of speculative thread-level
parallelism. In Proceedings of PACT ’99, October 1999.

[52] D. Padua, D. Kuck, and D. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Transactions on Computing, September 1980.

162

[53] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time paral-
lelization of loops with privatization and reduction parallelization. IEEE Trans-
actions on Parallel and Distributed System, 10(2):160–172, 1999.

[54] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors. In
Proceedings of Micro 30, 1997.

[55] Michael Schlansker and Vinod Kathail. Critical path reduction for scalar pro-
grams. In Proceedings of Micro-28, 1995.

[56] S.Horwiz, T.Reps, and D.Binkley. Interprocedural slicing using dependence
graph. ACM Trans. on Programming Languages and Systems, 12(1):26–60, Jan-
uary 1990.

[57] Micheal Smith, Mark Horowitz, and Monica Lam. Efficient superscalar per-
formance through boosting. In Proceedings of the 5th ASPLOS, Boston, MA,
October 1992.

[58] G. S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar processors. In Proceed-
ings of the 22nd ISCA, June 1995.

[59] Standard Performance Evaluation Corporation. The SPEC Benchmark Suite.
http://www.specbench.org.

[60] J. G. Steffan. Hardware Support for Thread-Level Speculation. PhD thesis,
Carnegie Mellon University, 2003.

[61] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural support for thread-
level data speculation. Technical Report CMU-CS-97-188, School of Computer
Science, Carnegie Mellon University, November 1997.

[62] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Extending cache coherence to
support thread-level data speculation on a single chip and beyond. Technical Re-
port CMU-CS-98-171, School of Computer Science, Carnegie Mellon University,
November 1998.

[63] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to
thread-level speculation. In Proceedings of the 27th ISCA, June 2000.

[64] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving value
communication for thread-level speculation. In Proceedings of the 8th HPCA,
February 2002.

[65] S. Tjiang, M. Wolf, M. Lam, K. Pieper, and J. Hennessy. Languages and Com-
pilers for Parallel Computing, pages 137–151. Springer-Verlag, Berlin, Germany,
1992.

[66] M. Tremblay. MAJC: Microprocessor Architecture for Java Computing.
HotChips ’99, August 1999.

163

[67] J.-Y. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. Yew. The superthreaded
processor architecture. IEEE Transactions on Computers, Special Issue on Mul-
tithreaded Architectures, 48(9), September 1999.

[68] T.N. Vijaykumar. Compiling for the multiscalar architecture. In Ph.D. Thesis,
January 1998.

[69] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for c
programs. In Proc. ACM SIGPLAN 95 Conference on Programming Language
Design and Implementation, pages 1–12, June 1995.

[70] Michael Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, Massachusetts, 1989.

[71] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April
1996.

[72] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization
of scalar value communication between speculative threads. In Proceedings of
the 10th ASPLOS, Oct 2002.

[73] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization
of memory-resident value communication between speculative threads. In The
2004 International Symposium on Code Generation and Optimization, March
2004.

[74] Chuan-Qi Zhu and Pen-Chung Yew. A scheme to enforce data dependence
on large multiprocessor systems. IEEE Transactions on Software Engineering,
13(6):726–739, June 1987.

[75] Craig Zilles and G.S. Sohi. Master/slave speculative parallelization. In Proceed-
ings of Micro-35, November 2002.

[76] G. Zilles. Master/Slave Speculative Parallelization and Approximate Code. PhD
thesis, University of Wisconsin – Madison, 2002.

164

