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Abstract

We explore the concept of a “black-box” stochastic system, and propose an algorithm for verifying proba-
bilistic properties of such systems based on very weak assumptions regarding system dynamics. The prop-
erties are expressed using a variation of PCTL, the Probabilistic Computation Tree Logic. We present a
general model of stochastic discrete event systems, which encompasses both discrete-time and continuous-
time processes, and we provide a semantics for PCTL interpreted over this model. Our presentation is both
a generalization of and an improvement over some recent work by Sen et al. on probabilistic verification of
“black-box” systems.





1 Introduction

Stochastic processes are used to model phenomena in nature that involve an element of chance, such as
the throwing of a die, or are too complex to fully capture in a deterministic fashion, such as the duration
of a call in a telephone system. Certain classes of stochastic processes have been studied extensively in
the performance evaluation and model checking communities. Numerous temporal logics, such as TCTL
(Alur et al. 1991), PCTL (Hansson and Jonsson 1994), and CSL (Aziz et al. 2000; Baier et al. 2003), exist
for expressing interesting properties of various types of stochastic processes. Model checking algorithms
have been developed for verifying properties of discrete-time Markov chains (Hansson and Jonsson 1994),
continuous-time Markov chains (Baier et al. 2003; Kwiatkowska et al. 2002), semi-Markov processes (In-
fante López et al. 2001), generalized semi-Markov processes (Alur et al. 1991), and stochastic discrete event
systems in general (Younes and Simmons 2002).

Given a stochastic process, we are often interested in knowing if certain probabilistic properties hold.
For a computer network, we may want to know that the probability of exhausting bandwidth over a com-
munication link is below some threshold. We can also associate a deadline with a probabilistic property,
for example that a message arrives at its destination within 15 seconds after it is sent out with probability
at least 0.9. Properties of this type can be verified using either numerical or statistical solution techniques,
as discussed by Younes et al. (2004). Numerical techniques provide highly accurate results, but rely on
strong assumptions regarding the dynamics of the systems they are used to analyze. Statistical techniques
only require that the dynamics of a system can be simulated, and can therefore be used for a larger class of
stochastic processes. The result produced by a statistical method is only probabilistic, however, and attaining
high accuracy tends to be costly.

For some systems, it may not even be feasible to assume that we can simulate their behavior. Sen et al.
(2004) consider the model checking problem for such “black-box” systems. It is assumed of a “black-
box” system that it cannot be controlled to generate execution traces, ortrajectories, on demand starting
from arbitrary states. This is a reasonable assumption for a system that has already been deployed, and for
which we are only given a set of trajectories generated during actual execution of the system. We are then
asked to verify a probabilistic property of the system based on the information provided to us as a fixed set
of trajectories. Statistical solution techniques are certainly required to solve this problem. The statistical
method for probabilistic model checking proposed by Younes and Simmons (2002) cannot be used for
verification of “black-box” systems, however, because it depends on the ability to generate trajectories on
demand.

Sen et al. (2004) present an alternative solution method for verification of “black-box” systems based
on statistical hypothesis testing with fixed sample sizes. We improve upon their algorithm in several ways,
for example by making sure to always accept the most likely hypothesis, and we present a procedure for
verifying nested probabilistic properties, which unlike that of Sen et al. actually works. The differences
between the two competing approaches are discussed in detail towards the end of this paper, where we
also make an effort to explain why Sen et al.’s comparison of their algorithm with the statistical model
checking procedure used by Younes et al. (2004) is misguided. These two solution methods, while both
based on statistical hypothesis testing, are simply not comparable in a meaningful way because the “black-
box” approach does not give any a priori correctness guarantees.

We start by presenting a general model of stochastic discrete event systems that encompasses both
discrete-time and continuous-time processes. We give a clear definition of a “black-box” system in terms of
this model, and we define the syntax and semantics of a logic for expressing properties of general discrete
event systems. Our logic has essentially the same syntax as Hansson and Jonsson’s (1994) PCTL, and
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we call it PCTL as well because it includes the original version of the logic as a special case, but it also
includes CSL (without the steady-state operator) as defined by Baier et al. (2003). The algorithm we present
for verification of “black-box” systems can handle the full logic, including properties without finite time
bounds, although the accuracy of the result for such properties may very well be poor. Our algorithm, like
that of Sen et al. (2004), does in fact make no guarantees regarding accuracy. Instead of respecting some a
priori bounds on the probability of error, the algorithm computes ap-value for the result, which is a measure
of confidence. This is really the best we can do, provided that we cannot generate trajectories for the system
as we see fit and instead are restricted to use a predetermined set of trajectories.

2 Stochastic Discrete Event Systems

A stochastic processis in principle any process that evolves over time, and whose evolution we can follow
and predict in terms of probability (Doob 1942, 1953). At any point in time, a stochastic process is said to
occupy some state. If we attempt to observe the state of a stochastic process at a specific time, the outcome
of such an observation is governed by some probability law.

A stochastic discrete event systemis a specific type of stochastic process that can be thought of as
occupying a single state for some duration of time until aneventcauses an instantaneous state transition to
occur. The canonical example of such a process is a queuing system with the state being the number of items
currently in the queue. The state changes at the occurrence of an event representing the arrival or departure
of an item. We call this adiscrete eventsystem because the state change is discrete rather than continuous
and is caused by the triggering of an event.

2.1 Trajectories

Mathematically, we define a stochastic process as a family of random variablesX = {Xt | t ∈ T}. The
index setT represents time and is typically the set of non-negative integers,Z

∗, for discrete-time stochastic
processes and the set of non-negative real numbers,[0,∞), for continuous-time stochastic processes. For
eacht ∈ T we have a random variableXt representing the chance experiment of observing the stochastic
process at timet. The range ofXt is a setS of states that the stochastic process can occupy, which can
be infinite or even uncountable. Atrajectory or sample pathof a stochastic process is any realization
{xt ∈ S | t ∈ T} of the family of random variablesX .

The trajectory of a stochastic discrete event system ispiecewise constantand can therefore be repre-
sented as a sequenceσ = {〈s0, t0〉, 〈s1, t1〉, . . .}, with si ∈ S andti ∈ T \ {0}. Figure 1 plots part of a
trajectory for a simple queuing system. Let

(1) Ti =
{

0 if i = 0∑i−1
j=0 tj if i > 0

,

i.e. Ti is the time at which statesi is entered andti is the duration of time for which the process remains in
si before an event triggers a transition to statesi+1. A trajectoryσ is then a realization ofX with xt = si

for Ti ≤ t < Ti + ti. According to this definition, trajectories of stochastic discrete event systems are
right-continuous. A finite trajectory is a sequenceσ = {〈s0, t0〉, . . . , 〈sn,∞〉} wheresn is anabsorbing
state, meaning that no events can occur insn and thatxt = sn for all t ≥ ∑n−1

i=0 ti.
Note that if

∑∞
i=0 ti < ∞ for an infinite trajectoryσ, which is possible ifT is the non-negative rational

or real numbers, thenxt is not well-defined for allt ∈ T . For this to happen, however, an infinite sequence of
events must occur in a finite amount of time, which is unrealistic for any physical system. Hoel et al. (1972)
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Figure 1: A trajectory for a simple queuing system with arrival events occurring att1, t2 andt3 and a departure event
occurring att4. The state of the system represents the number of items in the queue.

use the termexplosiveto describe processes for which such sequences can occur with non-zero probability.
It is common to assume time divergence for infinite trajectories of real-time systems (cf. Alur and Dill 1994),
i.e. that the systems are non-explosive, and most finite-state systems satisfy this property by default.

2.2 Probability Space and “Black-Box” Probabilistic Systems

A prefix of a trajectoryσ = {〈s0, t0〉, 〈s1, t1〉, . . .} is a sequenceσ≤τ = {〈s′0, t′0〉, . . . , 〈s′k, t′k〉}, with s′i = si

for all i ≤ k,
∑k

i=0 t′i = τ , t′i = ti for all i < k, andt′k < tk. Let Path(σ≤τ ) denote the set of trajectories
with common prefixσ≤τ . This set must bemeasurablefor probabilistic model checking to make sense,
and we assume that a probability measureµ over the set of trajectories with common prefix exists. This
is hardly a severe restriction as such a measure can be defined for systems of practical interest, although
the precise definition thereof is not required for the approach to probabilistic model checking considered in
this paper. In fact, the lack of knowledge of the probability measure over sets of trajectories can be seen
as the defining characteristic of a “black-box” probabilistic system. If we had complete knowledge of this
probability measure, then the system under consideration would not be a black box to us. This leads us to
make the following definition.

Definition 1 (“Black-box” probabilistic system). A stochastic discrete event system for which the proba-
bility measureµ over sets of trajectories with common prefix is unknown and cannot even be sampled from
is called a “black-box” probabilistic system.

A measurable space is a setΩ with aσ-algebraFΩ of subsets ofΩ (Halmos 1950). Aprobability space
is a measurable space〈Ω,FΩ〉 and a probability measureµ that assigns a value in the interval[0, 1] to the
elements ofFΩ, with µ(∅) = 0, µ(Ω) = 1, andµ(E) =

∑
i µ(Ei) if E1, E2, . . . are countably many

pairwise disjoint sets inFΩ andE is their union. When we say that a setΩ must be measurable, we really
mean that there must be aσ-algebra for the set. The elements of thisσ-algebra are the measurable subsets
of Ω.

A stochastic discrete event system is measurable if the setsS andT are measurable. We can show
this by defining aσ-algebra over the set of trajectories with common prefixσ≤τ = {〈s0, t0〉, . . . , 〈sk, tk〉},
denotedPath(σ≤τ ), as follows. LetFS be aσ-algebra over the state spaceS, and letFT be aσ-algebra
over the index setT of the stochastic process. Suchσ-algebras exist ifS andT are measurable sets, which
by assumption they are. ThenC(σ≤τ , Ik, Sk+1, . . . , In−1, Sn), with Si ∈ FS and Ii ∈ FT , denotes the
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set of trajectoriesσ = {〈s′0, t′0〉, 〈s′1, t′1〉, . . . } such thats′i = si for i ≤ k, s′i ∈ Si for k < i ≤ n,
t′i = ti for i < k, t′k > tk, andt′i ∈ Ii for k ≤ i < n. In other words,C(σ≤τ , Ik, Sk+1, . . . , In−1, Sn)
is a subset ofPath(σ≤τ ). The setsC(σ≤τ , Ik, Sk+1, . . . , In−1, Sn) are the elements of aσ-algebra over
the setPath(σ≤τ ) with set operations applied element-wise, for exampleC(σ≤τ , Ik, Sk+1, . . . , In−1, Sn) ∪
C(σ≤τ , I

′
k, S

′
k+1, . . . , I

′
n−1, S

′
n)= C(σ≤τ , Ik ∪ I ′k, Sk+1 ∪ S′k+1, . . . , In−1 ∪ I ′n−1, Sn ∪ S′n).

3 Properties of Stochastic Discrete Event Systems

A stochastic discrete event system can be specified as a triple〈S, T, µ〉, whereS is a set of states,T is a time
domain, andµ is a probability measure over sets of trajectories with common prefix. We typically assume
a factored representation ofS, with a set of state variablesSV and a value assignment functionV (s, x)
providing the value ofx ∈ SV in states. The domain ofx is the setDx =

⋃
s∈S V (s, x) of possible

values thatx can take on. We define the syntax of PCTL for a factored stochastic discrete event system
M = 〈S, T, µ,SV , V 〉 as

Φ ::= x ∼ v
∣∣ ¬Φ

∣∣ Φ ∧ Φ
∣∣ P./ θ

[
XI Φ

] ∣∣ P./ θ

[
Φ UI Φ

]
,

wherex ∈ SV , v ∈ Dx, ∼ ∈ {≤,=,≥}, θ ∈ [0, 1], ./ ∈ {≤,≥}, and I ⊂ T . Additional PCTL
formulae can be derived in the usual way. For example,⊥ ≡ (x = v) ∧ ¬(x = v) for somex ∈ SV and
v ∈ Dx, > ≡ ¬⊥, Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ), Φ → Ψ ≡ ¬Φ ∨ Ψ, P./ θ [Φ U Ψ] ≡ P./ θ

[
Φ UT Ψ

]
, and

P< θ [ϕ] ≡ ¬P≥ θ [ϕ].
The standard logic operators have their usual meaning.P./ θ [ϕ] asserts that the probability measure

over the set of trajectories satisfying the path formulaϕ is related toθ according to./. Path formulae are
constructed using the temporal path operatorsXI (“next”) andUI (“until”). The path formulaXI Φ asserts
that the next state transition occurst ∈ I time units into the future and thatΦ holds in the next state, while
Φ UI Ψ asserts thatΨ becomes truet ∈ I time units into the future whileΦ holds continuously prior tot.

The validity of a PCTL formula, relative to a factored stochastic discrete event systemM, is defined in
terms of a satisfaction relation|=M between trajectory prefixes and PCTL formulae:

{〈s0, t0〉, . . . , 〈sk, tk〉} |=M x ∼ v iff V (sk, x) ∼ v

σ≤τ |=M ¬Φ iff σ≤τ |6=M Φ
σ≤τ |=M Φ ∧Ψ iff (σ≤τ |=M Φ) ∧ (σ≤τ |=M Ψ)
σ≤τ |=M P./ θ [ϕ] iff µ({σ ∈ Path(σ≤τ ) | σ, τ |=M ϕ}) ./ θ

The above definition relies on a satisfaction relationσ, τ |=M ϕ such that〈σ, τ, ϕ〉 ∈ |=M iff σ satisfiesϕ
starting at timeτ . This satisfaction relation for path formulae is defined as follows:

σ, τ |=M XI Φ iff ∃k ∈ N.
(
(Tk−1 ≤ τ) ∧ (τ < Tk) ∧ (Tk − τ ∈ I) ∧ (σ≤Tk

|=M Φ)
)

σ, τ |=M Φ UI Ψ iff ∃t ∈ I.
(
(σ≤τ+t |=M Ψ) ∧ ∀t′ ∈ T.

(
(t′ < t) → (σ≤τ+t′ |=M Φ)

))

Note that the semantics ofΦ UI Ψ requires thatΦ holds continuously, i.e. at all time points, along a
trajectory untilΨ is satisfied. This is consistent with the semantics of time-bounded until for TCTL defined
by Alur et al. (1991). Depending on the probability measureµ, Φ may very well hold immediately at the
entry of a states and also immediately after a transition froms to s′, but still not hold continuously while
the system remains ins. Conversely,Ψ may hold at some point in time while the system remains ins, and
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not hold immediately upon entry tos nor immediately after a transition froms to s′. It is therefore not
sufficient, except in special cases, to verifyΦ andΨ at discrete points along a trajectory.

If Φ andΨ are both free of any probabilistic operators, then it is always sufficient to verify the two
formulae once in each state along a trajectory in order to verifyΦ UI Ψ. The same holds true if

(2) µ(Path({〈s0, t0〉, . . . , 〈sk, tk〉})) = µ(Path({〈sk, 0〉}))
for all trajectory prefixes{〈s0, t0〉, . . . , 〈sk, tk〉}. This is the case ifM is a Markov chain as (2) simply is
a formulation of the Markov property. Our semantics for PCTL interpreted over general stochastic discrete
event systems therefore coincides with the semantics for PCTL interpreted over discrete-time Markov chains
(Hansson and Jonsson 1994) and CSL interpreted over continuous-time Markov chains (Baier et al. 2003),
provided we choose the time domainT appropriately.

A PCTL model checking problem is typically specified as a triple〈M, s,Φ〉, with the problem being to
verify if Φ holds forM provided that execution starts in states, i.e.{〈s, 0〉} |=M Φ. We often uses |= Φ
as a short form for the latter, leaving outM when it is clear from the context which system is involved in
the model checking problem.

4 Statistical Model Checking for “Black-Box” Stochastic Systems

We refer to a stochastic discrete event systemM as a “black-box” system if we lack an exact definition of
the probability measureµ over sets of trajectories ofM. We assume that we cannot even sample trajectories
according toµ as earlier stated in Definition 1. Thus, in order to solve a model checking problems |= Φ for
a “black-box” systemM, we must rely on an external source to provide us with a set of trajectories forM
that start in states. We assume that trajectories cannot be generated on demand, but that we are provided
with a finite set ofn trajectories. This sample of sizen must of course be representative of the probability
measureµ(Path({〈s, 0〉})), and we must trust our external source to provide us with a representative set
of trajectories. We further assume that we are only provided withtruncatedtrajectories, because infinite
trajectories would require infinite memory to store.

We will use statistical hypothesis testing to solve a model checking problems |= Φ given a sample ofn
truncated trajectories. Since we rely on statistical techniques, we will typically not know with certainty if the
result we produce is correct. The method we present below computes ap-value for a model checking result,
which is a value in the interval[0, 1] with values closer to0 representing higher confidence in the result and a
p-value of0 representing certainty (Hogg and Craig 1978, pp. 255–256). We start by assuming thatΦ is free
of nested probabilistic operators. Later on, we consider PCTL formulae with nested probabilistic operators,
which as it turns out cannot be handled in a meaningful way without making rather strong assumptions
regarding the dynamics of the “black-box” system.

4.1 PCTL without Nested Probabilistic Operators

Given a states, verification of a PCTL formulax ∼ v is trivial. We consider the remaining three cases in
more detail, starting with the probabilistic operatorP./ θ [·]. Recall that the objective is to produce a Boolean
result annotated with ap-value.

4.1.1 Probabilistic Operator

Consider the problem of verifying the PCTL formulaP./ θ [ϕ] in states of a stochastic discrete event system
M. Let Xi be a random variable representing the verification of the path formulaϕ over a trajectory for
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M drawn according to the probability measureµ(Path({〈s, 0〉})). If we chooseXi = 1 to represent
the fact thatϕ holds over a random trajectory, andXi = 0 to represent the opposite fact, thenXi is a
Bernoulli variatewith parameterp = µ({σ ∈ Path({〈s, 0〉}) | σ, 0 |= ϕ}), i.e. Pr[Xi = 1] = p and
Pr[Xi = 0] = 1 − p. In order to verifyP./ θ [ϕ], we can make observations ofXi and use statistical
hypothesis testing to determine ifp ./ θ is likely to hold. An observation ofXi, denotedxi, is the verification
of ϕ over a specific trajectoryσi. If σi satisfies the path formulaϕ, thenxi = 1, otherwisexi = 0.

In our case, we are givenn truncated trajectories for a “black-box” system that we can use to generate
observations ofXi. Each observation is obtained by verifying the path formulaϕ over one of the truncated
trajectories. This is straightforward given a truncated trajectory{〈s0, t0〉, . . . , 〈sk−1, tk−1〉, sk}, provided
thatϕ does not contain any probabilistic operators. Forϕ = XI Φ, we just check ift0 ∈ I ands1 |= Φ.
Forϕ = Φ UI Ψ, we traverse the trajectory until we find a statesi such that one of the following conditions
holds, withTi defined as in (1) to be the time at which statesi is entered:

1. (si |= ¬Φ) ∧ ((Ti /∈ I) ∨ (si |= ¬Ψ))

2. (Ti ∈ I) ∧ (si |= Ψ)

3. ((Ti, Ti+1) ∩ I 6= ∅) ∧ (si |= Φ) ∧ (si |= Ψ)

In the first case,Φ UI Ψ does not hold over the trajectory, while in the second two cases the time-bounded
until formula does hold. Note that we may not always be able to determine the value ofϕ over all trajectories
because the trajectories that are provided to us are assumed to be truncated.

We consider the caseP≥ θ [ϕ] in detail, noting thatP≤ θ [ϕ] can be handled in the same way simply by
reversing the value of each observation. We want to test the hypothesisH0 : p ≥ θ against the alternative
hypothesisH1 : p < θ by using then observationsx1, . . . , xn of the Bernoulli variatesX1, . . . ,Xn. To
do so, we specify a constantc. If

∑n
i=1 xi is greater thanc, then hypothesisH0 is accepted, i.e.P≥ θ [ϕ] is

determined to hold. Otherwise, if the given sum is at mostc, then hypothesisH1 is accepted meaning that
P≥ θ [ϕ] is determined not to hold. The constantc should be chosen so that it becomes roughly equally likely
to acceptH0 asH1 if p equalsθ. The pair〈n, c〉 is typically called asingle sampling planin the quality
control literature (Montgomery 1991).

The probability distribution of a sum ofn Bernoulli variates with parameterp is a binomial distribution
with parametersn andp, denotedB(n, p). The probability of

∑n
i=1 Xi being at mostc is therefore given

by the cumulative distribution function forB(n, p):

(3) F (c;n, p) =
c∑

i=0

(
n

i

)
pi(1− p)n−i

Thus, with probabilityF (c;n, p) we accept hypothesisH1 using a single sampling plan〈n, c〉, and con-
sequently hypothesisH0 is accepted with probability1 − F (c;n, p) by the same sampling plan. Ideally,
we should choosec such thatF (c;n, θ) = 0.5, but it is not always possible to attain equality because the
binomial distribution is a discrete distribution. The best we can do is to choosec such that|F (c;n, θ)− 0.5|
is minimized. We can readily compute the desiredc using (3).

We now have a way to decide whether to accept or reject the hypothesis thatP≥ θ [ϕ] holds, but we also
want to report a value reflecting the confidence in our decision. For this purpose, we compute thep-value
for a decision. Thep-value is defined as the probability of the sum of observations being at least as extreme
as the one obtained provided that the hypothesis that was not accepted holds. Thep-value for accepting
H0 when

∑n
i=1 xi = d is Pr[

∑n
i=1 Xi ≥ d | p < θ] < F (n − d;n, 1 − θ) = 1 − F (d − 1;n, θ), while
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Figure 2: A simple two-state continuous-time Markov chain.

thep-value for acceptingH1 is Pr[
∑n

i=1 Xi ≤ d | p ≥ θ] ≤ F (d;n, θ). The following theorem provides
justification for our choice of the constantc.

Theorem 1 (Minimization of p-value). By choosingc to minimize|F (c;n, θ)−0.5| when testingH0 : p ≥
θ againstH1 : p < θ using a single sampling plan〈n, c〉, the hypothesis with the lowestp-value is always
accepted.

Proof. HypothesisH1 is only accepted ifd ≤ c, which means that thep-value forH1 under these circum-
stances is at mostF (c;n, θ). Thep-value forH0 if d ≤ c would be at least1−F (c−1;n, θ). We know that
F (c−1;n, θ) < F (c;n, θ) and by assumption that|F (c−1;n, θ)−0.5| > |F (c;n, θ)−0.5|. It follows that
F (c;n, θ) < 1− F (c − 1;n, θ) as required. Ford > c, thep-value for acceptance ofH1 would be at least
F (c + 1;n, θ). Thep-value for acceptance ofH0 whend > c, on the other hand, is at most1− F (c;n, θ).
We know thatF (c+1;n, θ) > F (c;n, θ) and by assumption that|F (c+1;n, θ)−0.5| > |F (c;n, θ)−0.5|.
Consequently,1−F (c;n, θ) < F (c+1;n, θ) and our choice ofc ensures that the hypothesis with the lowest
p-value is always accepted.

In the analysis so far we have been assuming that the value ofϕ can be determined over alln truncated
trajectories that we are given. Now, consider the case when we are unable to verify the path formulaϕ
over some of then truncated trajectories. This would happen if we are verifyingΦ UI Ψ over a trajectory
that has been truncated before either¬Φ ∨ Ψ is satisfied or time exceeds all values inI. We cannot simply
ignore such trajectories: it is assumed that theentireset ofn trajectories is representative of the measureµ,
but the subset of truncated trajectories for which we can determine the value ofϕ is not guaranteed to be a
representative sample for this measure.

For example, consider the problem of verifying the PCTL formulaΦ = P≥ 0.9

[> U [0,100] x=1
]

in a
state satisfyingx=0 for a “black-box” system that in reality is the continuous-time Markov chain shown
in Figure 2. The probability measure of trajectories starting in statex=0 and satisfying> U [0,100] x=1 is
1− e−1 ≈ 0.63 for this system, so the PCTL formula does not hold, but we would of course not know this
unless we had access to the model. Assume that we are provided with a set of100 truncated trajectories
for the system, and that all trajectories have been truncated before time50. Some of these trajectories, on
average roughly39 in every100, will satisfy the path formula> U [0,100] x=1, while the remaining truncated
trajectories will not contain sufficient information for us to determine the validity of the path formula over
these trajectories. An analysis based solely on the trajectories over which the path formula can be decisively
verified would be severely biased. If the number of positive observations is exactly39, with 61 undetermined
observations, we would wrongly conclude thatΦ holds withp-value1 − F (38; 39, 0.9) ≈ 0.0164, which
implies a fairly high confidence in the result.

Let n′ be the number of observations whose value we can determine and letd′ be the sum of thesen′

observations. We then know that the sum of all observations,d, is at leastd′ and at mostd′ + n − n′, i.e.
d ∈ [d′, d′ + n− n′]. If d′ > c, then hypothesisH0 can be safely accepted. Instead of a singlep-value, we
associate an interval of possiblep-values with the result:[F (n′−d′;n, 1−θ), F (n−d′;n, 1−θ)]. Conversely,
if d′ + n− n′ ≤ c, then hypothesisH1 can be accepted withp-value in the interval[F (d′;n, θ), F (d′ + n−
n′;n, θ)]. If, however,d′ ≤ c andd′ + n− n′ > c, then it is not clear which hypothesis should be accepted.
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We could in this case say that we do not have enough information to make an informed choice. Alternatively,
we could accept one of the hypotheses with its associatedp-value interval. We prefer to always make some
choice, and we recommend choosingH0 if F (n − d′;n, 1 − θ) ≤ F (d′ + n − n′;n, θ) andH1 otherwise.
This strategy minimizes the maximum possiblep-value. Alternatively, we could minimize the minimum
possiblep-value by instead choosingH0 if F (n′ − d′;n, 1 − θ) ≤ F (d;n, θ) andH1 otherwise. Note
that this way of treating truncated trajectories makes our approach work even for unbounded until formulae
Φ U Ψ, although we would typically expect the result to be highly uncertain for such formulae.

Consider the same problem as before, with39 positive and61 undetermined observations and assuming
the system behaves like the Markov chain shown in Figure 2. Thep-value interval for accepting the PCTL
formulaΦ = P≥ 0.9

[> U [0,100] x=1
]

as true is[F (0; 100, 0.1), F (61, 100, 0.1)] ≈ [2.65 · 10−5, 1 − 3.77 ·
10−15]. For the opposite decision, we get thep-value interval[F (39; 100, 0.9), F (100; 100, 0.9)] ≈ [1.59 ·
10−35, 1]. Both intervals are almost equally uninformative, so no matter what decision we make, we will
have a high uncertainty in the result. We would acceptΦ as true if we prefer to minimize the maximum
possiblep-value, and we would rejectΦ as false if we instead prefer to minimize the minimum possible
p-value, but in both cases we have a maximump-value well above0.5. This is in sharp contrast to the faulty
analysis suggested earlier, which lead to an acceptance ofΦ as true with a lowp-value.

4.1.2 Negation

To verify ¬Φ, we first verifyΦ. If we conclude thatΦ has a certain truth-value withp-valuepv , then we
conclude that¬Φ has the opposite truth-value with the samep-value. To motivate this, consider the case
¬P≥ θ [ϕ]. To verify P≥ θ [ϕ], we test the hypothesisH0 : p ≥ θ againstH1 : p < θ as stated above.
Note, however, that¬P≥ θ [ϕ] ≡ P< θ [ϕ], which could be posed as the problem of testing the hypothesis
H ′

0 : p < θ againstH ′
1 : p ≥ θ. SinceH ′

0 = H1 andH ′
1 = H0, we can simply negate the result of verifying

P≥ θ [ϕ] while maintaining the samep-value.

4.1.3 Conjunction

For a conjunctionΦ ∧Ψ, we have to consider four cases. First, if we verifyΦ to hold withp-valuepvΦ and
Ψ to hold withp-valuepvΨ, then we conclude thatΦ ∧ Ψ holds withp-valuemax(pvΦ, pvΨ). Second, if
we verify Φ not to hold withp-valuepv , while verifying thatΨ holds, then we conclude thatΦ ∧ Ψ does
not hold withp-valuepv . The third case is analogous to the second withΦ andΨ interchanged. Finally, if
we verifyΦ not to hold withp-valuepvΦ andΨ not to hold withp-valuepvΨ, then we conclude thatΦ∧Ψ
does not hold withp-valuemin(pvΦ, pvΨ).

Before deriving the given expressions for thep-values associated with the verification result of a con-
junction, let us give an intuitive justification. In order forΦ ∧ Ψ to hold, bothΦ andΨ must hold, so we
cannot be anymore confident in the result forΦ ∧ Ψ than we are in the result for the individual conjuncts,
thus the maximum in the first case. To conclude thatΦ ∧ Ψ does not hold, however, we only need to be
convinced that one of the conjuncts does not hold. In case we think exactly one of the conjuncts holds,
then the result for the conjunction will be based solely on this conviction and thep-value for the conjunct
we think holds should not matter. This covers the second and third cases. In the fourth case, we have two
sources (not necessarily independent) telling us that the conjunction is false. We therefore have no reason
to be less confident in the result for the conjunction than in the result for each of the conjuncts, hence the
minimum in this case.

For a mathematical derivation of the given expressions, we consider the formulaP≥ θ1 [ϕ1]∧P≥ θ2 [ϕ2].
Let di denote the number of trajectories that satisfyϕi. Provided we accept the conjunction as true, which
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means we accept each conjunct as true, thep-value for this result is

(4) Pr[
n∑

i=1

X
(1)
i ≥ d1 ∧

n∑
i=1

X
(2)
i ≥ d2 | p1 < θ1 ∨ p2 < θ2] .

To compute thisp-value, we consider the three ways in whichp1 < θ1 ∨ p2 < θ2 can be satisfied (cf. Sen
et al. 2004). We know from elementary probability theory that

(5) Pr[A ∩B] ≤ min(Pr[A],Pr[B])

for arbitrary eventsA and B. From this fact, and assuming thatpv i is the p-value associated with the
verification result forP≥ θi

[ϕi], we derive the following:

1. Pr[
∑n

i=1 X
(1)
i ≥ d1 ∧

∑n
i=1 X

(2)
i ≥ d2 | p1 < θ1 ∧ p2 < θ2] = min(pv 1, pv2)

2. Pr[
∑n

i=1 X
(1)
i ≥ d1 ∧

∑n
i=1 X

(2)
i ≥ d2 | p1 < θ1 ∧ p2 ≥ θ2] = min(pv 1, 1) = pv1

3. Pr[
∑n

i=1 X
(1)
i ≥ d1 ∧

∑n
i=1 X

(2)
i ≥ d2 | p1 ≥ θ1 ∧ p2 < θ2] = min(1, pv 2) = pv2

We take the maximum over these three cases to obtain a bound for (4), which gives usmax(pv1, pv 2).
For the same formula, but now assuming we have verified both conjuncts to be false, we compute the

p-value as

(6) Pr[
n∑

i=1

X
(1)
i ≤ d1 ∧

n∑
i=1

X
(2)
i ≤ d2 | p1 ≥ θ1 ∧ p2 ≥ θ2] .

It follows immediately from (5) thatmin(pv 1, pv 2) is a bound for (6), which is the desired result.

4.2 PCTL with Nested Probabilistic Operators

If we allow nested probabilistic operators, PCTL model checking for “black-box” stochastic discrete event
systems becomes much harder. Consider the formulaP≥ θ

[> U [0,100] P≥ θ′ [ϕ]
]
. In order to verify this

formula, we must test ifP≥ θ′ [ϕ] holds at some timet ∈ [0, 100] along the set of trajectories that we are
given. Unless the time domainT is such that there is a finite number of time points in a finite interval, then
we potentially have to verifyP≥ θ′ [ϕ] at an infinite or even uncountable number of points along a trajectory,
which clearly is infeasible. Even ifT = Z

∗, so that we only have to verify nested probabilistic formulae at
a finite number of points, we still have to take the entire prefix of the trajectory into account at each time
point. We are given a fixed set of trajectories, and we can only use the subset of trajectories with a matching
prefix to verify a nested probabilistic formula. This means that we will have very few trajectories available
to use for the verification of nested probabilistic formulae, most likely only one if the prefix is long, in which
case the uncertainty in the result will be overwhelming.

Only if we assume that the “black-box” system is a Markov chain, which is a rather strong assumption
to make, can we hope to have a significant number of trajectories available for the verification of nested
probabilistic formulae. This is because, under the Markov assumption, we only have to take the last state
along a trajectory prefix into consideration. Consequently, any suffix of a truncated trajectory starting at
a specific states, in the set provided to us by an external source, can be regarded as representative of the
probability measureµ({〈s, 0〉}).
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Another complicating factor in the verification ofP≥ θ [ϕ], whereϕ contains nested probabilistic opera-
tors, is that we cannot verifyϕ over trajectories without some uncertainty in the result. This means that we
do no longer obtain observations of the random variablesXi as defined above, but instead we observe some
other random variablesYi with quite different distributions. We acceptP≥ θ [ϕ] as true if

∑n
i=1 Yi > c for

some constantc, and we reject the same formula as false otherwise. We can choosec as previously, but what
is thep-value of the decision?

To compute ap-value for nested verification we assume thatPr[Yi = 0 | σ, τ |= ϕ] ≤ α andPr[Yi =
1 | σ, τ |6= ϕ] ≤ β. We can make this assumption if we introduceindifference regionsin the verification
of probabilistic formulae that are part ofϕ. Under the given assumption, we can use the total probability
formula to derive bounds forPr[Yi = 1]: p(1 − α) ≤ Pr[Yi = 1] ≤ 1 − (1 − p)(1 − β). Thep-value for
acceptingP≥ θ [ϕ] as true when the sum of the observations isd is Pr[

∑n
i=1 Yi ≥ d | p < θ] < F (n −

d;n, (1−θ)(1−β)). Thep-value for the opposite decision isPr[
∑n

i=1 Yi ≤ d | p ≥ θ] ≤ F (d;n, θ(1−α)).
SinceF (d;n, p) increases asp decreases, we see that thep-value increases as the error boundsα andβ
increase, which makes perfect sense. While we said thatc can be chosen as previously, this choice does no
longer guarantee that the hypothesis with the lowestp-value is accepted. To minimize thep-value of the
result, we can simply compute thep-values of the two hypotheses and accept the hypothesis with the lowest
p-value.

We can let the user specify a parameterδ0 that controls the relative width of the indifference regions.
A probabilistic formulaP≥ θ [ϕ] is verified with indifference region of half-widthδ = δ0θ if θ ≤ 0.5 and
δ = δ0(1 − θ) otherwise. The verification is carried out using acceptance sampling as before, but with
hypothesesH0 : p ≥ θ + δ andH1 : p ≤ θ − δ. Instead of reporting ap-value, we report bounds for the
type I error probability of the sampling plan in use ifH1 is accepted and the type II error probability ifH0

is accepted. The type I error of a sampling plan is defined as the maximum probability of acceptingH1

whenH0 holds, while the type II error is defined as the maximum probability of acceptingH0 whenH1

holds. In our case, assuming a sampling plan〈n, c〉 is used, the type I error isF (c;n, θ + δ) and the type
II error is F (c;n, θ − δ). The error probabilities can be used in the same way asp-values to obtain error
probabilities for compound state formulae. A path formula can be treated as a compound state formula, as
suggested by Younes and Simmons (2002), which allows us to derive error bounds for the verification of
path formulae over trajectories as well. As error bounds for the computation of thep-value for a top-level
probabilistic operator we simply take the maximum error bounds for the verification of the path formula
over all trajectories.

5 Related Work

The idea of using statistical hypothesis testing for probabilistic model checking of “black-box” systems was
recently proposed by Sen et al. (2004). Their work is the inspiration for the current paper, although mostly
for the wrong reasons. It is in fact the many hidden assumptions, outright errors, and misleading empirical
evaluation of Sen et al.’s presentation that has prompted our interest in the subject.

First, consider the verification of a probabilistic formulaP≥ θ [ϕ]. Their approach is essentially the
same as ours: given a constantc, accept if

∑n
i=1 Xi > c and reject otherwise. Their choice ofc is different,

however, and is essentially based on De Moivre’s (1738) normal approximation for the binomial distribution.
Their acceptance condition is

∑n
i=1 Xi ≥ nθ, which corresponds to choosingc to bednθe − 1. The mean

of the binomial distributionB(n, θ) is nθ, so this would be the right thing to do if
∑n

i=1 Xi can be assumed
to have a normal distribution. De Moivre showed that this is approximately the case for largen if Xi

are Bernoulli variates, but the approximation is poor for moderate values ofn or if θ is not close to0.5.
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Their algorithm, as a consequence, will under some circumstances accept a hypothesis with a largerp-value
than the alternative hypothesis. By choosingc as we do, without relying on the normal approximation,
we guarantee that the hypothesis with the smallestp-value is always accepted (Theorem 1). Consider the
formulaP≥ 0.01 [ϕ], for example, withn = 501 andd = 5. Our procedure would accept the formula as
true withp-value0.562, while the the algorithm of Sen et al. would reject the formula as false withp-value
0.614. The difference is not of great significance, but it is still worth pointing out because it demonstrates the
danger of using the normal approximation for the binomial distribution. With today’s fast digital computers,
it is hard to motivate the use thereof. Our procedure is therefore an improvement over the algorithm of Sen
et al.

The second improvement over the method presented by Sen et al. is in the calculation of thep-value for
the verification of a conjunctionΦ ∧ Ψ when both conjuncts have been verified to be false. They state that
thep-value ispvΦ + pvΨ, but this is too conservative. There is no reason to believe that the confidence in
the result forΦ ∧ Ψ would belower (i.e. thep-valuehigher) if we are convinced that both conjuncts are
false. We have shown that thep-value in this case is bounded bymin(pvΦ, pvΨ), which intuitively makes
more sense.

Sen et al.’s handling of nested probabilistic operators is just plain wrong. They confuse thep-value
with the probability of accepting a false hypothesis (generally referred to as the type I or II error of a
sampling plan). Thep-value isnot a bound on the probability of a certain test procedure accepting a false
hypothesis. In fact, the test that both they and we use does not provide a useful bound on the probability of
accepting a false hypothesis. Their analysis relies heavily on the ability to bound the probability of accepting
a false hypothesis, so it breaks down completely. We have proposed a way to cope with this by introducing
indifference regions for nested probabilistic operators.

In addition to getting the verification of nested probabilistic operators wrong, Sen et al. are very vague
regarding the assumptions necessary to make their approach produce a reliable answer. The fact that they
treat any portion of a trajectory starting ins, regardless of the portion precedings, as a sample from the same
distribution, hides a rather strong assumption regarding the dynamics of their “black-box” systems. As we
have pointed out, this is not a valid assumption unless we know that the system being studied is a Markov
chain. It also appears as if they only consider truncated trajectories over which they can fully verify a path
formula, and this can introduce a bias that very well may invalidate the conclusion they reach regarding
the truth-value of a probabilistic formula. We have made this quite clear in our exposition, and we have
presented a sound procedure for handling the fact that the value of a path formula may not be determined
over all truncated trajectories that are presented to us.

Finally, the empirical analysis offered by Sen et al. is misleading. They give the reader the impression
that a certainp-value can be guaranteed for a verification result simply by increasing the sample size. This
violates the premise of a “black-box” system stated by the authors themselves earlier in their paper, namely
that trajectories cannot be generated on demand. More important, though, is the fact that a certainp-value
nevercan be guaranteed. Thep-value is not a property of a test, but simply a function of a specific set
of observations. If we are unlucky, we may make observations that give us a largep-value even in cases
when this is unlikely. It is therefore misleading to say that their algorithm is “faster” than the statistical
model checking algorithm used by Younes et al. (2004), as the latter algorithm is properly designed to
realize a certain performance characteristic. Their empirical results can in fact not be replicated reliably
because there is no fixed procedure by which they can determine the sample size required to achieve a certain
accuracy. Their results give the false impression that their procedure is sequential, i.e. that the sample size
automatically adjusts to the difficulty of attaining a certainp-value, when in reality they selected the reported
sample sizesmanuallybased on prior empirical testing (K. Sen, personal communication, May 20, 2004).
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6 Discussion

Sen et al. (2004) were first to consider the problem of CSL verification for “black-box” systems. We have
generalized this idea to a wider class of probabilistic systems that can be characterized as stochastic discrete
event systems. Our most important contribution is to have given a clear definition of what constitutes a
“black-box” system, and to have made explicit any assumptions making feasible the application of statistical
hypothesis testing as a solution technique for verification of such systems. We have extended the logic PCTL
to enable the expression of properties of general stochastic discrete event systems. The algorithm we have
presented for verifying PCTL properties of “black-box” systems is an improvement over a similar but flawed
algorithm proposed by Sen et al.

The algorithm presented in this paper should not be thought of as an alternative to the statistical model
checking algorithm proposed by Younes and Simmons (2002) and empirically evaluated by Younes et al.
(2004). The two algorithms are complementary rather than competing, and are useful under disparate sets of
assumptions. If we cannot generate trajectories for a system on demand, then the algorithm presented here
allows us to still reach conclusions regarding the behavior of the system. If, however, we know the dynamics
of a system well enough to enabled simulation, then we are better off with the alternative approach as it gives
full control over the probability of obtaining an incorrect result.
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