
Defying Hardness With a Hybrid Approach

Ryan Williams

August 2004

CMU-CS-04-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A hybrid algorithm is a collection of heuristics, paired with a polynomial time procedure S (called a
selector) that decides based on a preliminary scan of the input which heuristic should be executed.
We investigate scenarios where the selector must decide between heuristics that are “good” with
respect to different complexity measures, e.g. heuristic h1 is efficient but approximately solves
instances, whereas h2 exactly solves instances but takes superpolynomial time. We present hybrid
algorithms for several interesting problems Π with a “hardness-defying” property: there is a set
of complexity measures {mi} whereby Π is conjectured or known to be hard (or unsolvable) for
each mi, but for each heuristic hi of the hybrid algorithm, one can give a complexity guarantee for
hi on the instances of Π that S selects for hi that is strictly better than mi. For example, some
NP-hard problems admit a hybrid algorithm that given an instance can either solve it exactly in
“subexponential” time, or approximately solve it in polytime with a performance ratio exceeding
that of the known inapproximability of the problem (under P 6= NP).

The author was supported in part by an NSF Graduate Research Fellowship, and the NSF ALADDIN Center
under Grant No. 0122581.

Keywords: approximation, exact algorithms, hybrid algorithms, algorithm selection, complex-
ity

“Plan for what is difficult while it is easy.”
– Tao Te Ching

1 Introduction and Motivation

We propose a new avenue for confronting hard problems, inspired by ‘hybrid algorithms’ (also
called ‘algorithm portfolios’). Here we will define a hybrid algorithm as a collection of algorithms
H = {h1, . . . , hk} called heuristics, coupled with an efficient (polynomial time) procedure S called
a selector. Given an instance x of a problem, S(x) returns the index i of some heuristic in hi ∈ H
to be executed on the instance. The intention behind S is that it should somehow select the “best”
hi for solving or deciding x, according to some predefined criteria. The design of selectors given
an existing collection of heuristics in practice is (quite naturally) known as the algorithm selection
problem [27] and has been studied in numerous contexts within artificial intelligence and operations
research (cf. [24, 23, 19, 9, 13, 5] for a sample).

With the exception of some studies in competitive analysis (e.g. [22]) where one selects from
an unbounded number of heuristics, theoretical computer science has mostly resisted the selec-
tion problem and its relatives, out of apparent (asymptotic) triviality: given a constant number of
heuristics, if runtime is the desired measure then one may simply interleave the runs of all heuris-
tics, until one of them halts. However, when heuristics are good according to somewhat orthogonal
measures of complexity, algorithm selection becomes a interesting and highly non-trivial process.
For example, one hybrid algorithm we present is for satisfying a maximum number of linear equa-
tions over GF (p) with k ≥ 3 variables per equation, for constant k (formally, MAX-Ek-LIN-p).
Also called Bounded Gaussian elimination with errors, this problem has been widely studied in
learning, cryptography, and complexity theory. When k is odd, for all fixed ε > 0 our algorithm
for this problem does exactly one of the following, after a polynomial time test of an n variable
instance on m equations:

• Produces an optimal solution in O(pεn) time, or

• Approximates the optimum in polynomial time, with a 1/p + ε′ performance ratio, for ε′ =
O(ε/∆),

where ∆ = m/n. (∆ = O(1) is generally the “hard case”, cf. Section 4. We can also formulate
the tradeoff as 2εm time versus 1/p+ε′ approximation, without the ∆-dependence.) This algorithm
suggests an intriguing prospect–that a “hybrid” approach to hard problems could circumvent known
hardness results, in a sense. To be precise: if MAX-E3-LIN-2 is in O(2εn) time for all ε, it is not
hard to show that many other hard problems are also solvable within that time. Similarly, MAX-
E3-LIN-p is inapproximable within 1/p + ε for any ε > 0, unless P = NP [14]. Therefore neither
of these two measures seem universally achievable, but we can efficiently select exactly one of the
measures on every instance. This is surprising on (at least) two accounts.

(1) It appears that, for many problems, the special cases admitting improved approximation
and the cases with improved exact solution typically have great overlap. There are many examples
of this in the literature. For one, PLANAR DOMINATING SET has a PTAS [1] and is fixed-
parameter tractable [8], whereas DOMINATING SET is probably (1−ε) log n-inapproximable [11],
and not fixed-parameter tractable unless W [2] = FPT [8]. Moreover, the prevailing intuition has
been that problem classes inapproximable within some constant also do not admit subexponential

1

exact solution (e.g. MAX-SNP, cf. [6, 20]). Hence such a partitioning seems, a priori, to be either
unlikely or undoable.

(2) Even if the partitioning is possible, the most näıve way of doing so requires a selector capable
of solving NP-hard problems (which would defeat the point). Thus an efficient selector is in itself
interesting.

While our algorithm heavily exploits properties of field arithmetic, the problem of Gaussian
elimination with errors is fundamental to many hardness results in complexity and cryptography.
We therefore feel that this hybrid algorithm (along with the several others described in this paper)
suggests that many interesting hybrid algorithms exist for hard problems, and that our develop-
ments in this paper give some directions on how one might find more of these algorithms. Indeed,
we will show that the above generalizes to certain hard-to-approximate constraint satisfaction prob-
lems, cf. Section 6. On the other hand, we will also show several limitations on hybrid algorithms
of the exact/approximate variety, based on natural hardness assumptions (e.g. SAT is in 2Ω(n)

time, P 6= NP).

1.1 A (worst-case) alternative to worst-case analysis

Traditional analysis of algorithms generally proves a single guarantee about the performance of an
algorithm on its inputs. Our approach provides a way to formally describe the performance of a
collection of heuristics in a worst-case setting, despite the fact that each single heuristic is only
good on a small number of instances, and each one is good with respect to different measures. For
example, the case of efficiently selecting either an exact algorithm or an approximate one may be
seen in a very practical light. In several practical applications, one simply desires the best possible
solution for an instance that can be found within the resources available. Allowing the parameter
ε to vary, one may fine-tune a hybrid algorithm to fit these resource bounds. A researcher may be
willing to devote a great number of cycles to solve a hard problem, if it results in an exact solution.
However, if a solution will not be found, one will not want to spend a long time to discover that.
In that case it is reasonable to think that one might settle for an approximately good solution. As
a consolation prize for not getting the optimum, this solution is provided quickly.

1.2 Instance-based resource tradeoffs

Our work was first motivated by attempting to prove resource tradeoffs in complexity theory.
Several quite surprising tradeoffs of the form “one of two interesting class equalities/simulations
holds” have been established in complexity. The most of well-known of these are probably the
continuously-growing family of “hardness versus randomness” tradeoffs, initiated with [3, 32]. Ab-
stractly, our proposal is an instance-based version of resource tradeoffs. Rather than attempting to
establish that one of two interesting class equivalences/separations hold, we wish to show that for
every instance of some problems, one of two interesting procedures may be decided upon and exe-
cuted accordingly. Moreover, we also try to characterize the degree to which such hybrid algorithms
can be developed.

2

2 Outline

The following section gives some notation and definitions to be used throughout; note some of this
notation is new and thus should not be skipped. Next we will present a few interesting hybrid algo-
rithms for various hard problems, such as MAX-E3-LIN-2 and quantified Boolean formulas. Finally,
we will discuss a few hardness results, concerning the impossibility of various hybrid algorithms
and selectors.

3 Background

3.1 Preliminaries

For a set S and k ∈ Z+, define [k] := {1, . . . , k}, and
(
S
k

)
to be the collection of subsets of S with

cardinality at most k. In MAX-E3-LIN-p, we are given a set of m linear equations (each equation
having three variables) over n variables with values in Zp. That is, every equation is of the form∑

j∈I xj ≡ b mod p, for some I ∈ (
V
3

)
and b ∈ [p], where V is the set of variables {x1, . . . , xn}.

We wish to find a setting of the xi’s whereby a maximum number of equations hold. It will be
convenient to translate the set of equations into a set of constraints to be set to zero, in which
case an equation (

∑
j∈I xj ≡ b mod p) becomes a constraint (

∑
j∈I xj − b). For a given constraint

c = (
∑

j∈I xj − b), define vars(c) := {xj ∈ V : j ∈ I}. An i-constraint is defined as a constraint
with exactly i variables.

An algorithm A solving an optimization problem Π exhibits improved exponential time when
näıve brute force search for Π takes O(dn) time, and A runs in O(cn) time for some c < d. A runs
in subexponential time if it is 2o(n). We will use Õ in such bounds to denote the subsumption of a
polynomial multiplier.

For maximization problems (respectively, minimization problems), define the approximation
ratio r of an algorithm to be the minimum (respectively, maximum) ratio of the algorithm’s re-
turned solution to the optimal solution, over all instances. (So for us, r ≤ 1, and larger r imply
better approximations.) It will be useful for us to define a natural complexity class involving both
approximation complexity and time complexity.

Definition 3.1 An optimization problem Π is in the class APX-TIME[r(n), t(n)] if there is an
algorithm A that always returns a feasible solution y to Π in time t(n), and the approximation
ratio of A is r(n).

We also define a polynomial select of two complexity classes, as a formal version of algorithm
selection.

Definition 3.2 Let C and D be complexity classes. A problem Π is in C⊕P D if there is a polytime
function f from instances of Π to {0, 1} such that {x ∈ Π : f(x) = 0} ∈ C, {x ∈ Π : f(x) = 1} ∈ D.

As C ∩D denotes the “intersection of C and D”, we propose to call C ⊕P D the p-selection of
C and D. To illustrate, Theorem 5.1 says MAX-E3-LIN-2 ∈ ⋂

ε>0(TIME[2εn] ⊕p APX-TIME[12 +
ε

12∆ , n]), where TIME[t(n)] is the class of optimization problems solvable in t(n) time. (Unless
otherwise stated, t always denotes a time constructible function.) The definition of p-selection is

3

intended to be a complexity-theoretic classification of problems solvable by hybrid algorithms, in
the following sense.

Definition 3.3 A hybrid algorithm for optimization problem Π is a pair (H, S), where

• H = {h1, . . . , hk} is a collection of algorithms, a.k.a. heuristics, and

• S is a polytime algorithm from instances of Π to {1, . . . , k}, a.k.a. a selector, such that

for all i = 1, . . . , k and y ∈ {x ∈ Π : S(x) = i}, hi(y) returns a feasible solution to y.

The feasible solution requirement in the definition simply ensures that, if S selects hi to be
run on y, then hi returns something that makes sense. With this definition, we may put forth the
following simple proposition connecting p-selection and hybrid algorithms, stated informally for the
purposes of exposition.

Informal Proposition. Let ({h1, . . . , hk}, S) be a hybrid algorithm for Π, and let C1,. . .,Ck be
complexity classes. Define Li := {x ∈ Π : S(x) = i}. If for all i = 1, . . . , k it holds that Li ∈ Ci and
hi solves Li within the resources of Ci (i.e. hi is a “witness” to Li ∈ Ci), then

Π ∈ (C1 ⊕P (C2 ⊕P · · · (Ck−1 ⊕P Ck))).

3.2 Prior Work

As mentioned above, the idea of having several algorithms with varying (time) performance on
different cases is found in work on algorithm portfolios, hybrid algorithms, and the algorithm
selection problem. The literature is vast and highly variable; it has recently seen the most notable
level of study within machine learning. We have not encountered proposals explicitly similar to
ours in the literature, though there are some superficially related ones. P -selective sets [28] are
vaguely related to our notion of an efficient test. A set S ⊆ Σ∗ is P -selective if, for every pair
(x, y), there is a polytime algorithm A : Σ∗ × Σ∗ → Σ∗ such that (a) A(x, y) ∈ {x, y} and (b)
(x ∈ S or y ∈ L) implies A(x, y) ∈ L. In our case we have one instance at a time and need
only decide what algorithm to run, a potentially simpler choice. Some work has been devoted
to (automatically) identifying cases for which certain approximation algorithms work well, with
mostly negative results. For example, [4] show that identifying graphs where the canonical greedy
algorithm for maximum independent set yields a ratio r ≥ 1 is co-NP-hard, for any fixed r.

For all k ≥ 3 and primes p, MAX-Ek-LIN-p (when there are exactly k variables per equation) is
1/p-approximable by choosing random assignments, and this is optimal unless P = NP [14]. We do
not know of improved exptime algorithms for MAX-3-LIN-2, though some have been proposed for
MAX-3-SAT (for example, [16]). Work on incorporating improved exptime and approximation in
an interesting way has been extremely sparse, with the exception of Dantsin, Gavrilovich, Hirsch,
and Konev [7] who show that MAX-3-SAT can be (7/8 + ε)-approximated in O(28εm) time (later
improved to be in terms of n [16]). Our proposal is of course much stronger, in that we only wish
to commit to subexponential time for an exact solution.

4

4 Hardness of solving MAX-k-LIN-2 exactly

Before we give the MAX-k-LIN-2 algorithm, let us first (briefly) outline why it is unlikely for the
problem to be exactly solvable in subexponential time. A standard reduction from MAX-k-LIN-2
to (k + 1)-SAT gives the property that if there is an algorithm for MAX-k-LIN-2 running in 2εv

time (where v is the number of variables) for all ε > 0, then (k +1)-SAT is solvable in 2ε(m+n) time
for all ε > 0 (here m is the number of clauses, n is the number of variables). The Sparsification
Lemma of Impagliazzo, Paturi, Zane [20] (which we will abbreviate as IPZ) implies that this time
bound can be improved to O(2εn) for all ε, by a series of careful backtracking reductions on an
instance. These results imply a more general result.

Theorem 4.1 If MAX-k-LIN-2 is in 2εn time for all ε > 0, then (k + 1)-SAT on n variables,
Vertex Cover (Clique, and Independent Set) on n vertices, and Set Cover on k-sets over a universe
of size n are all solvable in 2εn time.

In fact, the hypothesis can also be replaced with the assumption that MAX-k-LIN-2 is in 2εm

time, as the reduction from (k +1)-SAT to MAX-k-LIN-2 only introduces O(km) equations (where
m is the number of clauses in the k-SAT instance). Moreover, the following reduction shows in
yet another sense that the hard cases of approximation are the ones where m/n = O(1). This is
relevant to our cause, as the algorithm we will give works best on instances with this property.

Lemma 4.1 Suppose MAX-E3-LIN-2 can be solved exactly in time t(m), where m is the number
of equations. Then for all ε > 0, there is a randomized (1− ε)-approximation algorithm (with high
success probability) for MAX-E3-LIN-2 running in O(poly(n) · t(n/ε2)) time, where n is the number
of variables.

Proof 4.1 See appendix. 2

The proof of the above lemma is not dependent on the number of variables per equation or
equations mod 2, and holds for any constraint satisfaction problem where one has m constraints
and n variables. It is interesting that, while IPZ has the same aim (reducing time bounds in terms
of m to time bounds in terms of n), their lemma preserves exact solution, but their proof is more
complicated and does not work for arbitrary constraint satisfaction.

5 Algorithm for MAX-E3-LIN-2

We will now establish the hybrid algorithm mentioned in the Introduction.

Theorem 5.1 For all ε > 0, there is a triple of procedures (Sε, Eε, Aε) such that, for all instances
F of MAX-3-LIN-2 with n variables:

• Sε(F) ∈ {0, 1} and runs in |F |O(1) time.

• Sε(F) =“exact” =⇒ Eε(F) returns an optimal solution to F in Õ(2εn) time.

• Sε(F) =“approximate” =⇒ Aε(F) returns a (1/2 + ε/(12∆))-approximate solution to F in
O(|F |2) time, where ∆ is the clause-to-variable ratio in F .

5

That is, MAX-3-LIN-2 with n variables and ∆n equations is in
⋂

ε>0(DTIME[2εn]⊕P APX-TIME[12 + ε
12∆ , nO(1)]).

Observe that H̊astad’s inapproximability result for MAX-E3-LIN-2 [14] still holds when ∆ =
O(1).

5.1 Proof of Theorem 5.1

Unless otherwise stated, all random choices made are both uniform and independent. Let F denote
a collection of k-constraints, as defined in the Preliminaries.

5.1.1 The selector Sε

We will find a certain subset S of the instance F that has both a “disjointness” property and a
“covering” property, in that:

– If S is large, “disjointness” of constraints in S makes it possible to satisfy at least 3/4 of the
constraints in S, as well as roughly half of the optimal number of constraints in F − S.

– If S is small, “covering” ensures that any assignment to the variables appearing in S results
in an instance so simple that it is exactly solvable in polynomial time.

More precisely, we’ll find a collection of constraints within F that not only hits all other con-
straints at least twice (the “covering” property), but also contains a large subcollection in which
every constraint has two variables not appearing in any other constraint of the subcollection (the
“disjointness” property). For visually-inspiring reasons we will call these “swiss army knife collec-
tions”.

Recall a sunflower is a pair (C,H) where C is a collection of sets such that for all Si, Sj ∈ C,
Si ∩ Sj = H (H is called the heart). We define a swiss army knife (K, B) to be a collection of sets
K along with a fixed set B = {b1, . . . , bk} (the base) such that there exist k disjoint set collections
K1, . . . , Kk (the blades) where:

• K = K1 ∪ · · · ∪Kk,

• for all i 6= j, X ∈ Ki, and Y ∈ Kj , X ∩ Y = ∅, and

• for all i = 1, . . . , k, Ki is either a sunflower with heart {bi} or the empty set.

Figure 1 illustrates a swiss army knife, giving some visual insight into its name. Sε greedily
constructs a maximal disjoint collection of swiss army knives over the constraints of F . (We
construe 3-constraints as 3-sets in the standard way, considering a constraint c as merely its variable
set vars(c). Note for linear equations mod 2, at most two constraints will map to the same 3-set;
in the event of such a collision, arbitrarily pick one of the constraints in the following.) First the
bases of are gotten by greedily choosing a maximal disjoint collection M of 3-sets from F , then the
blades are gotten by greedily adding 3-sets to M that qualify, i.e. the set has an intersection less
than two with every existing blade and base, and an intersection of one with some base. For more
details, the reader can consult the appendix.

Let Vbases (and Vblades) be the number of variables appearing in bases (blades, respectively) of the
collection. If max{Vbases, Vblades} ≤ εn/2, Sε returns “exact”, otherwise Sε returns “approximate”.

6

B

Figure 1: A swiss army knife with base B (the black donuts are elements, the ovals are blades).

5.1.2 Exact algorithm Eε

The exact solution takes the swiss army knife collection built in Sε, and tries all possible
assignments to variables appearing in constraints of it.

Observation 5.1 (“Covering” property) The swiss army knife collection C from Sε is such that
for all c ∈ F − C, at least two variables of c appear in C.

(Any c ∈ F − C is hit at least once by a base of the collection, and a second time by either a
blade or a base.)

For each assignment, by the observation, the remaining unassigned constraints have at most
one variable each, and thus can be solved exactly in linear time. This procedure takes Õ(2εn) time,
as there are at most εn variables in the collection (at most εn/2 among the blades, and at most
εn/2 among the bases).

5.1.3 Approximation Aε

The idea behind the approximation is to take a subset U of the swiss army knife collection (either
all of the blades, or all of the bases) and show that a randomized algorithm can simultaneously
satisfy all constraints represented in U as well as half the optimal number of constraints satisfiable
in the rest of F . Since Aε is only run if the knife collection is large, U is somewhat large, so this
yields a non-trivial improvement in approximation.

Let U be either the set of bases in the knife collection or the set of blades, whichever is larger.
Since max{Vbases, Vblades} > εn/2, it follows that |U | > εn/6 (each set of U has at most three
variables, and in the worst case the sets of U are disjoint).

Definition 5.1 A constraint c ∈ F is degenerate w.r.t. U if, when F is partitioned into U and
F − U , there is c′ in the partition that does not contain c such that c′ ≡ (c + 1) mod 2.

That is, if c ∈ U , there is c′ ∈ F −U with c′+c ≡ 1; if c ∈ F −U , there is c′ ∈ U with c′+c ≡ 1.
Observe that the number of constraints degenerate w.r.t. U is even.

Claim 5.1 Let Fdeg be the set of constraints in F that are degenerate for U . Then every variable
assignment satisfies exactly |Fdeg|/2 constraints in Fdeg.

7

Proof 5.1 Every assignment satisfies either c or c + 1, but not both. 2

Without loss of generality, we can therefore remove all degenerate-w.r.t.-U pairs of constraints
from F , as 1/2 of them will be satisfied regardless of the assignment chosen. After eliminating
these degeneracies, Aε runs a simple assignment procedure.

Choose(U,F): For all c ∈ U , choose a satisfying assignment for c uniformly at random. Then
set each unassigned variable in F to 1, with probability 1/2.

Let m∗ be the maximum number of c ∈ F that can be satisfied. Let mnon−deg and mu
non−deg

be the number of non-degenerate c ∈ F − U and c ∈ U , respectively. Let mdeg and mu
deg be the

number of degenerate c ∈ F − U and c ∈ U , respectively. Observe mnon−deg + mdeg = m, but

mnon−deg +
mdeg

2
≥ m∗ (1)

by Claim 5.1, and
mu

non−deg + mu
deg = |U | ≥ εn

6
=

εm

6∆
. (2)

Clearly, the mu
non−deg +mu

deg constraints in s are satisfied by Choose. The following shows that the
other constraints are satisfied with probability 1/2.

Observation 5.2 (“Disjointness” property) Every c ∈ U has at least two variables not appearing
in any other c′ ∈ U .

(Either U is the collection of bases, where the sets are disjoint, or it is the collection of blades,
where each set has two variables not appearing in any other set.)

Lemma 5.1 Suppose U has the disjointness property. Then for any non-degenerate 3-constraint
c′′ ∈ F − U , Choose(U,F) satisfies c′′ with probability 1/2.

Informally, this means that the distribution of assignments by Choose “looks random” to the
constraints of F − U .

Proof 5.2 Consider the following (equivalent) algorithm. Set each variable not appearing in any
constraint of U randomly. For each 3-constraint c ∈ U , suppose c is x+y +z = K in the following,
with x and y being two variables not appearing in any other c′ ∈ U . We will say that x and y is
a correlated pair. Choose a random assignment for z (if one has not already been chosen), then
randomly choose one of the two possible assignments to x and y that will satisfy c.

Clearly, two correlated pairs obtained from two different constraints in U are disjoint. Thus if
{x, y} is a correlated pair, then for any variable v 6= y and v 6= x, Pr[x = v] = 1/2. Moreover, for
any variable v 6= z, v 6= x, v 6= y, the assignment to v is independent of the assignment to x and y.

Now suppose c′′ ∈ F −U . The lemma is certainly true if there is no correlated pair of variables
in c′′, as all other variable assignments are independent. As the correlated pairs are disjoint, the
3-constraint c′′ contains at most one correlated pair {x, y} from some c ∈ U . (Note the other
variable of c′′ may be in some correlated pair, just not one with x or y.) Since c′′ is non-degenerate,
the other variable (say, v) of c′′ is assigned independently of x and y (c does not contain v), hence
Pr[c′′ = 1] = 1/2 and the lemma holds. 2

8

Thus the expected number of constraints satisfied by Choose returns is |U |, plus half of the non-
degenerate constraints in F − U (by Lemma 5.1), plus half of the degenerate constraints in F − U
(by Claim 5.1). This quantity is (mu

non−deg +mu
deg)+(mnon−deg−mu

non−deg)/2+(mdeg−mu
deg)/2 =

(mnon−deg + mdeg)/2 + (mu
non−deg + mu

deg)/2 ≥ m∗/2 + εm/12, due to (1) and (2). The proof of
Theorem 5.1 is complete. 2

5.2 A more general case

Extending the algorithm to MAX-Ek-Lin-p for odd k ≥ 3 and prime p is relatively straightforward.
First, observe the degeneracy notion here still means that at most one of the constraints among a
group of at most p are satisfied by any assignment, and in our case, we will satisfy at least one of
them. The notion of correlated pairs is analogous.

The selector now picks sets of constraints Sk, Sk−1, . . ., S2. Each Si is a maximal disjoint set of
k-constraints, chosen after the variables of the sets Sk, . . . , Si+1 were removed from consideration.
(For the Swiss army knife collection, we only chose an S3, then an S2.) If |∪k

i=2Si| ≤ εn/k, then do an
exact solution as before in time (pk)εn/k = pεn. Otherwise, some Si is of size at least εn/(k(k−1)).
Choose now selects a random satisfying assignment over all constraints in Si, with independent
random assignments for all variables appearing in multiple constraints of Si and variables not in Si.
Now there are i ≥ 2 variables remaining in each equation of Si, and a random satisfying assignment
is chosen from them. We claim now that every non-degenerate k-constraint c not in Si is satisfied
with probability 1/p. Consider just the case i = 2; the other cases follow similarly. If c contains
no correlated pairs, then trivially it is satisfied with probability 1/p. Otherwise, because k is odd,
there is at least one variable x in c whose correlated counterpart (if there is one) does not appear
in c; x is thus set 0-1 uniformly and independently from the k − 1 other variables of c. The claim
follows.

Theorem 5.2 Let k ≥ 3 be odd. MAX-k-LIN-p instances with n variables and ∆n equations is in
⋂

ε>0(DTIME[pεn]⊕P APX-TIME[1p + ε
pk(k−1)∆ , nO(1)]).

5.3 An application: “hardness-defying” algorithm selection

Note 1/ε in the above may be replaced by any polytime computable f(n,m) such that f(n,m) ≥ 1/6
(so that 1/2+1/[12f(n,m)] ≤ 1 and |S| ≥ n

6f(n,m) makes sense). H̊astad and Venkatesh [15] proved
strong inapproximability bounds for MAX-3-LIN-2. While they showed that MAX-3-LIN-2 is in
APX-TIME[12 + O(1)√

m
,m], they also showed (rewritten in our notation and notion of approximation):

Theorem 5.3 [15] For ε > 0,

NP * TIME[2(log m)O(1)
] =⇒ MAX-3-LIN-2 /∈ APX-TIME[12 + 1

2(log m)1−ε , 2(log m)O(1)
].

However, by Theorem 5.1 we may (for example) either (1
2 + 1

12·2(log m)1/2)-approximate in poly-

nomial time, or solve exactly in 2m/2(log m)1/2

time. Thus their result can, in a sense, be (subexpo-
nentially) side-stepped.

9

6 Optimization with three-variable Boolean constraints

The previous algorithm can actually be extended to a variety of optimization problems, which we
outline here. Let f be a Boolean function on k variables, and X be the set of all 2n literals on
n Boolean variables. An f -formula C is a collection of k-tuples from Xk. Each k-tuple c is called
a constraint, and a constraint c is satisfied by an assignment to X if the assignment makes f(c)
true. The MAX-k-f problem gives an f -formula, and the goal is to find a variable assignment that
satisfies a maximum number of constraints.

Definition 6.1 Let C be an f -formula. C has overlap if two clauses in C have exactly the same
variables.

E.g., the CNF formula (x ∨ y) ∧ (x ∨ y) has overlap, but (x ∨ y) ∧ (x ∨ z) does not.

Similar to [12], let t be the number of assignments satisfying the 3-variable Boolean function f ,
and b be the number of satisfying assignments for f with odd parity. Say f is biased if 2b 6= t. Notice
that OR, AND, MAJORITY, XOR, etc. are all biased. We will give a general hybrid strategy
for optimization problems defined with respect to some biased function f , with three variables per
constraint and no overlap. The main tool employed is an easy-to-verify lemma.

Lemma 6.1 Let x, y, z be Boolean variables, and ε ∈ [0, 1/4]. Consider the procedure that picks
either equation x + y + z = 1 with probability 1 − ε, or equation x + y + z = 0 with probability ε,
then a random satisfying assignment for the equation picked. The resulting distribution is pairwise
independent over {x, y, z}.

Theorem 6.1 Let k be odd, and f be a k-variable biased Boolean function, with random assignment
threshold α. MAX-k-f instances on n variables and ∆n non-overlapping constraints are solvable
in

⋂
ε>0(DTIME[2εn]⊕P APX-TIME[α + ε

pk(k−1)∆ , nO(1)]).

Proof 6.1 (Sketch) Similar to the proof of Theorem 5.2, choose maximal disjoint sets Sk, Sk−1,
. . ., S2. If all of the sets are small, exactly solve, otherwise let Si be the large set. Let c ∈ Si be
a constraint on variables x, y, and z. Since c is biased, one of the equations x + y + z = 1 or
x + y + z = 0 has the property that the number of its satisfying assignments that also satisfy c
is strictly greater than the corresponding number for the other equation. Set ε > 0 such that the
following procedure satisfies at least 1 − ε/2 constraints in Si: For each c ∈ Si, let x, y, z be its
variables. With probability ε, pick a random satisfying assignment of x + y + z = 0; otherwise
pick a random falsifying assignment. Such an ε > 0 exists, by Lemma 6.1. A similar analysis to
Theorem 5.1 yields the result. 2

It may appear at first that forbidding overlap is a severe restriction, and therefore the hybrid
algorithm is not as surprising in this case. Nevertheless, one can show that approximating instances
without overlap is still difficult. We focus on the case of MAX-E3-SAT; in our opinion it is most
convenient to formulate.

Theorem 6.2 If MAX-E3-SAT instances without overlap can be approximated within a 7/8 + ε
factor in polynomial time, then RP = NP.

The proof uses two applications of a Chernoff bound and is deferred to the appendix.

10

7 Counting the fraction of solutions to a 2-CNF formula

It is not known if there is a polytime approximation with additive error 1/2f(n) for counting the
fraction of 2-SAT solutions for any f(n) ∈ o(n), though it is possible to do so in subexponential
time (that is, 2O(f(n))) [17]. A hybrid approach gives a quick partial result in this direction.

Theorem 7.1 For any ε > 0 and f(n) ∈ o(n), there is a hybrid algorithm for the fraction of
satisfying assignments of 2-SAT, that gives either the exact fraction in Õ(2εn) time, or counts
within additive error at most 1/2f(n) in polynomial time.

Proof 7.1 Choose a maximal independent set M over the 2-CNF clauses (all clauses in M are
disjoint). If |M | ≤ log2(3)εn, then try all 3log2(3)εn = 2εn satisfying assignments of M for the
exact fraction. Otherwise at most a (3/4)log2(3)εn fraction of the assignments satisfy the formula.
If (3/4)log2(3)εn > 1/2f(n), then n is bounded from above by a constant, and exact solution takes
O(1) time. Otherwise, output (3/4)log2(3)εn as an approximate fraction within error 1/2f(n). 2

8 Solving certain hard quantified Boolean formulas (QBF)

We do not intend hybrid algorithms to be restricted solely to exact/approximate tradeoffs, but
this pair of measures has certainly helped us develop our ideas. We now briefly turn to a pair
more motivated by complexity theoretic interests than practical considerations. In terms of quan-
tified Boolean formulas, the notion of approximation is a little less coherent. Rather than pitting
efficient approximation versus exact solution, our aim is to show that QBFs either admit faster-
than-2n algorithms, or they are solvable in alternating linear time with a relatively small number
of alternations. (For background on alternation, cf. [26].) Let EQBF be the set of true quanti-
fied Boolean formulas in prefix-normal form over arbitrary propositional predicates, satisfying the
following regularity condition on quantification:

• If the formula has n variables and has a alternations, then every quantifier block contains
exactly bn/ac variables, except for the last block which contains (n mod a) variables.

Proposition 8.1 EQBF is PSPACE-complete.

We will show that for all ε > 0, every instance of EQBF can be solved either in (essentially)
O(2(1−ε/2)n) expected worst case time, or in alternating linear time with few (εn) alternations. The
test deciding which case happens simply checks the number of alternations. Below, ZPTIME[t] is
the class of decision problems solvable in worst-case expected time t, and Σk − TIME[t] is the class
solvable by alternating TMs using at most k alternations (starting in an existential state).

Theorem 8.1 For all ε > 0,

EQBF for n-variable instances is in ZPTIME[2(1−ε/2+O(1/21/ε))n]⊕P Σεn−TIME[nO(1)].

Observe that no better algorithm than the trivial 2n one is currently known for EQBF, or any
interesting variant of it. Similarly, it not known (or believed) that one can quickly reduce a QBF F
on an arbitrary predicate down to an F ′ where the number of alternations in F ′ is a small fraction of
the number of alternations in F . However, one can neatly partition EQBF into “lower alternation”

11

cases and “faster runtime” cases. The construction not only holds for constant ε > 0 but for any
decreasing function f with values in the interval (0, 1], so e.g. one gets either 2n−n/ log n expected
time or (n/ log n)-alternating linear time for EQBF (these particular values are interesting, as the
best known randomized algorithm for CNF satisfiability has such runtime [29]). Theorem 8.1 holds
due to a generalization of probabilistic game-tree search [30]. We defer the algorithm and proof to
the appendix.

Theorem 8.2 EQBF with k alternations are solvable in expected O

((
2k+1

2

) n
2k

)
worst-case time.

Remark 8.1 For k = 1, one obtains
(
3
2

)n/2
= 3n/2 runtime. Observe

(
2k+1

2

) 1
2k increases as k

increases. Therefore: the fewer the alternations in the formula, the greater the runtime bound.

Proof of Theorem 8.1: (Sketch) Initially, B chooses two uniform random permutations of
[2k]. Call the two sequences u1, . . . , u2k , e1, . . . , e2k . Note each ui and ei may be seen as both k-bit
strings and as integers from [2k]; we will use both interpretations in what follows.

Suppose the first variable x1 is universal (the case where x1 is existential is analogous). The
k bits in u1 are substituted for the k variables in the quantifier block containing xi, then the bit
string e1 is substituted for the k variables in the subsequent existential block.

(*) B is then recursively called on the remaining formula.

• If the call returns false, e2 is substituted instead of e1, and B is called again as in (*). If that
fails, e3 is substituted for e2 and B is called, etc., until either (1) an ei is found that yields true, or
(2) e2k failed.

– If (1), the next k values for the universal variables (u2) is substituted for u1, a new random
permutation e1, . . . , e2k is chosen, e1 is substituted for the existential block following the universal
block of xi, and B is recursively called as in (*).

– If (2), B concludes the formula is false.

• If the call returns true and ui is the current set of k values for the universal variables, then
ui+1 is substituted in place of ui, a new random permutation e1, . . . , e2k is chosen, e1 is substituted
for the existentials, and the process restarts from (*). If i = 2k, B concludes the formula is true.
This concludes the description of B.

B is indeed a backtracking algorithm simply making randomized assignment choices in a certain
manner, thus it always returns the correct answer. It remains to show its expected runtime is the
claimed quantity. Clearly, two quantifier blocks are assigned before each recursive call, so the
recursion depth is n/2k.

Suppose the formula given to B is false. Then B guesses a k-bit string v for the universal
variables (such that every setting of the existentials yield false) with probability 1/2k. (That is,
u1 = v with probability 1/2k.) If this fails, u2 = v with probability 1/2k, and so on. Every time
that the wrong ui is chosen, B must consider all 2k settings of the existential variables. Hence the
expected number of recursive calls at any point (of the recursion tree) is at most

2k ·
(

1
2k

+ 2 · 2k − 1
2k

1
2k − 1

+ 3 · 2k − 1
2k

2k − 2
2k − 1

1
2k − 2

+ · · · + 2k · 2k − 1
2k

2k − 2
2k − 1

· · · 1
2

)

= 2k · (1
2k

+
2
2k

+
3
2k

+
2k

2k
) =

2k∑

i=1

i =
(

2k + 1
2

)
.

12

Similarly, if the formula is true, all ui settings are considered. For each one, the guessed e1 is the
correct existential setting with probability 1/2k; if this fails, e2 is the correct one with probability
1/2k, etc. The expected number of recursive calls is therefore represented by the same expression
above. 2

Letting ε = 1/k, the above runtime bound for EQBF with greater than εn alternations is

at most
(
21/ε+1

2

) εn
2 = (21/ε + 1)εn/22

n
2
− εn

2 ≤ 2n/2(1+ ε

21/ε
)2n/22−

εn
2 = 2n

(
1− ε

2
+O(1

21/ε
)
)
, where the

inequality holds by a small lemma.

Lemma 8.1 For all ε ∈ (0, 1], (21/ε + 1)εn/2 ≤ 2n/2(1+ ε

21/ε
).

Proof 8.1 (21/ε+1)εn/2

2n/2 = (21/ε+1
21/ε)εn/2 = (1 + 1

21/ε)εn/2, thus (21/ε + 1)εn/2 = 2n/2(1 + 1
21/ε)εn/2.

By the well-known inequality log2(1 + x) ≤ x,

2n/2(1 + 1
21/ε)εn/2 = 2n/22log2

(
1+ 1

21/ε

)
εn/2 ≤ 2n/22εn/21+1/ε

= 2n/2(1+ ε

21/ε
). 2

9 A few hardness results

Several dimensions are available for exploring the possibility of these hybrid algorithms. One can
inquire about the complexity of the two classes required given a polynomial time selector, or one
can consider hardness in terms of the complexity of the algorithm selector. The former kind we
will call “class-based hardness”, and the latter kind we will call “selector-based hardness”. Here
we will focus on algorithms of the exact/approximate variety.

In terms of class-based hardness, we unfortunately have little to say at the moment (that has
not already been said in some other way). It would be nice to have reasonable conditions that imply
something like MAXSNP ⊆ SUBEXP ⊕P PTAS is unlikely; i.e. one cannot efficiently select between
(1 + ε)-approximation or subexponential exact solution. Let the Exponential Time Hypothesis for
SAT, a.k.a. ETH for SAT be the assumption that SAT on inputs of size L requires 2δL time for
some δ > 0, almost everywhere.

Proposition 9.1 ETH for SAT implies MAX-Ek-LIN-2 is not in APX-TIME[1/2 + ε, 2no(1)
], for

some ε > 0.

Proof 9.1 Follows from H̊astad’s well-known inapproximability results [14]. There, a reduction
from solving SAT on n variables to approximating MAX-Ek-LIN-2 on nO(f(ε)) variables within
1/2 + ε is given (for some large function f). 2

Corollary 9.1 ETH for SAT implies MAX-Ek-LIN-2 is not in APX-TIME[1/2 + ε, nO(1)] ⊕P

TIME[2no(1)
], for some ε > 0.

Thus we cannot improve the MAX-Ek-LIN-2 algorithm significantly (from exact time 2εn to
2no(1)

), assuming the exponential-time hypothesis. Note the same results extend to MAX-Ek-
SAT without overlap, MAX-Ek-AND without overlap, etc., with appropriate substitutions for the
fraction 1/2 in the above.

13

The MAX-E3-LIN-2 algorithm itself immediately implies that a “linear” many-one subexponen-
tial time reduction from SAT to MAX-E3-LIN-2 (1/2 + ε)-approximation in fact does not exist, if
ETH for SAT holds. Contrast this with the facts:

1) there is a many-one polynomial time reduction from SAT to MAX-E3-LIN-2 (1/2 + ε)-
approximation (but the reduction blows up the number of clauses by a large polynomial, whereas
we assume only a linear increase), and

2) there is a subexponential time Turing reduction from k-SAT to MAX-3-LIN-2 (but the Turing
reduction needs 2εn oracle calls).

This result may have some relevance to the question of whether linear length PCPs with perfect
completeness exist, as PCPs of linear length along with the ETH for SAT would imply for some
constant c that c-approximating MAX-SAT requires 2Ω(n) time [2]. (Of course, here it is important
to note that our result only holds for SAT where the number of clauses is linearly related to the
number of variables, so we have not shown completely that some consequence of ‘perfect’ linear
length PCPs indeed holds.)

Theorem 9.1 For all k′ ≥ 3, ETH for SAT implies that for all constants c > 1 and ∆ > 1, any
many-one reduction from SAT on m = ∆n clauses and n variables to MAX-E3-LIN-2 (1/2 + ε)-
approximation on (at most) cm clauses and (at most) cn variables requires 2εm time for some
ε > 0.

Proof 9.2 If such a reduction existed running in time 2εm for all ε > 0, then choose ε < min{ δ
12 , c·δ

12∆},
where δ is such that SAT-solving requires O(2δn) steps. Reduce a given SAT formula into a MAX-
E3-LIN-2 instance, and letting ε′ = 12ε, run the selector Cε′ from Theorem 5.1. If Sε′ says “exact”,
then solving the SAT instance takes less than 2ε′n < 2δn time. If Sε′ says “approximate”, the ap-
proximation algorithm gives a fast solution within 1/2 + ε′/12 = 1/2 + ε of the optimum, which is
enough to decide the SAT instance by assumption. 2

9.1 Selector-based hardness

We can also show some simple requirements on the complexity of selectors for certain hard problems
under certain measures. Intuitively, our objective here is to prove that in the exact/approximation
case, an efficient selector cannot be heavily biased towards one type of solution over the other. We
have a couple of results along these lines, using the following assumption.

Assumption 1 Π is a MAXSNP-complete problem in TIME[t1] ⊕P APX− TIME[α + ε, t2] for
some time constructible t1 and t2, where α is an inapproximability ratio for Π. (That is, Π /∈
APX− TIME[α + ε, nO(1)] unless P = NP.) Define A ⊆ Π to be the subset of instances (α + ε)-
approximated in t2, and E ⊆ Π be the set solved exactly in t1 (so {A, E} is a partition of Π).

Let m ∈ N, and Πm be the class of instances on inputs of size m; more precisely, we measure
size by the number of constraints. Say that a set S ⊆ Π is f(m)-sparse if there is a k ∈ N such
that |S ∩ Πm| ≤ f(m), and f(m)-dense if |S ∩ Πm| ≥ f(m). Assuming the p-dimension of NP is
greater than zero (a working conjecture with numerous plausible consequences, [25]) and the exact
solution runs in only 2no(1)

time, there must be a dense set of instances being approximated.

Theorem 9.2 Given Assumption 1, if t1 ∈ 2no(1)
then A is 2nδ

-dense for some δ > 0, unless
dimp(NP) = 0. (cf. [25] for definition).

14

Proof 9.3 The following is proved in Hitchcock [18]:

If dimp(NP) > 0, then for all ε > 0 there exists a δ, δ′ > 0 such that any 2nδ
-time approximation

algorithm for MAX-3-SAT has performance ratio less than 7/8+ ε on a 2nδ′
-dense set of satisfiable

instances.

One can, in a straightforward way, adapt his proof to any Π in MAX-SNP, where if α is the
inapproximability ratio for Π, then α takes the place of 7/8 in the above. 2

Also, if a selector only employs exact solution on a sufficiently sparse set, then we can effectively
remove the selector entirely.

Definition 9.1 Π admits arbitrarily large constraints of constant size iff there exists a K ≥ 1 such
that for all k ≥ K and instances x of Π, adding a constraint c on k variables to x still results in
an instance of Π.

Theorem 9.3 Given Assumption 1, if Π admits arbitrarily large constraints of constant size, E is
mO(1)-sparse, and t2 ∈ O(nO(1)), then P = NP.

Proof 9.4 We will approximate Π within the ratio α + ε. Let Sε be the selector and Aε be the
approximation algorithm existing due to Assumption 1. For any x ∈ Π, if Sε(x) says to exactly
solve, we will local search for an approximately good solution. Suppose E is mk-sparse. Construe
x ∈ Π (recall Π is MAXSNP-complete) as a set of constraints, and the optimization problem is to
satisfy a maximum number. Let Sk+1 be the collection of all (k + 1)-sets of constraints not in x,
over the variables of x. For all k-sets y ⊆ x, and y′ ∈ Sk+1, consider x′ = (x−y)∪ y′. x′ is still an
instance of Π since it admits arbitrarily large constraints of constant size. Since E is sparse, there
must be an y and y′ such that Sε(x′) says to approximate. Suppose the optimal value for x is m∗,
and thus on x∆y′ it is at least (m∗ − k). But then 7/8(m∗ − k) + ε(m∗ − k) clauses are satisfied,
i.e. (7/8 + ε)m∗ −O(1) clauses, so P = NP. 2

In general, if E is mf(m)-sparse then Π is in APX-TIME[mf(m) + t2, α + ε− f(m)
m].

10 Conclusions

In a very real sense, the areas within theoretical computer science today are characterized by the
different methodologies and measures that researchers use to analyze and attack problems. We
have introduced a theory of algorithm selection as a possible means of unifying such (worst-case)
measures, and gaining a better understanding of how these measures relate. To reflect our poor
intuitions concerning this relationship, this study revealed several counter-intuitive results, some
of which are not only theoretically interesting but also practically so. There are myriad directions
for further work; here are some that we consider most promising.

• Improve the tradeoffs for the given algorithms, if possible. One problem with our ex-
act/approximate algorithms is that the exact cases are somewhat trivial. They probably
are improvable by more careful analysis of (for example) the Swiss army knife construction;
our goal was to merely demonstrate and motivate these algorithms’ possibility.

15

• Prove structural properties of the p-selection operator. Can interesting characterizations of
common complexity classes be found using this kind of operator? It seems likely, given our
preliminary findings.

• Extend the ideas here to other problems (e.g. MAX-3-SAT). The current techniques of the
paper might be enough to get an algorithm for MAX-E3-SAT without the “no overlap”
requirement; however, our prolonged efforts have failed thus far.

• The hardness results given are at a preliminary stage. It might be productive to focus on
problems that are very hard to approximate, such as Max Independent Set. It seems unlikely
to us, for example, that Max Independent Set is in the p-selection of 2εn time and efficient
(1 + ε)-approximation.

11 Acknowledgements

This paper greatly benefited from the input of many individuals. Special thanks go to the author’s
advisor Manuel Blum for encouragement, and to Maverick Woo, Hubie Chen, and especially Virginia
Vassilevska, for helpful discussions and comments.

References

[1] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41:
153–180, 1994.

[2] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of Proximity,
Shorter PCPs and Applications to Coding. To appear in STOC, 2004.

[3] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput. 13:850–864, 1984.

[4] H. L. Bodlaender, D. M. Thilikos, and K. Yamazaki. It is Hard to Know when Greedy is Good
for Finding Independent Sets. Inf. Process. Lett. 61(2):101–111, 1997.

[5] C. E. Brodley. Addressing the Selective Superiority Problem: Automatic Algorithm / Model
Class Selection. Proc. International Conference on Machine Learning, 17–24, 1993.

[6] Liming Cai and David W. Juedes. On the existence of subexponential parameterized algo-
rithms. J. Comput. Syst. Sci. 67(4):789–807, 2003.

[7] E. Dantsin, M. Gavrilovich, E. A. Hirsch, B. Konev. MAX SAT approximation beyond the
limits of polynomial-time approximation. Annals of Pure and Appl. Logic 113(1-3), 81–94,
2001.

[8] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag NY, 1999.

[9] Wayne R. Dyksen and Carl R. Gritter, Scientific computing and the algorithm selection prob-
lem. Expert Systems for Scientific Computing, North-Holland, 19–31, 1992.

[10] P. Erdös and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc. 35:85–
90, 1960.

16

[11] Uriel Feige. A threshold of lnn for approximating set cover. STOC, 1996.

[12] Uriel Feige. Relations between average case complexity and approximation complexity. STOC,
534–543, 2002.

[13] Carla Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence 126(1-2): 43–62,
2001.

[14] Johan H̊astad. Some optimal inapproximability results. J. ACM 48:798–859, 2001.

[15] Johan H̊astad and S. Venkatesh. On the advantage over a random assignment. STOC, 43–52,
2002.

[16] E. A. Hirsch. Worst-case study of local search for MAX-k-SAT. Discrete Applied Mathematics
130(2):173–184, 2003.

[17] E. A. Hirsch. A Fast Deterministic Algorithm for Formulas That Have Many Satisfying As-
signments. Logic Journal of the IGPL 6(1):59–71, 1998.

[18] J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has positive dimension.
Theor. Comput. Sci. 289(1):861–869, 2002.

[19] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A Bayesian approach
to tackling hard computational problems. Proc. Uncertainty in Artificial Intelligence, 2001.

[20] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci. 63(4): 512-530, 2001.

[21] Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX 3SAT? FOCS, 406–
415, 1997.

[22] Ming-Yang Kao, Yuan Ma, Michael Sipser, and Yiqun Yin. Optimal Constructions of Hybrid
Algorithms. J. Algorithms 29:142–164, 1998.

[23] M. G. Lagoudakis and M. L. Littman. Reinforcement Learning for Algorithm Selection. In
International Conference on Machine Learning, 2000.

[24] Kevin Leyton-Brown and Eugene Nudelman and Galen Andrew and Jim McFadden and Yoav
Shoham. Boosting as a Metaphor for Algorithm Design. Proc. Principles and Practice of Con-
straint Programming, 899-903, 2003.

[25] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. Bulletin of the
European Assoc. for Theor. Comp. Sci. 68:64–80, 1999.

[26] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[27] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

[28] Alan Selman. P-selective Sets, Tally Languages, and the Behavior of Polynomial Time Re-
ducibilities on NP. Math. Sys. Theory 13:55–65, 1979.

[29] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form.
Accepted in J. Algorithms, 2003.

17

[30] Marc Snir. Lower Bounds on Probabilistic Linear Decision Trees. Theor. Comput. Sci. 38:69–
82, 1985.

[31] Luca Trevisan. Non-approximability results for optimization problems on bounded degree in-
stances. STOC, 453–461, 2001.

[32] A. C. Yao. Theory and applications of trapdoor functions. FOCS, 80–91, 1982.

12 Appendix: Proof of Lemma 4.1

We will employ the following Chernoff bound in our argument.

Fact 1 Let X1, . . . , Xn be independent Boolean-valued random variables, with Pr[Xi = 1] = p.
Then for ε ∈ (0, 1/4), Pr[

∑
i Xi ≥ (p + ε)n] ≤ e−2ε2n.

We will give an algorithm A that, on instance F , runs in t(n/ε2) time and returns f ∈ [0, 1]
that is within ε of the maximum fraction of equations satisfiable in F . Querying A via substitution
of variables for values in F allows one to produce an assignment satisfying this fraction with
O(poly(n)) calls to A.

Given an instance F , A chooses a random sample S (independent and uniform) of equations in
F , with |S| = n/ε2, and runs the exact algorithm on S. Let a ∈ {0, 1}n be an assignment to F , and
suppose a satisfies a fraction fa of equations in F . The probability that a satisfies more than fa +ε
equations in S is, by Fact 1, at most e−2ε2(n/ε2) = e−2n; by symmetry, less than fa − ε equations
in S are satisfied with this probability. A union bound over all 2n assignments shows that S has
a maximum satisfiable fraction of clauses within ε of the optimum for F with probability at least
1− 1/cn for some c > 1. 2

13 Appendix: Greedily choosing a maximal disjoint collection of
Swiss army knifes

Let F be the collection of k-constraints. Lexicographically order the constraints of F by the indices
appearing in each one, making a list L. Pick a maximal disjoint set S of constraints in L, described
as follows. Initially, S = ∅. Consider each constraint c in order, starting with the first; if for all
c′ ∈ S we have that vars(c) ∩ vars(c′) = ∅, then set S := S ∪ {c}.

Now remove the constraints in S from L. For each constraint c remaining in L, remove any
variable x in vars(S)∩vars(c) from c. What is left is a list L′ of constraints with at most two variables
each, with some constraints possibly repeated. Pick a maximal disjoint set T of constraints from
L′, in a manner analogous to the above. The collection of Swiss army knifes is given with S as set
of the bases, and the blades of each B ∈ S are those C ∈ T that intersect B.

14 Appendix: Proof of Theorem 6.2

Proof 14.1 Fix ε > 0. Let F be a E3-CNF formula on n variables x1, . . . , xn, with m clauses.
For all i = 1, . . . , n, a literal on the variable xi will be denoted by the variable li ∈ {xi, xi}. Put

18

c = (n2m)/9 and L = n2/3. We will randomly build a new formula F ′ with L·n = n5/3 variables and
c clauses, such that: F ′ has no clauses sharing exactly the same three variables, if F is satisfiable
then F ′ is satisfiable, and if no more than (7/8 + ε)m clauses of F can be satisfied at once, then
no more than (7/8 + ε)c clauses of F ′ can be satisfied.

Our reduction bears resemblance to inapproximability results of Trevisan [31]. For each variable
xi in F , we have L variables x1

i , x
2
i , . . . , x

l
i in a formula F ′′. For each clause {li ∨ lj ∨ lk} in F ,

add the [L]3 clauses {lri ∨ lsj ∨ ltk} in F ′′, for all (r, s, t) ∈ [L]3. Now, randomly sample c clauses
from F ′′. If any two clauses have exactly the same variables, remove them from F ′′. Output the
remaining collection as F ′.

It is clear that, if F is satisfiable then F ′ is satisfiable. By construction, F ′ has no clauses
sharing exactly the same variables. We will first show that the number of clauses removed from
F ′′ due to this vanishes to zero asymptotically, in which case the removal of these clauses does not
affect the ratio of satisfied clauses. Let (r, s, t) ∈ [L]3, and the indicator variable Xr,i,s,j,t,k

I to be
1 iff the Ith clause chosen in the sample (I = 1, ..., c) has variables xr

i ,x
s
j, and xt

k. The number
of clauses in F ′ with the variables xr

i ,x
s
j, and xt

k is at most 8 (the same number as F), whereas
the total number of clauses is L3m. Thus Pr[Xr,i,s,j,t,k

I] ≤ 8
mL3 . By a standard Chernoff bound

(Fact 1), the probability that a clause with xr
i ,x

s
j, and xt

k is chosen more than once in c trials is
Pr[

∑c
i=1 Xr,i,s,j,t,k

I ≥ 2] ≤ exp(−2ε2c), assuming 2 ≥ (1+ ε)8c/(mL3) = (1+ ε)8/9 (note ε ≤ 1/8).
Thus the expected number of clauses occurring more than once in the sample of c is, by a union
bound, at most L3m/ exp(ε2c) = 9c/ exp(ε2c) ∈ o(1).

Now we show that if no assignment to variables of F satisfies (7/8 + ε)m clauses of it, then
no assignment to variables of F ′ satisfies (7/8 + ε + ε′)c clauses of it for all constant ε′ > 0,
with high probability. Suppose αm clauses are satisfied by the original F . Then an α fraction of
the clauses in F ′′ (i.e. F ′ prior to clause sampling) are satisfied by a. Let a be one of the 2n·L

variable assignments to F ′′. When a clause is picked from F ′ at random, it has probability α of
being satisfied by a. By the same Chernoff bound, the probability that more than (α + ε)c clauses
of F ′ are satisfied by a is at most exp(−2ε2c). Assuming at most αm clauses are satisfied by any
assignment to F , a union bound implies that the probability that any assignment satisfies more than
(α + ε)c clauses of F ′ is 2n·L/e−2ε2c < 1/dn for some d > 1. 2

19

