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Abstract

We desribe a variation of the planning domain definition language, PDDL, that permits the modeling of
probabilistic planning problems with rewards. This language, PPDDL1.0, was used as the input language
for the probabilistic track of the 4th International Planning Competition. We provide the complete syntax for
PPDDL1.0 and give a semantics of PPDDL1.0 planning problems in terms of Markov decision processes.
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1 Introduction

A standard domain description language, PDDL (Ghallab et al. 1998; McDermott 2000; Fox and Long
2003), for deterministic planning domains has simplified sharing of domain models and problems in the
planning community, and has enabled direct comparisons of different planning systems. As a result, there
has been considerable progress in planning research with deterministic domain models since the first Inter-
national Planning Competition in 1998.

The 4th International Planning Competition included a probabilistic track for the first time in an attempt
to create a common platform for the evaluation of probabilistic and decision theoretic planning systems.
This document briefly describes the input language, PPDDL1.0, that was used for the probabilistic track.
PPDDL1.0is essentially a syntactic extension of levels 1 and 2 of PDDL2.1 (Fox and Long 2003). Section 2
gives a comprehensive introduction to PDDL so that prior knowledge of PDDL2.1, or any of its predeces-
sors, is not required in order to understand this document. Readers already familiar with PDDL can jump
immediately to Section 3, which focuses on new language features specific to PPDDL, including proba-
bilistic effects and rewards. Section 4 provides a semantics for PPDDL1.0 planning problems in terms of
Markov decision process€bIDPs; Howard 1960; Puterman 1994). The complete syntax for PPDDL1.0 is
given in Appendix A.

Note that, unlike PDDL2.1, PPDDL1.0 does not impose a specific structure on plans, except that only a
single action can be executed at any point in time. The problem of plan representation has been left entirely
to the planning systems, and planning systems may even choose to have no plan representation at all. At the
planning competition, planning systems were evaluated using a client-server model where the server sent
states to a client (planning system) and the client was expected to respond with an action to execute for each
state it received.

PPDDL1.0 is a first step towards a general language for describing probabilistic and decision theoretic
planning problems. Directions for future extensions include, but are not limited to, concurrency, observabil-
ity, and time. Of these, concurrency is the most straightforward to add, requiring only a slightly modified
semantics in line with that proposed by Mausam and Weld (2004). Adding a temporal dimension to ac-
tions would permit the modeling of semi-Markov decision processes (Howard 1971), or in the presence
of concurrency, generalized semi-Markov decision processes (Younes and Simmons 2004). Restrictions in
the observability of state features would be necessary to model contingent probabilistic planning problems
(Draper et al. 1994), as well as partially observable MDRgr6m 1965).

2 PDDL Basics

PDDL is a language for specifying deterministic planning domains and problems. We describe the basic
building blocks of PDDL in this section. In the next section, we introduce extensions necessary to express
probabilistic and decision theoretic planning domains and problems.

2.1 Planning Domains

A PDDL planning domain consists of a sBtof types, a subtyping relatiofiT” C T x T', a setC' of global
objects (domairconstanty a setP of predicates, a st of functions, and a se S of action schemata.
Predicates and functions are used to encddte variables

When defining a domain in PDDL, it is given a unique name that is used when referring to the domain
in problem definitions (see Section 2.2). Figure 1 shows the definition of a domain hamed “test-domain” in



(define (domain test-domain)
(:requirements :typing :equality :conditional-effects
:fluents)
(:types car box)
(:constants goldie - car)
(:predicates (parked ?x - car) (holding ?x - box)
(in ?x - box ?y - car))
(:functions (fuel-level ?x - car))
(:action load
parameters (?x - box ?y - car)
:precondition (and (holding ?x) (parked ?y))
effect (and (in ?x ?y)
(forall (?z - car)
(when (not (= ?z ?y))
(not (in ?x ?2))))))
(:action refuel
‘parameters (?x - car)
:precondition (< (fuel-level ?x) 10)
.effect (increase (fuel-level ?x) 1)))

Figure 1: Definition of a simple planning domain in PDDL.

PDDL. The statement
(:requirements :typing :equality :conditional-effects :fluents)

signals to a planner reading the domain definition that support for typing, equality, conditional effects, and
fluents are required in order to correctly handle the domain being defined. Requirements are explained in
more detail in Appendix A, where a full grammar for PPDDL is provided. Tokens starting with a question
mark, for example&x, arevariables which are not to be confused wigtiatevariables.

2.1.1 Types

Objects and variables aterms and in PDDL all terms have some typec 7. The domain definition in
Figure 1 declares two typesar andbox . The constangoldie is declared to be of typear , while the
first parameter of the action scheoad is declared to be of typkox .

All declared types are by default subtypes of the built-in PDDL typgct . Atype is also a subtype
of itself (the subtyping relatiorsT is reflexive), and ifr; is a subtype of, and is a subtype ofrs,
thenr; is a subtype ofs (ST is transitive). For the example domain we h&ve= {object ,car ,box }
with ST containing the element®bject ,object ), (car ,object ), (car ,car ), (box,object ),
and(box , box ).

It is possible to specify the supertype of a type in the type declaration of a domain definition. For
example, the type declaration

(:types car - object saab volvo - car)

declares the typear as a subtype afbject , and the typesaab andvolvo as subtypes afar .



The typescar andobject are examples afimpletypes. PDDL also includes support faniontypes
71 U --- U T, with the restriction that each is a simple type. As an example of the use of union types,
consider the declaration

(:constants herbie - (either saab volvo))

of a domain constariterbie of typesaab Uvolvo . A union typer; U--- U 7, is a subtype of if 7; is
a subtype ofr for all i € {1,...,n}. On the other hand; is a subtype of a union typg U --- U 7, if 7is
a subtype of; for somei € {1,...,n}.

2.1.2 Predicates and Functions

In PDDL, predicates are used to encode Boolean state variables, while functions are used to encode numeric
state variables. A function declaration in PDDL, such as

(:functions (fuel-level ?x - car))

in the example domain (Figure 1), is in reality a declaration of a function from PDDL objects to numeric
state variables. A predicate is also a function with PDDL objects as domain, but with boolean state variables
as range. The type of a function (predicate) parameter restricts the domain of the function (predicate). The
functionfuel-level , for example, only applies to objects of typar or a subtype otar .

The value of the applicatio(parked goldie) is a boolean state variabj@rked . 4;- Say that in
addition to the domain constagoldie , there is also an objecips-box of typebox. Given this set of
objects, the predicates and functions of “test-domain” give rise to a state space made up of the following
state variables:

Name Type
parked goldie boolean
holding ,ps-10x | bOOlEAN
inups-box,goldie boolean
fuel-levely, 4,0 | NUMeric

A function that does not take any arguments represents a single state variable with the same name as the
function. It is then possible to refer directly to the state variable in PDDL domain and problem definitions
without having to use function application. For example, giveéhaay functionscore , the formulag(=
(score) 17) and(= score 17) are equivalent.

It is worth noting that a domain definition alone does not, in general, determine the extent of the state
space for planning problems linked to the domain, unless all functions and predicates take no arguments. In
addition to objects declared as domain constants, objects can also be declared in problem definitions. Only
when the complete set of objects for a planning problem is known can the state space be determined.

2.1.3 Actions

Actions in PDDL can be thought of as representing sets of state transitions, with a state being a particular

assignment to the set of state variables of a planning problem. An action consists of a precondition, charac-
terizing the set of states that the action is applicable in, and an effect. The effect specifies updates to state
variables that occur at the execution of the action.

1The original version of PDDL (Ghallab et al. 1998) allowed unions of union types. Later versions, including PDDL2.1 (Fox
and Long 2003) only allow unions of simple types. The restriction is not significant as for any type that is a union of union types,
we can find an equivalent type that is a union of simple types by “flattening” the union.
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Basic effects specify updates to individual state variables. For a boolean state vigribleffecth (or
an application yielding the state variatilesimply means thak should be set to true in the next state. To
setb to false, the notatiofnot ) is used. For a numeric state variablethe general form for updates is
( (assign-op = (f-exp) , where(assign-op is one ofassign ,scale-up ,scale-down ,increase |,
ordecrease ,and(f-exp is a numeric expression.

Effects can be combined by using conjunction. PDDL also includes support for conditional effects of the
form(when ¢ e), meaning that the effeetonly occurs in states satisfying the conditigrand universally
quantified effects. Examples of all these kinds of effects are given in Figure 1.

An action schema, in the definition of a domain, declares a function from PDDL objects to actions, much
in the same way as functions and predicates are functions from PDDL objects to state variables. The action
schema

(:action refuel
:parameters (?x - car)
:precondition (< (fuel-level ?x) 10)
:effect (increase (fuel-level ?x) 1))

in “test-domain”, when applied to the objegmbldie , returns an actiorefuely1qic. This action is applicable

in states satisfying the conditiofuel-levely, 14 < 10 and has the effect thatel-levely,q;e IS increased

by one. Itis considered an error to apply an action in a state where the precondition does not hold (cf. Fox
and Long 2003). If we want theefuel,,14;c actions to be universally applicable, but with no state change

occurring if fuel-level,, 45, < 10 does not hold, then we should use conditional effects:

(:action refuel
‘parameters (?x - car)
.effect (when (< (fuel-level ?x) 10)
(increase (fuel-level ?x) 1)))

2.2 Planning Problems

A planning problem consists of a set of state varialifesa set of actions4, an initial statesy, a goal
condition ¢ identifying a set of goal states, and an optimization mefrithat is typically a function of
numeric state variables evaluated in a goal state. A state is simply an assignment of values to the set of state
variables.

In PDDL, a planning problem is always associated with a domain definition, and the definition of a
planning problem includes a declaration of a set of problem-specific olfjeciEhe state variable¥™ for
the planning problem are obtained frath C, P, and F' as all type-consistent applications of predicates
or functions to objects (including domain constants). Thedsef actions is obtained similarly as all type-
consistent applications of action schematadisi to objects inO U C. The process of obtaining all state
variables and actions for a planning problem through the exhaustive application of predicates, functions,
and action schemata to objects is referred tgraanding

Figure 2 shows the definition of a simple planning problem associated with a domain named “test-
domain” (defined in Figure 1). The problem definition declares two problem-specific ohjgstdox
andcereal-box , both of typebox. The setl of state variables for this planning problem is listed in
Table 1. The table also shows the value of each state variable in the initialsgtatehe problem, as
specified by(:init ... ) in the problem definition. Note that boolean state variables not mentioned in
the init specification, for exampleolding ..,e.1-box» &Y€ @ssumed to be false in the initial stateged world
assumption). The actions for “test-problem” &&d,,,s-box,goldie, 10adcereal-box,goldie, @aNdrefuelgglgic.
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(define (problem test-problem)
(:domain test-domain)
(:objects ups-box cereal-box - box)
(:init (parked goldie)
(holding ups-box)
(in cereal-box goldie)
(= (fuel-level goldie) 7))
(:goal (and (in ups-box goldie) (>= (fuel-level goldie) 9))))

Figure 2: Definition of a simple planning problem in PDDL associated with the domain named “test-domain” defined

in Figure 1. Note that a hyphen-(") can be part of a name for objects, types, etc., but that it is also used in the
assignment of types to objects and variables. A hyphen is assumed to be part of a name token, unless it is preceded
by white space. For examplegreal-box is a single name token, whileereal-box - box specifies that
cereal-box  has typebox.

Name Type Init
parked g ie boolean| true
holding ps-pox boolean| true
holding .ereal-box | POOl€@N | false
iMups-box,goldie boolean | false
incereal-box,goldie boolean| true
fuel-level numeric 7

goldie

Table 1: State variables and their initial values for “test-problem” defined in Figure 2.

3 Probabilistic and Decision Theoretic Extensions

We now describe syntactic extensions to PDDL that allows us to specify Markov decision processes (MDPs).
The key extension is support for probabilistic effects. Rewards, an essential part of MDPs, are modeled using
an existing language feature: fluents. However, we restrict the use of rewards so that full support for fluents
does not become a prerequisite for MDP planning.

3.1 Probabilistic Effects

In order to define probabilistic and decision theoretic planning problems, we need to add support for proba-
bilistic effects. The syntax for probabilistic effects is

(probabilistic p1 €1 ... Dk €)

meaning that effeat; occurs with probabilityp;. We require that the constraings > 0 andzlepi =1

are fulfilled: a probabilistic effect declares an exhaustive set of probability-weighted outcomes. We do,

however, allow a probability-effect pair to be left out if the effect is empty. In other words, the effect

(probabilistic P €1 ... pr e With Zézlpi < 1is syntactic sugar fofprobabilistic P

er ... pr e ¢q (and)) withg = 1 — Zﬁzlpi. For example, the effeqprobabilistic 0.9

(clogged))  means that with probability.9 the state variablelogged becomes true in the next state,

while with probability0.1 the state remains unchanged. Outcomes are not required to be mutually exclusive.
Figure 3 shows an encoding in PPDDL of the “Bomb and Toilet” example described by Kushmerick

et al. (1995). The requirements flggrobabilistic-effects signals that probabilistic effects are
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(define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged)
(bomb-defused))

(:action dunk-package

‘parameters (?pkg)

:effect (and (when (bomb-in-package ?pkg)

(bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))

(define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects packagel package?2)
(:init (probabilistic 0.5 (bomb-in-package packagel)
0.5 (bomb-in-package package?2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Figure 3: PPDDL encoding of “Bomb and Toilet” example.

Name Type | Initl | Init2
bomb-in-package ,cager | POOIEAN|  true | false
bomb-in-package cage2 | POOlEAN| false | true
toilet-clogged boolean| false| false
bomb-defused boolean| false| false

Table 2: State variables and their initial values for the “Bomb and Toilet” problem.

used in the domain definition. In this problem, there are two packages, one of which contains a bomb. The
bomb can be defused by dunking the package containing the bomb in the toilet. Thérésipeobability
of the toilet becoming clogged when a package is placed in it.

The problem definition in Figure 3 also shows that initial conditions in PPDDL can be probabilistic. In
this particular example, we define two possible initial states with equal probaldility ¢f being the true
initial state for any given execution. Table 2 lists the state variables for the “Bomb and Toilet” problem
and their values in the two possible initial states. Intuitively, we can think of the initial conditions of a
PPDDL planning problem as being the effects of an action forced to be scheduled right befofe time
Also, note that the goal of the problem involves negation, which is why the problem definition declares the
‘negative-preconditions requirements flag.

PPDDL allows arbitrary nesting of conditional and probabilistic effects. This is in contrast to popular
propositional encodings, such as probabilistic STRIPS operators (PSOs; Kushmerick et al. 1995) and fac-
tored PSOs (Dearden and Boutilier 1997), which do not allow conditional effects nested inside probabilistic
effects. While arbitrary nesting does not add to the expressiveness of the language, it can allow for expo-
nentially more compact representations of certain effects given the same set of state variables and actions
(Rintanen 2003). Any PPDDL action can, however, be translated istdad PSOs with at most a polyno-
mial increase in the size of the representation. Consequently, it follows from the results of Littman (1997)
that PPDDL after grounding(i.e. full instantiation of action schemata), is representationally equivalent to



dynamic Bayesian networks (Dean and Kanazawa 1989), which is another popular representation for MDP
planning problems.

Still, it is worth noting that a single PPDDL acti@themacan represent a large number of actions and
a single predicate can represent a large number of state variables, meaning that PPDDL often can represent
planning problems more succinctly than other representations. For example, the number of actions that can
be represented using objects and: action schemata with arity is m - n¢, which is not bounded by any
polynomial in the size of the original representation + n). Grounding is by no means a prerequisite
for PPDDL planning, so planners could conceivably take advantage of the more compact representation by
working directly with action schemata.

3.2 Rewards

Markovian rewards, associated with state transitions, can be encoded using fluents. PPDDL reserves the
fluent reward, accessed ageward) or reward , to represent the total accumulated reward since the

start of execution. Rewards are associated with state transitions through update rules in action effects. The
use of thereward fluent is restricted to action effects of the fo{nfadditive-op (reward fluent (f-exp) ,
where(additive-op is eitherincrease or decrease , and(f-exp is a numeric expression not involving

reward. Action preconditions and effect conditions are not allowed to refer ta¢hard fluent, which

means that the accumulated reward does not have to be considered part of the state space. The initial value
of reward is zero. These restrictions on the use of theard fluent allow a planner to handle domains

with rewards without having to implement full support for fluents.

A new requirements flagrewards , is introduced to signal that support for rewards is required. Do-
mains that require both probabilistic effects and rewards can declarenth® requirements flag, which
implies:probabilistic-effects and:rewards

Figure 4 shows part of the PPDDL encoding of a coffee delivery domain described by Dearden and
Boutilier (1997). A reward of).8 is awarded if the user has coffee after the “buy-coffee” action has been
executed, and a reward 02 is awarded ifis-wet is false after execution of “buy-coffee”. Note that a total
reward of1.0 can be awarded as a result of executing the “buy-coffee” action if execution of the action leads
to a state where bothser-has- coffee and—is-wet hold.

3.3 Plan Objectives

Regular PDDL goals are used to express goal-type performance objectives. A goal stdtgosnt

¢) for a probabilistic planning problem encodes the objective that the probability of achigwhguld

be maximized, unless an explicit optimization metric is specified for the planning problem. For planning
problems instantiated from a domain declaring :tiesvards requirement, the default plan objective is to
maximize the expected reward. A goal statement in the specification of a reward oriented planning problem
identifies a set of absorbing states. In addition to transition rewards specified in action effects, it is possible

to associate a one-time reward for entering a goal state. This is done usiftigdbkreward 1))
construct, wherg is a numeric expression.
In general, a statemefimetric maximize f) in a problem definition means that the expected

value of f should be maximized. PPDDL defingsal-achieved  as a special optimization metric, which
can be used to explicitly specify that the plan objective is to maximize (or minimize) the probability of goal
achievement. The value of tgeal-achieved  fluentisl if a goal state has been visited during execution,
and remaing) so long as a goal state has not been visited. The expected vafjmaleéchieved is
therefore equal to the probability of goal achievement.



(define (domain coffee-delivery)
(:requirements :negative-preconditions
.disjunctive-preconditions
:conditional-effects :mdp)
(:predicates (in-office) (raining) (has-umbrella) (is-wet)
(has-coffee) (user-has-coffee))
(:action buy-coffee
.effect (and (when (not (in-office))
(probabilistic 0.8 (has-coffee)))
(when (user-has-coffee)
(increase (reward) 0.8))
(when (not (is-wet))
(increase (reward) 0.2))))

Figure 4: Part of PPDDL encoding of “Coffee Delivery” domain.

4 Formal Semantics

We present a formal semantics for PPDDL planning problems in terms of a mapping to a probabilistic
transition system with rewards. A planning problem defines a set of state variappessibly containing

both Boolean and numeric state variables. An assignment of values to state variables defines a state, and
the state spacg of the planning problem is the set of states representing all possible assignments of values
to variables. In addition t&”, a planning problem defines an initial-state distributign: S — [0, 1] with

> scsPo(s) = 1(i.e.pg is a probability distribution over states), a formylg overV characterizing a set

of goal states? = {s | s = ¢¢}, a one-time reward. associated with entering a goal state, and a set of
actionsA instantiated from PPDDL action schemata. For goal-directed planning problems, without explicit
rewards, we useg; = 1.

4.1 Probability and Reward Structure

An actiona € A consists of a precondition, and an effect,. Action a is applicable in a state if and

only if s = —¢a A ¢q. Itis an error to apply: to a state such thatp= —¢a A ¢,. Goal states are absorbing,

S0 no action may be applied to a state satisfybag The requirement thas, must hold in order for to be
applicable is consistent with the semantics of PDDL2.1 (Fox and Long 2003) and permits the modeling of
forced chains of actions. Effects are recursively defined as follows (cf. Rintanen 2003):

1. T is the null-effect, represented in PPDDL {@nd) .
2. band-b are effects i € V is a Boolean state variable.

3. x «— fis an effect ifx € V is a numeric state variable arydis a real-valued function on numeric
state variables.

4. r 7 fis an effect iff is a real-valued function on numeric state variables.

5. e1 A--- ANey isan effect ifeq, . . ., e, are effects.



6. c > e is an effect ifc is a formula ove” ande is an effect.
7. pre1]... |pney is an effectifes, . .. , e, are effectsp; > 0foralli € {1,...,n},and> " | p; = 1.

Items 2 through 4 are referred tosimple effectsThe effect) sets the Boolean state variabl® true in the
next state, while-b setsb to false in the next state. Far«< f, the value off in the current state becomes
the value of the numeric state variahlen the next state. Effects of the form7 f are used to associate
rewards with transitions as described below.

An actiona = (¢,, e,) defines a transition probability matrik, and a state reward vectdi,, with
P,(i,7) being the probability of transitioning to stajewhen applyinga in state:, and R,(¢) being the
expectedeward for executing actioa in statei. We can computé’, and R, by first translatingz,, into an
effect of the formpyeq|. .. [pren, Where eacle; is a deterministic effect. The purpose of this translation is
to bring nondeterminism to the top so that we can compgytes> ;. , p;T;, whereT; is a0-1 transition
matrix for e;. Rintanen (2003) calls this form Unary Nondeterminism Normal Form (1ND) and shows that
any effecte can be translated into this form by using the following equivalences:

e=le
e (piei|...|pren) =pr(e Ner)| ... |pn(eNen)

ct> (piei]. .. |pnen) =pi(c>er)]... |pnlc>ep)
/

pi(prell. .. [prer)lp2eal . . Ipnen =(p1p1)el] - .. [(pipk)ekIp2ea| - - [pnen

The translation into IND can result in an exponential increase in the size of the effect formula, although this
representational explosion can be avoided by splitting a single action into multiple actions that are forced to
be executed in sequence. The number of actions that would have to be added is at most linear in the length
of the effect formula.

We further rewrite the effect of an action by translating eacimto an effect of the fornic;; > e;1) A
-+ N(cin,; >e€in, ), Where eacls;; is a conjunction of simple effects and the conditions are mutually exclusive
and exhaustive (i.e;; A c;, = Lforall j # & and\/;?;1 c;; = T). The following equivalences allow us to
perform the desired translation:

e=TD>e
c>e=(c>e)A(nec>T)
c> (d>e)=(cnd)>e
(ci>er) A(ca>e2) =((er Ae) > (e1 Aea)) A((er A—eg) > eq)
A ((me1 Aeg) >eg) A((mer A—eg) > T)

This rewrite can also result in an exponential increase in the size of the effect formula, but it will enable us
to succinctly define the transition matffx for each deterministic effeet.

An effect of the forme > e, wheree is a conjunction of simple effects, defines a set of state transitions.
We assume that is consistent, which intuitively means that the constituent partsaain be evaluated in
arbitrary order without resulting in a different successor state. Actions with inconsistent effects are not valid
PPDDL actions, and care should be taken when designing a PPDDL domain to ensure that no instantiations
of action schemata can have inconsistent effects. A conjunction of simple effects is inconsistent if it contains
bothb and—b, or multiple non-commutativeipdates of a single numeric state variable. Two effects f
andxz — f’ are commutative iff (s[z = f'(s)]) = f'(s[x = f(s)]), wheref(s) is the value off evaluated
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in states ands[x = y] denotes a state with all state variables having the same value as in, st&tept for
x, which has valuey. That is, numeric effects are commutative if they are insensitive to ordering.

Under these assumptions, we define a functidhat returns a successor state given a state and an effect
formula. The definition ofr takes two states: the current state and an intermediate successor state. State
changes are accumulated in the second parameter, while the current state is kept unmodified in the first
parameter so that real-valued functions can be evaluated in this state. The definitienasffollows:

7(s,8,T) =
7(s,8',b) = [b ]
7(s,8',b) = §'[b= 1]
7(s,8 2 f) = s'lx = f(s)]
T(s,8,r 1 f)=5
7(s,8 e1 Nes) =7(s,7(s,5,€1),e2)

We can use to describe the set of state transitions defined by the effiect:
T(c>e)={(s,s)|s Ecands’ = 7(s,s,e)}.

Given this definition ofl’(c > e), we can compute a transition matflk; for eachc;; > e;;. The element
at row s and columns’ of T;; is 1 if (s,s’) € T'(c;j > e;5), and0 otherwise. Since we have ensured that
the conditionsc;; are mutually exclusive, we gét, = > """ | p;7; as the transition probability matrix for
actiona with effectpieq|. .. |pnen, WhereT; = ZF T;;. To capture the notion of failed preconditions,
we introduce an error state . We set the entry at colum#, to 1 for each rows such thats |~ ¢, and the
remaining entries of these rows are set to zero. For rostch thats = ¢, the entry at column | is set to
zero. Finally, we need to make all states that satisfy the goal conditioof the problem absorbing. This
is accomplished by modifying,: for eachs such thats = ¢, we set the entry at rowand columns to 1
and the remaining entries on the same row.to

The reward associated with a conjunction of simple effects can be defined as follows:

r(s, )—0
r(s,b) =
r(s, —|b)—0
r(s,x — f) =
r(s,r 1 f)= f( )
r(s,e1 Ney) =r(s,e1) +r(s,e2)

The effectc;; > e;; associates reward(s, e;;) with each transitior{s, s') € T'(¢;; > e;;), and an additional
rewardr¢ if s’ is a goal state (i.es’ = ¢¢), or no reward ifs is a goal state. We define a transition reward
matrix R;; for ¢;; > e;;. The element at row and columns’ of R;; is r(s, e;;) if (s, s’) € T'(c;; > e;;) and

s = o ands’ b= o, (s, eij) +raif (s,s') € T(cij > e;5) ands = ¢ ands’ = ¢, and0 otherwise.
We sum over alk;; > ¢;; to get a transition reward matrix fef: R; = Zg‘;l R;;. To obtain the expected
transition reward for an action with effepie,|...|p,e,, we compute the matrik = > " | p;R;. The

elements of the state reward vecf®y can then be computed as followR; (i) = Z'fz‘l R(i, 7).
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Consider the “Bomb and Toilet” example in Figure 3. This planning problem has four state variables,
and thus a state space of size?1Bet b; be the state variablomb-in-package y,cager b2 the state vari-
ablebomb-in-package ,,cagen, b3 the state variableoilet-clogged, andb, the state variabléomb-defused.

The actiondunk-package,,ci.qe1 Nas precondition (i.e. is applicable in all states) and efféét > b4) A
(0.05b3]0.95T). We transform this effect, using the equivalences given above, to the @6¢tb; > (b3 A
by)) A (=by > 03))]0.95((by > by) A (—by > T)). We use the following encoding of states:

b1 by b3 b, | state
1 L L 1 1
1 L 7T 2
1 L T 1 3

T T T T 16

Given this encoding, we get the following transition probability matrixdonk-package

packagelz
3 0 % 0000 00O0O0O0O0TO0O0 O
01 000 0O0O0O0OTO OO OO OO OO0 O
001 00O0O0O00DTO0DTO OO OO OO OO0 O0
0001 00000O0OTOOTOTO0O0O0
00 0 04 035 000000000
000O0O0T1TO0O00GO0DOO OO OO OO0 O
000O0O0O0OT1O00GO0DOOTO OO OO0 O
p_| 0000000100000 000
oo o0oo0o000004%0%00 00
000O0O0O0O0O0OO0DT1O0OTOTOO0O0O0
000O0O0O0OO0OO0OO0GODOT1O0UO0O0O0
000O0O0O0O0O0OO0DT DO OT1O0UO0O0O0
0000 O0O0O0OUODO0TO O OO0 0 %
000O0O0O0O0O0OO0DTU DO OO OO 100
000O0O0O0OO0DOTO OO OO OGO OO0 O0 1
000O0O0O0O0O0ODODT DO OO OO OO0 O0 1

Note that all states satisfying the goal conditioby A b4 for the given planning problem have been made
absorbing. The goal states are 2, 6, 10, and 14. We also get the following state reward vector:
19

19
Ra - (0707070707070707 2_07070707 %707070)

4.2 Optimality Criteria

We have shown how to construct an MDP from the PPDDL encoding of a planning problem. The plan
objective is to maximizes the expected reward for the MDP. This can be interpreted as eximmiadted
reward or expectetbtal reward depending on the situation. For process oriented planning problems (e.g. the
“Coffee Delivery” problem), the former is typically what we want, while the latter often is the interpretation

2Not all 16 states are reachable for this problem. For example, the bomb is in exactly one of the two packages, so

bomb-in-package ,,age1 = Tbomb-in-package ..o fOr all states, meaning there are at most 8 reachable states.
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chosen for goal oriented problems (e.g. the “Bomb and Toilet” problem). PPDDL can be used to encode
both kind of planning problems, but does not include any facility for enforcing a specific interpretation.

For the probabilistic track of the 4th International Planning Competition, we used expected total reward
as the optimality criterion. This requires some care in the design of planning problems in order to ensure
that the expected total reward is bounded for the optimal policy. The following restrictions were made for
problems used at the planning competition:

1. Each problem had a goal statement, identifying a set of absorbing goal states.

2. A positive reward was associated with transitioning into a goal state.

3. A negative reward (cost) was associated with each action.

4. A“done” action was available in all states, which could be used to end further accumulation of reward.

These conditions ensure that an MDP model of a planning problerpasitive bounded mod@&uterman

(1994, pp. 284). The only positive reward is for transitioning into a goal state. Since goal states are absorbing
(i.e. they have no outgoing transitions), the maximum value for any state is bounded by the goal reward.
Furthermore, the “done” action ensures that there is an action available in each state which guarantees a
non-negative future reward.

5 Conversion to Dynamic Bayesian Network

In this section, we focus on PPDDL problems without numeric state variables as such problems are guar-
anteed to have a finite state space. For a problemmBloolean state variables, the transition probability
matrix for each action may contain up 23" entries. We showed how to compute these entries in the
previous section, but the computation relied on transformations of action effects that could result in an ex-
ponential increase in the representation size compared to the original PPDDL encoding. We will now show
how to compute dactoredrepresentation of the transition probability matrix for a PPDDL action without
more than a polynomial increase in size. The transition probability matrix will be represented wsing a
namic Bayesian netwolloBN; Dean and Kanazawa 1989), whose structure can be exploited by algorithms
for decision theoretic planning (see, e.g., work by Boutilier et al. 1995; Hoey et al. 1999; Boultilier et al.
1999; Guestrin et al. 2003).

A Bayesian network is a directed graph. Each node of the graph represents a state variable, and a
directed edge from one node to another represents a causal dependence. With each node is associated a
conditional probability table (CPT). The CPT for state variakils node represents the probability distribu-
tion over possible values foX conditioned on the values of state variables whose nodes are paref'ts of
node. A Bayesian network is a factored representation of the joint probability distribution over the variables
represented in the network.

A DBN is a Bayesian network with a specific structure aimed at capturing temporal dependence. For
each state variabl&, we create a duplicate state variailg with X representing the situation at the present
time andX’ representing the situation one time step into the future. A directed edge from a present-time state
variable X to a future-time state variable’ encodes a temporal dependence. There are no edges between
two present-time state variables, or from a future-time to a present-time state variable (the present does not
depend on the future). We can, however, have an edge between two future-time state variables. Such edges,
calledsynchronicedges, are used to represent correlated effects. A DBN is a factored representation of the
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joint probability distribution over present-time and future-time state variables, which is also the transition
probability matrix for a discrete-time Markov process.

We now show how to generate a DBN representing the transition probability matrix for a PPDDL action.
To avoid representational blowup, we introduce a multi-valued auxiliary variable for each probabilistic effect
of an action effect. These auxiliary variables are used to indicate which of the possible outcomes of a
probabilistic effect that occurs, and this allows us to correlate all the effects of a specific outcome. The
auxiliary variable associated with a probabilistic effect witloutcomes can take andifferent values. A
PPDDL effecte of size |e| can consist of at mog?(|e|) distinct probabilistic effects. Hence, the number
of auxiliary variables required to encode the transition probability matrix for an action with effeititbe
at mostO(|e|). Only future-time versions of the auxiliary variables are necessary. For a PPDDL problem
with m Boolean state variables, we need on the ord@nof max,c 4 |e,| nodes in the DBNs representing
transition probability matrices for actions.

We provide a compositional approach for generating a DBN that represents the transition probability
matrix for a PPDDL action with preconditiop, and effecte,. We assume that the effect is consistent, i.e.
thatb and—b do not occur in the same outcome with overlapping conditions. The DBN for an empty effect
T simply consists o2m nodes, with each present-time nalleconnected to its future-time counterpaft.

The CPT forX’ has the non-zero entriéa (X' = T | X = T] =landPr[X' = L | X = 1] = 1. The
same holds for a reward effect] %, which does not change the value of state variables.

Next, consider the simple effedi@nd—b. Let X, be the state variable associated with the PPDDL atom
b. For these effects, we eliminate the edge fréimto X;. The CPT forX; has the entrPr[X; = T] =1
for effectb andPr[X; = L] = 1 for effect—b.

For conditional effects¢ > e, we take the DBN fore and add edges between the present-time state
variables mentioned in the formutaand the future-time state variables in the DBN ¢orEntries in the
CPT for a state variabl&’ that correspond to settings of the present-time state variables that satisfy
remain unchanged. The other entries are sdtifo X is true and0 otherwise (the value oK does not
change if the effect condition is not satisfied).

The DBN for an effect conjunctioe; A - - - A e, is constructed from the DBNSs for theeffect conjuncts.

The value forPr[X’ = T | X] in the DBN for the conjunction is set to the maximumif{ X’ = T | X]
over the DBNs for the conjuncts.

Finally, to construct a DBN for a probabilistic effegte; | ... |p,e,, we introduce an auxiliary variable
Y’ that is used to indicate which one of th@utcomes occurred. The node 16t does not have any parents,
and the entries of the CPT aRe[Y’ = i] = p;. Given a DBN fore;, we add a synchronic edge frorl
to all state variables{. The value ofPr[X' = T | X,Y’ = j]is settoPr[X’' = T | X]if j = i and0
otherwise. We do this for alh outcomes, which results imn DBNs. These DBNs are combined in the same
way as for conjunctive effects, and the result is the DBN for the probabilistic effect.

The process of constructing a DBN from a PPDDL encoding of an action is illustrated in Figure 5 for
the “Bomb and Toilet” example. Note that the CPTs for state variables only cantand 1 entries. The
probabilities of different outcomes are encoded in the CPTs for auxiliary variables.

The effects in the “Bomb and Toilet” example are fairly simple. Figure 6(a) shows the PPDDL encoding
for an action in the “Coffee Delivery” domain. The effect of this action has both nested probabilistic effects
and correlated effects (the first outcome of the first probabilistic effect is an example of the latter). The struc-
ture of the DBN for a this more complex example is shown in Figure 6(b). There are three auxiliary variables
because the action effect contains three probabilistic effects. The node l&h@ldthe future-time version
of the state variabl@as- coffee) has five parents, including all three auxiliary variables. Consequently, the
CPT for this node will hav@® = 32 rows.
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(a) BD (c) BIP, > BD

(e) (BIPy1>BD)A(0.05TC0.95T)

obibd

(b) TC
(d) 0.05TC0.95T
BD' TC
BIP, BIP) BIP, BD|T L TC Aug’ | T L A
BIP, | T L BIPs | T L T T 11 0 T T |1 0 . “”32
T [ 1 0 T [ 1 0 T L ]l1 o T 2 |1 0 —o—oos
1 |lo 1 1 |lo 1 1 T 11 o0 1 1 |1 o : :
1 1 lo 1 1 2 o 1

Figure 5: Construction of a DBN for th@unk-package,,cxage1 action of the bomb and toiled example. The final
DBN is shown in (e) and its CPTs are listed at the bottom of the figure.
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(:action deliver-coffee
:effect (and (when (and (in-office) (has-coffee))
(probabilistic 0.8 (and (user-has-coffee)
(not (has-coffee))
(increase (reward) 0.8))
0.2 (and (probabilistic 0.5 (not (has-coffee)))
(when (user-has-coffee)
(increase (reward) 0.8)))))
(when (and (not (in-office)) (has-coffee))
(and (probabilistic 0.8 (not (has-coffee)))
(when (user-has-coffee)
(increase (reward) 0.8))))
(when (and (not (has-coffee)) (user-has-coffee))
(increase (reward) 0.8))
(when (not (is-wet))
(increase (reward) 0.2))))

(@)

(b)

Figure 6: PPDDL encoding (a) and DBN (b) for the “deliver-coffee” action of the “Coffee Delivery” domain.

15



A BNF Grammar for PPDDL1.0

We provide the full syntax for PPDDL1.0 using an extended BNF notation with the following conventions:

Al

Each rule is of the fornnon-termina) ::= expansion
Alternative expansions are separated by a vertical B3 (“
A syntactic element surrounded by square brackets (“[* and “]”) is optional.

Expansions and optional syntactic elements with a superscripted requirements flag are only available
if the requirements flag is specified for the domain or problem currently being defined. For example,
[(types-deff ¥P"9 in the syntax for domain definitions means tligpes-def may only occur in
domain definitions that include thgyping  flag in the requirements declaration.

An asterisk (“*”) following a syntactic element means zero or more occurrencesxpé plus (“7”)
following x means at least one occurrencexof

Parameterized non-terminals, for examfiiged list(X)), represent separate rules for each instantia-
tion of the parameter.

Terminals are written usintypewriter font.

The syntax is Lisp-like. In particular this means that case is not significantXe and?X are equiv-

alent), parenthesis are an essential part of the syntax and have no semantic meaning in the extended
BNF notation, and any number of whitespace characters (space, newline, tab, etc.) may occur between
tokens.

Domains

The syntax for domain definitions is the same as for PDDL2.1, except that durative actions are not allowed.
Declarations of constants, predicates, and functions are allowed in any order with respect to one another, but
they must all come after any type declarations and precede any action declarations.

(domain) = (define (domain (name )

[(require-def]

[(types-def P

[(constants-déf

[(predicates-dei

[(functions-deffluents

(structure-def* )
(require-def = (:requirements (require-key* )
(require-key := See Section A.4
(types-def = (:types (typed list(namg) )
(constants-déf = (:constants (typed list(ham@) )
(predicates-def ::= (:predicates (atomic formula skeletg )
(atomic formula skeletgn::= ( (predicate (typed list(variable)) )
(predicate = (name
(functions-def := (:functions (function typed lis{function skeleto)) )
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(function skeleton := ( (function symbol (typed list(variable)) )

(function symbol = (name

(structure-def := (action-def

(action-def := See Section A.2

(typed list(x)) = ()% 9PN )+ - (typé (typed list(x)

(type := (either  {primitive type™ ) | (primitive type
(primitive type = (name

(function typed lis(x)) = (X)* | WPINg  (x)F - (function typé (function typed lis{x))
(function typé = number

A (name is a string of characters starting with an alphabetic character followed by a possibly empty se-
qguence of alphanumeric characters, hyphen¥)(‘and underscore charactersf: A (variable) is a(name
immediately preceded by a question marR’{f: For example,in-office andball _2 are names, and
?gripper is a variable.

A.2 Actions

Action definitions and goal descriptions have the same syntax as in PDDL2.1.

(action-def = (:action  (action symbdl
[:parameters ( (typed list(variable)) ) ]
(action-def body)

(action symbal = (name
(action-def body  ::= [:precondition (GD)]
[:effect  (effec}]
(GD) ::= (atomic formula(term)) | (and (GD)*)

jeauality (= (term) (term) )
|equalty (ot (= (term) (term)))

|¢2?9""t“’:}‘pre°°”dit‘;‘_’t’_‘s (not (atomic formula(term)) )
:disjunctive-preconditions (not (GD))

I:disjunctive-preconditions (OI’ <C<5D>*>)

|:disjunctive-preconditions (imply <GD> <GD> )

|existential-preconditions (exists ( (typed list(variable)) ) (GD))
|-universal-preconditions (forall ( (typed list(variable)) ) (GD) )

|:ﬂuents <f-comp

(atomic formula(x)) ::= ( (predicate (x)* ) | (predicate
(term) = (name | (variable)

(f-comp ( (binary-comp (f-exp (f-exp )
(binary-comp <|<=|=|>=|>

( (numbej | (f-head(term))

( (binary-op (f-exp (f-exp ) | (- (f-exp)
( (function symbol (x)* ) | (function symbol
L R

(f-head(x))
(binary-op

g
®
X
o=
{1 A | sy | By 1 B I

A (numbey} is a sequence of numeric characters, possibly with a single decimal pofitat any position
in the sequence. Negative numbers are writte+ agnumbey) .
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The syntax for effects has been extended to allow for probabilistic effects, which can be arbitrarily
interleaved with conditional effects and universal quantification.

(effecy n= (p-effecy | (and (effec}* )
|Fconditional-effects (forall ( (typed list(variable)) ) (effect )
|:conditi0na|—effects (When (GD> <effec1§ )
‘:probabilistic-effects ( probabilistic <prob—effecl+ )
(p-effect ::= (atomic formula (term) | (not (atomic formula(term)) )

|fluents —( (assign-op (f-head(term)) (f-exp )
|rewards (- (additive-op (reward fluen} (f-exp )

(prob-effect  ::= (probability) (effec}

(assign-op := assign | scale-up | scale-down | (additive-op
(additive-op ::= increase | decrease

(reward fluent ::= (reward) | reward

A (probability) is a(numbe} with a value in the intervalo, 1].

A.3 Problems

The syntax for problem definitions has been extended to allow for the specification of a probability distribu-
tion over initial states, and also to permit the association of a one-time reward with entering a goal state. It
is otherwise identical to the syntax for PDDL2.1 problem definitions.

(problem ::= (define ( problem (name )
(:domain (name )
[(require-def]
[(objects-def
[(init)]
(goal) )

(objects-def (:objects (typed list(ham@) )

( (binary-op (ground-f-exp (ground-f-exp )
(- (ground-f-exp)

| (total-time) | total-time

| (goal-achieved) | goal-achieved
|rewards (reward fluent

(init) = (:init (init-el)* )
(init-el) = (p-init-el)
|-probabilistic-effects ( probabilistic (prob-init-el)* )
(p-init-el) := (atomic formula(namg) |fuents (= (f-head(namg) (numbe} )
(prob-init-el)  ::= (probability) (a-init-el)
(a-init-el) = (p-init-el) | (and (p-init-el)* )
(goal) := (goal-spe¢ [(metric-spef] | (metric-speg
(goal-spe¢ := (:goal (GD)) [(:goal-reward (ground-f-exp ) ]rewards
(metric-speg = (:metric  (optimization (ground-f-exp )
(optimization ::= minimize | maximize
(ground-f-exp ::= (numbej | (f-head(namg)
|
|
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A.4 Requirements

Below is a table of all requirements in PPDDL1.0. Some requirements imply others; some are abbrevia-
tions for common sets of requirements. If a domain stipulates no requirements, it is assumed to declare a
requirement forstrips

Requirement Description
:strips Basic STRIPS-style adds and deletes
‘typing Allow type names in declarations of variables
:equality Support= as built-in predicate
:negative-preconditions Allow negated atoms in goal descriptions
:disjunctive-preconditions Allow disjunctive goal descriptions
.existential-preconditions Allow exists in goal descriptions
:universal-preconditions Allow forall  in goal descriptions
:quantified-preconditions = .existential-preconditions

+ :universal-preconditions
:conditional-effects Allow when andforall  in action effects
:probabilistic-effects Allow probabilistic in action effects
rewards Allow reward fluent in action effects and

optimization metric

:fluents Allow numeric state variables
.adl =:strips  +:typing +:equality

+ :negative-preconditions
+ .disjunctive-preconditions
+ :quantified-preconditions
+ :conditional-effects
‘mdp = :probabilistic-effects + :rewards
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