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Abstract

The ability to locate network bottlenecks along end-to-paths on the Internet is of great
interest to both network operators and researchers. Fong@raknowing where bottleneck links
are, network operators can apply traffic engineering edléne interdomain or intradomain level
to improve routing. Existing bandwidth measurement toaiktb identify thelocation of bottle-
neck links. In addition, they often require access to botth points and generate huge amount
of probing packets. These drawbacks make them impractinahis paper, we present a novel
light-weight, single-end active probing toolRathneck- based a novel probing technique called
Recursive Packet Train (RPT), which allows end users toieffity and accurately locate bottle-
neck points to destinations on the Internet. We evaluateteak using trace-driven emulations and
wide area Internet experiments. In addition, we conduaresive measurements on the Internet
among carefully selected, geographically diverse probmgces and destinations to study Inter-
net bottleneck properties. We find that Pathneck can sutitlysgetect bottlenecks for over 70%
of paths, and most of the bottlenecks are fairly stable. \We e#port our success on bottleneck
inference, using multihoming and overlay routing to avaattlenecks based on the bottleneck link
location and bandwidth estimation provided by Pathneck.



1 Introduction

The ability to locate network bottlenecks along end-to-paths on the Internet is very useful for
both the end users and the Internet Service Providers (I&Ps) users can use it to estimate the
performance of an ISP, while an ISP can use it to quickly ita¢ position of network problems,
or to guide traffic engineering either at the interdomaimaradomain level.

Unfortunately, it is very hard to identify the location ofttlenecks unless one has access to
link load information forall the links along the path. Thisis a problem, especially fgutar users,
because the design of the Internet does not provide explipport for end users to gain informa-
tion about the network internals. Existing bandwidth measient tools fall short in at least two
ways. First, they focus on end-to-end performance, white/iding nolocationinformation for
the performance bottleneck. Typical examples include thekwn available bandwidth measure-
ments [1, 2, 3, 4, 5]. Second, for tools that do measure hepempyperformance, the measurement
overhead is often very high. This category includes Pathi@and BFind [7].

In this paper, we present a novel active probing toBathneck- based a novel probing tech-
nique called Recursive Packet Train (RPT). It allows endsseefficiently and accurately locate
bottleneck points on the Internet. The key idea is to combirasurement packets and load pack-
ets in a single probing packet train. Load packets emula&®dhavior of regular data traffic, and
RPT relies on the fact that congestion builds up as load psaickesue on the router interface, thus
changing the packet train length on the link. By measuring thange using the measurement
packets, the position of the congestion can be inferred. ifwpmrtant properties of RPT are that
it has low overhead and does not require access to the destina

Equipped with Pathneck, we conduct extensive measureroerite Internet among carefully
selected, geographically diverse probing sources anthdéshs to study the diversity and stabil-
ity of bottlenecks on the Internet. Our main findings include

1. Pathneck is capable of locating the bottleneck for 70%% @6 paths from most of our
probing sources.

2. Unlike the common knowledge that bottleneck locatiores rapstly on the edge links or
peering links, we find that roughly over 50% of the bottlenkations are within a single
AS.

3. In terms of stability, intra-AS bottlenecks are more kahan inter-AS bottlenecks, while
AS-level bottlenecks are more stable than router leveldrtks.

4. With the bottleneck location information, and the rougtireation for the absolute available
link bandwidth, we can successfully infer the bottleneatakions for 40% of arbitrary paths
for which we do not have measurement data.

5. Using Pathneck results from a diverse set of probing ssui@ randomly selected destina-
tions, we found that over half of all the overlay routing atfgs to avoid bottlenecks are
successful. The success of multihoming in avoiding botb&rlinks is over 78%.



This paper is organized as the following. We first present#tails of the Pathneck design and
the algorithms’ details (Section 2), followed by the toalaidation (Section 3). Using Pathneck,
we probed a large number of destinations to obtain sevdfateit data sets. Based on these data,
we study the properties of Internet bottlenecks (Sectigrhdyv to avoid the bottlenecks on the
Internet (Section 5), and the implications on multihoming averlay routing (Section 6). Related
work is discussed in Section 7. Finally, Section 8 conclindepaper together with a discussion of
future work.

2 Inferring Bottleneck Location

Our goal is to develop a tool that is light-weight, does nafuiee access to the destination, and
provides a ranking of the detected bottlenecks. In this@eete first provide some background
in available bandwidth measurement techniques and we tbscride the concept of Recursive
Packet Trains and the Pathneck tool.

2.1 Measuring Available Bandwidth

In this paper, we define the “bottleneck link” of a networktpat the link with the minimum
available bandwidth, i.e. it is the link that determines émel-to-end throughput on the path. In
our algorithm description below, we will also use the conagp'choke point”, which we define
as follows. Assume an end-to-end path from soutee R, to destinationD = R,, passes routers:
Ry, Ry, ..., R, 4. Link L; = (R;_1, R;) has available bandwidti;(1 < i < n). We define the set
of choke linksas:

CHOKEL = {Lk|Ak = min{Al, ,Ak}&Ak < Ak—la 1<k< n}
and the corresponding setdioke routersare
CHOKER ={Ri|Ly € CHOKE,1 <k <n}

We also usehoke pointas an equivalent term for choke router. Intuitively, thel@points on

a network path are the links with the minimum available baidttwfrom the source to that link’s
downstream router. Based on this definition, twtleneck linkis the choke link that has the
smallest available bandwidth. Clearly, choke points wélvé less available bandwidth as they get
closer to the destination. We will refer to the choke poirg ttee smallest available bandwidth as
“the primary choke point” (the bottleneck), the next chokepis the “second choke point”, then
the “third choke point”, etc.

Let us now review some earlier work on available bandwidthrestion. A number of projects
have developed tools that estimate the available bandwidiing a path [1, 2, 4, 5, 8]. This is
typically done by sending a probing packet train along a netwath and by measuring how
competing traffic along the path affects the length of thekpatrain (or the gaps between the
packet pairs). Intuitively, when the packet train traveradink where the available bandwidth is
less than the transmission rate of the train, the lengtheofrtiin will increase. This increase can be
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caused by higher packet transmission times (on low capkaity), or by the interleaving between

the probing packets and the background traffic packets {lgdaaded links). When the packet

train traverses a link where the available bandwidth is éighan the packet train rate, the train
length should stay the same since there should be little gqueaing at that link. As a result, the
packet train length can be used to estimate the availabl@dth on the bottleneck link; details

can be found in [2]. Using the definition introduced above,lthks that increase the length of the
packet train correspond to the choke points since they septehe links with the lowest available
bandwidth on the partial path traveled by the train so far.

Unfortunately, current techniques can only estimate ererid available bandwidth since they
can only measure the train length at the destination. Inrdad@entify the bottleneck location,
we would like to know the available bandwidth on each linkn@aohe path, so we need a probing
technique that can measure the train lengtheaohlink. In this section, we introduce a novel
packet train design — Recursive Packet Train (RPT), thatiges train length estimates for each
hop.

2.2 Recursive Packet Train

An example of a Recursive Packet Train is shown in FigurelB.this figure, every box is a UDP
packet and the number in the box is its TTL value. The probiagkpt train is composed of two
types of packets. First, we have thmeasurement packetshich are standard traceroute packets,
i.e., they are 60 bytes UDP packets, with properly filled-@&tylpad fields. The figure shows 20
measurement packets at each end of the packet train, whistsals to measure network paths
with up to 20 hops; more measurement packets should be usaddoger path. The TTL values
of the measurement packets changes linearly, as is showe figure.

measurement load packets measuremen
packets [~<——— 60 packets——————= packets

| 1] 2f [20 255 [ 2s5] | 2s5]20] [ 2] 1
== e —
40B 500B 20 packets

Figure 1: Recursive Packet Train (RPT). The number in eackgtas the TTL value.

Second, we have tHead packetghat are used to generate a packet train with a measurable
length along the network path. Similar to the PTR method 28, load packets should be large
packets that represent an average traffic load. We use 5@(phgkets as suggested in [2]. The
number of packets in the packet train determines the amdurdakground traffic that the train
can interact with, so it pays off to use a fairly long trainolr experiment, we set it empirically in
the range of 30 to 100. Automatically configuring the numbdesrobing packets is future work.

RPT works as follows. The user sends out the probing packetsto-back. When they arrive
at the first router, the first and the last packet of the traihexpire, since their TTL values are
1. As a result, the packets are dropped and the router witl s&a ICMP packets back to the
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gap value
hill point

valley point

hop count

Figure 2: Hill/valley point

source [9]. The other packets in the train are forwarded ¢ortéxt router, after their TTL is
decremented. Since the TTL values in a RPT are set recusilkielabove process is repeated on
each subsequent router. The source can noviheseme gap between the two ICMP packets from
each routerto estimate the packet train length on the incoming link af touter. This is because:
(1) the ICMP packets were generated when the head and tipathiéts of the train were dropped,
and (2) the measurement packet size is much smaller thamtddength of the train, i.e., the
change in packet train length due to the dropping of the nreasent packets can be neglected.
We will refer to the time interval between the arrival of tetiICMP packets from a router as the
gap value

2.3 Pathneck — The Bottleneck Location Inference Tool

RPT provides a way to estimate the probing packet train fengteach link along the path. We

can now use this sequence of gap values to identify the tmtafi bottleneck links — we expect

the train length to change significantly at the bottlenedksTs the basis for the Pathneck tool.
Pathneck uses three steps to detect and rank bottlenecksafmath:

1. Labeling of gap sequencewe use a sequence of RPT trains to collect gap sequences, and
identify links where the gap value changes significantlyeSénare at the candidate choke
points.

2. Averaging across gap sequencasing the labeled gap sequences from step (1), we identify
links that frequently generate significant gap changes alseclinks.

3. Ranking since network paths can have multiple choke points, Pathranks these choke
points with respect to the available bandwidth.

In the remainder of this section, we describe the algorittirasare used in each of the three steps
in more detail.

Labeling of Gap Sequences
Under ideal circumstances, a sequence of gap values wolydiramease (if the available
bandwidth on a link is not sufficient to sustain the rate ofittming packet train) or stay the
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same (if the link has enough bandwidth for the incoming pattkée), but it should never drop. In
reality, the burstiness of competing traffic and reversé pétcts add noise to the gap sequence,
and before we can identify candidate choke points we haviesmaip gap sequence. The first step
is to remove any data for routers from which we do not recemth bICMP packets. If we miss
over half of the gap values due to that, we discard the ergjeence.

The second step is to modify thell and valley points in the gap sequence (Figure 2). A
hill point is defined as a point, in a three-point groupps, p2, p3, With gap values satisfying
g1 < g2 > g3. Avalley point is defined similarly, except the conditiorclsanged ta;; > g2 < gs.
Both hill and valley points contain a drop in gap value, whittould not happen. Since in both
cases, it is a short-term (one sample) disturbances in theesee, we assume they are caused by
noise, and we replace the hill or valley poipt)Xwith the closer gap value of its two neighbors.

We are now ready to run the core part of the labeling algori(Rigure 3). The idea is to
match the gap sequence to a graph consisting of a sequenapsf(Bigure 4), where each step
corresponds to a candidate choke point. Easy to see, thigppécal clustering problem. But since
the number of hops in our problem is very limited, generadlyslthan 30 points, we use a simple
brute-force algorithm to identify the candidate choke pmirGiven a gap sequence widm. gap
values, we generate all possible step functions with round(len/2) steps. We pick the step
function that is the best fit for the gap sequence. The “bésisfilefined as the step function
for which the sum of difference between the gap sequencehansgtép function across all point
is minimal (refer to the computation @fist_sum in Figure 3). If that step function has clearly
defined steps (i.e. all steps are larger than 10@:croseconds (us)) then we take this as our fit
for the gap sequence, and we identify these steps as a setditlate choke points. If not, we
repeat the process with a function with  1)-steps. This process is repeated until we find a
segmentation where each step has a gap change larger tha#y ®0@vhenn = 0. In the latter
case we mark the first hop as the bottleneck router. The geint that steps must be larger than
10Qus is used to filter out noise. The threshold value is relatighall compared with possible
sources of error (see Section 2.4). However, at this poiniam to be conservative in discarding
candidate choke points.

Averaging across gap sequences

In order to filter out effects caused by bursty traffic on theverd and reverse path, we typically
use the results from multiple probing trains (e.g. 6-10)dmputeconfidencenformation for each
detected choke point. In this paper, we will use the term BprQ” to refer to a probing with
a single RPT, i.e. one train. We will use the term “probing $et a group of probings. The
outcome of Pathneck is the summary result of the probingsarptobing set; we will sometimes
refer to this as the probing set result.

Intuitively, the confidence is denoted as the percentagealadle bandwidth change implied
by the gap value change. The reason is that a large gap vanegelis less likely to be caused by
short-term burstiness in the traffic, so the link is moreliike be a real bottleneck. We compute
the confidence for each candidate choke point as the follows:

abs(1/g; —1/gi 1)
1/92‘—1

conf; =

Fori =1, we letcon f; = 1.



algorithm Labeling(ap)
I* gap is an gap sequence withn values */

{

return iflen < 4;
return if over half of the gap values is O;
fix the hill/valley point;

/* brute force search for the choke points */
n = round(len/2);
while (n > 1) {
for any segmentation with splitting points{
dist_sum = 0;
for each segment between two adjacent splitting pdints
Javg = avg(g; in the current segment);
dist_sum~+ = sum(|g; — Gavg|);

}

record thedist_sum,;
}
pick the segmentation with the minimudist_sum;
if (all the splitting points in this segmentation
have a gap value change100us)
return the splitting points as the set of choke points;

else
n=n-1,
¥
if (n==0){
return the first hop as the choke point;
}

Figure 3: Labeling Algorithm for a gap sequence.

For the set of choke points detected in each probing, we pitkhe candidate choke points
with conf > 0.1, for which we further calculate the detection rdteate. Hered_rate is defined
as the frequency with which a candidate choke point appedleiprobing set. Finally, we select
those choke points witli_rate > 0.5, i.e. the final choke points for a path are the high confident
candidates that appear in at least half of the probings ingame probing set

For each path, we rank the choke points based on the averpgealyees in the probing set.
Because the packet train transmission rateas the following relationship with the gap valyre

R = data_size_of train/g
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Figure 4: Matching the gap sequence to a step function.

wheredata_size_of _train is the total size for all the packets in the train. That is,|&nger the gap
value, the more the packet train was stretched out by the tinis the lower the available band-
width on the corresponding link. The link with the lowest datale bandwidth is the bottleneck of
the path.

The average gap values can also provide a rough upper and bmmed on the available
bandwidth. We have to consider three cases:

1. For a link which is identified as a choke point, i.e. its gaprge is an increase, we know
that the available bandwidth is less than the packet traimstmission rate. That is, the rate
R computed above is an upper bound for the available bandwidthe link.

2. For alink which is not a choke point and has a decrease ingap, we cannot say anything
about the available bandwidth, because the decrease iglgyataused by traffic burstiness.

3. For alink which is not a choke point and maintains its gae available bandwidth is higher
than the packet train transmission ratg.e., R is a lower bound for the available bandwidth.

Considering that we cannot control the format of the prolimagn at every link in the path and
that the available bandwidth on a link is a dynamic propdhgse are only very rough bounds.
However, they proved to be useful in our analysis in Section 5

2.4 Properties of Pathneck

Since a single packet train is used to estimate the avaitsndwidth on all links along a path,
we get a consistent set of measurements. This, for exange/saPathneck to identify multiple
choke points and to rank them. Note however Pathneck isdiageards early choke points: once
a choke point early in the path has increased the length paeke, it may no longer be possible
to “see” links downstream with similar or higher availabenblwidth.

Pathneck also meets the design goals we identified in thehiegi of this section. Pathneck
does not need the cooperation of the destination, so it canidedy used by regular network user.
Pathneck also has low overhead. Each measurement typitsal/ 6 to 10 probing trains of 60
to 100 packets each. This is very low overhead compared wdls tsuch as pathchar [6] and
BFind [7]. Finally, Pathneck is fast. For each probing tratinakes about a roundtrip time to get
the result. However, to make sure we receive all the retul@&tP packets, Pathneck generally



waits for 3 seconds — the longest RTT we have observed omlkgiter after sending out the
probing trains, and then exits. As a result, one measuregesr@rally takes less than 5 seconds.

A number of factors influence the accuracy of Pathneck. Rirsthave to consider the ICMP
packet generation time on routers. This time is differemtdifferent routers, and possibly for
different packets on the same router. As a result, the medsyap value for a router will not
exactly match the packet train length at that router. Fateiy, measurements in [10] and [11]
show that the ICMP packet generation time is pretty smallnast cases it is between J@0and
500us. Since most Internet paths have a bottleneck link with a@@paf less than 100Mbps, if
we use 100 load packets, then the corresponding packetiéragth is larger than 4ms, which is
large enough to ignore the ICMP packet generation time. 18kcas ICMP packets travel to the
source, they may encounter queue delay caused by revetsérgifit. Since this delay can be
different for different packets, it is a source of measunehegror. We are not aware of any work
that has measured this value. In our algorithm, we try toecediie impact of this factor by filtering
out the measurement outliers.

Pathneck also has some deployment limitations. First, weotgtered that network firewalls
often only let through 60 bytes UDP packets that strictlyfoom to the traceroute packet format,
while they drop any other UDP probing packets, such as the paakets in a RPT. If the sender
is behind such a firewall, Pathneck will not work. Similarfythe destination is behind a firewall,
no measurements for links behind the firewall can be obtawydeathneck. Second, even without
any firewalls, Pathneck may not be able to measure the paeketéngth on the last link, because
the ICMP packets sent by the destination host cannot be usetieory, the destination should
generate a “destination port unreachable” ICMP messagmafdr packet in the train. However, due
to ICMP rate limiting, the destination network system wyipically only generate ICMP packets
for some of the probing packets, which often does not inctheetail packet. Even if an ICMP
packet is generated for both the head and the tail packegadatemulatedCMP generation time
for the whole packet train makes the returned interval westh

3 Validation

We use both the Emulab testbed [12] and Internet paths ta@ealPathneck. The Emulab testbed
provides a fully controlled environment that allows us t@leate Pathneck with known traffic
loads, while Internet experiments are necessary to stuitiynBek with realistic background traffic.

3.1 Testbed Validation

Figure 5 shows our testbed configuration. The physical Emlin& capacity is 100Mbps, and we
set the bottleneck link capacity to 20Mbps in the experimeamsing the dummynet [13] function-
ality provided by Emulab. The link delays are roughly setubsn a traceroute measurement from
a CMU host to yahoo.com.

The background traffic is generated based on two real packetd, light-trace and heavy-
trace Thelight traceis sampled from a outgoing link of a data center connectedTieral ISP.
Its load varies from around 500Kbps to 6Mbps, with a mediad|@Mbps. Théeavy-tracds
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Figure 5: Testbed configuration. Hop O is the probing seragr 9 is the probing destination. Hop

1 - 8 work as routers, and we ugd — RS to denote them in the paper. The blank boxes are used
for background traffic generation. The dashed lines showalekground traffic flow directions for
the evaluations in “single bottleneck” and “two bottlengtk

sampled from a trace collected in front of a corporation ekw Its bandwidth varies from 4
Mbps to 36Mbps, with a median load 8Mbps. Since the tracesasebursty, this is a particularly
challenging scenario. We send traffic between each paintérs and also between routers 0 and
9, as is shown by the dashed arrows in the figure. By assigffegesht traces to different links,
we can emulate different scenarios to evaluate Pathnede tNat all the hosts on the testbed are
PCs, not routers, so the properties such as the ICMP gemretatie are different from those of a
real router. As the result, the testbed results ignore sdrtteeaouter related factors.

We ran three sets of experiments using this configuration:

1. Single Bottleneck: In this experiment, we udaght-tracefor all the load generators, but the
starting times within the trace are randomly selected. Rerl00 single-train probings that
we did, we always detect hop 7 (i.e., lifiR6, R7)) as the bottleneck. The other candidate
choke points detected are all filtered out due to small confidevalue (less than 0.1).

2. Two Bottlenecks: In this experiment, we reduce the link capacity &2, R3) from 50Mbps
to 20Mbps, and use thHeeavy-tracedor link (R6, R7), the other links keep using thight-
trace We probed 100 times; 14 probings had to be discarded dueM® IGacket loss.
Among the remaining valid 86 single-train probings, 72 jingls correctly detected these
two links as the top two choke points, in the correct ordee dther 14 probings only iden-
tified (R2, R3) as the choke point. Careful examination of the probing datavs that, for
these 14 cases$R6, R7) actually is the second choke point detected, but with a centid
less than 0.1. The reason is that the probing packet traialnesdy been stretched by the
first choke point, so the second choke point is easily hiddérs is the result of the biasing
of Pathneck in favor of the earlier choke point.

3. Reverse Path Queueing:

To study the effect of reverse path queueing, we replacetidbe-based traffic generator by
a simple UDP traffic generator so that we can controbetheragdoad placed on a link. The
instantaneous load generated by this generator followsaonential distribution, which is
used to emulate the burstiness. We use the topology of thglésbottleneck” experiment,
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Table 1: Per-link results of reverse-path traffic experitmenEmulab

routerid | detectedtimes| d_rate
2 24 0.245
3 18 0.184
4 5 0.051
5 21 0.214
6 20 0.204
7 75 0.765
8 34 0.347

i.e., the bottleneck link i$R6, R7). On all links (except the two edge links) we sent back-
ground traffic in both directions, with the average load 8&80% of the link capacity. With
this setup, we got 98 valid probing results. Theate for each router, i.e., the frequency of
that router being detected as a candidate choke pointawitli > 0.1, is shown in Table 1.
We see that, while reverse path queueing disturbs the detg¢otsome extend, only the real
bottleneck hop (R7) hasd@rate > 0.5. That is, Pathneck will output R7 as the only choke
point, thus the bottleneck.

3.2 Internet Validation

This section evaluates the performance of Pathneck omiitpaths. For a thorough evaluation we
would need to know the actual available bandwidth on all ithieslof the network path. Of course,
this information is impossible to obtain for most operatibmetworks. The Abilene backbone [14],
however, publishes its backbone topology and the traffid (Baminute SNMP statistics) [15], so
we decide to probe Abilene paths. We ran experiments fromstwioces: a CMU machine and a
host at the University of Utah.

The experiment is carried out as the follows. Based on Abitelbackbone topology, we chose
22 probing destinations for each probing source. We maketbat each of the 11 major routers
on the Abilene backbone is included in at least one probinly. g&om each probing source, we
probed every destination 100 times. We insert a 2 seconeépislgtime between two consecutive
probings. To avoid interference, the CMU and the Utah bagpdrenents were run at different
times.

Using theconf > 0.1 andd_rate > 0.5 requirements, we only detected 4 none-first-hop
bottleneck routers on the Abilene paths. This is not surgyisince Abilene paths are well known
to be over-provisioned, and we selected paths that were ab asipossible in the Abilene core.
It turns out that the probes from both sources identify dyabie same four bottleneck routers
(Table 2). Thel_rate for probes originating in Utah and CMU are very similar, pbssbecause
we took all measurements in the same 24 hours period so exgreis saw similar congestion
conditions. By examining the IP addresses, we found thatoftBe 4 cases (www.ogig.net is the
exception), both the Utah and CMU based probings are patsioggh the same bottleneck link;
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Table 2: Bottlenecks detected on Abilene Paths. Here thetdsmn “AS Path” has the format
AS1-AS2, where AS2 is the bottleneck router’'s AS, AS1 is ies-pop router’s AS.

Probe Dst d_rate (Utah)| d_rate (CMU) | Bottleneck Router IR AS Path
www.calren2.net | 0.71 0.70 137.145.11.46 2150-2150
www.princeton.edy 0.64 0.67 198.32.42.66 10466-10466
WWW.SOX.net 0.62 0.56 199.77.194.6 10490-10490
www.ogig.net 0.71 0.72 198.32.163.13 210-4600 (Utah)
11537-4600 (CMU)

an explanation is that the bottlenecks are very stablejlpgssecause they are constrained by link
capacity.

Unfortunately, except for the bottleneck to www.ogig.ratthree bottlenecks are outside of
Abilene, so we cannot get the load data. For the path to wwguogt, the bottlenecks appear to
be two different peering links. For the path from CMU to wwgig.net, the incoming link to the
bottleneck router 198.32.163.13 is an OC-3 link. Based enSNMP data that we have, which
includes all links on that path except one link inside PSGH\wai capacity of at least 1Gbps), we
are sure that the OC-3 link is indeed the bottleneck.

4 Internet Bottleneck Measurement

The primary function of the Pathneck tool is to report theatloan of the bottlenecks along end-
to-end paths. It has been a common assumption in many stidiethe bottlenecks often occur
at edge links and the peering links. In this section, we atalthis widely used assumption using
Pathneck, which is sufficiently light-weight and non-irgiee that it allows us to conduct large
scale measurements on Internet. Using the same set of datdsaook at the stability of Internet
bottlenecks.

4.1 Data Collection

We chose a set of geographically diverse nodes from Pldngtt} and RON [17] as the probing
sources. Table 3 lists all the probing nodes that we usechferpaper: node 1-25 are used for
Section 4.2 and 4.3, node 26-35 are used for Section 4.4, 3®&8 and some nodes from 1-35
are used for Section 6. They reside in 47 distinct ASes andameected to 31 upstream providers,
providing good coverage for north America and parts of Earop

We carefully chose a large set of destinations to cover ayiatinct inter-AS links as possi-
ble, using the following simple sampling algorithm. The keéga is making use of the local BGP
routing table information of the probe sources to selediiniaison IP addresses. In most cases, we
do not have access to the local BGP table; however, we alnweays have the BGP table from
the corresponding upstream provider from public BGP dataces such as RouteViews [18]. The
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upstream provider information can be obtained by perfogtiaceroute to a few randomly chosen
locations such asww. googl e. comandwww. chn. comfrom the probe sources. Note that we
may not be able to obtain the complete set of upstream pneadease of multihomed customers.
Given the routing table, we first pick a “.1” or “.129” IP addsefor each prefix possible. The
prefixes that are completely covered by its subnets are tatted. We then subsequently reduce
the set of IPs by eliminating the ones whose AS paths staftorg the probe source is part of
other AS paths. Here we make the simplification that therenig a single inter-AS link. This
assumption does not hurt, as the core of the Internet is teglgaraversed for the roughly 3500
destinations we selected from each source. For instances boks between tier-1 providers such
as AT&T and UUnet are traversed several thousand times ipmlning.

We run Pathneck on each source node as follows. For eachaksst, Pathneck continuously
probes 10 times, with 2 seconds idle time in between. Thesgrdlings form a probing set,
for which Pathneck reports the location of the choke poistsvall as a rough estimation of the
available bandwidth for the corresponding choke links. Bughe small measurement time, we
were able to finish probing around 3500 destinations withdiays. In this section, we setn f >
0.1 andd_rate > 0.5 in Pathneck as the thresholds to select choke points.

4.2 Popularity

As described in previous sections, Pathneck is able to deteltiple choke points for a network
path. In our measurements, we observed that up to 5 chokespain be detected. Figure 6 shows
the number of paths that have 0 to 5 choke points. We found fibvagll probing sources, very
few probe sets report more than 3 choke points. Fewer thanf28& paths have 4 or more choke
points. We also noticed that a good portion of the paths hawehoke point. This number varies
from 3% to 60% across the different probing sources. Thiseisegally because the traffic on
those paths are bursty enough that Pathneck could not redmtisaon under theon f > 0.1 and
d_rate > 0.5 requirements.

In our measurements, we observe that some links are detectdubke points in a large number
of paths. For a given link, we definepositive probe®f b to be the subset of probes in a probe set
for which b is a choke point. LefVumProbe(b) denote the total number of probes that traverse
the link b and Num Positive Probe(b) denote the total number of positive probes @fi all probe
sets. We compute thRopularity(b) of a link b as follows:

NumPositiveProbe(b)
NumProbe(b)

Popularity(b) =

Figure 7 shows the cumulative distribution of the popwanit a link being detected as a bot-
tleneck (the solid curve) and as a choke point (the dashes)ciar all the links observed as choke
points in our measurements. We observed in Figure 6 thatt&8a of the links never become
choke points in the probes that traverse them. Half of th&elpmint links have the probability
of 20% or less to be a choke point in the probes that traveesa.tii\bout 5% of the choke point
links are detected in all the probes. The same observatilis oo the cumulative distribution of
the popularity of a link being detected as a bottleneck, (pemary choke point).
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Table 3: Probing sources from PlanetLab (PL) and RON (RON)dénotes two probing hosts
obtrained privately.

ID Probing Source| AS Number | Location Upstream Provider(s) Testbed
1 aros 6521 uT 701 RON
2 ashburn 7911 DC 2914 PL
3 bkly-cs 25 CA 2150, 3356, 11423, 16631 PL
4 columbia 14 NY 6395 PL
5 diku 1835 Denmark 2603 PL
6 emulab 17055 uT 210 -

7 frankfurt 3356 Germany 1239, 7018 PL
8 grouse 71 GA 1239, 7018 PL
9 gs274 9 PA 5050 -
10 bkly-intel 7018 CA 1239 PL
11 intel 7018 CA 1239 RON
12 jfk1 3549 NY 1239, 7018 PL
13 jhu 5723 MD 7018 PL
14 nbgisp 18473 OR 3356 PL
15 nortel 11085 Canada 14177 RON
16 nyu 12 NY 6517, 7018 RON
17 princeton 88 NJ 7018 PL
18 purdue 17 IN 19782 PL
29 rpi 91 NY 6395 PL
20 uga 3479 GA 16631 PL
21 umass 1249 MA 2914 PL
22 unm 3388 NM 1239 PL
23 utah 17055 uT 210 PL
24 uw-cs 73 WA 101 PL
25 | vineyard 10781 MA 209, 6347 RON
26 rutgers 46 NJ 7018 PL
27 harvard 11 MA 16631 PL
28 depaul 20130 CH 6325, 16631 PL
29 toronto 239 Canada 16631 PL
30 halifax 6509 Canada 11537 PL
31 unb 611 Canada 855 PL
32 umd 27 MD 10086 PL
33 dartmouth 10755 NH 13674 PL
34 virginia 225 VA 1239 PL
35 upenn 55 PA 16631 PL
36 depaul-p 20130 CH 6325, 16631 PL
37 kaist 1781 Korea 9318 PL
38 cam-uk-p 786 UK 8918 PL
39 ucsc 5739 CA 2152 PL
40 princeton-p 88 NJ 7018 PL
41 jhu-p 5723 MD 7018 PL
42 ku 2496 KS 11317 PL
43 snu-kr 9488 Korea 4766 PL
44 bu 111 MA 209 PL
45 bkly-cs2 25 CA 2150, 3356, 11423, 16631 PL
46 northwestern 103 CH 6325 PL
47 bkly-cs3 25 CA 2150, 3356, 11423, 16631 PL
48 cmu 9 PA 5050 PL
49 dartmouth2 10755 NH 13674 PL
50 mit-pl 3 MA 1 PL
51 umd 27 MD 10886 PL
52 rpi 91 NY 6395 PL
53 stanford 32 CA 16631 PL
54 | wustl 2552 MO 2914 PL
55 msu 237 Mi 3561 PL
56 uky 10437 KY 209 PL
57 ac-uk 786 UK 3356 PL
58 caltech 31 CA 226 PL

4.3 Location

We define a linkb as anintra-AS linkif both ends ofb belong to the same AS; otherwidejs
aninter-AS link Figure 8 shows the ratios of intra-AS bottlenecks vs. #it8rbottlenecks (the
top figure) and that of intra-AS choke points vs. inter-ASlahpoints (the bottom figure) across
different probing sources. We found that, for both botttkseand choke points, over half of them
occur at intra-AS links. This is in contrast to the widely dsessumption that bottlenecks often
occur at the boundary links between networks.

For a choke pointin a probe seP, we compute iteormalized locatiorfdenoted byV L (b, P))
in the corresponding network path in the following way. gt A,, ..., A, denote the AS-level
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path, wheré: is the length of the AS path. (i) ifis in thei-th AS along the path, theN L(b, P) =
i/k. (ii) If bisthe link between theth and (+1)-th ASes, thenVL(b, P) = (i+0.5)/k. Note that
the value of N L(b, P) is in the range of [0, 1]. The smaller the value/éi.(b, P) is, the closer the
choke point is to the probing source. Thus, the normalized locatiohiafall its positive probes
P, P, ..., P, (0 <m < 10) is computed as

. ZTzl NL(b’ Pj)
N m
Since the bottleneck is the primary choke point, the definitof normalized locatioralso

NL(b)
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applies to the bottleneck.

100

920

Bottleneck (unweighted) ——
Bottleneck (weighted) - - -
Choke point (unweighted) - - - |
Choke point (weighted) ———

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Location of choke points (normalized by AS path length) Location of choke points (normalized by AS path length)

Figure 9: Cumulative distribution of the nor+igure 10: Cumulative distribution of the nor-
malized locations of bottlenecks and chokmalized location of intra-AS and inter-AS
points. choke points.

Figure 9 shows the cumulative distribution of the normalitecations for both bottlenecks
and chock points. The curves labeled “(unweighted)” shogvdtstribution of the normalized
location. The curves labeled “(weighted)” in Figure 9 shdw tistribution of the normalized
location weighted by the number of probe sets in which a Igkietected as a bottleneck or a
choke point, because we have observed in Figure 7, some digksnuch more likely to be a
bottleneck or a choke point than others.

We first observe that about 65% of the choke points appeareifiitst half of an end-to-end
path (i.e., NL(b, P) < 0.5). Second, both the bottleneck and the choke point that asedb
source are likely to be detected. This is possibly becausePek is biased to the earlier choke
points. Third, by compared the curves for the choke pointstha curves for the bottlenecks, we
found that bottleneck location are more evenly distribwieehg the end-to-end path.

Figure 10 shows the cumulative distribution of the nornedifocation for intra-AS and inter-
AS choke points, weighted by the number of probe sets in whitihk is detected as a choke
point. We observe that there is no significant bias on thetilmecaf choke points for inter-AS
and intra-AS. Compared to the inter-AS choke points, th@tAS choke points are slightly likely
to appear later in an end-to-end path. This observationkafs on the intra-AS and inter-AS
bottleneck links.

4.4 Stability

Due to the burstiness of the Internet traffic and occasiangimg changes, the bottlenecks on an
end-to-end path may change over time. In this section, wayste stability of the bottlenecks.
In our measurements, we randomly selected 10 probing sbinma the PlanetLab nodes (node
26 - 35 in Table 3). We sampled 30 destinations randomly froensiet of destinations obtained
in Section 4.1. Figure 11 shows the pseudo-code for the Bmpets conducted at each probing
source. The measurement lasts three hours. From a giverestiugre are 45 probes to each of the
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1. For each epoch

2. Repeaf

3 Randomize the destination sequence;
4 For each destinatiof

5. Probe once;

6 Sleep 1 second;

7 ¥

8. }

9. if (end of epoch)

10. For each destinatioh

11. Detect choke points based on probes
12. in the current epoch;

13. }

14. }

15}

Figure 11: Experiments for stability evaluation.

destinations. We divide these 45 probes into 9 epochs ofHe2@minutes, the probe set in each
epoch contains 5 probes between a pair of source and destind®athneck then reports choke
points for each probe set.

Let NumPositive Probe;(b) denote the number of probes wheéres a choke point in probe
seti. The stability of the choke poirdtover a period of, epochs is defined as

Stability(b) = Z NumPositive Probe;(b)

i=1

The same definition applies to bottlenecks.

Note that the range oftability(b) is [0.5, n] becaused_rate > 0.5. The dash curve in
Figure 12 shows the cumulative distribution of the stapilét router level) for choke points over
9 measurement epochs. We observed that there are few liakaréhchoke points in all of the 9
epochs. Compared with the stability of choke points, thédérécks (the solid curve in Figure 12)
shows similar stability over measurement epochs.

Figure 13 shows the stability (at router level) of the in&&-and inter-AS choke points over
time. We found that inter-AS choke points are more stabla tha intra-AS choke points. Com-
paring the top and the middle curves in Figure 13, we found ttheintra-AS choke points are
more stable at the AS level (the curve labeled “intra-ASl8vthan at the router level. Similar
observations apply to the bottlenecks (not shown in Fig@je 1
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Figure 12: The stability of bottlenecks andrigure 13: The stability of intra-AS vs inter-
choke points. AS choke points over time.

5 Building a Bottleneck Map for Inference

In this section, we look at the problem of inferring a netwpath bottleneck without really probing
that path. This ability can significantly reduce the amoudrgrobing traffic.

5.1 Methodology

One naive approach is to first gather the layer-3 Internatltmy, probe large number of destina-
tions from varies vantage points to cover all links, and @ateoeach link with estimated bounds
on available bandwidth. As exemplified by the Rocketfueigub[19], inferring the topology of a
single ISP is already a difficult task. The scale of the Indeprecludes us from using a complete
layer-3 topology.

Although there are millions of layer-3 routers, the numbeawtonomous systems (AS) is
significantly smaller. It is thus tempting to use an AS levelgh and to annotate the edges to
neighboring ASes with bandwidth estimates. However, bygdiis, we over-simplify the diver-
sity of links between a pair of ASes since we combine multp#ering links into a single path.
Instead, we preserve all the peering links between a paiSafsfy treating them as parallel links,
and we annotate separately them with available bandwidésorement obtained from our tool.
Since the number of intra-AS links can be huge, we cannot toget measurements for all of
them. Instead, our data collection focuses on getting rmeasnts for most of the peering links
between ASes based on the BGP routing table information.

Since a router may have multiple links numbered by diffeienaddresses, we have to deal
with the router alias issue. To figure out whether two IP askle belong to the same router, we
make use of the todllly to resolve alias. The tool is described in detail in [19].
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5.2 Inference method and experimental results

We divide the data we gathered into two parts. The first pati@probing data is used to annotate
our inference graph. That is, we label links in the inferegph using an upper bourisi, (L;)
and lower boundB,(L;) for the available bandwidth of each link obtained by using the algo-
rithm presented in Section 2. The second part of the dateeis iog inference validation, i.e. we
evaluate how well the available bandwidth information aied from the inference graph matches
the second set of probing results.

We use a pair of source and destination to identifyash Let us denote the set of paths in
the second part of the data Astheinference setFor each patl® in the inference sef, we look
at B,(L;) and By(L;) of each linkL; € P in our annotated topology. We use the lihk with
the lowestB,(L;) as the inferred bottleneck link. We then compare the boundhi® inferred
bottleneckZ, with the probing resuilt.

We define three types of inferences based on the informatdmawve available in our annotated
map. Atype-0 inferenceorresponds to the case where we have upper bound estiR\dtes for
each IP linkZ; in P in our annotated map. #&pe-1 inferenceorresponds to the case where we
do not have upper bound estimation for at least one intrak®Gh P, but, we have upper bound
estimationB, (L;) for each inter-AS linkZ; in P. Finally, atype-2 inferenceorresponds to the
case where we do not have upper bound estimate for at leagttend\S link in P, but we have
B.(L;) information for each intra-AS linld; in P. In the remaining case we are missing both
inter-AS and intra-AS links in the path and we do not try tethe bottleneck because of lack of
information. This eliminates 33% of the paths, leaving 6 0%¢ used in the evaluation.

Table 4: Percentage of Correct and Incorrect Inferences

Type | Correct| Incorrect
0 19% 11%
1 15% 13%
2 6% 3%
Total | 40% 27%

We first randomly select 60% of the probing sets (or pathsdhoiotating the AS-level topology
map, leaving the remaining 40% for inference validationefBare 13,292 paths for which we have
enough confidence that the bottleneck is inside the netwarknot on the first hop), according to
the Pathneck algorithm. We focus on these paths that hatlemetks. Table 4 shows the correct
and incorrect percentages of our inference. We correctiyrried the bottleneck locations of 19%
of the 13,292 paths for type-0 inference. Sum up all threesygf inference, we can correctly
infer 40% (out of 67%) of the total bottleneck paths, whileirfo (out of 67%) the inference is
incorrect, i.e. the bottleneck link is off by one or more hops

We decided to investigate the cases where we identified tbegupottleneck more carefully.
For type-0 inferences, 60% of the incorrect inferences aectd the fact that we do not have much
information on the true bottleneck link, i.e. the true bentck link only appears as a bottleneck
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for fewer than 2 paths in the set of data we used to annotatadpebecause the link was covered
by very few probings. For the incorrect inferences of typd11% of them are due to the fact that
we do not have any information of the true bottleneck link ur bottleneck map. Overall, this
leaves only about 10% (out of 67%) of the paths with incorrestilts.

6 Avoiding Bottlenecks

6.1 Overlay Routing

Overlay routing or application layer routing refers to tkea of going through one or more in-
termediate nodes before going to the destination. Thenmgdiate nodes act as application layer
routers or overlay nodes so they forward traffic but usuatlyndt do any additional processing.
Previous studies [20, 17] have shown that by going througimi@mmediate node, the round trip
delay can be significantly improved and routing failuresloamypassed. In such cases, the part of
the network experiencing congestion or routing problenes/@ded. Note that between any two
overlay nodes or between an overlay node and either theeouestination, regular IP routing
is used to route traffic. One of the reasons why such “triaanjubuting works is that BGP-the
Inter-domain Routing Protocol, does not optimize for netymerformance in terms of delay, loss
rate or bandwidth. Shortest AS-path-based routing doeslwatys yield the best performing paths
because of path inflation [21, 22].

Overlay routing can thus be used to avoid bottleneck linkh@underlying IP path, thereby
improving application level performance in terms of thrbpgt or available bandwidth. So far, no
studies have quantified the benefit overlay routing provildasoiding bottleneck links. To the best
of our knowledge, this study presents the very first largéesmaalysis of how overlay routing can
improve the available bandwidth of a path. Most of the nodesfwhich we performed probing
are well connected,e., they receive upstream Internet service from a tier-1 ISPwbld like
to understand the usefulness of overlay routing when thiegpnodes serve as overlay routers for
paths destined to arbitrary locations in the Internet. Wadluke following probing methodology
to gather the data for this study.

Methodology: We select 27 RON and Planetlab nodes as both the source nudleserlay
nodes. Using a BGP table from a large tier-1 ISP, we sampédandom IP addresses from a
diverse set of prefixes in the BGP table; each IP addressatig from a different AS and ends
with ”.1” to minimize the chance of triggering alarms at firgg. From each probing source we
performed the probing process described below during time $ime period to minimize the effect
of transient congestion or any other causes for non-sttyobottleneck links. Given the list of
200 target IP addresses, each source node S probes eachdBsatidltimes using Pathneck. After
probing each target IP address, it randomly selects 8 nodesthe set of 27 source nodes. For
each of these 8 nodes, S again probes each of them 10 timegrdhing methodology is designed
to study the effectiveness of overlay routing in avoidingtleoeck links in a fair manner, as the
probing of the following three paths occur very close in tins¢ — D, S; — S, andS; — D.
The bottleneck link available bandwidth is calculated kblage the largest gap value in the path
across the 10 probing results.
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Figure 14: Improvement in reducing lowefigure 15: Improvement in reducing upper
bound of the bottleneck link available bandbound of the bottleneck link available band-
width by overlay routing. width by overlay routing.

For each destination from a given source, we calculate therlbound and upper bound of the
bottleneck link available bandwidth. When composing twthpauch as; — S, with S; — D,
the lower bound of this overlay path is assumed to be the mimaf the two lower bound values
from the individual paths. The upper bound of an overlay pattalculated in the same manner.
We only consider the effectiveness of overlay routing byngdhrough a single intermediate node,
similar to previous studies.

Results: We now present the results of our overlay routing study. @6t 440 overlay at-
temptsj.e.,routing to a destination by going through an intermediateng?.72% aresuccessful
We define success loosely as either the lower bound of thiebetk link increasing or the upper
bound increasing. If we require both bounds to increasesticeess rate i55.92%; 17.39% and
19.40% are the breakdown for the cases when only the lower boundedbdktleneck bandwidth
value increases or only the upper bound increases. Thedtigg&erence in the increase of the
upper bound of the bottleneck link available bandwidth igertban 900Mbps; the corresponding
value for the lower bound is 77Mbps. The distribution of thprovement in bottleneck available
bandwidth values for upper bound and lower is shown in Figdreand 15. The two figures show
that most improvement in the upper bound is below 100Mbyzd;ftr the lower bound is 20Mbps.

We now examine more closely how useful the overlay nodesaaredch source node for the
200 randomly selected destinations. We studied whether ordgiBp overlay nodes are helpful
for a given source node and found that at almost all 27 lonatimore tha®0% of the overlay
nodes can be used for reachisgmedestinations with improved performance. A few exceptions
stand out: mazul finds only 8 out of 27 nodes useful in termmpfoving available bandwidth,
and the Cornell site finds 67% or 18 nodes helpful. It is wottievto investigate these two sites
further. Most likely the path between these two sites anchuosen destinations have quite good
performance already, hence overlay routing does not helporfy the other sites, where most of
the randomly selected overlay nodes seem to help in reddleengottleneck link bandwidth, we
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studied the data in more details to see whether any pantioulay nodes are always helpful for
a given source node. Surprisingly, the answer is yes. Infacmost source nodes, there are at 2
to 3 overlay nodes that can improve performance for more #6&hof the cases examined. For
example, when using Vineyard as a source, jfk1, bkly-cspamdue all achieve ovérR% success
rate when used as overlay nodes. Such information is vepfuiah making overlay routing
decisions, as we discuss below.

Discussion: The study presented here has several important implicafmnhow to select
overlay nodes and for improving overlay routing strategi®gpically overlay node selection re-
quires continuous probing and monitoring between the sonoxe and the overlay node, and
between the overlay node and the destination node. This@olis not scalable if one has to do
probing exhaustively for every combination of destinasiand candidate overlay nodes. To mini-
mize measurement overhead, one can make use of the topafogyation to predict how likely
an intermediate overlay node can help improve performameeparticular destination. Pathneck
presents two opportunities here: (1) Pathneck is very belpfidentifying both the location of
static bottleneck links and overlay nodes that always sesdpful in avoiding such links. (2) Path-
neck is light-weight enough to be used on-demand to decidehwipstream provider to use for
routing bandwidth-intensive applications or applicaioequiring a minimal amount of bandwidth
to functione.g.,multimedia streaming.

6.2 Multihoming

Large enterprise networks oftenultihometo different providers. The multihomed network usu-
ally has its own Autonomous System (AS) number and it exchamguting information with its
upstream providers via Border Gateway Protocol (BGP). Tiggral motivation for multihoming

is to achieve resilient network connectivity or redundaimcgase the connectivity to one ISP fails
or one of the ISP experiences severe routing outages. HEisteerpetworks usually require higher
level of reliability for their connectivity to the rest of éhinternet. Multihoming can not only in-
crease the availability of network connectivity, but it cso improve performance by allowing
multihomed customers to route traffic through differentttgesm providers based the routing per-
formance to a given destination. A recent study [23] has shthat, by carefully choosing the
right set of upstream providers, high-volume content meks can gain significant performance
benefit from multihoming.

The reliability benefit offered by multihoming depends Hygbn the routing path diversity and
the location of failures or performance bottlenecks. Famegle, if a network is multihomed to two
providers that route large portions of its traffic via paththgignificant overlap, then the benefits
of multihoming will be sharply diminished since it will noekable to recover from failures in the
shared paths. As a result, we consider the following two lerob: (1) Given the set of popular
destinations a network frequently accesses, which upstpeavider should the network consider
using? (2) Given a set of upstream providers, which provatheuld be used to reach a given
destination. Clearly we would like to do the selection withexpensive probing. We show that
Pathneck can help answer both these questions.To the bmst kiiowledge, this is the first study
to examine the benefit of multihoming on avoid bottleneckdiby quantifying the reduction the
bottleneck link available bandwidth.
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Table 5: Grouping based on coarse-grained geographic ptogemity.

Group name Group member success
rate

sf bkly-cs, ucsc, stanford, caltech | 94%

nyc princeton-p, jhu-p, bu 99%

umd, rpi, mit-pl, dartmouth, cmu

kansas ku, wustl 90%

chicago depaul-p, umich, uky, northwest, msu98%

britain cam-uk-p, ac-uk 17%

korea kaist-kr, snu-kr 74%

Methodology: To understand the effect of multihoming on avoiding botehn links, one
would ideally probe from the same location by going througffecent upstream providers to
several selected destinations. A previous study [23] satedl this by probing from nodes within
the same city but connected through different upstreamigeos. Unfortunately, very few of our
probe nodes are located in the same city and have differestitagmm providers. We simulate this
by choosing 24 geographically close probe sources belgrgidifferent organizations as shown
in Table 5. We approximate the members in the same group t@tesnwithin the same city.
Arguably this is a simplification; however, the geographatahce between any two nodes within
the same group is small enough relative to the diverse set08f) destinations we selected for
probing.

To evaluate the effectiveness of multihoming, for each gaglgic group, we examine the bot-
tleneck link available bandwidth of the path to the sameidasbn from each member in the
group. If the improvement or increase in the lower bound ertpper bound from the worst path
compared with any other path in the group is more than 50%iginal value, then we declare it
a success.

Results: Among all42, 285 comparisons we are able to make across all probe locatiang, m
than78% of them are successful cases. This is very encouraging awasshat multihoming sig-
nificantly helps in avoiding bottleneck links. However, wagghasize that the result is artificially
inflated by the way the probe destinations are selected wcred the chance of discovering the
last mile bottleneck link at the destination site. Many oé firobe destinations selected are not
stub networks and most of them do not correspond to addreseatl hosts. Furthermore, fire-
walls often prevent outgoing ICMP packets and thus rendd?iathneck ineffective at identifying
last mile bottleneck links near the destination site. We péeimprove the tool in this regard in the
near future. Nevertheless, our results also indicate thetilmoming is very effective at avoiding
any last-mile bottleneck links near the source or bottl&rhie&s inside the core. To be more con-
servative, if we require both the upper bound as well the tdweeind to improve by 50%, then the
success rate is reduced to exactly 50%.

Examining the success rate for each group in Table 5 revenis interesting characteristics.
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Figure 16: Improvement in avoiding bottleneck links givingrease in providers.

First of all, the bigger the group, the higher the success r&br the two non North American
sites — Britain and Korea, the success rate is significaatet. Our conjecture to explain this is
that the transoceanic links become the main bottleneckaditkcannot be avoided by choosing a
nearby source node within the same country.

It is intuitive that there is diminishing returns in multiming to more providers in improving
performance. A previous study [23] has shown this with resfgereducing Web object download
time. We now examine such effect in reducing the bottlenadk bandwidth value. Figure 16
shows that there steadyimprovement in reducing bottleneck link bandwidth valug$hee success
rate continuously to increase. We plan to investigate thihér with more probe source locations.

Discussion: The results in the multihoming study is quite encouragintggmimes validating the
usefulness of Pathneck in understanding the benefit of Inauiting as well as the actual benefit.
Similar to overlay routing, Pathneck is extremely usefuliaking route selection decisions.

7 Related Work

Bandwidth estimation techniques, specifically availat@adwidth estimation algorithms [8, 1, 3,
2, 4, 5], measure network throughput, which is very closelgted to congestion. However, they
provide no location information for the congestion points@, all these tools, except cprobe [8],
need the cooperation of the destination. That makes theyrhaed to deploy.

Packet loss rate is another metric that is related to udéictperformance, especially for TCP
traffic [24]. Besides tools that can directly measure thevost path loss rate, such as Sting [25],
the tool Tulip [26] can accurately pin point the packet lossifion.

The tools that are most closely related to Pathneck incluaigoGche [27], Packet Tailgat-
ing [28], BFind [7] and pathchar [6]. Cartouche uses a patin with different packet size to
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measure the bandwidth for any segment of the network pattkePdailgating works by setting
the packet interval within the same packet train. It also loos the load packets and measure-
ment packets, but instead of letting measurement packpiseex lets load packets expire. Both
Cartouche and Packet Tailgating need two end control.

BFind adds a steady UDP flow to the network path, and graduadhgases its throughput. At
the same time, traceroute is used to monitor the RTT changeesdl the routers on the path. When
the UDP flow throughput approaches the available bandwildiihgathe path, the RTT from the
source to the bottleneck router is expected to change mygméisantly than that to non-bottleneck
routers. One of the problems of BFind is that the UDP flow gatesr a heavy measurement
overhead, which is undesirable for a general purpose pydbii.

Pathchar [6] estimates the capacity of each link on a netwatlk. The main idea is to measure
the data transmission time on each link. This is done by tathie difference between the RTTs
from the source to two adjacent routers. To filter out measarg noises due to factors such as
gueueing delay, pathchar needs to send a large number afgnudckets, picking out the smallest
RTT values for the final calculation. As a result, pathchaodlas a large probing overhead.

Due to the lack of a measurement tool, there is not a lot ofyaigabn Internet bottlenecks.
We are only aware the analysis in [7], which shows that moshefbottlenecks are in the edge
links and peering links. Due to the limitation of BFind, thesults are inconclusive. Pathneck
overcomes many of the limitations in BFind. Based on thed®GP database that we can access,
we can also probe the Internet in a more systematic way, tlirggour analysis a broader scope.

Several studies have shown that overlay routing [17, 20]tispath routing [29, 30, 31], and
multihoming [32, 33] benefit end user data transmission blycang the packet loss rate and in-
creasing end-to-end throughput. Their experiments méadysed on link failure or packet loss.
In contrast, our work takes a complete different angle Inglat this problem by identifying the
location of the tightest links and by examining the use ofrlayerouting and multi-homing to
avoid bottlenecks. Our work shows the benefit of overlayinguand multihoming and suggest
efficient route selection algorithms.

8 Conclusion and Future Work

In this paper, we present a novel light-weight, single-ectiva probing tool Pathneck- based
a novel probing technique called Recursive Packet Traim jRPathneck allows end users to effi-
ciently and accurately locate bottleneck points to dettina on the Internet. We show that Path-
neck can successfully detect bottlenecks for over 70% dfgpadm most of our Internet probing
sources. Based on the extensive Internet measurementsdaddinover 50% of the bottlenecks
are within a single ISP, and most of the bottlenecks areypstdible. We also achieve fairly good
performance on the bottleneck inference for those pathsemie do not have probing data. With
the bottleneck location information, we also find over hélfr@ overlay routing attempts to avoid
bottlenecks are successful, and multihoming can sucdisatoid bottlenecks in over 78% of the
cases.

In this paper, we only analyze some aspects of Internetdneitks. There are many other
important research issues we can look at:
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. The time properties of bottleneck changes All the results studied in this paper are col-

lected within two weeks. Although we already see some istarg bottleneck dynamics,
we can not make conclusive statement on the dynamic prepestit. We hope to do longer
time scale probing in the future to study this property.

. The impact of Internet topology on bottleneck locations We know that the Internet topol-

ogy keeps changing, and it would be very interesting to know tihat impacts the bottleneck
positions. Knowing that is very useful for network mainteoa planning.

. Improvement on Pathneck An attractive feature of Pathneck is its low probing oveuhe

It allows us to quickly collect the probing results for a la@mount of Internet paths. But in
this paper, we did not study the properties related with dlagl [packet size and the number
of load packets in a RPT. For example, how do they affect thasomement accuracy, and
how to automatically set their value based on different padperties. That will help us to
further reduce the overhead both of the probing itself, dtldeemanagement of the probing.
That is the key to make Pathneck a general purpose tool lilgegnid traceroute.

. AS-based bottleneck analysis We treat different tiers of ASes the same in this paper,

focusing on understanding the bottleneck properties imthele Internet. It would also be
very intriguing to understand the bottleneck propertigsdifferent tiers of ASes, and the
difference among different ASes in the same tier.
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