RPT: A Low Overhead Single-End Probing Tool
for Detecting Network Congestion Positions

Ningning Hu, Peter Steenkiste

December 20, 2003
CMU-CS-03-218

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Detecting the points of network congestion is an intriguiegearch problem, because this infor-
mation can benefit both regular network users and Interngic®eProviders. This is also a highly
challenging problem, because the Internet is designedawd® only end-to-end services, and
its internals are in principal invisible to end users. Catreechniques used to detect bottleneck
positions have problems such as high probing overhead andnleasurement accuracy. In this
paper, we propose using Recursive Packet Trains (RPT) ¢éatdée network congestion position.
RPT combines two types of probing packets — measuremeneéfsaaid load packets —in a single
probing packet train. The idea is to let load packets geaergiacket queue on the router, and to
use the measurement packets at the beginning and the ergltaditnto measure the packet train
length. By detecting the changes in the packet train lengéhcan derive the congestion points
of the network path. RPT has the advantages that it only n@adte-end control and that it has
relatively low overhead. In this paper, we present the algorand evaluate it using both testbed
experiments and Internet experiments.

This research was sponsored in part by DARPA under conte0602-99-1-0518, F30602-96-1-0287, and
N66001-99-2-8918, and by NSF under award number CCR-020526

The views and conclusions contained in this document argetbbthe authors and should not be interpreted as
representing official policies, either expressed or inthlef DARPA or the U.S. Government.

Keywords: Network measurements, active probing, packet train, cstiaye

1 Introduction

In this paper, the congestion position is defined as a netiitlor router that determines or sig-
nificantly affects the data transmission throughput alongtavork path. Knowing the congestion
positions is extremely useful for both the end users andrttegriet Service Providers (ISPs). The
end users can use it to estimate the performance of an ISl arhiSP can use it to quickly locate
the position of network problems.

Measuring network performance such as the end-to-endadaibandwidth has been an active
research area. However the proposed techniques fall shatrteast two ways. First, they focus on
end-to-end performance, while providing no location infation for the performance bottleneck.
Typical examples include the work on available bandwidtlasueements [10, 8, 12, 15, 17]. Sec-
ond, for tools that do measure the hop-by-hop performameenteasurement overhead is often
very high. This category includes Pathchar [9] and BFind [5]

We regard two properties as important for a network congegipint detection tool: single-
end control and low overhead. In this paper, we propose RBewyrsive Packet Trains (RPT) to
achieve these two goals. The key idea is to combine measuntgraekets and load packets in a
single probing packet train. RPT relies on the fact that estign builds up as load packets queue
on the router interface, thus changing the packet traintkeoig the link. By measuring this change
using the measurement packets, the position of the congesin be derived.

In this paper, load packets emulate the behavior of regalta plckets. That is because during
their transmission, they interleave with the backgroumdfit, which enables us to capture the
network properties that we want. Measurement packets aa# probing packets, similar to those
used by standard network tools like ping, traceroute, ete. measurement packets are used when
we do not require any interaction between the probing packed the background traffic packets.

This paper has two parts: the algorithm description and énfopnance evaluation. In Section
3, we describe the idea of Recursive Packet Trains, andngraggeliminary algorithm to detect
the congestion position. The rest of the paper is devotetddgerformance evaluation, which
includes both Emulab testbed experiments (Section 4) aedniet experiments (Section 5). We
start with a discussion of related work.

2 Related Work

The most widely used active probing tools are ping and trager Ping uses an ICMP echo packet
to measure the round-trip time (RTT) to a specific destimatitraceroute sets the TTL in the IP
header to trigger responses from the routers along the nlevath, thus collecting the hostname
and RTT of the routers. However, the only performance infidiam provided by these tools is
RTT, which is not directly related to congestion.

Bandwidth estimation techniques, specifically availaldadwidth estimation algorithms [10,
8, 12, 15, 17], measure network throughput, which is morsatiorelated to congestion. However,
they provide no location information for the congestionioAlso, all these tools, except cprobe,
need the cooperation of the destination. That makes theyrheed to deploy.

Packet loss rate is another metric that is related to usHictgerformance, especially the
performance of TCP traffic [13]. Besides tools that can diyaoeasure the network path loss rate

such as Sting [16], there has been a tool Tulip [11] that caarately pin point the packet loss
position.

The tool is most closely related to RPT are BFind [5] and pain¢9]. BFind adds a steady
UDP flow to the network path, and gradually increases itsufinput. At the same time, tracer-
oute is used to monitor the RTT changes from all the routertherpath. When the UDP flow
throughput approaches the available bandwidth along ttig pae RTT from the source to the
bottleneck router is expected to change more significan#ig that to non-bottleneck routers. One
of the problems of BFind is that the UDP flow generates a heaagsurement overhead, which is
undesirable for a general purpose probing tool.

Pathchar [9] was designed earlier. It is used to estimatedhacity of each link on a network
path. The main idea is to measure the data transmission tine@ch link. This is done by taking
the difference between the RTTs from the source to two adfaoceters. To filter out measurement
noises due to factors such as queueing delay, pathchar teeselsd out a large number of probing
packets, picking out the smallest RTT values for the finatwdation. As a result, pathchar also
has a large probing overhead.

3 The Probing Algorithm

The key intuition that motivates this algorithm is: when alpng packet train passes through the
routers along a network path, its total length changes \witichange of the available bandwidth on
each link. The change due to two reasons: the packet trasismigme is different on links with
different capacities, and the interaction with backgrotnadfic packets can increase or decrease
the total packet train length. We expect the largest chamd@ppen at the congestion points. To
implement this idea, we need a probing technique that casunedhe train length oeach link,
which is done by a novel packet train design — Recursive Ralokeen (RPT), and an algorithm
that can extract the exact congestion positions. In thisaeave first describe the structure of the
RPT, we then present the algorithm used to detect the copgstions, and finally we discuss the
properties of the RPT technique.

 ~=——60packets——=
| 1] 2| |20] 255 | 255 | | 255]20] | 2] 1
= —
408 5008

Figure 1: Recursive Packet Train (RPT). The number in eackgtas the TTL value.

3.1 Recursive Packet Train

An example of a Recursive Packet Train is shown in Figure Xhifigure, every box is a UDP
packet, the numbers in the boxes are the TTL values. The vgnoleng packet train is composed
of two types of packets —measurement packets, andload packets:

1. Measurement packets are standard traceroute packetshey are 40 bytes UDP packets,
with properly filled-in payload fields. There are 20 measwegrtipackets, at either end of
the packet train. The TTL value of each measurement packieieiarly incremented from
the head/tail packet, and the head/tail packet has TTL \ialliée train in Figure 1 can only
measure a network path with no more than 20 hops, becauss artiya 20 measurement
packets on both ends, but we can easily add more measureawetp for a longer path.

2. Load packets are used to generate a packet train with aunaéde length along the net-
work path. The load packets should be large packets. The si&cis configurable in our
implementation. In the following experiments, we set it @)%ytes.

The number of packets in the packet train determines the ahudlackground traffic that
it can interact with. As a result, this number should be ydafge. In our experiment, we set
it empirically in the range of 60 to 100. Automatically confighg the number of probing
packets is future work.

RPT works as follows. The user sends out all the packets tmblck. When they arrive at
the first router, the first and the last packet will expire aeddbopped because their TTL values
are 1, resulting in two ICMP packets being generated [14]e ®ther packets in the train are
forwarded to the next router, with their TTL decremented b$ihce the TTL values in a RPT are
set recursively, the above process is repeated on eachosidmg@outer. This method of probing is
calledRecursive Probing.

The key to the probing procedure is as followise time gap between the two ICMP packets
from each router is a close approximation of the time length of the packet train on the incoming
link of that router. This is because: (1) each router only drops the head anditimedasurement
packets, and (2) the measurement packet size is much sitiallethe total size of the train, i.e.,
the change of packet train length due to the dropping of theesomement packets can be neglected.
In the following, we refer to the interval between two ICMPRckats from the same router as the
gap value.

3.2 The Detection Algorithm

RPT provides a way to get the probing packet train length ah etwork link along the path,
i.e., a sequence of gap values. With these gap values, isslge to find out the exact congestion
position — we expect the train length to change significaatlyhe congestion point. We now
present an algorithm that can detect the congestion podition a sequence of gap values.

Figure 2 shows the pesudo-code for the detection algorithtuitively, the algorithm searches
for the positions where the gap value has a significant chargydo this, we classify the gap value
changes into two categorieswitch points, andstage points. A switch point is defined as a change
that lasts for at least two hops; while a stage point is justange for a single hop, whose gap
value may or may not be the same in the next hop. Figure 3(&}iilites this difference.

The reason for making this distinction is to filter out gapweathanges due to non-congestion
factors. As will be discussed in the next section, there @oerhajor non-congestion factors —
the time used by routers to generate ICMP packets and repatsequeueing. To distill the real
congestion induced changes, we rely on the observatiorctimgestion induced gap values will

Algorithm CongestionDetectgap)
[* gap is an gap sequence withn values */

{

return iflen < 4;

return if over half of the gap values is 0O;

fix the outliers;

fix the hill/valley point;

[* search for switch points */

if (len >= 12) { /* look for 3 switch points */
switch[0..2] = SEGMENT3(gap);

} else if(len >=6) { /* look for 2 switch points */
switch[0..1] = SEGMENT2(gap);

} else {/*onlylook for 1 switch point */
switch[0] = SEGMENTL(gap);

}

[* search for the stage point */

for iin (1..(len — 1)) {
dif fli — 1] = abs(gapli] — gap[i — 1]);

}

stage = get the largest 3 elements frafif f;

compare with the previous £age record, if a hop is labelled
for less than 4 times, it will not be included in the compamnigothe next step;

* output */

compareswitch with stage, output the 3 hops with the largest change;

}

Figure 2: The Congestion Detection Algorithm

typically be maintained by subsequent routers. Theretbeegap value sequence is expected to
have a square wave shape. Otherwise, the gap change duecomgestion reasons is more likely
to be inconsistent. So if we detect a square wave in the sequdrgap values, as defined by the
switch point, we have a higher confidence that it is causedhgestion.

To search for the switch point, we use a simple brute-forgerghm. By default, we search for
3 switch points. We arbitrarily split the gap sequence insegments, with at least 2 points in each
segment. This requires the sequence to have at least 8 .pbintsir algorithm, we only search
sequences that have at least 12 points, so that we can coamparey several combinations. For
each segment, we compute its average, and the distancetopeiat to this average. We use the
sum of the computed distances to indicate how good the sdgti@napproaches a square wave
— the smaller, the better. We output the segmentation wahmmimum sum. As just noted, we
need at least 12 points to search for 3 switch points. Foitshsequences, we only look for 2 (for

4

gap value 5 6 gap value
= hill point

switch point- -~

v
2 . :
stage point

) valley point)
time time

() (b)

Figure 3: Switch/stage point & hill/valley point

a 6-11 point sequence) or 1 (for a sequence with less thaméspsiwitch points.

For the stage point, since itis for only one hop, itis verydtaruse the probing result of a single
RPT to determine whether it is congestion induced. Instesdcompare multiple consecutive
probing results to decide whether a stage point on a paatidwdp occurs consistently. For this
reason, we need to maintairsiage point history. In our algorithm, we compare 5 probings. If a
stage point at a hop occurs at least 4 times, we label it asestiog induced.

So far, we did not consider measurement noise, which is udabte in probing. Here, we list
two of the important techniques that deal with noise and ptldss:

1. We need two ICMP packets from each router to compute thevglae. If at least one of
them is lost, we will have a 0 gap value. If over half of the gajues are 0, we discard the
whole sequence.

2. We need to modify thhill/valley point (Figure 3(b)). A hill point is defined as a pojmtin
a triple-point groupps, p2, p3, with gap values satisfyin®g; < g, > 2g3. A valley point is
defined similarly, except the condition is changedto> 2g, < gs. Intuitively, a hill/valley
point is a burst in a time series measurement. But in the RBBipy, this type of burst is
not expected, since the gap value on one router tends to beaimad or increased by the
next router. For this reason, we regard a burst as an indicafimeasurement noise. In our
algorithm, we replace, with the closer gap value of its two neighbors.

3.3 Properties of RPT
From the above discussion, we can see that the main prapeftiRPT include:

1. Time consistent measurements. As described above, theafaes from different routers
are triggered by theame RPT, and the measurement times are very close. That allows us
to directly compare the measurements from adjacent roufdris property also enables us
to catch all the congestion points along the path that chdregpacket train length. That is,
RPT is potentially capable of detecting multiple congespoints. Note that RPT is biased
to early congestion points, because a congestion point @adwp part of the path can hide a
later congestion with similar properties.

5

2. Single-end control. RPT does not need the cooperationeofiéstination, and can thus be
easily used by a regular network user.

3. Low overhead. For the case in Figure 1, one probing onlg$4€0 packets. For better
measurement accuracy, we may need multiple RPTs to do théngroEven so, this is an
extremely light-weight probing technique, comparing witithchar and BFind,

In terms of the measurement accuracy, the following faateed to be considered:

1. ICMP packet generation time. A router needs time to geed¢he ICMP response packets.
That time is different for different routers, and possibdy flifferent packets on the same
router. As a result, the measured gap value for a router willexactly equal the packet
train length when passing that router. Fortunately, mesmsants in [7] and [6] show that
the ICMP packet generation time is pretty small; in most sasés between 200us and
500us. So if the packet train length is much larger than 50@us reasonable to neglect
this generation time. Since most Internet paths have agoeitk link with a capacity of less
than 100Mbps, and we use 100 load packets for the Internetiexgent, the corresponding
packet train length is larger than 4ms, which we regard @&lanough to ignore the ICMP
packet generation time.

2. Queueing delay on the reverse path. When the ICMP padieteat back to the sender, they
can experience queueing delay due to reverse path traffice $inis delay can be different
for different packets, it is a source of measurement errae. a¥é not aware of any related
work that has measured this value. In our algorithm, we tryettuce the impact of this
factor by filtering out the measurement outliers.

RPT also has some structural limitations:

1. We find that network firewalls often only let through 40 [sytdDP packets that strictly
conform to the traceroute packet format (with properly ditie payload fields), and drop
any other UDP probing packets, such as the load packets imTa3RAf the sender is behind
such a firewall, RPT will not work. Similarly, if the destinam is behind a firewall, the
measurements for those hops behind the firewall can not lagnebtby RPT.

2. Even if there is no firewall on the destination side, RPT malbe able to measure the
packet train length on the last link, because the ICMP packent by the destination host
can not be used. Theoretically, the destination is supptmsgenerate an ICMP destination
port unreachable message for each packet in the packetBuatinlue to ICMP rate limiting,
the destination network system will typically only generf€MP packets for some of the
probing packets, which often does not include the tail packsen if an ICMP packet is
generated for both the head and the tail packetaticamulated ICMP generation time for
the whole packet train makes the returned interval worshles

4 Testbed Validation

We use both the Emulab testbed and Internet paths to ev&t@dieThe Emulab testbed provides a
fully controlled environment to study different aspectstad technique, while Internet experiments

6

are necessary for studying RPT’s performance with real drackd traffic. In this section, we
focus on the Emulab testbed experiments. The Internet empets are discussed in the next
section.

With a fully controlled testbed, we can separate the fadtwas determine the final measure-
ments, focusing on obtaining a preliminary understandihthe algorithm properties. In this
section, we study the performance of RPT with (1) a single tdéwackground traffic, (2) multi-
flow background traffic, (3) queueing delay on the reversh.datall three cases, the background
traffic is generated using iperf [4] UDP flows.

100M 50M 30M 100M 80M — 70M — 50M— 50M 100M

O 05ms E 0. 1ms§2 0. 4ms§ 0.4ms E 14ms E 2ms E4ms§ 40ms| 10ms

Figure 4: Testbed configuration. Hop 0 is the probing senru®gp, 9 is the probing destination.
Hop 1 - 8 work as routers, the blank boxes are used as iperéseackiver to generate the traffic
load.

The testbed is created using the Emulab [3] facilities. Fagushows the testbed configuration.
Because the physical Emulab link capacity is 100Mbps, wdlsebottleneck link capacity as
30Mbps in this experiment, using the dummynet functiogg@ipvided by Emulab. The link delays
are roughly set based on a traceroute measurement from a @stdyahoo.com. Note that all
the hosts on the testbed are PCs, not routers, so some peszerth as the ICMP generation time
are not exactly the same as those of a real router. As the rdeifollowing testbed experimental
results ignore some of the router related factors.

4.1 Single-Flow Background Traffic

In this section, we focus on two factors that determine thygaekeof a congestion: the link capacity,
and the traffic load.

In Figure 5, we add no background traffic, and the congestiimt s purely determined by the
link capacity. We probe the path 10 times; the gap values oh kap are plotted in Figure 5. We
can see that the maximum gap changes appear at R3, whosénRpsithe bottleneck link. There
are also small gap increases at the subsequent routers. dSsiblp reason is time measurement
error. Another reason is that the gaps in the packet traimarevenly distributed, so when the
link capacity decreases, some of the small packet gaps iflan@ease, thus increasing the total
packet train length.

Figure 5 plots the base case of the probing results. In thewwlg, we add different back-
ground traffic load on different links to study RPT’'s perf@amnce. Unless explicitly stated, the
experiments are done using the following procedure. Weugtihdincrease the iperf UDP traffic
load, in increments of 10% of the link capacity. For each |oeel probe the path 10 times, with 5
seconds sleeping time in between.

Figure 6 shows the results when adding background traffibetinik between R3 and R4. The
other links are still free of load. Here, we choose to preiemtmeasurement from 40% to 90%

7

10000

9000

8000

7000

6000

gap value(us)

5000

4000

3000

2000 ! ! ! ! ! !
1 2 3 4 5 6 7 8

hop number

Figure 5: Measurements with no background traffic. The lm@nects the median values on each
hop.

traffic load. We can see that, only when the available banitivad this link is less than 30Mbps
(the 80% graph) does the congestion point change from R3 tavRidh correctly reflects the real
bottleneck change.

Figure 7 presents the measurement when adding backgraificon the link between R6 and
R7, while keeping the other links free of load. Similarlylyowhen the available bandwidth on
this link is less than 30Mbps (starts from the 50% point infigare) does the congestion point
change to R7, which is again the real bottleneck change.

4.2 Multi-Flow Background Traffic

In this section, we study how RPT works with multiple compagtiraffic flows. We focus on two
scenarios. In the first scenario, we add two background flowss same direction, but on different
links. This is done as follows: we first add a 20Mbps flow from t®4R8, then we gradually
increase the traffic between R6 and R7, in 3Mbps incremergsn e previous experiments, we
do 10 probings for each setting, for 9 settings in total. k& $lecond scenario, we configure the
two traffic flows in opposite directions: we first fix the loadin R8 to R4 to 20Mbps, and then
gradually increase the load from R6 to R7, in increments &b b the link capacity.

Table 1 presents the experimental results. Since our pyaidgorithm uses the first 4 probings
as the stage point history, we can obtain 6 final measuregrserd®ach hop can be labelled at most
6 times. The numbers in the table are the number of times thattar is labelled as a congestion
point.

For the first experiment, the real bottleneck isco6, R7 >, and the probing algorithm starts
to identify it when the traffic load reaches 20% of the residapacity, i.e. when the real available
bandwidth is 24Mbps. The measurement misses the real comg@®int at R7 for 3 times in
the 10% case, due to the small difference in available batttivaf 27Mbps on< R6, R7 > and
30Mbps on< R2, R3 >. These results exemplifies an important property of RPTntbasure-

10000

8000

6000

4000

2000
0

12000

10000

8000

6000

4000

2000
0

Figure 6:

5
40% cbw

5
70% cbw

10

10000

8000

6000

4000

2000
0

12000

10000

8000

6000

4000

2000
0

50% cbw

5
80% chw

10

10000

8000

6000

4000

2000
0

12000

10000

8000

6000

4000

2000
0

60% cbw

5
90% cbw

10

Measurement with different background traffic ba link <R3, R4>. “cbw” mean

background traffic load. In each graph, the x-axis is the hoplyer, the y-axis is the gap value in
micro-seconds.

ment is biased to the congestion point in the early part opd#ih, i.e., a congestion point can hide
a later point with a similar level of congestion. This is algby the tool misses the congestion
point < R6, R7 > in the second experiment when the load is 40% and 50% (camespy to
available bandwidths of 30Mbps and 25Mbps).

4.3 Queueing Delay on the Reverse Path

During the probing of RPT, when ICMP packets are sent backdsénder, they may experience
gueueing delay due to the traffic in the reverse directions thcreasing measurement error. To
understand this effect, we experiment with traffic on linkg:3, R2 > and< R7, R6 >. That s,
we add traffic in the reverse direction on each of these liakd,gradually increase the load, as we
did in the experiment for Figure 6.

The experimental results are listed in Table 2. We can segRRaand R3 are always labelled
as congestion points in all the probings, which means tleptbbing technique never misses the
real congestion point.

12000

10000

8000

6000

4000

2000
0

12000

10000

8000

6000

4000

12000

10000

8000

6000

4000

20% cbw

5

12000

10000

8000

6000

4000

2000 —
0

5
30% cbw

12000

10000

8000

6000

4000

2000 —
0

14000

12000

10000

8000

6000

4000

5

40% cbw

2000 2000 —* 2000 —*
0 5 10 0 5 10 0 5

50% cbw 60% cbw 70% cbw

10

Figure 7: Measurement with background traffic on the krtiR6, R7>. In each graph, the x-axis
is the hop number, the y-axis is the gap value in micro-sesond

Table 1: Multiple flows
< R4, R8 > & < R6, R7 > <84>&<6,7>
cbw|rl r2 r3 r4 5 6 7 r8rl r2 r3 r4 5 6 r7 8
0%/ 0 6 6 0 1 2 3 00 6 6 0 3 1 2 O
20 0 6 6 0 O O 6 00O 6 6 0 2 1 3 O
3%/ 0 6 6 0 1 1 4 000 6 6 0O 5 1 0 O
40%/ 0 6 6 0 O O 6 00 6 6 0 1 1 4 O
500 6 6 0 0 O 6 000 6 6 0 1 2 3 O
60%| 0 6 6 0 O O 6 00O 6 6 0O 1 0 5 O
0% |0 6 6 0 0O O 6 00 6 6 0 0 1 5 0
80%| 0 6 6 0 O O 6 00O 6 6 0O O 0 6 O
909% 0 6 6 0 O O 6 00O 6 6 0O O 0 6 O

5

This section evaluates the performance of RPT on Internéspd-or a complete evaluation on
the Internet, we need to know the real available bandwidtlalbthe links of a network path.
But that information is hard to obtain. The Abilene backb@blecan partly solve this problem,

Internet Validation

10

Table 2: Return path queueing on lirk?3, R2 > and< R7, R6 >

< R3,R2 > < R7, R6 >
cbw|rl r2 r3 r4 5 6 7 r8rl r2 r3 r4 5 6 r7 18
0% 0 6 6 0 4 1 0O 00 6 6 0 3 2 0 O
20 0 6 6 0 3 3 0 000 6 6 0 4 0 2 O
309 0 6 6 0 3 0O 3 00 6 6 0 5 1 0 O
40%/0 6 6 0 2 3 1 00 6 6 0 5 1 0 O
500 6 6 0 1 3 1 00 6 6 0 5 1 0 O
60%| 0 6 6 0 3 2 1 00 66 6 0 4 0 2 O
0% |0 6 6 0 3 0 3 000 6 6 0 6 0 0 O
80%| 0 6 6 0 4 1 1 00 6 6 0 3 2 1 O
90%| 0 6 6 0 2 2 2 00 6 6 0 5 1 0 O

since it publishes its backbone topology and the traffic Igathinute SNMP statistics) [2]. For
this reason, we did all our Internet experiments over Alglpaths. Because the tool needs root
permission to send raw packets, we only did the experiment two sources: a CMU machine
and an Emulab host.

The experiment is carried out as the follows. Based on Abikbackbone topology, from
each probing source node, we choose 22 probing destinatitmrseach of the 11 major routers
on the Abilene backbone, we make sure that it is used by at ¢eesprobing path. From either
probing source, we keep probing all the destinations, wighcnds sleeping time in between. For
each destination, we obtained 33 sets of measurements fi@@NIU source, and over 200 sets
of measurements from the Emulab source.

Table 3 and Table 4 list the experimental results. For eaobipg destination, we list the
total number of probing results that we collected (exclgdime first 4 that are used as the stage
point history), and the top 3 routers that are labelled asdimgestion points. For each congestion
point, we present the number of times it is labelled, and theesponding percentage over all the
probings, which is referred to as thetection rate.

The primary congestion point for CMU sourced paths is aleHpsac.abilene.ucaid.edu, cor-
responding to a link within Pittsburgh Supercomputing @enThe top congestion point for the
Emulab sourced paths is 205.124.237.10. It is a router itthb Educational Network. In both
cases, the detection rate is over 90%, which shows theityaifiRPT.

The second congestion point in each path is also valuabiedasted by the detection rate,
which is often over 50%. We believe this is the second battt&ron the path. For example, the
path from both sources to www.ogig.net identified pos-@&&0.eug.oregon-gigapop.net as the
second congestion point, both with a 70% detection ratendJgie MRTG data from Abilene
(refer to Figure 8), we find that that router corresponds t@&Rr3 link, which indeed has the
smallest capacity for the partial path starting from PSC.

11

6 Conclusion and Future Work

In this paper, we proposed the idea of RPT, a tool that canéx tosdetect the congestion position
of a network path. It has attractive properties such as stagt control and low overhead. We
also report the design and evaluation of a preliminary #lgor that analyzes the probing results
from RPT and identifies the congestion point of a network pdth use both Emulab testbed and
Internet experiments to evaluate this algorithm. The pmelary results show that RPT is effective
in detecting the position of network congestion.

We are currently working on improving the following aspeatshe RPT technique presented
in this paper:

1. Algorithmimprovement. We need to improve the congestion point detection algorits-
cussed in Section 3.2, to make it more complete.

2. More realigtic testbed evaluation. In this paper, we studied several aspects of the probing
technique, trying to understand its basic properties. Baittaffic loads that we used are not
always realistic. Experiments with more realistic backgya traffic are needed.

3. More solid and extensive Internet evaluation. We only study the performance of the tool on
Abilene Internet paths. We need to use more diverse Int@atés to evaluate this tool. A
challenge in Internet experiment is to know the real tratieed onall relevant links.

4. Understanding what thistool really measures. We discussed the notion of “congestion point”
in this paper. Butin some cases, this may not be the link \wghHdwest available bandwidth.
We need to have a more complete understanding on what fadtecs our measurement and
how to distinguish them.

5. The impact of the probing packet size and the number of packet packets. In this paper, the
probing packet size and the number of load packets in the ware empirically selected.
We need to know how the measurement change with differeffiigeoations, and eventually
design a mechanism to automatically configure the probicggdarain.

References

[1] Abilene. http://abilene.internet2.edul/.

[2] Abilene network monitoring. http://www.abilene.ig@/noc.html.
[3] Emulab. http://www.emulab.net.

[4] Iperf. http://dast.nlanr.net/Projects/Iperf/.

[5] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. mpiecal evaluation of wide-area
internet bottlenecks. IMMC’ 03, Miami, Florida, October 2003.

[6] Kostas G. Anagnostakis, Michael B. Greenwald, and RapBa Ryger. cing: Measuring
network-internal delays using only existing infrastruetulin INFOCOM 2003, April 2003.

12

[7] Ramesh Govindan and Vern Paxson. Estimating router igemeration delays. IRAM’ 02,
March 2002.

[8] Ningning Hu and Peter Steenkiste. Evaluation and chiaraation of available bandwidth
probing techniqued EEE JSAC Special Issuein Internet and WM Measurement, Mapping,
and Modeling, 21(6), August 2003.

[9] Van Jacobson. pathchar - a tool to infer characteristfaaternet paths, 1997. presented as
April 97 MSRI talk.

[10] Manish Jain and Constantinos Dovrolis. Pathload: Asneament tool for end-to-end avail-
able bandwidth. IfPassive and Active Measurements, Fort Collins CO, March 2002.

[11] Ratul Mahajan, Neil Spring, David Wetherall, and Tha®aderson. User-level internet path
diagnosis. INSOSP’03, The Sagamore, Bolton Landing (Lake George), New York, Beto
2003.

[12] Bob Melander, Mats Bjorkman, and Per Gunningberg. A eed-to-end probing and anal-
ysis method for estimating bandwidth bottlenecks. IBEE Globecom - Global Internet
Symposium, San Francisco, November 2000.

[13] Jitendra Padhye, Victor Firoiu, Don Towsley, , and Jimrése (U. Mass). Modeling TCP
throughput: A simple model and its empirical validation. Rroc. of ACM SGCOMM’ 98,
Vancouver, British Columbia, Canada, September 1998.

[14] J. Postel. Internet control message protocol, Septert®31.

[15] Vinay Ribeiro, Rudolf Riedi, Richard Baraniuk, Jiri Matil, and Les Cottrell. pathchirp: Ef-
ficient available bandwidth estimation for network pathmsPassive and Active Measurement
Workshop 2003, La Jolla, CA, April 2003.

[16] Stefan Savage. Sting: a TCP-based network measurdowntin Proceedings of the 1999
USENIX Symposium on Internet Technologies and Systems, pages 71-79, Boulder, CO, Oc-
tober 1999.

[17] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A merasmt study of available band-
width estimation tools. Innternet Measurement Conference (IMC) 2003, Miami, Florida,
USA, October 2003.

APPENDIX
A The MRTG for the Abilene Path

13

Table 3: Probing results over Abile

ne paths using a CMU hesha source

www.anl.gov 33

Www.0gig.net 33

30 0.91 abilene-psc.abilene.ucaid.edu
25 0.76 bar-cmu-ge-4-0-0-1.psc.net

25 0.76 abilene-psc.abilene.ucaid.edu

5 0.15 chinng-nycmng.abilene.ucaid.edd6 0.48 bar-cmu-ge-4-0-0-1.psc.net

23 0.70 pos-6-3.core0.eug.oregon-gigapop|

www.apan.net 34

www.onenet.net 33

33 0.97 abilene-psc.abilene.ucaid.edu
20 0.59 bar-cmu-ge-4-0-0-1.psc.net
5 0.15 losang-hstnng.abilene.ucaid.ed

31 0.94 abilene-psc.abilene.ucaid.edu
19 0.58 bar-cmu-ge-4-0-0-1.psc.net
u 9 0.27 164.58.10.209

www.arc.nasa.gov 33

WWWw.pnw-gigapop.net 33

27 0.82 abilene-psc.abilene.ucaid.edu
16 0.48 bar-cmu-ge-4-0-0-1.psc.net

24 0.73 abilene-psc.abilene.ucaid.edu

9 0.27 chinng-nycmng.abilene.ucaid.edd0 0.30 HYPER-VL502.GW.CMU.NET

10 0.30 nycmng-washng.abilene.ucaid.edu

www.arizona.edu 33

www.rutgers.edu 34

19 0.58 abilene-psc.abilene.ucaid.edu
16 0.48 bar-cmu-ge-4-0-0-1.psc.net
10 0.30 HYPER-VL502.GW.CMU.NET

26 0.76 abilene-psc.abilene.ucaid.edu
17 0.50 bar-cmu-ge-4-0-0-1.psc.net

11 0.32 nycmng-washng.abilene.ucaid.edu

www.calren2.net 34

WWw.sox.net 34

23 0.68 abilene-psc.abilene.ucaid.edu
20 0.59 bar-cmu-ge-4-0-0-1.psc.net
10 0.29 beast-bar-g4-0-1.psc.net

31 0.91 abilene-psc.abilene.ucaid.edu
25 0.74 bar-cmu-ge-4-0-0-1.psc.net
5 0.15 gwz2-sox.sox.gatech.edu

www.hawaii.edu 33

www.tamu.edu 34

24 0.73 abilene-psc.abilene.ucaid.edu
17 0.52 bar-cmu-ge-4-0-0-1.psc.net
12 0.36 205.166.205.218

31 0.91 abilene-psc.abilene.ucaid.edu
22 0.65 bar-cmu-ge-4-0-0-1.psc.net
7 0.21 atla-washng.abilene.ucaid.edu

www.iastate.edu 33

www.ttu.edu 34

26 0.79 abilene-psc.abilene.ucaid.edu
13 0.39 HYPER-VL502.GW.CMU.NET

32 0.94 abilene-psc.abilene.ucaid.edu
23 0.68 bar-cmu-ge-4-0-0-1.psc.net

10 0.30 nycmng-washng.abilene.ucaid.edé 0.15 hstnng-atlang.abilene.ucaid.edu

www.louisville.edu 33

www.udel.edu 34

29 0.88 abilene-psc.abilene.ucaid.edu
24 0.73 bar-cmu-ge-4-0-0-1.psc.net
11 0.33 lou-belknap-9-0-0-p.kec.net

31 0.91 abilene-psc.abilene.ucaid.edu
26 0.76 bar-cmu-ge-4-0-0-1.psc.net
7 0.21 chp-br4-p-0-0-0.nss.udel.edu

www.magpi.net 34

www.usf.edu 34

32 0.94 abilene-psc.abilene.ucaid.edu
29 0.85 bar-cmu-ge-4-0-0-1.psc.net
6 0.18 locall.abilene.magpi.net

32 0.94 abilene-psc.abilene.ucaid.edu
28 0.82 bar-cmu-ge-4-0-0-1.psc.net
8 0.24 atla-washng.abilene.ucaid.edu

www.npt.nren.nasa.gov 33

www.wisc.edu 33

25 0.76 abilene-psc.abilene.ucaid.edu
21 0.64 bar-cmu-ge-4-0-0-1.psc.net

8 0.24 dnvrng-kscyng.abilene.ucaid.edul6 0.48

24 0.73 abilene-psc.abilene.ucaid.edu
21 0.64 bar-cmu-ge-4-0-0-1.psc.net
r-peer-WNMadison-gw.net.wisc.ed

www.oar.net 33

www.wpi.edu 34

29 0.88 abilene-psc.abilene.ucaid.edu
24 0.73 bar-cmu-ge-4-0-0-1.psc.net

27 0.79 abilene-psc.abilene.ucaid.edu
26 0.76 bar-cmu-ge-4-0-0-1.psc.net

12 0.36 chinng-nycmng.abilene.ucaid.ekfi6 0.18 nycmng-washng.abilene.ucaid.edu

net

Table 4: Probing results over Abilene paths using an Emutei &s the source

www.anl.gov 207

www.0gig.net 207

192 0.93 205.124.237.10
115 0.56 wrlebc-crebc.net.utah.edu

101 0.49 anl-mren-gige.anchor.anl.gov

182 0.88 205.124.237.10

145 0.70 pos-6-3.core0.eug.oregon-
gigapop.net

113 0.55 205.124.249.122

www.apan.net 208

www.onenet.net 206

201 0.97 205.124.237.10
153 0.74 155.99.132.109
80 0.38 205.124.249.122

201 0.98 205.124.237.10
138 0.67 155.99.132.109
123 0.60 205.124.249.122

www.arc.nasa.gov 207

www.pnw-gigapop.net 207

190 0.92 205.124.237.10
138 0.67 155.99.132.109
88 0.43 205.124.249.122

201 0.97 205.124.237.10
140 0.68 155.99.132.105
81 0.39 205.124.249.122

www.calren2.net 208

www.rutgers.edu 208

199 0.96 205.124.237.10

110 0.53 wrlebc-crpark.net.utah.edu

101 0.49 WestEdCAT6009POS-
WestEdGSRPOS.CSU.net

198 0.95 205.124.237.10
120 0.58 POS5-0-0-rutgers-gw.Rutgers.EDL
116 0.56 wrlebc-crebc.net.utah.edu

-

www.cmu.edu 207

www.sox.net 208

197 0.95 205.124.237.10
132 0.64 wrlebc-crpark.net.utah.edu
108 0.52 cmu-i2.psc.net

201 0.97 205.124.237.10
105 0.50 155.99.132.105
76 0.37 205.124.249.122

www.hawaii.edu 207

www.tamu.edu 208

195 0.94 205.124.237.10
120 0.58 155.99.132.105
69 0.33 205.124.249.122

202 0.97 205.124.237.10
134 0.64 155.99.132.109
34 0.16 TAMU.GIGAPOP.GEN.TX.US

www.iastate.edu 207

www.ttu.edu 208

198 0.96 205.124.237.10
75 0.36 155.99.132.109
43 0.21 wrlebc-crebc.net.utah.edu

198 0.95 205.124.237.10
128 0.62 155.99.132.105
63 0.30 205.124.249.122

www.louisville.edu 207

www.udel.edu 208

197 0.95 205.124.237.10
123 0.59 155.99.132.109
22 0.11 205.124.249.122

194 0.93 205.124.237.10
98 0.47 wrlebc-crebc.net.utah.edu
60 0.29 chp-br4-p-0-0-0.nss.udel.edu

www.magpi.net 208

www.usf.edu 208

191 0.92 205.124.237.10
117 0.56 wrlebc-crpark.net.utah.edu
51 0.25 phl-01-02.backbone.magpi.net

204 0.98 205.124.237.10
139 0.67 155.99.132.109
58 0.28 205.124.249.122

www.npt.nren.nasa.gov 207

www.wisc.edu 207

202 0.98 205.124.237.10
128 0.62 155.99.132.109
67 0.32 192.12.123.201

199 0.96 205.124.237.10
104 0.50 155.99.132.109
82 0.40 r-peer-WNMadison-gw.net.wisc.ed

www.oar.net 207

www.wpi.edu 208

197 0.95 205.124.237.10 195

132 0.64 155.99.132.105
49 0.24 krcl-atm1-0-0s4.columbus.oar.net

198 0.95 205.124.237.10
122 0.59 155.99.132.105

119 0.57 goddard-wpi.goddard.gigapop.net

PSC — (WASH), OC48

420 M

260 M

240 M+ @B EE.... R

bits/sec

120 M 1

oM
ao: 0o 02: 00 04: 00 0g: 00 03 00 10500 12:00 14:00 16100 1800

W Inbound Traffic <Current: 229,408 M Average: 139,602 M Max: 418,115 M
W Qutbound Traffic Current: 74,934 M Average: 92,175 M Max: 219,253 M

20: 00

A34I130 T30l 4 To0Lddd

(WASH) — NYCM, OC192

1000 M

—ya—

B00 M

-

400 M 7

200 M
00: oo 0z:00 04: 00 0&: 00 03: 00 10000 12:00 14100 16: 00 18: 00

B Inbound Traffic Current: 332,273 M Average: 429,891 M Max: 955,653 M
W Qutbound Traffic Current: £39.621 M Average: 579,050 M Maxi 961,133 M

20500

A34IL30 T30l S T00Lddd

(NYCM) — CHIN, OC192

1000 M

500 M

%
o

400 M 1

A3AILI0 I30L / T00lddy

N1
200 M- =
ao; oo 0z 0o 04; 00 0g; 0o 0 00 105 00 1200 14500 18 00 1800 2000
B Inbound Traffic Current: 353,116 M Average: 442,083 M Maxi 531,800 M
B cutbound Traffic Current: GE74,625 M Average: G482, 954 M Max: 947,422 M
(CHIN) — IPLS, OC192
1.44a o
1,24 | -
| N | I
1.0 1 f 'l‘ L -
| { I .
0,8 a7 i
0.8 q |
0,4 q
ao; oo 0z 0o 04; 00 0g; 0o 0 00 105 00 1200 14500 18 00 1800 2000

[Inbound Traffic Current: 743,812 M fAverage: 795756 M Max: 1,420 G
B cutbound Traffic Current: £70,.926 M Average: 756,280 M Max: 1.481 ¢

(IPLS) — KSCY, OC192

00: o0 oz

B Inbound Traffic Current:
B Qutbound Traffic Current:

Loo

04: 00 0g: 00

TOO.23 M Average:
892,292 M Average:

0z 00 10000

7. E3Z M Max:
703,080 M Max:

1200

14700

1,208 G
1,428 G

16100

1800

20000

A3AILI0 I30L / T00lddy

(KSCY) - DNVR, OC192

1.4 G

1.2 G

1.0 G

0.2 aG

0.6 G

0.4 G

0.2a
00: oo oz

W Inbound Traffic Current:
W Sutbound Traffic Current:

(0o

04: 00 0&: 00 03: 00 10000 12:00

BE7. 477 M Average:
212, BE7 M Average;

FOS. 707 M Max:
E7E. 083 M Max:

14100

1. 272 ¢
1,184 ¢

16: 00

18: 00

20500

A34IL30 T30l S T00Lddd

(DNVR) — OGIG, OC3

160 M

120 M 3 |

20 M

bits/sec

40 M

oM
00: oo

W Inbound Traffic <Current:
W Sutbound Traffic Current:

02: 00

04: 00 0&: 00 03: 00 10 00 12:00

87,290 M Auerage:
S.420 M AVerage;

S2.542 M Max! 105,572 M
10,430 M Max: 20,191 M

14100

16: 00

18: 00

20: 00

A34I130 T30l 4 To0Lddd

Figure 8: The MRTG traffic statistics for the Abilene routersthe path CMU— www.o0gig.net.

17

