Predicate Abstraction and Refinement Techniques for
Verifying Verilog

Edmund Clarke Himanshu Jain Daniel Kroening

June 25, 2004
CMU-CS-04-139

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Model checking techniques applied to large industrial tec suffer from the state

explosion problem. A major technique to address this prolideabstraction. Predicate
abstraction has been applied successfully to large sadtywargrams. Applying this

technique to hardware designs poses additional challefigpes paper evaluates three
techniques to improve the performance of SAT-based pragdlaiastraction of circuits:

1) We partition the abstraction problem by forming subsédtthe predicates. The

resulting abstractions are more coarse, but the computafithe abstract transition

relation becomes easier. 2) We evaluate the performareet efflazy abstraction, i.e.,

the abstraction is only performed if required by a spuricusnterexample. 3) We use
weakest preconditions of circuit transitions in order taait new predicates during
refinement. We provide experimental results on publiclyilalsée benchmarks from

the Texas97 benchmark suite.

This research was sponsored by the Gigascale Systems Eeszmter (GSRC), the Na-
tional Science Foundation (NSF) under grant no. CCR-9883it& Office of Naval Research
(ONR), the Naval Research Laboratory (NRL) under contractN00014-01-1-0796, and by
the Defense Advanced Research Projects Agency, and the Resgarch Office (ARO) under
contract no. DAAD19-01-1-0485, and the General Motors &lmilative Research Lab at CMU.
The views and conclusions contained in this document argetbb the author and should not
be interpreted as representing the official policies, eigxpressed or implied, of GSRC, NSF,
ONR, NRL, DOD, ARO, or the U.S. government.

Keywords: Predicate Abstraction, Verilog, SAT

1 Introduction

Formal verification techniques are widely applied in thedwaare design industry. In-
troduced in 1981Model Checkind9, 10] is one of the most commonly used formal
verification techniques in a commercial setting. Howevead®l Checking suffers
from the state explosion problem. In case of BDD-based syimbwodel checking
this problem manifests itself in the form of unmanageahigé2BDDs [6]. One prin-
cipal method in state space reductioalstraction Abstraction techniques reduce the
state space by mapping the set of states of the actual, ¢ersygtem to an abstract,
and smaller, set of states in a way that preserves the relbghaviors of the system.

In the hardware domain, the most commonly used abstracidmtque idocal-
ization reduction The abstract model is created from the given circuit by nangp
a subset of the latches together with the logic required toprde their next state.
The latches that are removed are calleditivésible latches The latches remaining in
the abstract model are calletsible latches Intuitively, the visible latches are most
relevant to the property in consideration.

Localization reduction is aonservativever-approximation of the original circuit.
This implies that if the abstraction satisfies the propeitg, property also holds on
the original, concrete circuit. The drawback of the conative abstraction is that
when model checking of the abstraction fails, it may proda@unterexample that
does not correspond to any concrete counterexample. Tasually called apurious
counterexample

In order to check if an abstract counterexample is spuritb@sabstract counterex-
ample is simulated on the concrete machine. This is calledithulationstep. Like in
Bounded Model Checking (BMC), the concrete transitiontiefafor the design and
the given property are jointly unwound to obtain a Booleamfala. The number of
unwinding steps is given by the length of the abstract coertample. As in BMC,
the Boolean formula is then checked for satisfiability ussh§AT procedure such as
Chaff [23]. If the instance is satisfiable, the counterexi@nmpreal and the algorithm
terminates. If the instance is unsatisfiable, the abstmgtterexample is spurious, and
abstraction refinemeritas to be performed.

The basic idea of the abstraction refinement techniquesdsetite a new abstract
model which contains more detail in order to prevent the ispigrcounterexample.
This process is iterated until the property is either prosedisproved. It is known
as theCounterexample Guided Abstraction Refinenfeatework, or CEGAR for
short[22, 2, 7, 14]. In case of localization reduction, thirement is done by moving
more latches from the set of invisible latches to the setsible latches.

In the software domain, the most successful abstractidmtquae for large systems
is Predicate abstractiorjl6, 13]. It abstracts data by only keeping track of certain
predicates on the data. Each predicate is represented byladBovariable in the
abstract program, while the original data variables araiakted.

While localization reduction is a special case of prediadistraction, predicate
abstraction can result in a much smaller abstract model. Msxample, assume a
circuit contains two sets of latches, each encoding a nurRtredicate abstraction can
keep track of a numerical relation between the two numbérgussingle predicate,
and thus, using a single state bit in the abstract model. mitrast to that, localization

reduction typically turns all the bits in the two words intisible latches, and thus, the
abstraction is identical to the original model.

Predicate abstraction of ANSI-C programs in combinatiothveiounterexample
guided abstraction refinement was introduced by Ball andiRaii [2] and promoted
by the success of the SLAM project [1]. The goal of this projedo verify that Win-
dows device drivers obey API conventions. The abstractitimeoprogram is computed
by using a theorem prover such as Simplify [15] or Zapato [4].

When applying predicate abstraction to circuits, two peats arise: Most model-
checkers used in the hardware industry use a very low leggdeusually a net-list, for
verification purposes. However, predicate abstractiomig effective if the predicates
can cover the relationship between multiple latches. Typgcally requires a word
level model given in register transfer language (RTL),,a@rgVerilog. The RTL level
languages are similar to languages used in the softwareidpsuah as ANSI-C.

The second problem concerns with the use of theorem proeermputing the
predicate abstraction. Theorem provers model the vagaldeg unbounded integer
numbers. Overflow or bit-wise operators are not modeled. évew hardware descrip-
tion languages like Verilog provide an extensive set offige operators. For hardware
design, the use of these bit-level constructs is ubiquitous

In [12], a SAT-based technique for predicate abstractiociraiits given in Ver-
ilog is introduced. The first step is to obtain predicatesnfithe control flow guards
in the Verilog file. The circuit is then synthesized and tfammed into net-list-level.
The use of a SAT solver like ZChaff [23] in order to perform #iestraction allows to
support all bit-level constructs. However, there appraadfers from two drawbacks.
1) Each transition in the abstract model is computed by a n&tvslver run. Thus,
the learning done by a SAT solver in the form of conflict clauigelost when com-
puting other transitions. 2) If refinement becomes necgsealy bit-level predicates
are introduced. This way of refinement closely resembleaagrfent techniques for
localization reduction. In contrast to that, predicateusion tools for software, such
as SLAM, use weakest preconditions to derive new word-lgrexdiicates.

Predicate abstraction tools for software predicate attidrause multiple heuristics
in order to reduce the cost of calling the theorem proverevbdmputing the abstrac-
tion. The SLAM tool limits the number of predicates in a peautar query, i.e., it
partitions the set of predicate into smaller subsets. Tégds up the abstraction pro-
cess, but the resulting abstraction contains additionaieps behavior. If the SLAM
toolkit encounters a spurious counterexample, it first@&sithat it is caused by a lack
of predicates, and attempts to find new predicates. If no medigates are found, the
counterexample is caused by the partitioning of the préekicduring the abstraction.
In this case, a separate refinement algorithm (called Caing8]) is invoked. Note that
this step only addresses spurious behavior due to an inekatraction, as opposed to
spurious behavior caused by insufficient predicates.

Software predicate abstraction tools abstract the indalidgtatements or basic
blocks separately. Thus, only a small number of predicatégically affected, and a
syntactic predicate partitioning works well. In contrasthat, even RTL-level circuits
are monolithic. Each transition consists of simultane@asganments to all latches.
Thus, the syntactic partitioning of the predicates miglsulein no reduction of the
number of predicates.

In the BLAST toolkit [17], the abstraction is completely denu-driven. It is only
performed when a spurious counterexample is encounterbd.albstraction is only
performed to the extent necessary to remove the spurio@vteehThis is calledazy
abstraction

Contribution This paper applies three techniques from the software paaliab-
straction domain to the abstraction of circuits given inikdgy RTL. We partition the
given set of predicates into clusters of related predicathe abstraction is computed
separately with respect to the predicates in each clusiace®ach cluster contains
only a small number of predicates, the computation of thérattion becomes easier.

As described above, the highly concurrent nature of harelimits the benefits of
this technique. We therefore also evaluate lazy abstraatithe context of predicate
abstraction for circuits.

When a spurious counterexample is encountered, we firskefteether it is caused
by insufficient predicates or caused by the lazy abstractibthe counterexample is
caused by lazy abstraction, we compute the unsatisfiabéeatdhe SAT instance cor-
responding to one abstract transition. We use the unséatisftare in order to extract
a small set of predicates that eliminates the counterexarile fewer predicates are
found, the more spurious counterexamples can be eliminated

If the spurious counterexample is caused by insufficierdipeges, we use a refine-
ment technique used by software predicate abstractios:ta@ compute the weakest
precondition of the property with respect to the transifiomction given by the circuit.
In order to ensure that the predicates generated do not leetmnarge, we simplify
the weakest pre-conditions using values from the spuriousterexample. To the best
of our knowledge, this is the first time weakest precondgiohcircuits are used for
refinement of predicate abstractions.

We formally describe the semantics of the Verilog subset mehandling. We
report experimental results using benchmarks from theS®xhenchmark suite.

Related work In [12], SAT-based predicate abstraction is applied to waré veri-
fication. The authors present two SAT-based algorithmsftoe¢he abstract models.
They distinguish spurious transitions (caused by incoteéstraction) and spurious
counterexamples (caused by insufficient predicates). i@mitransitions are elimi-
nated by constraining the abstract model, while spurioush@yexamples are elimi-
nated by adding neseparatingoredicates. In contrast to our work, they carry out the
predicate abstraction of the net-lists using bit-levetjrates.

Henzinger et al. [18] present a technique for constructargimonious abstractions
of C programs using proofs of unfeasibility of abstract desexamples. A predicate
abstraction is parsimonious if at each control locatiomrgitks only those predicates
which are required for proving correctness. They repottdhahe average the number
of predicates tracked at each control location are quitdismirwever, they make
use of a theorem prover for computing the abstractions amibtideal with bit-wise
constructs.

In [11], a SAT solver is used to compute an abstraction of arBAN program.
The main idea is to form a SAT equation containing all the wees, a basic block,

and two symbolic variables for each predicate, one varidiéhe state before the
execution of the basic block, and one variable for the sti¢e i&s execution. The SAT
solver is then used to obtain all satisfying assignmentgiims of the the symbolic
variables. However, the runtime of this process typicatigws exponentially in the
number of predicates. The technique has also been applepecC [20], which is a
concurrent version of ANSI-C.

In [12], spurious transitions are eliminated by generatingpnstraint from SAT
basedconflict-analysis Since conflict analysis is used by a SAT solver for genegatin
an unsatisfiable core, our use of unsatisfiable cores isagitailthe approach in [12].
In [21], the unsatisfiable cores are used for extracting ksatstracted formulas within
an abstraction refinement loop for deciding the satisfigholf Presburger formulas.

Outline In section 2, we formalize the semantics of the subset ofdgthat we han-
dle. Section 3 describes SAT-based predicate abstracttbrilve help of an example.
Techniques for partitioning the given set of predicatesvsmgin Section 4. We present
techniques for abstraction refinement in section 5. Finaleyreport experimental re-
sults in section 6.

2 Formal Semantics of Verilog RTL

The Verilog hardware description language is used to modéhdicircuits at various
levels, ranging from high-level behavioral Verilog to Idexel net-lists. The Verilog
standard [19] describes the semantics of the Verilog lapgusormally by means of
a discrete event execution model.

We formalize the Verilog semantics for a particular speciade: synthesizable
Verilog with one single cloclkclk. We assume the clock is only used within either
posedge Or negedge event guards, but not both. The edge descriptor is denoted by
E cl k.

We use the following formalism to model the concrete circfitransition system
T = (SI,R) consists of a set of stat&; a set of initial states C S, and a transition
relationR, which relates a current stagec Sto a next-statg’ € S.

We assume that the module structure of the design is alreattigrfed. Les be a
Verilog module item. A Verilog module item can either be atiomous assignment, or
ani ni tial oranal ways block.

Continuous assignment Only one continuous assignment per network is allowed.
Letw; be the network that is assigned by continuous assignimantle the value that
is assigned. For each such continuous assignment, we addrikgainty; = g to A:

A = Aw=g
i

Initial and Always The statements in thieni ti al andal ways blocks define the
initial values of latches and the transition function (nstette function) of the latches.

Note thatal ways blocks can also be used to define combinational logic. Censiie
following example:

reg r;
i nput i;

al ways @i) r=!i;

This defines combinational logia: is the negation of the inptit. There will be no
latch corresponding to in the circuit. On the other hand, the following example
illustrates the case of a latch:

reg [31:0] r;
i nput clk;

al ways @ posedge cl k) r=r+1;

Let 9 denote the set of variables, as given in the Verilog file. Végimjuish the two
cases by examining the events given as event guards. Ifdabk elente cl k is used
to guard an assignment to a register, it is considered to htch, land combinational
logic otherwise. LetL C R denote the set of true latches. The set of st&tefthe
state machine is then defined to be

S = {0,121

For a states € S, we denote the value of an express@&n that particular state bg(e).
The set of variables that are not latches is denoted:by

C = M\L

In order to define the semantics of the statements in thiet i al andal ways
blocks, we define the notion offaocess stateA process stat@is a mapping from the
variablesr € 9/ into a pair of expressions. We denote the first member of tirebga
@:(r) and the second member of the pair¢m(r). The expressio(r) is called the
current value while ¢; (r) is called thefinal valueof r.

The two differ in order to distinguish non-blocking assigents from blocking as-
signments. Non-blocking assignments only update the fialaley but not the current
value, while blocking assignments update both.

For an expressiog, ¢:(e) denotes the evaluation efn the current state, i.e., all
variablesy that are found ire are replaced by (v).

We aim at obtaining the state after the execution of the stames. For this, we
define the functioro(@, p). The function takes a process stgtand statemenp as
argument and returns the new process state after the exeaftp. Formally, the
function is defined by means of a case-splitmpn

e If pisani f statement with then-brang¥ and else brancp”, the functiono is
applied recursively tq@f andp”. The value of the branching guagdevaluated
in the statep. is used to select the correct branch.

. o d /
o(@if(gp else p) = {GE$ E% : ﬁrg%)rwise

o If pis a sequential composition pf andp” (by means of &egi n end block),
then the function is first applied {@ using the process stage The process state
resulting from this is passed to the application of the fiomot to p”.

o(e,p; p’) = o(o(ep),p")

e If pis a blocking assignment of some expresséao registerr, then the new
state is the old state where both the current and the finag\aluis the value of
the expression evaluated in the current state.

—a) - o ((e),@(e) : r=x
o(@r=e) :=)\XEK'{ P(x) otherwise

o If pis anon-blocking assignment of some expressitmregister, then the new
state is the old state where the final value @he second member of the pair) is
the value of the expression evaluated in the current stdtte.ctirrent value of
(the first member of the pair) remains unchanged.

o fo((r),@(e) : r=x
olpre=e) =)\XGK'{ o(x) . otherwise

¢ If pis an event guard stateme@G) p’ or a delay statemetttd p/, we simply
recursively applyo to p'.

o(@@G) p) = o(ep)
o(e#d p) = o(ep)

Initial State Let p' denote all the statementsiimi t i al blocks. The process state
before the execution of any statement is denoted byit is undefined, i.e., no as-
sumption about the value of any register is made unless dgBo#ly initialized. The
process state after the executiorpbis denoted byp':

o = o(',ph

The set of initial statekis defined as follows: for each lateke £, we require that
the initial value ofr is the final value of after the execution gf'.

| = {seS| A\s(r)=o}(r)}

reL

Next State Let pR denote all the statements & ways blocks. The process state
before the execution of any statement is denoted™ywhich assigns the previous
value to all latches € L. It is undefined for the variablese C that are used for
combinational logic only.

wer: Ry = (vv)

The process state after the executiop®is denoted bybR:
of = o(i? p®)

The transition relatioR(s,s) is defined as follows: for each latete £, we require
that the next state value ofis the final value of after the execution opR. For each
variablev € C, we require that the current state valueva$ the final value ot/ after
the execution opR. Also, we add the constrainfsdefined above for the continuous
assignments as requirement for the current state.

R(S,S’) = Aver SI(V) = s(qJ'?(v))
A Avec S(V) = S(@F(v))
A s(A)

Example Tollustrate the difference between a blocking assignragdta non-blocking
assignment, consider the following example:

regr, q
i nput clk;

al ways @ posedge cl k) begin
r<=q;
g<=r;

end

When applyingo to the two non-blocking assignments above, we obtain

oR(r) = q
oR@) = r

and thusyr andq are swapped. If the non-blocking assignments are replacbbbbk-
ing assignments, we obtain a different result;

oR(r)y = q
oR@) = ¢

Notation In order to compute word-level predicates, we group thenkegdn £ de-
fined above into word-level registers. The latches that evaed are the latches given
by a single declaration in Verilog. Lek = {r1,...,rn} denote the set of registers.
For example, the state of the Verilog program in Fig. 1 is adefiby the value of the
registers andy, and each of them has a storage capacity of 8 bits.

Note that we consider the external inputs to be registetsonita next-state func-
tion. Let Q C R denote the set of registers that are not external inputs,hiaze a
next-state function. We denote the next-state functionwbed-level register; € Q
by fi(r1,...,rn), or fi(F) using vector notation. Any occurrences of network idersfie
(continuous assignments) or combinatorial registers epéaced by their respective
value.

nodul e main (clk);

i nput cl k;

reg [7:0] x,y;
initial x = 1;
initial y = 0;

al ways @ (posedge cl ock) begin
y <=X;
if (x<100) x<=y+x;

end

endnmodul e

Figure 1:A Verilog program.

Using the word-level next-state functiofis the transition relation defined above
can be re-writtenR(r, ") relates the current statec Sto the next stat€’ and is defined
as follows:

RET) = A f@)

neq

For example, the next state function for the register Fig. 1 is given as follows:
if the value ofx in the current state is less than 100, then the valueiothe next state
is equal to the sum of current valuessondy, that isx+y. If the value ofx is greater
than or equal to 100, then the valuexdh the next state remains unchanged. The value
of y in the next state is equal to the valuexoiin the current state. We use the trinary
choice operatoc?g : h to denote a function which evaluatesgavhen the conditiort
is true, otherwise it evaluates kb Thus, the next state functions ferandy and the
transition relation are given as follows:

fik(xy) = ((x < 100) ?(x+Yy) : X)
fxy) = x
Ry, X,¥Y) = (X =((x < 100)?(x+Yy) : X))A(Y =X)

Note that we do not flatten the registersy to individual bits. Thus, we have a
next state function for the whole registersy and not for the individual bits ix, y.

3 Predicate Abstraction

In predicate abstraction [16], the variables of the comcpmbgram are replaced by
Boolean variables that correspond to a predicate on thablas in the concrete pro-
gram. These predicates are functions that map a concré¢a steS into a Boolean
value. LetB={m,..., T} be the set of predicates over the given program. When

. L . . o x=144 A
y=89 Vi

Figure 2:The value ofx andy in different states

applying all predicates to a specific concrete state, oredruba vector of Boolean val-
ues, which represents an abstract skat&¥Ve denote this function bg(r). It maps a
concrete state into an abstract state and is thereforelcail@bstraction function

We perform an existential abstraction [8], i.e., the alz$tnaodel can make a tran-
sition from an abstract stateto b’ iff there is a transition fronm to r” in the concrete
model and is abstracted tb andr” is abstracted td’. We call the abstract machine
T, and we denote the transition relationioby R.

R ={(bb)|I7eS: RFMA _ 1)
a(f)=bAa(r)=b'}

The abstraction of a safety propeRyr) is defined as follows: for the property to
hold on an abstract stake the property must hold on all statethat are abstracted to
b.

P(b) < vreS:(a(r)=b)=P(r)

The same abstraction is also used for the initial st&fe Thus, if P holds on
all reachable states of the abstract mo@eslso holds on all reachable states of the
concrete model.

Example Consider the Verilog program in Fig. 1. We wish to show thatyhlue of
the registek is always less than 200. That is, we want to prove that thengivegram
satisfies the safety prope®¥s (x < 200), whereAG is a CTL operator which stands
for always globally Intuitively, the property holds because the valuexdbllows a
sequence starting from 1 to 144. Upon reaching the valuethé4guard in the next
state function fox becomes false, and its value remains unchanged. The vdiues o
andy in each state are shown in Fig. 2.

We follow the counterexample guided abstraction refinerf@BGAR) framework
in order to prove this property. The first step of the CEGARpla® to obtain an
abstraction of the given program. We use predicate abgtrefcir this purpose.

SAT based predicate abstraction Most tools using predicate abstraction for veri-
fication use general-purpose theorem provers such as $nfipli] to compute the
abstraction. This approach suffers from the fact that ercaused by bit-vector over-
flow may remain undetected. Furthermore, bit-vector opesadre usually treated by
means of uninterpreted functions. Thus, properties tHgtae these bit-vector op-
erators cannot be verified. However, we expect that Verilegjghs typically use an

abundance of bit-vector operators, and that the propertterfest will depend on these
operations.

In [11], the authors propose to use a SAT solver to computalistraction of a
sequential ANSI-C program. This approach supports all ARShteger operators,
including the bit-vector operators. We use a similar teghaifor computing the ab-
straction of the Verilog programs.

A symbolic variableb; is associated with each predicate Each concrete state
r={rq,...,r} maps to an abstract stae= {by,...,b}, whereb; = 15(r). If the
concrete machine makes a transition from state stater” = {r,....r.,}, then the
abstract machine makes a transition from stetteb’ = {b}, ..., b }, whereb{ = 15(").

The formula that is passed to the SAT solver directly folldmesn the definition of
the abstract transition relatiddas given in equation 1:

R = {(bb)|3r7:T (‘ﬂ55’>})
k
r(rrbb) = /\ =m(F) A R(F,1) /\b/ (3)

The set of abstract transitiofds computed by transforming(r,r’, b, b’) into con-
junctive normal form (CNF) and passing the resulting forana a SAT solver. Sup-
pose the SAT solver returmsr’,b,b’ as the satisfying assignment. We project out all
variables bub andb’ from this satisfying assignment to obtain one abstracsttiam
(b,b'). Since we want all the abstract transitions, we add a blockliause to the SAT
equation that eliminates all satisfying assignments withdame values fdr andb'.
This process is continued until the SAT formula becomestisf&ble. The satisfying
assignments obtained form the abstract transition rel&id\s described in [11], there
are numerous ways to optimize this by computation. Thedetques are beyond the
scope of this article._

An abstract statb is an initial state in the abstract model, if there exists reccete
stater which is an initial state in the concrete model and mags to

k
[= {b]3r: Ab=m() AI[)} 4)
i=1

Using this definition, the abstract set of initial states barenumerated by using a
SAT solver.

Example: Continuing our example, the concrete transition relatibthe Verilog
program in Fig. 1 is given as follows:

RxY,X,Y) = (X< ((x < 100 ?(x+Yy) : X)A(Y & X)

We want to prove that the concrete system (Verilog prograati3fies AG (x <
100). In order to perform predicate abstraction we need a setesfipates. For our
example, we takéx < 200 x < 100,x+y < 200} as the set of predicates. We associate
symbolic variableds, by, bz with each predicate, respectively. The following equation
is converted to CNF and passed to a SAT solver:

(b1 < (x<200)) A (b2 < (Xx<100)) A (bs < (X+Yy< 200)) A

10

MODULE nai n

VAR bl: bool ean; //stands for x<200
VAR b2: bool ean; //stands for x<100
VAR b3: bool ean; //stands for x+y<200

INIT (bl & b2 & b3)

TRANS (bl & !'b2 & 'b3 & next(bl) & !'next(b2) & !'next(b3)) |
(bl & b2 & 'b3 & !'next(bl) & !'next(b2)) |
(bl & b2 & b3 & next(bl) & next(b3)) |
(bl & !'b2 & next(bl) & !next(b2) & next(b3)) |
('bl & !'b2 & !'next(bl) & !'next(b2)) |
(bl & b3 & next(bl) & !next(b2) & !next(b3))

SPEC AG (b1)

Figure 3: Abstraction of Verilog program in Fig. 1 using predicates. 200,y < 100, and
X+Yy < 200. The output is in the format accepted by NuSMV model cbeck is generated
automatically by our tool.

s Qe e
s s

Figure 4:Finite state machine for abstract model in Fig. 3. Abstreates 010 and 011 are not
possible, as this would require< 200 to be false ang < 100 to be true in the same state.

Ry, X,¥) A
(b & (X <200) A (b, < (X <100) A (b < (X' +Yy < 200)

The abstract transition relation obtained is given byTRANS statement in Fig. 3.
Itis a disjunction of cubes. The cubel(& ! b2 & ! b3 & next (bl) & ! next (b2)
& ! next (b3)) gives the transition from the abstract state in whigls true andoy,
b; are false to the same abstract state (20000 for short). Intuitively, this abstract
transition is possible becaube = 0 in the current abstract state, which means that
X > 100 in the concrete system. So the value of the registarthe next statex)
is x and the value of the predicatesc 200 andx < 100 in the next state remains un-
changed. The value of registebecomes equal tq soy = x. Even though botR and
y range between 100 and 200;+ Y can be less than 200, due to arithmetic overflow.
Thus, the transition 108> 100 is possible. The other possible transitions are shown in
Fig. 4.

11

The equation passed to the SAT solver for computing thelrsét of abstract states
is as follows:

(by < (x < 200)) A (b & (x< 100)) A (bg < (X+Yy < 200) A
(x=1) A (y=0)

The abstract set of initial states produced is given by tHeT statement in Fig. 3.
There is only one abstract initial state in which all the leawl variable®;, by, bz are
true.

The propertyAG (x < 100) is abstracted by using the boolean variabldor the
predicate(x < 100). The abstracted property is given by tBBEC statement in the
Fig. 3. The abstract model satisfies the prop&@y(b1l), as the only states reachable
from the initial abstract state (111) afé¢11 101 100} (Fig. 4). Since the property
holds on the abstract model, we can conclude that the psop€rtx < 100) holds on
the Verilog program in Fig. 1.

This examples demonstrates the advantage of working witld\lavel predicates,
such ax+y < 200. Even if the sizes of the registety are increased, only 3 word-
level predicates are needed for proving the property. Ehit the case with the ap-
proach presented in [12], where the design is flattened todhést level and predicate
abstraction is carried out using bit-level predicates.

4 Predicate Partitioning

4.1 Computing Multiple Abstract Transition Relations

We call the computation of the exact existential abstractie described in the pre-
vious section theMonolithic approach In the worst case, the number of satisfying
assignments generated from equation (3) is exponentiakinamber of predicates. In
practice, computing abstractions using the monolithicagagh can be very slow even
for a small number of predicates.

The speed of the computation of the abstraction can be inegriéwe do not aim at
the the most precise abstract transition relation. Thatésallow our abstraction to be
an over-approximation of the abstract transition relaienerated by the monolithic
approach. The SLAM toolkit, for example, limits the numbémpoedicates in each
theorem prover query. Thus, the set of the predicates airthind-state state versions
is partitioned into smaller sets of related predicates. ¥lethese sets clusters, and
denote them by, ...,C, withC; C {m, ..., Tk, T, ..., T} }.

The equation for abstracting the transition system witlpeestoC; is given as
follows:

A bi=m() ARET) A A b =m(F)

meC; TﬂECJ‘

We abstract the transition system with respect to eacherluBhis results in a total

12

of | abstract transition relatiori?y, . .., R, which are conjuncted to foriR:
~ | A
R = AR)
i—1

Intuitively, we obtain an over-approximation because nasheSAT equation will
have fewer predicates and hence less information aboutti@boles of concrete sys-
tem. We refer to this technique psedicate partitioning We evaluate two different
syntactic predicate partitioning techniquesne partitioningand partitioning fotazy
abstraction

Let var(e) denote the set of variables appearing in an expressiéior example,
var(xX +y < 200) is {x,y'}.

In [7], two formulasg; andg, are said to interfere iffar(g;) Nvar(gy) # 0. The au-
thors use this notion of interference to partition the sébohulas into various formula
clusters. This technique can be used for partitioning thefpredicates. However,
our experiments indicate that this results in clustersdhatoo large. Thus, we make
the syntactic conditions for keeping the two predicategtiogr stronger, which leads
to a smaller number of predicates per cluster.

Syntactic cone partitioning Given a formulay’ in terms of next state variables the
current state variablesthat affect the value of the variablesvar(g') are denoted by
con€d’). The set of variableson€q’) is similar to one step of cone of influence. It is
defined as follows: The variables in the next-state funstfonthe registers mentioned
in ¢’ form the cone ofy. Recall that the next-state function of a particular registis

given by fi(r).
condg’) = |J var(fi(r))

rievar(g’)

For example, lety bea + b’ < c'. Let the next state functions faf,b’,c’ bea+ b,
c, i +X, respectively. Heresar(g') = {a',b’,c'} andcon€g’) = {a,b,c,i,x}.

The clusters of the predicates and their next-state vession..., Tk, 14, ..., T, }
are created by the following steps:

1. The next-state predicates that have identical cone sekept in a single cluster.
Thatis, ifcongT’) = condTy’) thent’ andr’ are kept in the same cluster. Let
1,--..Cl be the clusters ofr,...,m } obtained after this step. Since all the
predicates in a given clust& have the same cone, we deficen€C/) as the
cone of any element i@/.

2. The final set of clusters is given §¢1,...,C }. EachC; contains all the next-
state predicates fro| and the current-state predicates that mention variables
in the cone ofZ/. Formally,C; is defined as follows:

C = C U {m|var(m) C condC))}

13

Example: Let the set of current-state and next-state predicate$xbe 200y =
100,z > 100X < 200y = 100Z > 100}. Let the next state functions be as fol-
lows: X =y+2z ¥y =X, andZ = x. After the first step of the algorithm the clusters
will be C} = {x' < 200} andC}, = {y’ = 100,Z > 100}. The predicatey = 100 and

Z > 100 are kept in the same cluster, as they have the identical set{x}. Since
con€C}) = {y,z} andcongC,) = {x}, the clusters obtained after the second step of the
algorithm areC; = {y=100,z> 100,X' < 200} andC, = {x < 200,y = 100.Z > 100}.

Observe how the predicates in a given cluster affect eadr.dtor example, i€,
if X < 200 is false, then we know thgt = 100 will be false and and > 100 will be
true in the next state.

Let R(x,y,z X,y ,Z) denote the transition relation. If we associate the synsboli
variablesb, by, bz, b}, b}, bs with the predicate < 200,y = 100,z > 100X <
200y = 100, andZ > 100, respectively, then the equation for abstracting tae-tr
sition relation with respect tG; is as follows:

(b1 & (x<200) A R(X,y,zX.,Y,Z) A
(b, < (y =100) A (b < (Z > 100))

The above equation has 4 satisfying assignmentd{dy,,b;. The abstraction
usingC; produces 8 satisfying assignments Eerbz,b;. Thus, the total number of
satisfying assignments generated is 12. On the other hhadnonolithic approach
will keep all the predicates together, resulting in 32 assignts. This example shows
the advantage of predicate partitioning. In this exampleyrns out that even with par-
titioning the abstraction obtained is same as that compatéide monolithic approach.
Since cone partitioning attempts to keep all related pegdgtogether, the abstractions
produced are not much coarser than those produced by thdithanapproach. How-
ever, in general there is no bound on the number of predigategiven cluster. In the
worst case there might be a cluster containing most of theeotsstate and next-state
predicates.

4.2 Syntactic Partitioning for Lazy Abstraction

The idea of lazy abstraction [17] is to defer the abstradtiotil required by a spurious
counterexample. We therefore use a very inexpensive fyapastitioning to compute
a very coarse initial abstraction. This is done to computelrabstractions of large
circuits quickly.

There are many ways to perform a partitioning for lazy alosiva. One simple
technique is to creatk clusters, each containing exactly one current-state pageli
1. We follow a variant of this technique: all current-statedgticates that contain the
same set of variables are kept in the same partition. Thiditvay(1g) = var(r;), then
T and Tty are kept in the same partition. This is useful if the givenddgtredicates
contains many mutually exclusive (or related) predicatehsasx = 1,x = 2,x = 3.
Keeping these predicates in separate clusters will reswhiexponential number of
contradicting abstract states, such as an abstract statédh bothx = 1 andx= 2 are
true. The next-state predicates are not used for computaglistraction.

14

As an example, let the set of current-state predicatesxbe 200,x = 100y =
100,z > 100}. The clusters produced for lazy abstraction@re= {x < 200 x = 100},
C; = {y=100},Cs = {z> 100}.

Once the abstraction of the concrete system is obtained, egeltheck it using
the NuSMV model-checker. Fig. 3 shows an abstract modelhdfabstract model
satisfies the property, the property also holds on the algooncrete circuit. If the
model checking of the abstraction fails we obtain a counrtergle from the model-
checker. In order to check if an abstract counterexampleesponds to a concrete
counterexample, simulationstep is performed. This is done using the standard tech-
nigue of bounded model checking [5]. If the counterexamplenot be simulated on
the concrete model, it is calledspurious counterexampl@he elimination of spurious
counterexamples from the abstract model is described ingkesection.

5 Abstraction Refinement

5.1 Spurious Transitions and Spurious Prefixes

When refining the abstract model, we distinguish betweendases of spurious be-
havior, as donein [12]:

1. Spurious transitionsare abstract transitions which do not have any correspond-
ing concrete transitions. By definition, spurious transi§ cannot appear in the
most precise abstraction as computed by the monolithicosgr However, as
we noted earlier, computing the most precise abstract nmiedetpensive and
thus, we make use of the various partitioning techniquegs&hechniques can
typically result in many spurious transitions.

2. Spurious prefixesare prefixes of the abstract counterexample that do not have
a corresponding concrete path. This happens when the setditptes is not
rich enough to capture the relevant behaviors of the comsgesttem, even for the
most precise abstraction.

In contrast to SLAM, we first check whether any transition lie abstract trace
is spurious or not. If a spurious transition is found, it isrehated from the abstract
model by adding a constraint. If all the transitions in thetedict trace are not spurious,
then new predicates are generated by computing the wealeestrglition of the given
property with respect to the transition function of the gitc Fig. 5 shows how our
abstraction and refinement loop differs from that of SLAM.

An abstract counterexample is a sequence of abstract sfdfes..,S(l), where
each abstract stat]) corresponds to a valuation of thepredicatesy,..., k. The
value oftg in a statesis denoted by. We usert to denote the next state versionmgf

In order to check if an abstract transitisrio t can be simulated on the concrete
model, we create a SAT instance given by the following eguati

k

k
Am=§ ARET) A A\TE=1

i=1 i=1

15

Property holds Property hold:

enter| Apstract c’\/Ih(()edcekI
New fails

predicates

Refine Spurious
predicate

Spurious Constrai
transitionPyes’| abstract

abstract
maoae

(A) (B)

Figure 5:Abstraction refinement loop in (A) SLAM, (B) in [12] and thigyper.

The equation above is transformed into CNF and passed to a&@»ér. If the SAT
solver detects the equation to be satisfiable, the absteaxdition can be simulated on
the concrete model. Otherwise, the abstract transitiopusicus. In this case, the
spurious transition can be removed from the abstract modebding a constraint to
the abstract model.

5.2 Refining spurious transitions

When generating the CNF instance for the simulation of tisérabt transitiostot, we
store the mapping of each predicaiery to the corresponding literal, I in the CNF
instance. If the abstract transition is spurious, the CNfaimce is unsatisfiable. In this
case, we make use of the ZChaff SAT solver [25] for extractingunsatisfiable core
from the given CNF instance. Amsatisfiable coref a CNF instance is a subset of
the original set of clauses that is also unsatisfiable. @Quatate-of-the-art SAT-solvers
like ZChaff [23] are quite effective at producing very smatisatisfiable cores.

Let us denote the set of current-state predicates whosespanding CNF literal
li appears in the unsatisfiable corexasWe have a similar set for the next-state predi-
cates, which we cal. Intuitively, the predicates iX andY taken together are suffi-
cient to prove that the abstract transit®to T is spurious. All the abstract transitions
where the predicates X andY have the same truth value as given by the staersd
t, respectively are spurious. These spurious transitiamslaninated by adding a con-
straint to the abstract model. Litandb{ be the variables used for the predicates
andrtt in the abstract model. The constraint added to the abstragéhis as follows:

(A bi=s A A b=t)

meX ey

16

Example: Consider the abstract transition fraa={b; = 0,b, =0,bs = 1,by = 1}

tot = {by = 0,b, = 0,b; = 0,b}, = 0}, whereby, by, bs, andbs correspond to the
predicatex = 1,x=2,y= 1,y =z respectively. Let the next state functionste- z,

y =X, Z =y. Observe that in the stag the predicateg = 1 andy = z are true and
thus,z= 1. This implies thak’ = 1 andb} must hold int. However,b is false int
and thus, the abstract transition frao t is spurious. This counterexample can be
eliminated by adding the following constraint to the abstraodel:

= (=g A=y Abg Abg A=Y A =bh A =g A —bY)

However, the above constraint removes just one spurioasitian. By making use
of an unsatisfiable core, we can make the constraint moregetieereby eliminating
many spurious transitions at the same time. In this exantipdesause of the spurious
behavioris due tbs = 1,bs = 1, andb] = 0. The unsatisfiable core technique described
above will discover this fact. Now we can eliminate this abst counterexample and
31 more spurious transitions by adding the following caaistrto the abstract model:

ﬁ(bg Abg A ﬁb&)

In practice, we observe that the constraints generated tisnunsatisfiable cores
are very small (of size 5 to 6), as compared to the total numimirrent-state and next-
state predicates. Thus, this technique is very effectiveinoving multiple spurious
transitions.

5.3 Refining spurious prefixes

In [12], the elimination of spurious prefixes is done by addinmonolithic bit-level
predicate. This predicate is calledsaparatingpredicate and is computed by using a
SAT based conflict dependency analysis. In contrast, we ms&®f weakest precon-
ditions as done in software verification. We generate newdvievel predicates from
the weakest pre-condition of the given property with respeethe transition function
given by the RTL level circuit.

Weakest pre-conditions In software verification, the weakest pre-conditiop(st, y)

of y is usually defined with respect to a statemsinge.g., an assignment). It is the
weakest formula whose truth before the executiostadntails the truth ofy after st
terminates. In case of hardware, each state transition eanelwed as a statement
where the registers are assigned values according to thahstate functions.

Recall that the set of registers that have a next-stateibtmist denoted byQ. For
example, external inputs do not appear in this set. The stexe¢-function for register
ri € Q is given byf;(r). We usef to denote the vector of the next state functions for the
registers inQ. For any expressiog, the expressioe|[x/y| denotes the simultaneous
substitution of eaclx; in e by y; from y. Note thatx; andy; might themselves be
expressions.

The weakest precondition of the propeyty) with respect to one concrete transi-
tion is defined as follows:

wpi(fy(r) = () [r/f]

17

The weakest precondition with respectitoonsecutive concrete transitions is de-
fined inductively as follows:

wp(f,y) = wpi(f, wpa(f,y) (>1)

In order to refine a spurious prefix of lendth- 0, we computevp (f,y). Intu-
itively, y holds iffwp (f,y) holds before aftef transitions. Refinement corresponds to
adding the boolean expressions occurring/m(f,y) to the existing set of predicates.
The abstraction created with respect to the new set of prticesults in a model that
does not contain this spurious prefix.

In case of circuits the weakest pre-condition is always oaegbwith respect to the
same transition functiof and thus, we may omit it as an argumenwip (f,y).

Example: Let the property be& < 200. Let the next state functions for the registers
x andy be ((x < 100)?(x+y) : X) andx, respectively. Suppose we obtain an spurious
prefix of length equal to 1. The weakest pre-condition coragig given as follows:

wpi(x<200) = (((x < 100)?(x+y) : x) < 200

We add the boolean conditions occurringip; to our set of predicates. Thus, we
addx < 100 and(((x < 100) ? (x+Yy) : x) < 200) as the new predicates.

Simplifying the weakest pre-conditions The problem with the approach above is
that the predicates generated can become very complex Wakesptirious prefix is
large. This will adversely affect the future iterationsloé abstraction refinement loop.
In software verification, this problem is solved by compgtihe weakest pre-condition
with respect to the statements appearing in the spurioustemxample trace. In our
case, this amounts to simplifying the weakest pre-comitat each step.

We exploit the fact that many of the control flow guards in thexildg are also
present in the current set of predicates. The abstract &iggigns truth values to these
predicates in each abstract state. In order to simplify thek&st pre-conditions, we
substitute the guards in the weakest pre-conditions witt thuth values. Furthermore,
we do not add all the boolean expressions occurring in th&eg@re-condition as the
new predicates.

Let g(r) be a boolean expression. We denote the set of conditionsdgjuaccur-
ringingby G. For example, the set of conditions(if{x < 100) ? (x+y) : x) < 200)
is {x< 100}. The conditions irg that also occur in the current set of predicates is given
by g'=gn{m,...,T%}.

Let simplifybe a function that takes as input a boolean fornggfa and an abstract
statet. This function returns another boolean formglé), where all the guards ig’
are substituted by their truth values in the statatuitively, this amounts to following
the control flow insidey(r) using the truth value of guards from the stat€&ormally,
we have the following definition:

simplify(g(f),t) = gM[m/t] (Vmeg)

18

Example: Suppose our current set of predicate$s< 200,x < 100}. Lett be an
abstract state in whick < 200 is false anc < 100 is true. Leg(x,y) be the formula
(((x < 100) ?(x+Yy) : x) < 200). In this exampleG = G’ = {x < 100}. The call
to simplify with g(x,y) andt as the arguments will return:

((1?2(x+y) : x)< 2000 = x+y<200

Let the spurious prefix bg0),...,t(l) with | > 1 and let the property bg The
weakest preconditiowp; is the formula that should hold beforeoncrete transitions.
The abstract statl —i) provides the truth values for the predicates just before the
thesei transitions. Thuswpi (y) is simplified using the predicate values from the ab-

stract state(l —i). Formally, thesimplifiedversion of the weakest pre-conditions is
defined as follows:

wpi(y) = simplify(y [r/7'] [/], t(1 - 1))

wp(y) = simplifywpi(wp-1(y)), t(l =i)) (1<i<l)

The new set of predicates for refinement is obtained fropn This is done by
taking only the guards of the trinary conditional operatord other predicates not
containing the conditional operator.

Example: We continue our example in Fig. 1. We want to prove the proptt
always globallyx < 200. In Fig. 3, an abstraction of this program using thredipeges
X < 200,x < 100 x+Yy < 200 is presented. The propeAs (x < 200) is proved using
this abstraction. We now describe how these predicatesssevered automatically.

We take the predicates occurring in the property itself a&sitiitial set of pred-
icates. Thus, our initial abstraction is created with respe the predicatex < 200
only. Model-checking the abstract model produces a coaréenple of length one. It
turns out that this counterexample is a spurious prefix vatigth one. The weakest
pre-conditionwp; of x < 200 is given as follows:

wp(x<200) = (((x < 100) ?(x+Yy) : x) < 200

The only new predicate obtained fromp; (x < 200) is x < 100. Note that we do
not take the entire weakest precondition as a new predi€agnew set of predicates
is {x < 200,x < 100}. Once again, the abstraction and model-checking steprigedar
out. This time we obtain another spurious prefix of length. o also obtain the
truth value of the predicate< 100 in the abstract state€) andt(1). Suppose the

predicatex < 100 is true int(0). The simplified weakest pre-condition obtained is
given as follows:

wpi(x<200) = ((1?(x+Yy) : x)< 200 =x+y< 200

Simplifying wps (x < 200) yields a new predicate+y < 200. Note that this pred-
icate is not present as a guard in the program, nor in the prop¢sing the new set of
predicatedx < 200,x < 100, x+ Yy < 200}, we obtain the abstraction shown in Fig. 3.
The abstract property holds on this abstraction and tAG{x < 200) holds on the
concrete program in Fig. 1.

19

Benchmark Lines of code| Latches| Variable Bits
cache coherence (cc2) 549 43 170
npeg 1215 567 800
SDLX 898 41 81
Mim 841 83 237
Pl - Bus (pi) 1020 312 863

Table 1: Benchmark characteristics

6 Experimental Results

We report experimental results for the Texas97 and VIS [24hmark suite to evalu-
ate the performance of various techniques for predicatéipaing and the abstraction
refinement. The experiments are performed on a 1.5 GHZ AMDhmaavith 3 GB
of memory running Linux. A time limit of two hours was set foaigh run. The user
only needs to provide the Verilog file and the property to bec&led as the input. All
the phases of the CEGAR loop, namely abstraction, modekamgcsimulation, and
refinement are completely automatic.

The benchmark characteristics are given in table 1. We tépemumber of lines
of code, the total number of latches, and the total numbeedfdg variable bits (com-
binational elements and inputs) for each benchmark. Therergntal results are sum-
marized in table 2. For each algorithm, it contains the tatattime, the final number
of predicates, and the total number of refinement iteratidable 6 gives the breakup
of total run-time for the experiments in table 2 in terms o thme spent on the ab-
straction computation, model checking time and the timaspe the simulation and
refinement.

We report these results for four different algorithms. Th&umns marked with
"Monolithic” contain the results for a precise existengédistraction without any parti-
tioning. All experiments use refinement with weakest prelitions.

The columns labeled with "CONE” contain results using coagiponing for the
set of predicates. The predicates are partitioned intdaisi®f related current-state
and next-state predicates.

The performance of abstraction refinement with lazy abtrads summarized in
the columns labeled with "Lazy”. Initially, the abstraatids performed by keeping
only a few next state predicates, which share exactly theessmnof latches and other
variables, together.

The columns labeled with "Constrain” contain the resultsafostraction refinement
where a check for spurious transitions is added. If a spati@nsition is detected in the
abstract counterexample, it is eliminated by directly ¢@ising the abstract model.
As discussed earlier, we make use of unsatisfiable coredifostep. The check is
performed before refinement using weakest preconditiodsng.

Summary of Results Thecache coherence (cc2) benchmark is the design
of a two processor write-back-cache system. In this bendhrttee best performance

20

is obtained by partitioning the predicates using the CONrieque. Both CONE and
CONE+Constrain have similar performance on this benchmislng lazy abstraction,
a high number of refinement iterations is observed, as thedhsgtraction is creating
overly coarse abstractions.

The npeg benchmark is a design of an MPEG decoder and contains a decode
which accepts a bitstream as an input and produces a vidkof@ata stream as output.
We verify two different safety properties®fegl andnpeg?2) for the mpeg bench-
mark. The monolithic approach of keeping all the predic&gether results in the
best performance ompegl. This is due to the fact that only nine predicates are re-
quired to prove the property. However,ripeg2, generating the most precise abstract
transition relation becomes the bottleneck. Rpeg2, CONE+Constrain results in
the best performance. Note the consistent performance dfE3@onstrain on both
npegl andnpeg?2.

The M i mbenchmark contains the design of an Ethernet core that imeiés
the network protocols CSMA/CD for transmission and reaepif frames. Only
Lazy+Constrain is able complete this example within thestt. All other techniques
fail because they are unable to compute an abstract tramsélation. In this case, the
cone partitioning results in almost no reduction; most ef pinedicates are put in one
partition.

TheSDLX benchmark is the design of a sequential DLX processor tlest aifoad-
store architecture. The cone partitioning and refinemeinguseakest preconditions
has the best runtime. The performance of the Lazy+Consg#ie worst of all. Since
the abstraction produced are very coarse most of the tinpeist ®n refinement.

The Peripheral Interconnect bus (PI-Bus) is a high speadsingl standard on-chip
bus for use on micro-controllers and systems on a chip. Sinvegy coarse abstraction
with no refinement is sufficient for proving the propertyJabstraction has the best
runtime. All other techniques create a more precise aligirgevhich is not needed in
this case.

Benchmark Monolithic CONE CONE+Constrain| Lazy+Constrain
T P |1 T P |1 T P | T P |
cc 1741s| 23 | 3 | 390s| 47 | 4 | 397s| 47 4 885s | 47 | 119
nmpegl 35s 9 | 2| 855s|41| 3| 130s| 9 4 406s | 9 15
npeg2 2945s| 24 | 3| 325s| 35| 4 | 208s | 24 4 1951s| 24 | 37
SDLX 1141s| 25| 1| 61s | 39| 2 | 223s| 39| 2 | 5876s| 39 | 133
Mim >2h | 25| 3| >2h | 25| 3| >2h | 25 3 70s | 25| 27
pi 58s | 10| 1| 21s | 10| 1| 21s | 10 1 12s | 10 1

Table 2: Experimental results: The "T” columns contain th<runtime in seconds,
the "P” columns show the final number of predicates, and thedlumns contain the
total number of refinement iterations. "CONE” denotes coradljzate partitioning,
"Constrain” is refinement of spurious transitions using W Sores. For the entries
where the timeout occurred we report the number of predicatel the number of
iterations completed before the timeout.

21

Bench- Monolithic CONE CONE+Constrain Lazy+Constrain
mark Abs | MC | SR| Abs | MC | SR| Abs | MC | SR | Abs | MC SR
cc 1701| 12 | 28 | 269 | 35 | 87 | 269 | 34 | 95 | 23 37 825
npegl 18 1 16 | 810 | 1.7 | 43| 29 | 0.3 | 101 | 24 1 381
npeg2 | 2520 | 380 | 46 | 251 | 0.7 | 74 | 113 | 04 | 95 | 67 4.6 | 1881
SDLX | 1134 | 7 0 51 | 16| 9 53 | 34 | 136 | 48 | 2788 | 3039
Mim - - - - - - - - - 12 1.5 56
Pi 58 0 0 21 0 0 21 0 0 12 0 0

Table 3: Experimental results: All times are reported inosels. The "Abs” columns
contain the time spent in computing the abstraction, the "E8umns show the time
spent on model checking the abstract model, and the "SR"ddithe spent during
simulation and refinement. "CONE” denotes cone predicatétjpaing, "Constrain”

is refinement of spurious transitions using UNSAT cores. shda” indicates a time-
out of 2 hours.

7 Conclusions and Future Work

While there are a lot of results on predicate abstractiohénsbftware domain, there
is only little research on predicate abstraction in the waré domain. This paper
evaluates three methods to improve the performance of $&&dpredicate abstraction
on circuits. The methods have been presented before in titextmf abstraction of
ANSI-C programs.

When abstracting a basic block, tools like SLAM do not coesial possible ab-
stract transitions. Instead, subsets of the predicatefeared. This reduces the com-
putational effort during abstraction, but may result in iiddal spurious behavior.
Experimental results on Verilog circuits show that thigigique is also useful in the
hardware context.

In [17], the authors propose to defer the expensive taskagfram abstraction until
a spurious counterexample is found. This is called lazyrabsbn. We evaluate the
benefit of lazy abstraction in the context of circuits. lttsiout that refining the coarse
abstractions produced during lazy abstraction can becdnoétl@neck. We make use
of unsatisfiable cores in order to eliminate multiple spusitransitions.

However, the spurious trace may also be caused by insuffisiedicates. In the
software domain, tools typically use weakest precondittorcompute new predicates
that eliminate the spurious behavior. This technique hasipusly not been applied
to hardware, despite of the fact that high-level RTL closelsembles languages like
ANSI-C. Our experimental results show that this technigueery effective in discov-
ering new word-level predicates for refinement.

Future research will focus on use of unsatisfiable coresifmodering new predi-
cates. We would like to experiment with the use of interptddh8] for deriving new
predicates. This paper used syntactic techniques forgatdpartitioning, the use of
semantic techniques for this purpose is yet to be investijat

22

References

[1] T. Ball and S. K. Rajamani. Automatically validating tporal safety properties
of interfaces. InThe 8th International SPIN Workshop on Model Checking of
Software volume 2057 of NCS pages 103-122. Springer, 2001.

[2] T.Ball and S.K. Rajamani. Boolean programs: A model aratpss for software
analysis. Technical Report 2000-14, Microsoft Researebrirary 2000.

[3] Thomas Ball, Byron Cook, Satyaki Das, and Sriram RajamaRrefining ap-
proximations in software predicate abstraction.Ttols and Algorithms for the
Construction and Analysis of Systems (TAGASyes 388—403. Springer-Verlag,
2004.

[4] Thomas Ball, Byron Cook, Shuvendu K. Lahiri, and Lintaloahg. Zapato: Au-
tomatic theorem proving for predicate abstraction refingme Computer Aided
Verification Springer-Verlag, 2004.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, andnghan Yhu. Sym-
bolic model checking without BDDs. Imools and Algorithms for Construction
and Analysis of Systensages 193-207, 1999.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang. Sym-
bolic model checking: 139 states and beyondinformation and Computatign
98(2):142-170, 1992.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and Veith H. Couexample-guided
abstraction refinement. IBAV, pages 154-169. Springer-Verlag, 2000.

[8] E. Clarke, O. Grumberg, and D.E. Long. Model checking abdtraction. In
POPL, 1992.

[9] E. Clarke, O. Grumberg, and D. Peledodel CheckingMIT Press, 1999.

[10] E. M. Clarke and E. A. Emerson. Synthesis of synchrdiopaskeletons for
branching time temporal logic. lnogic of Programs: Workshqwolume 131 of
LNCS Springer-Verlag, 1981.

[11] Edmund Clarke, Daniel Kroening, Natalia Sharyginal &aren Yorav. Predicate
abstraction of ANSI-C programs using SAT. Pmoc. of the Model Checking for
Dependable Software-Intensive Systems Workshop, Sacisca, USA2003.

[12] Edmund Clarke, Muralidhar Talupur, and Dong Wang. SAiEdd predicate ab-
straction for hardware verification. Proceedings of SAT'Q2003.

[13] M. Colon and T.E. Uribe. Generating finite-state abstioms of reactive systems
using decision procedures. Gomputer Aided Verificatigpages 293-304, 1998.

[14] Satyaki Das and David L. Dill. Successive approximatid abstract transition
relations. InProceedings of the Sixteenth Annual IEEE Symposium on liogic
Computer Scieng001. June 2001, Boston, USA.

23

[15] David Detlefs, Greg Nelson, and James B. Saxe. Simpliftheorem prover for
program checking. Technical Report HPL-2003-148, HP Lab63.

[16] S. Grafand H. Saidi. Construction of abstract statplsavith PVS. In O. Grum-
berg, editorProc. 9th INternational Conference on Computer Aided \&atfon
(CAV'97), volume 1254, pages 72—83. Springer Verlag, 1997.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. yLalstraction. In
Symposium on Principles of Programming Languageges 58—70, 2002.

[18] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, Kadneth L. McMil-
lan. Abstractions from proofs. [Rroceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languapeges 232-244.
ACM Press, 2004.

[19] IEEE Standard Verilog Hardware Description Languag&EE Standard 1364.
IEEE Computer Society Press, 2001.

[20] H. Jain, D. Kroening, and E.M. Clarke. Verification of & using predicate
abstraction. IMEMOCODE 2004IEEE, 2004.

[21] Daniel Kroening, Joel Ouaknine, Sanjit Seshia, and Gfechman. Abstraction-
based satisfiability solving of Presburger arithmeticCbomputer Aided Verifica-
tion, 2004.

[22] R.P. Kurshan. Computer-aided verification of coordinating processese th
automata-theoretic approachrinceton University Press, 1994.

[23] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, laotZhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. Aroceedings of
the 38th Design Automation Conference (DAC;(Jigges 530-535, June 2001.

[24] http:/ivisi.colorado.eduivis.

[25] L. Zhang and S. Malik. Extracting small unsatisfiableefrom unsatisfiable
boolean formulas. ISixth International Conference on Theory and Applications
of Satisfiability Testing (SAT$pringer-Verlag, 2003.

24

