
Deciding Quantifier-Free Presburger Formulas using

Finite Instantiation based on Parameterized Solution

Bounds

Sanjit A. Seshia Randal E. Bryant

December 2003

CMU-CS-03-210

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Given a formula Φ in quantifier-free Presburger arithmetic, it is well known that, if there is a
satisfying solution to Φ, there is one whose size, measured in bits, is polynomially bounded in
the size of Φ. In this paper, we consider a special class of quantifier-free Presburger formulas in
which most linear constraints are separation (difference-bound) constraints, and the non-separation
constraints are sparse. This class has been observed to commonly occur in software verification
problems. We derive a new solution bound in terms of parameters characterizing the sparseness of
linear constraints and the number of non-separation constraints, in addition to traditional measures
of formula size. In particular, the number of bits needed per integer variable is linear in the number
of non-separation constraints and logarithmic in the number and size of non-zero coefficients in
them, but is otherwise independent of the total number of linear constraints in the formula. The
derived bound can be used in a decision procedure based on instantiating integer variables over
a finite domain and translating the input quantifier-free Presburger formula to an equi-satisfiable
Boolean formula, which is then checked using a Boolean satisfiability solver. We present empirical
evidence indicating that this method can greatly outperform other decision procedures.

This research was supported by ARO grant DAAD19-01-1-0485.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright annotation thereon. The views and conclusions contained in this document are those of
the authors, and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Department of Defense or the U.S. Government.

2

Keywords: Presburger arithmetic, Boolean satisfiability, separation (difference-bound) con-
straints, solution bounds, finite instantiation, decision procedures, theorem proving.

1 Introduction

Presburger arithmetic [27] is defined as the first-order theory of the structure 〈
�
, 0, 1, � ,+〉, where�

denotes the set of natural numbers. The satisfiability problem for Presburger arithmetic is
decidable, but of super-exponential worst-case complexity [13]. Fortunately, for many applications,
such as in program analysis (e.g., [28]) and hardware verification (e.g., [8]), the quantifier-free
fragment suffices.

A formula Φ in quantifier-free Presburger arithmetic (QFP) is constructed by combining lin-
ear constraints with Boolean operators (∧, ∨, ¬). Formally, the ith constraint is of the form
∑n

j=1 ai,jxj ≥ bi, where the coefficients and the constant terms are integer constants and the vari-

ables x1, x2, . . . , xn are integer-valued1. In this paper, we are concerned with the satisfiability
problem for QFP, viz., that of finding a valuation of the variables such that Φ evaluates to true.
That this problem is in NP, and hence NP-complete, can be concluded from the result that integer
linear programming is in NP [6, 30, 17, 23].2

Thus, if there is a satisfying solution to a QFP formula, there is one whose size, measured in bits,
is polynomially bounded in the problem size. Problem size is traditionally measured in terms of
the parameters m, n, log µA, and log µb, where m is the total number of constraints in the formula,
n is the number of variables, and µA = max(i,j) |ai,j | and µb = maxi |bi| are upper bounds on the
absolute values of coefficients and constant terms respectively.

The above result suggests the following approach to checking the satisfiability of a QFP formula Φ:

1. Compute the polynomial bound S on solution size.

2. Search for a satisfying solution to Φ in the bounded space {0, 1, . . . , 2S − 1}n.

This approach has been successfully applied to highly restricted sub-classes of QFP, such as equality
logic [25] and separation logic [9], and is termed as finite instantiation. The basic idea is to translate
Φ to a Boolean formula by encoding each integer variable as a vector of Boolean variables (a
“symbolic bit-vector”) of length S. The resulting Boolean formula is checked using a Boolean
satisfiability (SAT) solver. This approach leverages the dramatic advances in SAT solving made in
recent years (e.g., [20, 15]). It is straightforward to extend the approach to additionally handle the
theory of uninterpreted functions and equality, by using, e.g., Ackermann’s technique of eliminating
function applications [1].

However, a näıve implementation of a decision procedure based on finite instantiation fails for
QFP formulas encountered in practice. The problem is that the bound on solution size, S, is
O(log m + log µb + m[log m + log µA]). In particular, the presence of the m log m term means that
for practical problems involving hundreds of linear constraints, the Boolean formulas generated are
likely to be too large to be decided by present-day SAT solvers.

In this paper, we explore the above finite instantiation-based approach to deciding QFP formulas,
but with a focus on formulas generated in software verification. It has been observed, by us and
others, that QFP formulas from this domain have:

1While Presburger arithmetic is defined over � , we interpret the variables over � as it is general and more
suitable for applications. It is straightforward to translate a formula with integer variables to one where variables are
interpreted over � , and vice-versa, by adding (linearly many) additional variables or constraints.

2The NP-hardness follows from a straightforward encoding of the 3SAT problem as a 0-1 integer linear program.

1

Project Maximum Fraction of Maximum Width of a
Non-Separation Constraints Non-Separation Constraint

Blast 0.0276 6
Magic 0.0032 2
MIT 0.0087 3
WiSA 0.0054 4

Table 1: Linear Arithmetic Constraints in Software Verification are Mostly Separation

Constraints. For each software verification project, the maximum fraction of non-separation
constraints is shown, as well as the maximum width of a non-separation constraint, where the
maximum is taken over all formulas in the set. The Blast formulas were generated from device
drivers written in C, the Magic formulas from an implementation of openssl written in C, the
MIT formulas from Java programs, and the WiSA formulas were generated in the checking of
format string vulnerabilities.

1. Mainly Separation Constraints: Of the m constraints, m−k are separation constraints, where
k � m. Separation constraints, also called difference-bound constraints, are of the form
xi − xj ./ bt or xi ./ bt, where bt is an integer constant, and ./∈ {>,≥,=, <,≤}.

2. Sparse Structure: The k non-separation constraints are sparse, with at most w variables per
constraint, where w is “small”. We will refer to w as the width of the constraint.

Pratt [26] observed that most inequalities generated in program verification are separation con-
straints. More recently, the authors of the theorem prover Simplify observed in the context of the
Extended Static Checker for Java (ESC/Java) project that “the inequalities that occur in program
checking rarely involve more than two or three terms” [12]. We have performed a study of formulas
selected from various recent software verification projects: the Blast project at Berkeley [16], the
Magic project at CMU [10], the Wisconsin Safety Analyzer (WiSA) project3, and the software
upgrade checking project at MIT [19]. The results of this study, indicated in Table 1, support
the afore-mentioned observations regarding the “sparse, mostly separation” nature of constraints
in QFP formulas. To our knowledge, no previous decision procedure for QFP has attempted to
exploit this problem structure.

We make the following novel contributions in this paper:

• We derive bounds on solutions for QFP formulas, not only in terms of the traditional pa-
rameters m, n, µA, and µb, but also in terms of k and w. In particular, we show that the
worst-case number of bits required per integer variable is linear in k, but only logarithmic in
w. Unlike previously derived bounds, ours is independent of the total number of constraints
m.

• We use the derived bounds in a sound and complete decision procedure for QFP based on
finite instantiation, and present empirical evidence that our method can greatly outperform
other decision procedures.

Related Work. There has been much work on deciding quantifier-free Presburger arithmetic; we
present a brief discussion here and refer the reader to a recent survey [14] for more details. Recent
techniques fall into three categories:

3http://www.cs.wisc.edu/wisa

2

• The first class comprises procedures targeted towards solving conjunctions of constraints, with
disjunctions handled by enumerating terms in a disjunctive normal form (DNF). Examples
include the Omega test [28] and solvers based on other integer linear programming techniques.
The drawback of these methods is the need to enumerate the potentially exponentially many
terms in the DNF representation.

• The second set of methods attempt to remedy this problem by instead relying on modern
SAT solving strategies. The approach works as follows. A Boolean abstraction of the QFP
formula Φ is generated by replacing each linear constraint with a corresponding Boolean
variable. If the abstraction is unsatisfiable, then so is Φ. If not, the satisfying assignment
(model) is checked for consistency with the theory of quantifier-free Presburger arithmetic,
using a ground decision procedure for conjunctions of linear constraints. Assignments that
are inconsistent are excluded from later consideration by adding a “lemma” to the Boolean
abstraction. The process continues until either a consistent assignment is found, or all (ex-
ponentially many) assignments have been explored. Examples of decision procedures in this
class that have some support for QFP include CVC [2, 3] and ICS [11]. These provers employ
the Nelson-Oppen architecture for cooperating decision procedures [22], or some variant of
it. Note that the original Nelson-Oppen framework was only defined for disjoint theories.
In order to exploit the mostly-separation structure of a formula, one approach could be to
combine a decision procedure for a theory of separation constraints with one for a theory of
non-separation constraints, but this needs an extension of the Nelson-Oppen framework to
apply to these non-disjoint theories.

• The final class of methods are based on finite automata theory (e.g., [31, 14]). The basic
idea is to construct a finite automaton corresponding to the input QFP formula Φ, such that
language accepted by the automaton consists of the binary encodings of satisfying solutions of
Φ. According to a recent experimental evaluation with other methods [14], these techniques
are better than others at solving formulas with very large coefficients, but do not scale well
with the number of variables and constraints.4

The approach we present in this paper is distinct from the categories mentioned above. In particular,
the following unique features differentiate it from previous methods:

• It is the first finite instantiation method, translating a QFP formula to SAT in a single step.
The clear separation between the translation and the SAT solving allows us to leverage future
advances in SAT solving far more easily than other SAT-based procedures.

• It is the first technique, to the best of our knowledge, that exploits the structure of formulas
commonly encountered in software verification.

Outline of the paper. The rest of this paper is organized as follows. In Section 2, we discuss
background material on bounds on satisfying solutions of integer linear programs. An integer linear
program (ILP) is a conjunction of linear constraints, and hence is a special kind of QFP formula.
The bounds for QFP follow directly from those for ILPs. Our main theoretical results are presented
in Sections 3–5. Section 3 gives bounds for ILPs for the case of k = 0, when all constraints are
separation constraints. In Section 4, we compute a bound for ILPs for arbitrary k. In Section 5,
we show how our results extend to arbitrary QFP formulas. We report on experimental results in
Section 6, and conclude in Section 7.

4Note that automata-based techniques can handle full Presburger arithmetic, not just the quantifier-free fragment.

3

2 Background

In this section, we define the integer linear programming problem formally and state the previous
results on bounding satisfying solutions of ILPs. A more detailed discussion on the steps outlined
in Section 2.1 can be found in reference books on ILP (e.g. [29, 24]). Useful results on determinants
used in the paper are reviewed in Appendix B.

2.1 Preliminaries

Consider a system of m linear constraints in n integer-valued variables:

Ax ≥ b (1)

Here A is an m × n matrix with integral entries, b is a m × 1 vector of integral entries, and x is a
n × 1 vector of integer-valued variables. A satisfying solution to system (1) is an evaluation of x

that satisfies (1).

In system (1), the entries in x can be negative. We can constrain the variables to be non-negative
by adding a dummy variable x0 that refers to the “zero value,” replacing each original variable xi

by x′

i − x0, and then adjusting the coefficients in the matrix A to get a new constraint matrix A ′

and the following system:5

A′x′ ≥ b

x′ ≥ 0
(2)

Here the system has n′ = n + 1 variables, and x′ = [x′

1, x
′

2, . . . , x′

n, x0]
T . A′ has the structure that

a′i,j = ai,j for j = 1, 2, . . . , n and a′

i,n+1 = −
∑n

j=1 ai,j . Note that the last column of A′ is a linear
combination of the previous n columns. As shown in Proposition 1 in Appendix A, system (1) has
a solution if and only if system (2) has one.

Finally, adding surplus variables to the system, we can rewrite system (2) as follows:

A′′x′′ = b

x′′ ≥ 0
(3)

where A′′ = [A| − Im] is an m × (n′ + m) integer matrix formed by concatenating A with the
negation of the m × m identity matrix Im.
For convenience we will drop the primes, referring to A′′ and x′′ simply as A and x. Rewriting

system (3) thus, we get

Ax = b

x ≥ 0
(4)

Hereafter we will use the definition in (4). Let µA = max(i,j) |ai,j | and µb = maxt |bt| be upper
bounds on the absolute values of entries of A and b respectively.

5Note that this procedure can increase the width of a constraint by 1. The statistics in Table 1 shows the width
before this procedure is applied, computed from constraints as they appear in the original formulas.

4

2.2 Previous Results

The results of this paper build on results obtained by Borosh, Treybig, and Flahive [6, 5] on
bounding the solution of systems of the form (4). We state their result in the following theorem:

Theorem 1 Consider the augmented matrix [A|b] of dimension m × (n′ + m + 1). Let ∆ be the
maximum of the absolute values of all minors of this augmented matrix. Then, the system (4) has
a satisfying solution if and only if it has one with all entries bounded by (n + 2)∆.

However, note that the determinant of a matrix can be more than exponential in the dimension of
the matrix [7]. In the case of the Borosh-Flahive-Treybig result, it means that ∆ can be as large

as µm(m+1)(m+1)/2

2m , where µ = max(µA, µb).

Papadimitriou [23, 24] also gives a bound of similar size, stated in the following theorem:

Theorem 2 If the ILP of (4) has a satisfying solution, then it has a satisfying solution where all
entries in the solution vector are bounded by (n′ + m)(1 + µb)(mµA)2m+3.

Papadimitriou’s bound implies that we need O(log m+log µb+m[log m+log µA]) bits to encode each
variable (assuming n′ = O(m)). The Borosh-Flahive-Treybig bound implies needing O(m[log m +
log µ]) bits per variable, which is of the same order.

3 Bounds for a System of Separation Constraints

Let us first consider computing solution bounds for an ILP for the case where k = 0, i.e., system (4)
comprises only of separation constraints.

In this case, the left-hand side of each equation comprises exactly three variables: two variables x i

and xj where 0 ≤ i, j ≤ n and one surplus variable xl where n + 1 ≤ l ≤ n + m. The tth equation
in the system is of the form xi − xj − xl = bt.

As we noted in Section 2.1, the matrix A can be written as [Ao| − Im] where Ao comprises the first
n′ = n + 1 columns, and Im is the m × m identity matrix.

The important property of Ao is that each row has exactly one +1 entry and exactly one −1
entry, with all other entries 0. Thus, AT

o can be interpreted as the node-arc incidence matrix of a
directed graph. Therefore, AT

o is totally unimodular (TUM), i.e., every square submatrix of AT
o has

determinant in {0,−1,+1} [24]. Therefore, Ao is TUM, and so is A = [Ao| − Im].

Now, let us consider using the Borosh-Flahive-Treybig bound stated in Theorem 1. This bound is
stated in terms of the minors of the matrix [A|b]. For the special case of this section, we have the
following bound on the size of any minor:

Theorem 3 The absolute value of any minor of [A|b] is bounded above by sµb, where s = min(n+
1,m).

Proof:

Consider any minor M of [A|b]. Let r be the order of M .

5

If the minor is obtained by deleting the last column (corresponding to b), then it is a minor of
A, and its value is in {0,−1,+1} since A is TUM. Thus, the bound of sµb is attained for any
non-trivial minor with s ≥ 1 and µb ≥ 1.

Suppose the b column is not deleted.

First, note that the matrix A is of the form [Ao|−Im] where the rank of Ao is at most s′ = min(n,m).
This is because Ao has dimensions m × n + 1, and the last column of Ao, corresponding to the
variable x0, is a linear combination of the previous n columns.6

Next, suppose the sub-matrix corresponding to M comprises p columns from the −Im part, r−p−1
columns from the Ao part, and the one column corresponding to b. Since permuting the rows and
columns of M does not change its absolute value, we can permute the rows of M and the columns
corresponding to the −Im part to get the corresponding sub-matrix in the following form:

























0 . . . 0 −1 bt1

0 . . . −1 0 bt2

Ao
... · · ·

...
...

...
part −1 . . . 0 0 btp

0 . . . 0 0 btp+1

... · · ·
...

...
...

0 . . . 0 0 btr

























Expanding M along the last column, we get

|M | = |bt1M1 − bt2M2 + bt3M3 − . . . (−1)r−1btrMr|

where each Mi is a minor corresponding to a submatrix of A.

However, notice that Mi = 0 for all 1 ≤ i ≤ p, since each of those minors have an entire column
(from the −Im part) equal to 0. Therefore, we can reduce the right-hand side to the sum of r − p

terms:
|M | ≤ |btp+1Mp+1| + |btp+2Mp+2| + . . . |btrMr|

Notice that, so far, we have not made use of the special structure of A.

Now, observing that A is TUM, |Mi| ≤ 1 for all i.

|M | ≤ |btp+1 | + |btp+2 | + . . . + |btr |

For all i, |bti | ≤ µb. Further, since each non-zero Mi can be of order at most s′, r − p ≤ s =
min(s′ + 1,m).7 Therefore, we get

|M | ≤ sµb

2

Using the terminology of Theorem 1, we have ∆ ≤ sµb. Thus, the bound in this case is (n+ 2)sµb.

Thus, S, the bound on the number of bits per variable, is

dlog(n + 2) + log s + log µbe
6Refer to the construction of system (2) from system (1).
7We use s′ + 1 and not s′ to account for the case where p = 0. The minimum with m is taken because s′ + 1 can

exceed m but b has only m elements.

6

Formulas generated from verification problems tend to be overconstrained, so we assume n < m.
Thus, s = n + 1, and the bound reduces to O(log n + log µb) bits per variable.

Remark. The only property of the A matrix that the proof of Theorem 3 relies on is the totally
unimodular (TUM) property. Thus, Theorem 3 would also apply to any system of linear constraints
whose coefficient matrix is TUM. Examples of such matrices include interval matrices, or more
generally network matrices. Note that the TUM property can be tested for in polynomial time [29].

4 Bounds for a Sparse System of Mainly Separation Constraints

We now consider the general case for ILPs, where we have k non-separation constraints, each
referring to at most w variables.

Without loss of generality, we can reorder the rows of matrix A so that the k non-separation
constraints are the top k rows, and the separation constraints are the bottom m−k rows. Reordering
the rows of A can only change the sign of any minor of [A|b], not the absolute value. Thus, the
matrix [A|b] can be put into the following form:











A1 b1

−Im b2

A2
...

bm











Here, A1 is a k × n + 1 dimensional matrix corresponding to the non-separation constraints, A2

is a m − k × n + 1 dimensional matrix with the separation constraints, Im is the m × m identity
corresponding to the surplus variables, and the last column is the vector b.

The matrix comprised of A1 and A2 will be referred to, as before, as Ao. Note that each row of
A1 has at most w non-zero entries, and each row of A2 has exactly one +1 and one −1 with the
remaining entries 0. Thus, A2 is TUM.

We prove the following theorem:

Theorem 4 The absolute value of any minor of [A|b] is bounded above by s µb (µA w)k, where
s = min(n + 1,m).

Proof:

Consider any minor M of [A|b], and let r be its order.

As in Theorem 3, if M includes p columns from the −Im part of A, then we can infer that r−p ≤ s.
(Our proof of this property in Theorem 3 made no assumptions on the form of Ao.)

If M includes the last column b, then as in the proof of Theorem 3, we can conclude that

|M | ≤ (r − p)µb [
r

max
j=1

|Mj |] (5)

where Mj is a minor of Ao.

If M does not include b, then it is a minor of A. Without loss of generality, we can assume that M

does not include a column from the −Im part of A, since such columns only contribute to the sign
of the determinant.

7

So, let us consider bounding a minor Mj of Ao of order r (or r − 1, if M includes the b column).

Since Ao =
[

A1
A2

]

, consider expanding Mj, using the standard determinant expansion by minors

along the top k rows corresponding to non-separation constraints (see Equation 8 in Appendix B).
Each term in the expansion is (up to a sign) the product of at most k entries from the A1 portion,
one from each row, and a minor from A2. Since A2 is TUM, each product term is bounded in
absolute value by µk

A. Furthermore, there can be at most wk non-zero terms in the expansion, since
each non-zero product term is obtained by choosing one non-zero element from each of the rows of
the A1 portion of Mj , and this can be done in at most wk ways.

Therefore, |Mj | is bounded by (µAw)k. Combining this with the inequality (5), and since r−p ≤ s,
we get

|M | ≤ s µb (µAw)k

which is what we set out to prove. 2

Thus, we conclude that ∆ ≤ sµb(µAw)k, where s = min(n + 1,m). From Theorems 1 and 4, the
solution bound is (n + 2)∆. Thus, S is

dlog(n + 2) + log s + log µb + k(log µA + log w)e

We make the following observations about the bound derived above, assuming as before, that
n < m, and so s = n + 1:

• Dependence on Parameters: We observe that the bound is linear in k, logarithmic in µA, w,
n, and µb. In particular, the bound is independent of the total number of linear constraints,
m.

• Worst-case Asymptotic Growth: In the worst case, k = m, w = n+1, and n = O(m), and we
get the O(log m + log µb + m[log m + log µA]) bound of Papadimitriou.

• Typical-case Asymptotic Growth: As observed in Section 1, w is typically a small constant,
so the number of bits needed per variable is O(log n + log µb + k log µA + k). In many cases,
µA is also a small constant, simplifying the bound to O(log n + log µb + k) bits per variable.

• Representing Non-separation Constraints: There are many ways to represent non-separation
constraints and these have an impact on the bound we derive. In particular, it is possible
to transform a system of non-separation constraints to one with at most three variables per
constraint. For example, the linear constraint x1 + x2 + x3 + x4 = x5 can be rewritten as:

x1 + x′

1 = x5

x2 + x′

2 = x′

1

x3 + x4 = x′

2

For the original representation, k = 1 and w = 5, while for the new representation k = 3 and
w = 3. Since our bound is linear in k and logarithmic in w, the original representation would
yield a tighter bound.

Similarly, one can eliminate variables with coefficients greater than 1 in absolute value by a
similar process of adding new non-separation constraints. Again, since the bound is logarith-
mic in µA, it would be preferable to avoid adding new non-separation constraints.

8

The derived bound only yields benefits in the case when the system has few non-separation con-
straints which themselves are sparse. In this case, we can instantiate variables over a finite domain
that is much smaller than that obtained without making any assumptions on the structure of the
system.

5 Bounds for Arbitrary Quantifier-Free Presburger Formulas

We now return to the original goal of this paper, that of finding a solution bound for an arbitrary
QFP formula Φ. Suppose that Φ has m linear constraints φ1, φ2, . . . , φm, of which m − k are sep-
aration constraints, and n variables x1, x2, . . . , xn. As before, we assume that each non-separation
constraint has at most w variables, µA is the maximum over the absolute values of coefficients
ai,j of variables, and µb is the maximum over the absolute values of constants bi appearing in the
constraints.

We prove the following theorem.

Theorem 5 If Φ is satisfiable, there is a solution to Φ that is bounded by (n + 2)∆ where

∆ = s (µb + 1) (µA w)k

and s = min(n + 1,m).

Proof: Let σ be a (concrete) model of Φ. Let m′ constraints, φi1 , φi2 , . . . , φim′
, evaluate to true

under σ, the rest evaluating to false. Let A′ = [ai,j] be a m′×n matrix in which each row comprises
the coefficients of variables x1, x2, . . . , xn in a constraint φik , 1 ≤ k ≤ m′. Thus, A′ = [ai,j] where
i ∈ {i1, . . . , im′}.

Now consider a constraint φik where k > m′, that evaluates to false under σ. φik is the inequality

n
∑

j=1

aik,jxj ≥ bik

Then σ satisfies ¬φik which is the inequality

n
∑

j=1

aik,jxj < bik

or equivalently,
n

∑

j=1

−aik,jxj ≥ −bik + 1

Let A′′ be a (m−m′)×n matrix corresponding to the coefficients of variables in constraints ¬φim′+1
,

¬φim′+2
, . . . , ¬φim . Thus, A′′ = [−ai,j] where i ∈ {im′+1, . . . , im}.

Finally, let b = [bi1 , bi2 , . . . , bim′
,−bim′+1

+ 1,−bim′+2
+ 1, . . . ,−bim + 1]T

Clearly, σ is a satisfying solution to the ILP given by

[

A′

A′′

]

x ≥ b (6)

9

Also, if the system (6) has a satisfying solution then Φ is satisfied by that solution. Thus, Φ and the
system (6) are equi-satisfiable, for every possible system (6) we construct in the manner described
above.

By Theorems 1 and 4, we can conclude that if system (6) has a satisfying solution, it has one
bounded by (n + 2)∆ where

∆ = s (µb + 1) (µA w)k

and s = min(n + 1,m). Moreover, this bound works for every possible system (6).

Therefore, if Φ has a satisfying solution, it has one bounded by (n + 2)∆. 2

Thus, to generate the Boolean encoding of the starting QFP formula, we must encode each integer
variable as a symbolic bit-vector of length S = dlog[(n+2)∆]e = dlog(n+2)+ log s+ log(µb +1)+
k(log µA + log w)e.

Remark. In the preceding discussion, we have used a single bit-vector length for all integer
variables appearing in the formula Φ. This is conservative. In general, we can partition the
set of variables into classes such that two variables are placed in the same class if there is a
constraint in which they both appear with non-zero coefficients. For each class, we separately
compute parameters n, k, µb, µA, and w, resulting in a separately computed bit-vector length for
each class. The correctness of this partitioning optimization follows from a reduction to ILP as
performed in the proof of Theorem 5, and the observation that a satisfying solution to a system
of ILPs, no two of which share a variable, can be obtained by solving them independently and
concatenating the solutions.

6 Implementation and Experimental Results

We used the bound derived in the previous section to implement a decision procedure based on
finite instantiation. Integer variables in the QFP formula are encoded as symbolic bit-vectors large
enough to express any integer value within the bound. Arithmetic operators are implemented
as arbitrary-precision bit-vector arithmetic operations. Equalities and inequalities over integer
expressions are translated to corresponding relations over bit-vector expressions. The resulting
Boolean formula is passed as input to a SAT solver.

We implemented our procedure as part of UCLID8, which is written in Moscow ML9. In our imple-
mentation we used the zChaff SAT solver10, version 2003.7.22. We compared UCLID’s performance
with that of the SAT-based prover ICS (the latest version 2.0)11 and the automata-based procedure
LASH12. While LASH is sound and complete for QFP, ICS 2.0 is incomplete; i.e., it can report
a formula to be satisfiable when it is not. The ground decision procedure ICS uses is the Sim-
plex linear programming algorithm with some additional heuristics to deal with integer variables.
However, in our experiments, both UCLID and ICS returned the same answer whenever they both
terminated within the timeout.13

8http://www.cs.cmu.edu/~uclid
9http://www.dina.dk/~sestoft/mosml.html

10http://ee.princeton.edu/~chaff/zchaff.php
11http://www.icansolve.com
12http://www.montefiore.ulg.ac.be/~boigelot/research/lash
13We also attempted comparisons with CVC-Lite (the new version of CVC which includes a ground decision

procedure for QFP [3]). However, the implementation was too unstable to be able to make useful comparisons. We
intend to perform a comparative evaluation when a stable implementation become available.

10

For benchmarks, we used several formulas from the Wisconsin Safety Analyzer project on checking
format string vulnerabilities. The benchmarks include both satisfiable and unsatisfiable formulas
in an extension of QFP with uninterpreted functions. Uninterpreted functions were first eliminated
using Ackermann’s technique [1], and the decision procedures were run on the resulting QFP
formula. Some characteristics of the formulas are displayed in Table 2. For each formula, we
indicate whether it is satisfiable or not, and also give the values of parameters n, m, k, w, µA and
µb corresponding to the variable class for which S = dlog[(n+2)∆]e is largest, i.e, for which we need
the largest number of bits per variable. Note that the total numbers of variables and constraints,
for all variable classes, are larger: For example, for the benchmark xs-30-40, the formula has 115
variables and 2610 constraints in all. The formulas involve the combination of linear constraints by
arbitrary Boolean operators (∧, ∨, ¬). The key characteristics of formulas generated in this class
of problems is that they vary in n, m, and µb, but the values of k, w, and µA are fixed at a small
value.

Experiments were performed on a Pentium-IV 2 GHz machine with 1 GB of RAM running Linux.
A timeout of 900 seconds was imposed on each run.

Formula Ans. Max. Parameters UCLID Time ICS
n m k w µA µb S (sec.) #(Inc. Time (sec.)

Enc. SAT Total assn.) Gnd. Total
s-20-20 SAT 28 437 6 5 4 21 41 8.98 5.86 14.84 904 23.32 23.76
s-20-30 SAT 28 437 6 5 4 30 41 9.02 26.01 35.03 1887 51.68 52.29
s-20-40 UNS 28 437 6 5 4 40 41 9.18 363.70 372.88 25776 618.59 633.58
s-30-30 SAT 38 792 6 5 4 31 42 11.93 12.29 24.22 2286 268.21 269.42
s-30-40 SAT 38 792 6 5 4 40 42 12.00 54.50 66.50 7311 860.71 *
xs-20-20 SAT 49 668 6 5 4 21 42 10.23 13.21 23.44 2307 91.31 92.87
xs-20-30 SAT 49 668 6 5 4 30 43 10.48 26.64 37.12 15656 765.44 *
xs-20-40 – 49 668 6 5 4 40 43 10.49 * * 20590 867.00 *
xs-30-40 SAT 69 1288 6 5 4 40 44 17.71 33.68 51.39 9927 890.08 *

Table 2: Benchmark characteristics and experimental results. For UCLID, we list the time
taken to decide the formula including a breakup into the encoding time (“Enc.”) and the time taken
by the SAT solver (“SAT”). For ICS, we give the total time, the number of inconsistent Boolean
assignments analyzed by the ground decision procedure (“#(Inc. assn.)”), as well as the overall
time taken by the ground decision procedure (“Gnd.”). A “∗” indicates that the decision procedure
timed out after 900 sec. LASH was unable to complete within the timeout on any formula.

A comparison of UCLID versus ICS is displayed in Table 2. LASH was unable to complete on any
benchmark within the timeout; we attribute this to the relatively large number of variables and
constraints in our formulas, and note that Ganesh et al. obtained similar results in their study [14].
From Table 2, we observe that UCLID outperforms ICS on all benchmarks, terminating within the
timeout on several benchmarks on which ICS does not.
The reason for UCLID’s superior performance is the formula structure, where k, w, and µA remain
fixed at a low value while m, n, and µb increase. Thus, the maximum number of bits per variable is
only moderately large (about 40), even as m increases substantially, and the resulting SAT problem
is within the capacity of zChaff. Also, we note that UCLID’s run-time is dominated by the SAT
time, since the time to compute the parameter values and generate the SAT-encoding is polynomial
in the input size.
For ICS, we note that the run-time is dominated by the time taken by the ground decision procedure.

11

We observe that the number of inconsistent Boolean assignments alone is not a precise indicator of
total run-time, which also depends on the time taken by the ground decision procedure in ruling
out a single Boolean assignment.

7 Conclusions and Future Work

In this paper, we have presented a formal approach to exploiting the “sparse, mainly separation
constraint” nature of quantifier-free Presburger formulas encountered in software verification. Our
approach is based on deriving a new parameterized bound on satisfying solutions to QFP formu-
las. Experimental results show the benefits of using the derived bound in a SAT-based decision
procedure based on finite instantiation.

Note that the bounds we have derived and used in our experiments are conservative. First, the size
of minors in a particular problem instance might be far smaller than the bounds we have computed.
It is unclear how this can be exploited, since there are exponentially many minors in the dimensions
of the input matrix. Second, for certain special cases, one can improve the (n + 2)∆ bound. For
example, if all the constraints are originally equalities and the system of constraints has full rank,
a bound of ∆ suffices [4]. Thirdly, in cases where the value of µb is very large due to the presence
of a single large constant, one might want to use a less conservative analysis than is performed in
the proof of Theorem 4.

In our implementation, we translate a QFP formula to a Boolean formula in a single step. An
alternative approach is to perform this transformation lazily, increasing the bit-vector size “on
demand”. This lazy encoding approach works, in brief, as follows. (Details can be found in [18].)
We start with an encoding size for each integer variable that is smaller than that prescribed by
the bound. If the resulting Boolean formula is satisfiable, so is the original QFP formula. If not,
the proof of unsatisfiability generated by the SAT solver is used to generate a sound abstraction of
the original formula, which can be checked with a sound and complete decision procedure for QFP
(such as the one proposed in this paper). If this decision procedure concludes that the abstraction
is unsatisfiable, so is the original formula, but if not, it provides a counterexample which indicates
the necessary increase in the encoding size, and the procedure repeats. The advantage of this lazy
approach is twofold: (1) It avoids using the conservative bounds we have derived in this paper,
and (2) if the generated abstractions are small, the sound and complete decision procedure used by
this approach will run much faster than if it were fed the original formula. The bound S that we
derive in this paper implies an upper bound nS on the number of iterations of this lazy encoding
procedure; thus the lazy encoding procedure needs only polynomially many iterations before it
terminates with the correct answer. Using the decision procedure proposed in this paper with the
above lazy encoding approach is an interesting avenue for future work.

Finally, it would also be interesting to explore applications other than software verification that
share the “sparse, mainly separation constraints” property.

Acknowledgments

Joël Ouaknine pointed us to results of Borosh, Flahive, and Treybig on which our results rely.
We thank him and K. Subramani for useful discussions and feedback on earlier drafts. We are
grateful to Sagar Chaki, Michael Ernst, Vinod Ganapathy, Somesh Jha, Ranjit Jhala, and Stephen

12

McCamant for providing us with benchmark formulas, and Leonardo de Moura for help with ICS.

References

[1] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amsterdam, 1954.

[2] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental
translation to SAT. In E. Brinksma and K. G. Larsen, editors, Proc. 14th Intl. Conference
on Computer-Aided Verification (CAV’02), LNCS 2404, pages 236–249. Springer-Verlag, July
2002.

[3] S. Berezin, V. Ganesh, and D. L. Dill. An online proof-producing decision procedure for
mixed-integer linear arithmetic. In TACAS’03, LNCS 2619, pages 521–536, 2003.

[4] I. Borosh, M. Flahive, D. Rubin, and L. B. Treybig. A sharp bound for solutions of linear
Diophantine equations. Proceedings of the American Mathematical Society, 105(4):844–846,
April 1989.

[5] I. Borosh, M. Flahive, and L. B. Treybig. Small solutions of linear Diophantine equations.
Discrete Mathematics, 58:215–220, 1986.

[6] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear Diophantine
equations. Proceedings of the American Mathematical Society, 55(2):299–304, March 1976.

[7] Joel Brenner and Larry Cummings. The Hadamard maximum determinant problem. American
Mathematical Monthly, 79:626–630, June-July 1972.

[8] R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear programming.
In Proceedings of the IEEE VLSI Design Conference, pages 741–746, 2002.

[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In E. Brinksma and
K. G. Larsen, editors, Proc. Computer-Aided Verification (CAV’02), LNCS 2404, pages 78–92,
July 2002.

[10] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular
verification of software components in C. In Proc. 25th International Conference on Software
Engineering (ICSE), pages 385–395, 2003.

[11] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for bounded
model checking over infinite domains. In Proc. 18th International Conference on Automated
Deduction (CADE), pages 438–455, 2002.

[12] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto, 2003.

[13] M. J. Fischer and M. O. Rabin. Super-exponential complexity of Presburger arithmetic. Pro-
ceedings of SIAM-AMS, 7:27–41, 1974.

[14] V. Ganesh, S. Berezin, and D. L. Dill. Deciding Presburger arithmetic by model checking and
comparisons with other methods. In Formal Methods in Computer-Aided Design (FMCAD
’02), LNCS 2517, pages 171–186. Springer-Verlag, November 2002.

13

[15] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Design Automation
and Test in Europe (DATE) 2002, pages 142–149, 2002.

[16] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy abstraction.
In Proc. 29th ACM Symposium on Principles of Programming Languages, pages 58–70, 2002.

[17] R. Kannan and C. L. Monma. On the computational complexity of integer programming
problems. In Optimisation and Operations Research, volume 157 of Lecture Notes in Economics
and Mathematical Systems, pages 161–172. Springer-Verlag, 1978.

[18] Daniel Kroening, Joël Ouaknine, Sanjit Seshia, and Ofer Strichman. Abstraction-based satisfi-
ability solving of Presburger arithmetic. Technical Report CMU-CS-04-100, Computer Science
Department, Carnegie Mellon University, 2004.

[19] Stephen McCamant and Michael D. Ernst. Predicting problems caused by component up-
grades. In Proceedings of the 11th ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), pages 287–296, 2003.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In 38th Design Automation Conference (DAC ’01), pages 530–535, June 2001.

[21] T. Muir and W. Matzler. A Treatise on the Theory of Determinants. Dover, New York, 1960.

[22] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans-
actions on Programming Languages and Systems, 1(2):245–257, 1979.

[23] Christos H. Papadimitriou. On the complexity of integer programming. Journal of the ACM,
28(4):765–768, 1981.

[24] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity, chapter 13. Prentice-Hall, 1982.

[25] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small-
domain instantiations. In N. Halbwachs and D. Peled, editors, Computer-Aided Verification,
volume 1633 of Lecture Notes in Computer Science, pages 455–469. Springer-Verlag, July 1999.

[26] Vaughan Pratt. Two easy theories whose combination is hard. Technical report, Massachusetts
Institute of Technology, 1977. Cambridge, MA.

[27] M. Preßburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. Comptes-rendus du Premier Congrès
des Mathématiciens des Pays Slaves, 395:92–101, 1929.

[28] William Pugh. The omega test: A fast and practical integer programming algorithm for
dependence analysis. In Supercomputing, pages 4–13, 1991.

[29] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1998.

[30] J. von zur Gathen and M. Sieveking. A bound on solutions of linear integer equalities and
inequalities. Proceedings of the American Mathematical Society, 72(1):155–158, October 1978.

[31] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to Presburger arithmetic
constraints. In Proc. Static Analysis Symposium, LNCS 983, pages 21–32, September 1995.

14

A Proof of Transformation to System 2

Proposition 1 System (1) has a solution if and only if system (2) has one.

Proof: For the “if part”, suppose we have a solution x′ to (2). Construct a candidate solution
vector x by setting xj = x′

j − x0. Then, consider the ith constraint in A′, for any i. The following
sequence of equalities holds:

(
n

∑

j=1

a′i,jx
′

j) + a′i,n+1x0 ≥ bi

(

n
∑

j=1

ai,jx
′

j) + x0(−

n
∑

j=1

ai,j) ≥ bi

n
∑

j=1

ai,j(x
′

j − x0) ≥ bi

n
∑

j=1

ai,jxj ≥ bi

Thus, we can conclude that the ith constraint of A is satisfied by x for all i. Thus, we have found
a solution to system (1).

Now consider the “only if” part, where we start with a solution to system (1). Clearly, any
value of x′ that sets x′

j = xj + x0 for all j will satisfy A′x′ ≥ b. But we also need to satisfy
x′ ≥ 0. If none of the xj are negative, then simply set x′

j = xj and x0 = 0 and we are done.
Otherwise, set x0 = −mink,xk<0 xk, and set x′

j = xj + x0. Note that x0 > 0 by construction.
Thus, if for a particular j, xj > 0, then x′

j > 0. Suppose not. Then, xj ≥ mink,xk<0 xk and so
x′

j = xj − mink,xk<0 xk ≥ 0. Thus, we have a solution x′ that satisfies (2). 2

B Some Background on Determinants

We review some useful results from the theory of determinants. All these results can be found in
standard textbooks (e.g., [21, 24]).

Consider a d× d matrix P , where the (i, j)th entry is denoted pi,j in the usual way. Then, the full
product expansion of its determinant |P | can be written as

∑

permutations π of {1, 2, . . . , d}

(−1)ι(π)p1,π(1)p2,π(2) . . . pd,π(d) (7)

where ι(π) is the number of permutation inversions (swaps) in π.

The (i, j)th minor of a matrix P is the determinant of the submatrix obtained by deleting the ith
row and the jth column of P . A minor of P of order r is the determinant of a square submatrix of
P of order r.

If we only fully expand |P | along the first k rows, we get the equation
∑

permutations π of {1, 2, . . . , k}

(−1)ι(π)p1,π(1)p2,π(2) . . . pk,π(k)Pk,π (8)

15

where Pk,π is the minor of P obtained by excluding the first k rows of P and the k columns
corresponding to π(1), π(2), . . . , π(k).

The determinant of a matrix equals that of its transpose, i.e., |P | = |P T |.

For an arbitrary d × d matrix P with integral entries, we have the following bound on |P | [7]:

|P | ≤
µP

d(d + 1)(d+1)/2

2d
(9)

where µP = max(i,j) |pi,j|. Equality is attained in certain cases.

A square, integer matrix P is called unimodular (UM) if |P | ∈ {0,+1,−1}. P is called totally
unimodular (TUM) if every square submatrix of P is UM.

The node-arc incidence matrix of a directed graph is TUM. This matrix has entries in {0,+1,−1}
and every column has exactly one +1 entry and one −1 entry.

If P is TUM, then so is P T , [P |I], and [P | − I].

16

