Hot DB’02

Course Project Reports:
Hot Topics in Database Systems, Fall 2002

edited by Anastassia Ailamaki and Stavros Harizopoulos

Deepayan Chakrabarti, Stavros Harizopoulos, Hyang-Ah Kim, Suman Nath,
Demian Nave, Stratos Papadomanolakis, Bianca Schroeder, Minglong Shao,
Vladislav Shkapenyuk, and Mengzhi Wang
August 2003
CMU-CS-03-176

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This technical report contains eight final project reports contributed by ten participants in “Hot Top-
ics in Database Systems,” a CMU advanced graduate course offered by Professor Anastassia Aila-
maki in Fall 2002. The course covers advanced research issues in modern database system design
through paper presentations and discussion. In Fall 2002, topics included query optimization, data
stream and adaptive query processing, continuous queries, self-tuning database systems, interaction
between the database software and the underlying hardware, distributed and peer-to-peer DBMS,
and XML applications. The participating students studied and evaluated the cutting-edge research
papers from each topic, and addressed the related issues in in-class discussions.

Inspired by the course material, the students proposed and carried out a total of eight projects. The
projects included innovative research and implementation and the students worked in teams of two
or by themselves. The project reports were carefully evaluated by the students using a conference
program committee-style blind-review process. The resulting camera-ready papers are available in
this technical report. Several of these reports (as noted in their first page) have resulted in confer-
ence submissions. The projects were presented using posters and demos during a half-day HotDB
workshop that was held at Carnegie Mellon on December 10, 2002.

Keywords: DBMS, databases, performance, transaction, histogram, XML, indexing, B-trees, SQL, multi-
ple query optimization, workload characterization, network traffic monitoring.

Contents

Bianca Schroeder

Profiling the Resource Usage of OLTP Database QUEIIES.........cccevviierieieiesiesesieseeeesre e e et ssa e 5

Stratos Papadomanolakis and Minglong Shao
Characterizing Change in SQL WOIKIOAUS..........cccviiiiiiiiiiic st 11

Stavros Harizopoulos and Vladislav Shkapenyuk

Multi-query optimization opportunities in QPIPE..........cc.co i 17
Mengzhi Wang
Entropy Based Histogram CONSITUCION...........cuoiieiiiiiiieie ettt sttt esaesrenne s 23

Demian Nave
On the Performance of Main MemOry INQICES.coiieirie et enes 29

Hyang-Ah Kim
Counting the Number of Flows for Continuous MONITOTING..........cccireiiiniieieiseseee e 35

Deepayan Chakrabarti

Statistical ANalySis OF HISTOGIAMS.coviiiiiiiee et be s reenae s 41
Suman Nath
Historical QUETIES IN TFISINEL........eiiii ittt e e s e s be e be e beesbe e st e steesreesteesreenrens 47

Profiling the Resource Usage of OLTP Database Queries °

Bianca Schroeder
Carnegie Mellon University

bianca@cs.cmu.edu

ABSTRACT

The goal of this project is to gain a better understanding of
what mechanisms are needed to implement different levels
of priority for different transactions. Such priority classes
could for example be used by a company to give higher pri-
ority to prefered customers or to prioritize transactions that
are of an online nature compared to transactions that just
do periodic maintenace work in the background.

Towards this end we first break down the resource usage
of OLTP database queries to determine the bottleneck re-
source that the prioritization needs to be applied to. We
find that in almost all scenarios lock wait times dominate
total query execution times. Moreover, a closer analysis of
the lock usage patterns reveals that reordering the lock wait
queues could effectively prioritize transactions.

1. INTRODUCTION

The goal of this project is to obtain a detailed profiling

of the resource usage of database requests for OLTP work-
loads. Our motivation in doing so is different from that
of traditional database profiling: previous work on profiling
has been done mainly to get insights into how to design bet-
ter database systems; our aim is to evaluate the potential of
query scheduling to improve database response times. More
precisely, we want to collect measurements that will help us
in answering the following question:
Question: Suppose you want to implement differentiated
services in a database system, i.e. you want to be able to
give different priorities to different queries. What are the
mechanisms needed and how do you implement them?

We are interested in this question not only to be able
to provide different classes of service, but we also hope to
be able to use such prioritization functionality to schedule
transactions in order to improve overall mean response times
across the entire workload. The reason we believe that there
is potential for improving database response times through

*This work has been submitted to ICDE 2004.

scheduling is that currently all resources in a database sys-
tems are allocated fairly: for example the CPU is commonly
scheduled through the operating systems which will typi-
cally follow a timesharing approach and the queues in front
of locks are served in a FCFS order. However, scheduling
theory suggests that by favoring short jobs mean response
times can be greatly improved.

The answer to the above question depends on the resource
usage patterns of the database queries: We first need to de-
termine the bottleneck resource is, i.e. the resource at which
resource a typical database query spends most of it’s time
during processing, since this is where prioritization should
be applied. We then need to understand the usage patterns
for this bottleneck resource in order to design good mech-
anisms for giving high-priority queries preferred access to
this resource. Furthermore, knowledge of the distributions
of the resource requirements at the bottleneck resource is
also helpful in evaluating the potential of query scheduling
and to design effective scheduling policies.

The purpose of this project is to analyze the resource us-
age of OLTP database queries in an experimental (in con-
trast to simulation based) environment with respect to the
above question.

In our experiments we use two different database systems:
IBM DB2, a popular commercial database system, and an
open source system implemented on top of the Shore storage
manager [2]. Our workload is based on the TPC-C bench-
mark [1], a standard benchmark for OLTP systems.

We find that in the majority of cases the transaction time
is dominated by the time the transaction spends waiting
to acquire locks. Surprisingly, even in the case of large
databases (two or more times bigger than main memory)
it is lock wait times and not I/O cost that dominate trans-
action times. Moreover, a closer look at the lock usage pat-
terns reveals that simply reordering the lock wait queues
could effectively prioritize transactions.

2. PREVIOUSWORK

To the best of my knowledge nobody so far has attempted
to analyze database workloads with respect to the applica-
bility of prioritization and query scheduling.

3. EXPERIMENTAL SETUP

As mentioned above, our experiments are based on the
TPC-C benchmark [1]. This benchmark is centered around
the principal activities (transactions) of an order-entry en-
vironment. More precisely, in the TPC-C business model, a
wholesale parts supplier operates out of a number of ware-

IBM DB2

= o
] Lock
1.2 @B CPU
1 Unacc

Execution Time (sec)

| =]

1 5 10 15 20 50
Number of clients
5
[Lock
4.5 1 Other

w
IS

Execution Time (ec)
N

R

0r 0N W n
I

o

Y]

1 5 10 15 20 50
Number of clients

o

80

60

40+

Percent of total exec time

20

1 5 10 15 20 50
Number of clients

Shore

[Lock
Other

Execution Time (%)

1 5 20 50

10 15
Number of clients

Figure 1: Level of concurrency: results for 2 warehouses and varying number of clients

houses and their associated sales districts. TPC-C simu-
lates a complete environment where a population of terminal
operators executes transactions against a database. These
transactions include entering and delivering orders, record-
ing payments, checking the status of orders, and monitoring
the level of stock at the warehouses.

We run this workload on two different database systems:
the commercial IBM DB2 system and a system based on
Shore [2]. We break down resource usage into three different
components: the time spent by a transaction on 10, CPU
time and time waited to acquire locks. The time waited to
acugqire locks is the total time the transaction spend during
it’s life time in the lock wait queue in front of a lock. In
DB2 we can obtain this breakdown through the ”get snap-
shot” functionality of DB2 and through the use of DB2
event monitors. Obtaining the same breakdown for Shore
is more complicated. First, since it’s not a commercial sys-
tem, there’s little built-in functionality for monitoring sys-
tem statistics. Secondly, the system is based on user level
threads (unlike DB2 which uses processes to handle transac-
tions) which makes it difficult to obtain CPU and IO usage
on a per transaction basis. We therefore limit the analysis
of the Shore system to the analysis of its lock usage.

The experiments are done on an Intel Pentium 4, 2.20GHz
with 1 GB of main memory running Linux 2.4.17.

4. RESULTS

In Section 4.1 we first determine the bottleneck resource.
Then in Section 4.2 we analyze the resource usage at the
bottleneck resource in more detail.

4.1 Determining the bottleneck resource

Since the resource usage of a DBMS depends on many
system parameters, such as the workload or the size of the
database, there is not one single answer to the question of
which resource is the bottleneck resource. Hence, in this
section we study the resource breakdown as a function of

different system parameters. The parameters we take into
account are level of concurrency, the size of the database
and the type of the transactions.

In the TPC-C model the level of concurrency is deter-
mined by the number of terminal operators we simulated.
In the following we refer to these terminal operators also as
clients. The size of the database is given by the number of
warehouses in the database, where one warehouse roughly
corresponds to a size of 100 MB. The types of transactions
are entering orders, delivering orders, recording payments,
checking the status of orders, and monitoring the level of
stock at the warehouses.

Section 4.1.1 studies the resource usage under different
levels of concurrency and Section 4.1.2 analyzes the effect of
the database size. In Section 4.1.3 we vary both the level
of concurrency and the size of database, as suggested in the
TPC-C guidelines. Finally, Section 4.1.4 is concerned with
the different resource usage of different types of transactions.

4.1.1 Effect of level of concurrency

Figure 1 shows the execution time breakdown for experi-
ments with 2 warehouses and number of clients ranging from
1 to 50. Figure 1(top) shows the results for the IBM DB2
system and Figure 1(bottom) shows the results for Shore.
Note that 2 warehouses correspond to a database size of
roughly 200 MB. Since the main memory of the server is 1
GB, this database is completely main memory resident.

The left plots in Figure 1 shows the breakdown of the exe-
cution time in absolute numbers (sec). The right plots show
the contribution of the different resources as percentages.

We observe, that as expected, the total execution time
grows with higher degrees of concurrency, since more clients
contend for the same resources. More interestingly, we see
that for both DBMS, the execution time is dominated by
the lock wait times (except for very small number of clients).
The contributions of CPU and IO are negligible. *

L As a side note, observe that for DB2 there is always some

IBM DB2

Execution Time (ec)
N
a N 0 w0

5t
Number of clients

B
[

[Lock
1 Other

0 =
1 10 20 70 100

50
Number of clients

Execution Time (sec)
BB R
» [© o N »

N

200

80

60

40

Percent of total exec time

20

1 10 20 50 70 100 200
Number of clients

Shore

[Lock
Other

Execution Time (%)

20 50 70 100 200
Number of clients

Figure 2: Level of concurrency: results for 10 warehouses and varying number of clients

Figure 2 shows the execution time breakdown for experi-
ments with 10 warehouses, which corresponds to a database
of size a little more than 1 GB. The buffer pool size we
chose is 800 MB, so the database doesn’t entirely fit into
the bufferpool any more. As expected we see that the 10
component is now larger than compared to the 2 warehouse
case, but still lock wait times make up a significant fraction
of the total execution time. In fact, even for a database of
30 WH, i.e. 3 times the size of main memory, the lock times
still make up more than 50 percent of the total execution
time for a realist number of clients (figure not shown here).

4.1.2 Effect of database size

In the experiments shown in Figure 3 we keep the number
of clients constant at 10 and vary the size of the database
from 1 to 20 warehouses.

It might seem surprising at first that the total execu-
tion time either hardly increases with growing database size
(Shore) or even decreases (DB2). The reason lies in the
significant decrease of lock wait times for larger databases:
since we keep the number of clients constant, but increase
the amount of data in the system the clients’ accesses are
distributed over a larger amount causing less contention. As
a result, for both DBMS the percentage of lock wait times
of the total execution times shrinks from 90 percent for 1
warehouse to only 10 percent for 20 warehouses. At the same
time the contribution of IO increases for larger databases.
E.g. for 20 warehouses IO time makes up more than 20
percent of the total time.

4.1.3 Resultsfor TPC-C standard parameters

While we have previously always kept either the database
size or the number of clients constant, in this section we
scale the number of clients with the size of the database. The

portion of the time that is left unaccounted for. We haven’t
completely resolved this issue at this point, but have some
indication that DB2 is not always correctly accounting for
10).

TPC-C benchmark suggests to use 10 clients per warehouse.
Figure 4 shows the results for this choice of parameters for
database sizes ranging from 1 warehouse to 20 warehouses.
Both database systems show a clear increase in abso-
lute lock times with increasing database size and number
of clients. For the shore system also the percentage of the
lock wait time of the total execution time slightly increases,
while for the DB2 system the percentage decreases. One ex-
planation might be that the IO overhead for DB2 is bigger
than that for Shore (which as a storage manager specializes
in smart I0) causing the relative contribution of the locking
be higher under Shore than under DB2 for big databases.

4.1.4 Effect of transaction type

Recall that the TPC-C workload consists of five different
transaction types (the percentage of each type in the work-
load is given in parentheses):

e entering orders (Neworder) (44 %)

e delivering orders (Delivery) (4 %)

e recording payments (Payment) (44 %)

e checking the status of orders (Ordstat) (4 %)

e monitoring the level of stock at the warehouses (Stock-

lev) (4 %)

It turns out that the 5 transaction types can be classified
into three categories with respect to their resource usage.
Figure 5 shows one representative for each category. For all
experiments in Figure 5 we scale the number of clients with
the number of warehouses as suggested by TPC-C (using
ten clients per warehouses)

The ordstat transactions form the first category which is
completely I0 bound. The reason for ordstat transactions
being IO bound rather than lock bound is most likely that
they are read-only operations and hence they never need to
acquire a lock in exclusive mode.

IBM DB2

0.7

== 10
[Lock
0.6 EE cPU
1 Unacc
= 05
8
&
2 0.ar
E
S
S 0.3t
3
8
2
wi 0.2+
0.1f
o
IWH 2WH SWH 10WH 20WH
transaction time breakdown
1.4
[Lock
[Other
1.2f
= 17
8
&
2 o8-
E
S
£ o.6f
3
8
2
[I
0.2
o
IWH 2WH SWH 10WH 20WH

Shore

100
90|
8ot
@
£ 7o} = 10
3 —] Lock
= 60 Il crPuU
= 1 Unacc
8§ 50
5
= 4of
8
8
T 30
&
20}
10+
o
1IWH 2WH 5WH 10WH 20WH
transaction time breakdown
100
[Lock
20 Other
80|
= 70-
S
@ L
2 6o
=
= 50
S
3 4of
8
a
301
20}
10+
o
1WH 2WH S5WH 10WH 20WH

Figure 3: Size of the database: results for 10 clients and varying number of warehouses

The transaction types in the second category are com-
pletely lock bound. Payment, stocklevel and neworder fall
into this category. Payment and neworder are write-heavy
operations and therefore have higher chances of having to
wait for locks than for example ordstat, since they need to
obtain exclusive locks. Stocklev on the other hand is lock
bound although it is a read-only operation like ordstat. The
reason might be that stocklev reads data that is frequently
updated forcing it to wait for transactions holding exclusive
locks on data.

The third category is comprised of the delivery transac-
tions, which can be either IO bound or lock bound depend-
ing on the size of the database. For in memory databases (
less than 10 warehouses) the majority of the execution time
is spent waiting for locks, for out of memory databases (more
than 10 warehouses) IO time dominates execution times.

To summarize the results so far, we find that indepen-
dently of the DBMS used (DB2 or shore) lock wait times
dominate a transaction’s execution times if the relation be-
tween the size of the database and the level of concurrency
follows the TPC-C recommendations. This partially an-
swers Question 1 from the introduction: based on our results
so far locks are a bottleneck resource in many situations
and hence it seems promising to concentrate on managing
locks to implement priorities. To get more insights into the
mechanisms that might be effective in implementing priori-
ties based on locks, the next section analyzes the lock usage
patterns in more detail.

4.2 Analyzingusagepatternsat thebottleneck
resource

We have seen that in most realistic scenarios locks are
the bottleneck resource. To implement a successful priori-
tization and scheduling scheme, we need to understand the
characteristics of the bottleneck resource usage in more de-
tail.

As an example consider the question of whether the schedul-
ing should be limited to letting high priority transactions

jump ahead in the lock queue, or whether high priority
transactions in the queue should also be allowed to abort a
low priority transaction holding the lock. The first approach
is in general more desirable since it is work-conserving: abort-
ing the transaction in progress would not only waste the
work that has been done on it so far, it also creates extra
work since this transaction needs to be rolled back. On the
other hand, just reordering the queue can only have an ef-
fect if in general the queue is long, i.e. a transactions wait
most of their time for other transactions in the queue and
not the transaction that’s holding the lock.

In the following we give some more detailed information
on the characteristics of lock wait times. All the information
was obtained by instrumenting Shore.

Table 1 shows for various warehouse and client numbers
the average total execution time per transaction, the average
wait time per transaction, the average number of times a
transaction has to wait and the average wait time for each
lock that a transaction has to wait for.

WH CL | Total/X | Wait/X | # Waits | Wait/Lock
(sec) (sec) / X (sec)

1 10 0.57 .39 1.72 0.23

2 20 1.12 .82 1.81 0.45

5 50 3.04 231 1.78 1.29

10 100 7.68 6.13 1.85 3.30

Table 1: Lock wait time results obtained from Shore.

We see that on average each transaction waits less than 2
times for a lock (column 4), independently of number of
warehouses and clients. However, each of these waits is
costly: the average time for one lock wait ranges from (.23
to 3.3 sec, depending on the setup, and is usually on the
order of 40 percent of the average total execution time.

Next we try to answer the question whether the longs
waits are due to waiting for one transaction holding the de-
sired lock for a long time, or due to a long queue in front of

IBM DB2

Execution Time (sec)

1IWH 2WH 5WH 10WH 20WH

12

[Lock
[Other

10r

Execution Time (sec)

o ==

AWH 2WH S5WH 10WH 20WH

Figure 4: Scaling according to TPC-C guidelines:
warehouses.

the lock. Table 2 shows the average length of the lock queue
for various warehouse and client numbers. To better under-
stand the relation between wait time and queue length we
compare the queue length for as seen by long wait events to
the queue length seen by short wait events. More precisely,
we order the wait events by the length of their wait time
and compute the average queue length seen by the top and
the bottom 10 percent of these events, respectively. These
are listed as LongWait-Qlength and ShortWait-Qlength in
Table 2.

WH CL Avrg. | LongWait | ShortWait
Qlength Qlength Qlength

1 10 5.78 5.81 2.58
2 20 6.04 6.60 241
5 50 6.23 7.05 2.84
10 100 6.50 7.11 2.93

Table 2: Relation between length of lock queue and
lock wait time for Shore.

We observe that the average length of the lock queues is
around 6, independent of the setup. We also observe that
in the case of long waits the average queue length is much
larger than in the case of short waits. This indicates that
long waits are due to long queue lengths, rather than a single
other transaction blocking the lock for very long.

Yet another way to look at the characteristics of the lock
queue lengths and lock wait times is to consider the corre-
sponding cumulative distribution functions (Figure 6). It is
interesting to observe that both the cdf for the lock queue
lengths and the cdf for the lock wait times follow a simi-
lar shape. The curves are mostly linear and indicate that
most of the values are distributed uniformly over a certain
interval. Also observe that in less than 15 percent of the
cases the transaction who enters the wait queue is first in
line (the only transaction waiting). In more than 50 percent

90r

8o
@
E 7o0f
prd
£ eof
=
£ so
5 o 10
= 40 [Lock
5 B CPU
T 30 1 Unacc
&

20t

10t

o

1WH 2WH SWH 10WH 20WH
Shore
100
[Lock

901] Other

80
= 70f
s
2 eor
T s0
S
3 40
g
2
“ 30p

20t

10t

o

IWH 2WH SWH 10WH 20WH

number of clients is always ten times the number of

of the cases more than 7 other transactions are ahead of a
transaction entering the wait queue.

Based on the results in this section we believe that a pri-
oritization scheme that simply reorders the lock wait queues
might be an effective way of prioritizing transactions.

5. CONCLUSION

This paper studies the resource usage of OLTP transac-
tions in order to better understand the mechanisms needed
to implement differentiated service classes in DBMS. We
find that for OLTP workloads with a reasonable relation
between database size and level of concurrency, lock wait
times dominate execution times. This is the case for both
the commercial IBM DB2 system and an open source system
based on Shore. A closer analysis of the lock usage patterns
reveals that most of the lock wait times are spent in only a
few waits which last very long due to a long lock wait queue.
Our results suggest that a scheme that simply reorders the
lock wait queues might effectively prioritizing transactions.

6. ACKNOWLEDGMENTS

Much of the work on IBM DB2 is joint work with David
McWherter. Many thanks to Mengzhi Wang for providing
the TPC-C kit for Shore.

Fl] REFERI%NCES

Transaction Processing Performance Council. The tpc-c
benchmark. http://wuw.tpc.org/tpcc/default.asp.
[2] University of Wisconsin. Shore - a high-performance,
scalable, persistent object repository.
http://www.cs.wisc.edu/shore/.

Ordstat transaction

2 120
£ 10
18 [Lock
Em CPU 100
1.6 [Unacc
@
= 1.4 E
g 3 80
@ 1.2]
(=R € oo
5 = = 10
S os =
8 5
@ o6 g 40
a
0.4
20
0.2
o 1WH 2WH 5WH 10WH 20WH 30WH o 10wWH 20WH 30WH
Payment transaction
° 120
st J
100+ 1
" 1 £}
— 1=
g e g 5 sof g
& 8
@ s
£ st 1 s
= £ eof 1
8 at J = == 10
= 2 1 Lock
£ 3t 1 8 4of . crPu 1
w S —] Unacc
a
2t J
20 1
if 4
o o
1IWH 2WH 5WH 10WH 20WH 30WH 1WH 2WH 5WH 10WH 20WH 30WH
Delivery transaction
6 120
10
Lock
L cPU | L J
5 100
1 Unacc
g
ga— 4 S 8or g
= :
= 3t 4 5 e6or 1
S 5
£ 2
E 5
g 2t , 8 aor 4
&
o
° 1IWH 2WH 5WH 10WH 20WH 30WH AWH 2WH SWH iowH 20WH 30WH

Figure 5: Transaction types: Results for ordstat, payment and delivery transactions on IBM DB2.

CDF of the lock queue length, 10 WH, 100 CL CDF of wait time per lock, 10 WH, 100 CL
T T T T 1 T T T

[

o

® ©
:

A

— 0.7

o o
[

0.4

Prob (lock wait > x

o
w

Prob (queue length > x)

o
N

Figure 6:

© 0o o o o o o0 O
PN W N 0o N
.
.

o

o

Cumulative distribution functions for length of lock queue (left) and time waited per lock (right).

10

15 20
Queue Length

25

30

35

10

I
[

oO

10 15
Lock wait time (sec)

20

25

Characterizing Change in SQL Workloads

Stratos Papadomanolakis, Minglong Shao
{stratos, shaoml}@cs.cmu.edu
Computer Science Department

Carnegie Mellon University

ABSTRACT

In this paper we analyze how changes in SQL workloads affect
the performance of index selection tools, across multiple
workloads and database platforms. Specificaly, we use the SDSS
and TPCH workloads, modifying them to model changes. The
modifications target the selectivity (the number of rows retrieved
by queries) and the projectivity (the number of attributes
appearing in the ‘select’ clause of the query) for a number of
queries in those workloads. We evaluate the performance of the
origina and the changed workloads in Microsoft's SQL Server
and IBM’'s DB2. Also, we evauate the operation of the index
selection tools incorporated by those database systems with
respect to the changed workloads. Our experimental results show
that variations in the projectivity of the workload have the greatest
impact on the quaity of the selected indexes and on the total
workload cost, while the overall performance is stable even with
large changes in selectivity. We aso identify cases where the
index selection tools provide provably sub-optimal index
configurations, both with respect to the overall improvement in
workload cost and to the total required storage.

1. INTRODUCTION

Auto-tuning algorithms are a recently introduced component of
database systems. Their function is to assist human administrators
by automatically determining the optimal settings for a range of
system parameters which are important for performance. Usually
these parameters have obscure physical interpretation and are so
tightly integrated with other aspects of system operation that it is
virtualy impossible to fine-tune them manually. To achieve
optimality, auto-tuning software relies on detailed internal
performance models and optimization methods. In addition, it has
access to two levels of system information: The first is the current
system state, for example the data organization and dataset sizes
and dstatistics. The second is the usage access patterns, the
workload that is applied to the database. Intuitively, an automatic
tuning algorithm modifies critical aspects of the current system
state so that the performance of a given workload is maximized.
Workload driven optimization has been used to automate various
tasks in modern database systems, like the selection of indexes
and materialized views [1245], the declustering of tables into
multiple processing nodes [6], and the management of statistics.
The primary focus of this project is to define amodel of workload
information for relational databases in the context of auto-tuning
algorithms and determine how their performance is affected when
that information changes.

To that end, we first present a classification of query features,
which we believe are relevant to the operation of automated
tuning algorithms. A workload can be characterized by classifying
each query according to this classification scheme. It is currently
unknown how important each feature is for automated physical
design. The relevance of a particular feature can be evauated by

11

introducing changes to it and then measuring its performance
impact in two ways:

a) By measuring the performance of the changed workload,
when it is executed on a database design that has been
optimized for the original workload.

b) By reapplying the physical design agorithm with the
new workload and comparing the overall performance
between the origina and the newly proposed physica
design.

This methodology can help us quantify the impact of each query
feature on the physical design (or any auto-tuning related)
problem examined. The long term goal is to be able to anayze
SQL workloads in terms of those features and predict the
robustness of a given physical design or of an automated tuning
algorithm with respect to those features. Another application for
this classification would be the compression of massive SQL
workloads (like those currently being accumulated in server-side
logs) into smaller representative workloads.

For this project, we evaluate the relevance of two features, the
projection list (the number of attributes in the ‘select’ clause) and
the selectivity of expressions (which affects the tota number of
rows retrieved), with respect to index selection algorithms. The
contributions of this work are the following:

1. We identify that variations in the size of the projection list of
queries can greatly affect the performance characteristics of a
given design. When the size of the projection list of a query
increases to the point where no existing index contains al the
projected attributes, its cost increases rapidly.

2. We identify that the projection list size also greatly affects the
operation of index selection tools. The speedup provided by the
recommended indexes degrades significantly when the size of the
projection list is increased. The tota space required by the
recommended configurationsis also affected.

3. We identify that query selectivity has negligible impact both on
the workload cost for a given design and on the quality of the
index recommendations.

4, By examining the workload cost on a query-by-query basis, we
identify situations where the index selection tools recommended
sub-optimal configurations.

The rest of the paper is organized as follows. Section 2 presents
our classification of workload characteristics. Section 3 provides
an overview of the related work. Our Experimental Methodology
is described in Section 4. Section 5 discusses and analyzes the
experimental results. Finaly, Section 3 draws conclusions.

2. CHARACTERIZING WORKLOADS

To properly characterize the workload we need to know the
features of each query. A query feature is a particular
characteristic of an SQL statement that is relevant to automated
physical design agorithms.

We identify two broad classes of features, structural and
statistical. Structural query features correspond to the data objects
accessed by the query and the operations applied on them. The
statistical query features correspond to the statistical properties of
the query’s expressions (like their selectivity) that affect the
selection of an execution plan for a query and its cost. The
statistical features are dependent not only on the query, but also
on the database contents.

The structural features loosely correspond to the clauses
commonly present in SQL statements, ‘select’, ‘from’, ‘where’,
‘group by’ and ‘order by’. They are presented in Tablel. The
statistical features, shown in Table2, indicate the statistical
properties of the query expressions.

Table 1. Structural features of a query

attributes in the ‘ select’ clause
Attribute namesin the ‘select’ clause

Projection list

of attributesin the ‘where’ clause
Attribute namesin the ‘where’ clause
Expressions in the ‘where’ clause and the
attributes participating in them

Selection list

Tables referenced (joined)
Table names
Nested subqueries.

From list

Attributes in aggregation clauses

Aggregation | Aribute namesin aggregation clauses

attributes in order by clauses
Attribute names in order by clauses

Order by

Table 2. Statistical features of a query

1. Selectivities of individual expressions

Selectivity | 5 0 selectivity for each relation

In this work we are experimenting with the impact of the
projection list structural feature (specifically the number of
attributes, which we refer to as projectivity) and with the impact
of varying the total selectivity for each relation.

3. RELATED WORK

Despite the number of recent publications on workload-driven
tuning of relational databases there are no studies on detailed
workload models. Current tools take the SQL text as input and use
heuristics and the query optimizer to evaluate costs. No
experimental results are provided to characterize workload change
and their impact of auto-tuning algorithms. One recent study [3],
however, focuses on the problem of workload compression,
attempting to reduce input size and thus the running time for
workload-driven applications (like index selection tools) without
sacrificing the quality of their output. The concept of a feature
space for SQL statements is introduced in [7] to reduce
optimization overhead. Query features, like the number of joins
and the cardinalities of the participating relations are used to
support the definition of a similarity function between queries and

12

the generation of query clusters. The objective in this case is to
avoid the optimization overhead for a given query by reusing
plans that were constructed for similar queries. None of the above
studies considers the problem of characterizing the changes in
query features and measuring their impact on workload
performance or on the operation of auto-tuning agorithms.

Among various auto-tuning algorithms, index selection tools have
been successfully applied in the commercial database systems.
We chose two commercia index selection tools. The Index
Tuning Wizard (ITW) used in Microsoft SQL Server and Index
Advisor (IA) used in IBM DB2, on which we conduct the
experiments. Given a workload, ITW computes the set of all
indexes that might be helpful, then it goes on pruning that set by
using a sample configuration evaluation tool, and at the end it
combines al candidates to recommend the most promising
configuration. 1A first creates virtua indexes for each single query.
It then invokes the query optimizer to evaluate these indexes and
obtain the ratio of “benefit: cost” (benefit indicates the cost we
can save by using this index, cost is the disk space used by the
index) for each indexes. After that 1A models the index selection
problem as an application of classica knapsack problem, and
adopts the algorithm of knapsack problem to recommend indexes.

4. EXPERIMENTAL METHODOLOGY

For our studies we use Sloan Digital Sky Survey (SDSS)
workload and the TPC-H benchmark. The SDSS database is
essentially a massive catalog of astronomical objects. The
database schema is centered on the PhotoObj table, which stores
the bulk of data for every object of interest, using a collection of
400 numerical attributes. The second largest table is the
Neighbors table, which stores the spatia relationships between
neighboring astronomical objects. The SDSS workload consists of
35 queries, al designed by astronomers to mine this huge
repository of information. Most of the queries access only the
PhotoObj table with the intent to isolate a specific subset of
objects for further analysis. A small number of queries actually
perform joins, primarily between the PhotoObj and the Neighbors
tables, seeking particular spatial relationships. In the 65GB
database available to us for experimentation, 22GB are alocated
to PhotoObj and 5GB to Neighbors. For the SDSS workload, the
cost of accessing those massive (and ‘popular’) tables dominates
the total workload cost.

The TPC-H database models decision support applications.
Similarly to SDSS, it is structured around a central table named
Lineitem, which is aso the largest table in the database. The
second larger table is named Orders. We used the 10GB version
of the TPC-H dataset. In this dataset approximately 7.6GB are
alocated to Lineitem and 1.7GB are alocated to Orders.
Similarly to the SDSS application, the cost of accessing the two
largest tables dominates the cost for the entire workload.

The SDSS database is built using SQL Server 2000, and we
implemented TPC-H on both SQL Server 2000 and DB2. We use
the standard workloads (named Standard in the following sections)
as a basis to generate variations, based on the classification of
query features in Section 2. We model a changing workload by
selecting a subset of the initial workload's queries and changing
either their projectivity or the selectivity of their expressions.

4.1 Measuring /Changing Selectivity

We generated modified versions of both the SDSS and the TPC-H
workloads with respect to the selectivity of their queries, while
introducing minimal changes to their other structura and
statistical features. For TPC-H, workloads with varying selectivity
can be created by changing the values of predicates that are of the
“attribute op value’ type. The structure of query expressions and
the actual attributes in the ‘where’ clause do not need to change.
Also, when modifying query predicates, we focus only on those
that involve the two largest tables: Lineitem and Orders. Since the
operations on them aone are responsible for the largest fraction of
the total workload cost, changes involving those two tables are
likely to have the largest impact. By suitably modifying the ‘op
value' expressions in the predicates described above, we have
been able to generate four different workloads.

“sel_min”, where the selectivities of all predicates are changed to
10% (if they are larger than that), or keep the sameif they areless.

“sel 10%" , where the selectivities of al predicates involving the
Lineitem and Orders tables are changed uniformly to 10%.

“sel 90%", where the selectivities of predicates have been
changed uniformly to 90%

“sel_max”’, where the selectivities have been changed to 90% (if
they were less than that), or kept the same if they are more.

For SDSS, modifying the selectivity is not straightforward. The
queries that only access the PhotoObj table usually exhibit a very
complex predicate structure. It is therefore impossible to
determine a correct combination of values for all the predicates, in
order to achieve a specific selectivity value. In addition to that,
most of the predicates are not of the form attribute op value,
rather involve complex operations. For those expressions, there is
no way to modify any of their parameters to achieve a given
sdlectivity value. Under those constraints, we generated 3
different workloads, with increasingly higher values for the
selectivity of expressions.

“sel_OR”, where we recombined arithmetical expressions using
ORs instead of ANDs. This provided only a minor increase in the
selectivity of the changed queries.

“sal_type’, where we modified a number of predicates involving
the type of the astronomical object that was being queried. This
change provided a moderate selectivity increase.

“sel_sarg”, where we changed a small number of predicates
common to the majority of queries into SARGable expressions, of
the form attribute op value. This provided the maximum increase
in selectivity.

Finadly, we did not select for modification any queries (either
from SDSS or TPC-H) that involve joins. We did this because it is
hard to define the query selectivity for joins. Also, it is hard to
control the number of rows accessed from each table, as it
depends on the join expressions themselves and the details of the
query plan.

4.2 Measuring/Changing Projectivity

For TPC-H workloads, three workloads with different
projectivities are generated, simply by adding attributes in the
query’s projection list.

13

“pro_min”, where the projectivity of each modified query has
been reduced to the minimum possible, by removing attributes
from the ‘select’ clause.

“pro max 50%", where we increased the projectivity of each
modified query to 50% of its maximum value.

“pro max -5", where we increased the projectivity of each query
to 5 less than its maximum value.

“pro max’, where we increased the projectivity of each query to
its maximum value.

Similarly, for SDSS 3 different workloads were generated.
“min_proj”, with minimal projectivity

“15 proj”, where we added enough attributes in the projection
list of queries, to reach the number of 15.

“30_proj”, where we added enough attributes in the projection
list to reach the number of 30.

5. EXPERIMENTAL RESULTS

5.1 SDSS
5.1.1 Performance of Base Design under Change

In this section we examine how the basic database design,
optimized for the Standard workload, performs with changes in
projectivity and selectivity. Figure 1 shows the overall workload
cost with varying projectivity; Figure 2 shows the same with
varying selectivity. For the rest of the experimental section we use
the term cost to refer to the optimizer cost estimates.

30000
25000
20000
15000
10000 -

5000 -

0 T
Min_Proj.

Workload Cost

Standard 15-Proj. 30_Proj.

Figurel. Total Cost with Varying Projectivity

Figure 1 shows that reducing the number of projection columns to
the absolute minimum allowed, (min_proj) causes a 16%
reduction in the overall workload cost, while increasing the
projectivity to reach the target of 15 (15_proj) and 30 (30_proj)
attributes causes the workload performance to degrade by 73%.
The impact of selectivity variation is less severe. Figure 2 shows
that increasing the selectivity for queries by a small (sel_or),
medium (sel_type) or large (sel_sarg) amount we obtain 0.6%,
7.7% and 31% higher workload costs.

20000

15000

10000 +—

Workload Cost

5000 +—

0 ‘ ‘ ‘ |
Standard Sel OR Sel_Type Sel_SARG

Figure2. Total Cost for Varying Selectivity

The impact of projectivity on workload performance is significant,
primarily because by increasing it, we remove the opportunity for
index-only data access. No index in the current design contains all
the attributes referenced in a particular query and therefore the
base table must also be accessed. The effects of projectivity
variations are detailed in Figure 3, where the costs for 5 SDSS
queries are shown. The rest of the workload queries display
similar behavior. The increased query cost for proj_15 and
proj 30 workloads can be attributed to the introduction of
bookmark lookup operations in the query plans. This operation
represents accesses to pages of the base table (in addition to
accessing an index) and is commonly used to retrieve the query’s
attributes, if they are not ‘covered’ by a particular index. The
additional cost depends on the query selectivity: The largest the
number of rows that must be retrieved, the largest the increase in
the bookmark lookup overhead. Queries Q3, Q7 and Q13 of
Figure 3 suffer a relatively large performance impact when the
projectivity increases from the Standard to 15 Proj or 30_Prqj,
because they have to access a large number of rows. Queries
QSX1 and QSX5 on the other hand, have a negligible increase.
Finaly, there is no change in the workload performance when we
change from 15_proj to 30_proj. This is expected, since the cost
of the bookmark lookup operation does not depend on the actual
number of attributes that are being accessed.

1200
1000]
= O Standard
o 800) .
(¢} B Min_Proj
> 600 .
o) 0 15_Proj
8, 400 -]
0 30_Proj
200 +
0. ml 0 ml
Q3 Q7 Q13 QSX1 QSX5

Figure 3. Query Costs with Varying Projectivity

Figure 4 shows the query costs for varying selectivity. As
described previously, selectivity variations do not appear to have a
significant performance impact. An exception is the fina
workload, sel_sarg, constructed to provide the largest possible
number of rows for each query, which has a larger cost compared
to Sandard. The reason for the cost increase is again the
existence of bookmark [ookup operations.

14

2000
1500 [o Standard
S m Sel_OR
> 1000
g 0O Sel_Type
O 500 O Sel_SARG

0 : :

Q5 QSX1 QSX10 QSX15

Figure 4. Query Cost with Varying Selectivity

Although increasing the selectivity of a query does not introduce
new lookups, it increases the cost for the existing ones. For
example, queries Q5 and QSX10 do not have a covering index in
the origina design. Thus they must access the base table, in order
to retrieve al of their attributes. In the original design, this did not
cost much because the number of extra pages that must be
accessed is low. When the selectivity of aquery increases, the cost
of accessing the base table becomes higher. A different behavior
was observed for queries QSX1 and QSX15. These queries also
did not have a covering index, but the query optimizer chose to
execute them using an index intersection operation.

To summarize, we found that increases in the projectivity cause
large increases in the total workload cost, since queries not
covered by an index need to access base tables. Changes in
selectivity might cause performance degradation, but primarily for
those queries that are not being covered by an index. We found
that the queries not covered by an index were not affected.

5.1.1 Index Selection under Change

In this section we examine the impact of workload changes to the
efficiency of the Index Wizard. The goal is to determine the effect
on the tool’s recommendations both with respect to performance
and to the total indexing storage required.

100%
80% -
60% -
40% -+
20% -

0% ‘ ‘
Min_Proj Standard

% Improvement

15 proj 30_proj

Figure5. % Improvement with Varying Projectivity

Figures 5 and 6 show the performance improvement for the
different workloads we tried. Projectivity variations appear to be
important also for the Index Wizard. min_proj is improved by 4%
more compared to Standard. 15_proj and 30 _proj are improved
by 5% and 18% less. We did not observe any performance
differences by varying the selectivity. sel_or obtains 1% less
improvement compared to standard, while sel_type and sel_SARG
obtain 1% and 2% less respectively.

_ 100%
S 80% - —
E 0
2 60% -
e
5 40% -
g 0,
< 20%
0% ‘ ‘

Standard sel_OR sel type sel_SARG

Figure 6. %I mprovement with Varying Selectivity

The Index Tuning Wizard is tuned towards recommending as
many ‘covering’ indexes as possible. By increasing the number of
columns that must be included in an index the generation of
‘covering’ indexes is made more difficult. This explains the
performance degradation in the 15 proj and 30_proj cases.
Equivalently, if the projectivity is reduced, it becomes easier to
‘cover’ multiple queries and this is why the min_proj workload
has a higher performance improvement compared to Standard.
The feasibility of generating covering indexes essentially bounds
the performance of the Index Tuning Wizard

Figure 7 shows the cost of queries for the index configurations
corresponding to each workload. Queries Q3, Q4 and Q7 have
significantly larger cost for the 30_proj case compared to the
15 proj case. This cost difference is unexpected, because the
query cost should not depend on the number of attributes in the
projection list. We observed that the Index Tuning Wizard
chooses different designs for the 15 proj and 30 _proj cases. In
the 15 proj case, it recommends indexes that, although they do
not cover queries Q3, Q4 and Q7, have very low access costs,
presumably because not many base table pages are accessed by
those queries anyway. In the 30 _proj case, athough the use of
exactly those indexes would still be feasible (the fact that the
queries have a few more attributes in their projection list does not
matter in terms of performance) the Index Tuning Wizard builds
only very ‘thin’ indexes which are not very effective.

4000
% 3000 n @ Min_Proj
8 | | Standard
> 2000 M M .
Q 0 15 _Proj
O 1000 T ﬁ:l:t 0 30_Proj
0 t— ===l ==l :
Q3 4 Q7 Q18 Q19

Figure 7. Optimized Query Cost with Varying Projectivity

The degradation for queries Q18 and Q19 is also unusual. We did
not change the projectivity for those queries. They remain the
same for al the workloads. Q18 and Q19 are joins, involving
PhotoObj and Neighbors, and are sensitive to the existence of
indexes on the two tables. The surprising result is that the index
configuration for proj_15 does not include any indexes on the
Neighbors table, therefore pendizing all the queries that need to
access that table. For the 30_proj, however, the Neighbors table is

15

heavily indexed, and the performance for those two queries
becomes identical to the standard.

The impact of selectivity variations in the index selection process
is much less significant. Examining the queries in Figure 8, we
can see that the Index Tuning Wizard did not recommend any
indexes for queries Q2 and Q3 in the sel_or case, but these are the
only two occurrences of this problem. Again, queries Q18 and
Q20 have not been dtered in any way. Their cost is significantly
increased because for the sel_type and sdl_sarg workloads, no
indexes were recommended on the Neighbors table.

4000
o Standard
+ 3000
8 | Sel OR
> 2000 O Sel_Type
[}
5 O Sel_SARG
© 1000 =
0

Q o5} Q5 QSX10 QI8 Q20

Figure 8. Optimized Query Cost with Varying Selectivity

Figures 9 and 10 study the effect of projectivities on the index
storage space. We observe that the recommendation with the
lowest performance (for 30_proj), also consumes the largest space
which, surprisingly, is primarily allocated to indexes on the
Neighbors table, while the PhotoObj table is relatively lightly
indexed. In genera, we can observe an inverse correlation
between workload performance improvement and storage size. In
addition, no indexes are generated on the Neighbors table, for the
15 _proj, sel_type and sel_sarg workloads.

14000
12000
10000 +
8000 -

6000 -

4000 -

2000 -

04

@ PhotoObj
O Neighbors

Required Storage (MBs)

Standard min_proj 15_proj 30_proj

Figure9. Index Storage for Varying Projectivity

To summarize, we found that the Index Tuning Wizard
performance is bounded by its ability to cover as many queriesin
the workload as possible. We found that its recommendation for
the 30_proj case is suboptimal. Also, in some experimentsit failed
to index Neighbors table, which could have been beneficia to
performance. Finaly, because the experiments involving
selectivity failed to produce any significant performance
variations, we can conclude that the selectivity of queries is not
very important.

10000
8000 +
6000 ~
4000 -
2000 -

m PhotoObj
@ Neighbors

Required Storage (MBs)

Standard Sel_OR Sel_Type Sel_SARG

Figure 10. Index Storage for Varying Selectivity

5.2 TPC-H (SQL Server)

We repesated the same series of experiments with the 10GB TPC-
H benchmark database on SQL Server. The experimental results
confirm the conclusions derived from our experience with the
SDSS database. In the following sections we briefly describe
those results.

5.2.1 Performance of Base Design under Change
Figure 11 presents the running time estimates for workloads with
modified projectivity, run on the initial database. The results
confirm what was previously obtained for SDSS, that the
projectivity variations have the largest impact on query execution
time. We omitted the relevant graphs for selectivity, because we
did not measure significant performance variations.

25000 +

3 20000 +]
3
< 15000
©
o
X< 10000
5 I
= 5000 {

0

pro_min standard pro_max pro_max
50%

Figure 11. Total Cost with Varying Projectivity
5.2.2 Index Selection under Change

100%
€ 80%
£
o 60% +]
>
=4
S 40% -
£] I
L 20% -
0% =
promin Standard pro max Promax- promax
50% 5

Figure 12. % Improvement with Varying Projectivity

Figure 12 presents the % improvement for the workloads with
changed projectivity. There is a difference of more than 40%
between the standard and the pro_max cases. So, the impact of
projectivity increasesin TPCH is more severe compared to SDSS.
This can be related to the fact that the workload is, in general,

16

harder to index (Figure 12 demonstrates that the baseline
performance improvement is only 60%). An examination of what
exactly makes index selection so hard for the pro_max workload
is a subject for future work. We omitted the relevant graphs for
selectivity, because it also did not provide any useful information.

Figure 13 compares the index storage requirements. The most
interesting result is a significant reduction in storage for the
pro_max workload. For the others, increasing projectivity aso
causes increases in storage.

45000

£ 40000] o supplier
= 35000 ———
% 30000 B customer
g 25000 4 | |Opartsupp
& 20000 - ————— |Opart
2 15000 ——— |morders
§ 10000 + — |m@lineitem
3 1
g ‘ .

pro_min standard pro_max pro_max- pro_max

50% 5

Figure 13. Index Storage for Varying Projectivity
6. CONCLUSIONS

For this project, we evaluate the relevance of two query features,
projectivity and selectivity. We found that:

1. Projectivity can greatly affect the performance characteristics of
agiven design. Query cost increases a lot when no covering index
can be found.

2. Projectivity also affects index selection. The speedup provided
by the recommended indexes degrades with increasing
projectivity. The total space required by the recommended
configurationsis also affected.

3. Query selectivity has negligible impact both on the workload
cost for a given design and on the qudity of the index
recommendations.

4. By examining the workload cost on a query-by-query basis, we
identify situations where sub-optimal indexes were recommended.

7. REFERENCES

1.Agrawal.,Chaudhuri,Narasayya,” Automated ~ Selection
Materialized Views and Indexes for SQL Databases’ .VLDB 2K
2.Chaudhuri.,Narasayya.“ An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server” . VLDB'97.
3.Chaunduri.,Gupta.,Narasayya.,” Compressing SQL Workloads’
SIGMOD 2002.

4.Chauduri, Narasayya.“ Index Merging” .ICDE ' 99.

5. Lohman et.al. “DB2 Advisor: An Optimizer Smart Enough to
Recommend its Own Indexes’ . ICDE 2000.
6.Rao,Zhang,Lohman,Megiddo, “ Automating Physical Database
Design in a Parallel Database System” . SGMOD 2002.
7.Ghosh., Parikh., Sengar., Haritsa, “Plan Selection Based on
Query Clustering” , VLDB2002

of

Multi-query optimization opportunities in QPIPE

Stavros Harizopoulos and Vladislav Shkapenyuk

Computer Science Department, Carnegie Mellon University
{stavros, vshkap} @ cs.cmu.edu

ABSTRACT

QPIPE isapipelined relational query execution engine for high
performance DBMS that vertically traverses concurrent query
pipelines, to exploit data and code locality [1]. In QPIPE, each
operator is encapsulated in self-contained stages connected to
each other through queues. This design alows for operator-
based (rather than request thread-based) “vertical” query
scheduling that (&) improves code and data affinity, and (b)
reduces thread related overheads. QPIPE’s staged infrastruc-
ture naturally groups accesses to common data sources thereby
introducing a new opportunity for dynamic operator reuse
across multiple concurrent queries.

Query subexpression commonality has been traditionally stud-
ied in multiple query optimization [2]. The optimizer is respon-
sible for identifying common execution sub-paths across
multiple queries during optimization. In this paper we explore
potential techniques for exploiting common query subexpres-
sions during a query’s lifetime, inside QPIPE. We present
experiments that demonstrate the feasibility and benefits of our
approach. We also describe a demo of the proposed system. 1

1. INTRODUCTION

Multiple query optimization [2][3] has been extensively stud-
ied over the past fifteen years. The objective is to exploit sub-
expression commonality across a set of concurrently executing
queries and reduce execution time by reusing already fetched
input tuples. As an example, consider the two queries shownin
Figure 1. Query 1 performs ajoin on relations A and B, while
Query 2 joins A, B, and C. On the lower part of the figure we
show the two aternative plans the optimizer will consider for
Q2. In this scenario, when both queries are presented together
to the optimizer, it may be beneficia to choose the right plan
for Q2 and compute the Join(A,B) only once, to be used by
both queries. While this approach can introduce significant
benefits, one can argue againgt the practicality of the algo-
rithms, since the application is restricted to queries arriving in
batches and the optimizer can face an exponentially increased
search space.

Recently, there has been a proposa for Saged Database Sys-
tems [1]. The staged design breaks the DBMS software into
multiple modules and encapsulates them into self-contained
stages connected to each other through queues. Each stage
exclusively owns data structures and sources, independently

1. An extension of this work, titled “Run-time Cross-query Com-
mon Subtree Detection and Evaluation in Qpipe,” was submit-
ted to ICDE'04

17

allocates hardware resources, and makes its own scheduling
decisions. The motivation behind this staged, data-centric
approach is to improve current DBMS designs by providing
solutions (@) at the hardware level: it optimally exploits the
underlying memory hierarchy and takes direct advantage of
SMP systems, and (b) at a software engineering level: it aims at
a highly flexible, extensible, easy to program, monitor, tune
and evolve platform.

Central to the staged database system is QPIPE, its staged rela
tional pipelined execution engine. In QPIPE, every relational
operator is a stage. Query scheduling is operator-based (rather
than request thread-based) thereby improving code and data
affinity while reducing the context-switch overheads. Within
this design lies a unique opportunity for performing multi-
query optimization -style techniques that apply “on-the-fly,”
without delaying any query’s execution and independently of
the optimizer. Since queries dynamically queue up in front of
the same operators, we can potentially identify ongoing com-
mon execution sub-paths and avoid duplicating operator work.
This way, the burden of multiple query optimization can move
from the optimizer to the run-time execution engine stages.

In this paper we explore potential techniques for exploiting
common subexpressions across multiple queries inside QPIPE.
We focus on QPIPE as a stand-alone relational execution
engine (i.e. without the intervention of the optimizer, once it

Figure 1. Two different queries that share a common
subexpression

optimize execute

ntactic
%mantl ¢ check

graph construc

disconnect

stage
threads

scheduling
thread

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

nested-loop
sort-merge
hash-join

class stage: class packet:
class Queue struct clientInfo
enqueue (packet*) struct queryInfo
dequeue () struct routelInfo

Figure 2. The Staged Database System design. Each stage has its own queue and thread support. New queries queue
up in the first stage, they are encapsulated into a “packet”, and pass through the five stages shown on the top of the fig-
ure. A packet carries the query’s “backpack”: its state and private data. Inside the execution engine a query can issue

multiple packets to increase parallelism.

produces a query plan) and describe the space of possible cases
where a common subexpression can be computed only once,
along with the associated trade-offs. We implement the most
promising techniques and test their effectiveness in the experi-
mentation section. We also built a graphical web-based envi-
ronment for demonstrating common subexpression exploitation
in QPIPE during runtime.

Therest of the paper is organized asfollows. In the next section
we discuss the Staged Database System design, focusing on its
relational engine, QPIPE. Section 3 discusses previous efforts
for pipelining in multiple query optimization. Then in Section 4
we describe new techniques for exploiting subexpression com-
monality in QPIPE. Section 5 carries the experimentation with
the implemented algorithms and Section 6 describes the demo
that comes with this paper. We conclude in Section 7.

2. QPIPE: STAGED EXECUTION ENGINE

The Saged Database System design [1] consists of a number of
self-contained modules, each encapsulated into a stage (see
also Figure 2). A stage is an independent server with its own
queue, thread support, and resource management that commu-
nicates and interacts with the other stages through a well-
defined interface. The first-class citizen in this design is the
query, which enters stages according to its needs. Stages accept
packets, each carrying a query’s state and private data (the
query’s backpack), perform work on the packets, and may send
the same or newly created packets to other stages. A stage pro-
vides two basic operations, enqueue and dequeue, and a queue
for theincoming packets. The stage-specific server codeis con-
tained within dequeue. A packet represents work that the server
must perform for aspecific query at agiven stage. It first enters
the stage’s queue through the enqueue operation and waits until

18

a dequeue operation removes it. Then, once the query’s current
state is restored, the stage specific code is executed.

QPIPE isthe relational execution engine of the staged database
design. In QPIPE each relational operator is assigned to a stage
(see aso the dashed box in Figure 2). Although control flow
amongst operators/stages still uses packets as in the top-level
DBMS stages, data exchange within the execution unit exhibits
significant peculiarities. Firstly, stages do not execute sequen-
tially anymore. Secondly, multiple packets (as many as the dif-
ferent operators involved) are issued per each active query.
Finally, control flow through packet enqueueing happens only
once per query per stage, when the operators/stages are acti-
vated. This activation occurs in a bottom-up fashion with
respect to the operator tree, after the init stage enqueues pack-
ets to the leaf node stages (similarly to the “push-based” model
[7] that aims at avoiding early thread invocations). Dataflow
takes place through the use of intermediate result buffers and
page-based data exchange using a producer-consumer type of
operator/stage communication.

The current implementation maps the different operators into
five distinct stages (see aso Figure 2): file scan (fscan) and
index scan (iscan), for accessing stored data sequentialy or
with an index, respectively, sort, join which includes three join
algorithms, and a fifth stage that includes the aggregate opera-
tors (min-max, average, etc.). Activation of operators/stagesin
the operator tree of aquery starts from the leaves and continues
in a bottom-up fashion, to further increase code locality (thisis
essentially a“page push” model). Whenever an operator fills a
page with result tuples (i.e. ajoin’s output or the tuples read by
ascan) it checksfor parent activation and then places that page
in the buffer of the parent node/stage. The parent stage is
responsible for consuming the input while the children keep
producing more pages. A stage thread that cannot momentarily

continue execution (either because the output page buffer isfull
or the input is empty) enqueues the current packet in the same
stage's queue for later processing. QPIPE is implemented on
top of PREDATOR’s execution engine, which is a research
prototype DBM S (www.distlab.dk/predator).

3. PREVIOUS EFFORTS

Traditional query optimization techniques rely on materializa-
tion of the common subexpressions to avoid recomputing
shared results. Although these techniques can lead to signifi-
cant performance gains, they do carry an additional overhead
of writing and reading the results of shared subexpressions.
Recent work [4] goes a step further by proposing to use pipe-
lining to avoid unnecessary data materialization. However,
pipelining is complicated by the fact that different consumers
of the shared query nodes can have different consumption
rates. In these scenarios a shared subexpression will be unable
to produce any tuples after filling the input buffer of one of the
consumers. An analytical model is proposed that allows to
decide whether a pipelined schedule is valid or some of the
pipelined edges will need to be materialized to avoid the opera-
tors blocking on dower consumers. Note that the decision
whether to materialize or to pipelineis taken during query opti-
mization time and is based on the assumptions about rates at
which operators consume and produce the tuples.

4. PROPOSED TECHNIQUES

To illustrate how the proposed techniques are going to work,
consider the two queries Q1 and Q2, and their operator trees,
shown in Figure 3. Both queries share a common operator sub-
tree and differ only in the root. If Q2 arrivesin the DBMS after
Q1 is inserted in the execution engine, a traditional optimizer
has typically no means of identifying and taking advantage of
the common subexpression. In QPIPE, Q1 will have to subse-
quently queue up in front of all stages that contain the Query’s
Execution Plan (QEP) operators. If SORT takes enough time
for Q2 to queue up at the same stage, then Q2 can take advan-
tage of all the work that Q1 has been doing.

A packet in QPIPE represents work to be done by the stage on
the input tuples (pointed by the packet). The produced output
tuples are stored into the parent record buffer (which, inturn, is
the input buffer for the parent operator in the operator tree).
Whenever two or more queries share the same subexpression
(same operator subtree) then it’s only necessary that one packet
is active on the root of that subtree. This packet can work on
behalf of al queries by copying pointers to the result tuples
into the parent buffers of all queries. Then, only one query
needs to maintain packets at the operators of the subtree. How-
ever, the different parent operators relying on a single operator
for producing tuples can have different consuming rates. In that
case we may no longer be able to maintain a single merged
packet and may need to split the packets. Furthermore, file
scans on the same rel ation but with different selectivity can still
be merged but with different producing rates for the different

19

Q1: min(b)
Q2: avg(b)
Q1:
SELECT min(b)
FROM tablel
GROUPBY a Q1, Q2: Sortona
Q2:
SELECT avg(b)
FROM tablel Q1, Q2: Project onab
GROUP BY a

=@ \N) Q1, Q2: Scan relation tablel

Figure 3. Two “mergeable” query plans

queries. Different producing rates may negate the effect of dif-
ferent parent consuming rates but they can also amplify it.

The data structure that contains the operator subtree at each
node of the QEP is built during the execution initialization
phase. The operator tree is traversed in prefix order and at each
operator we encode all parameters, operations and attributes
pertaining to a specific query. Since QPIPE first activates the
leaves of the operator tree, wefirst describe the implementation
of FSCAN and ISCAN, next SORT and AGGREGATES, and
lastly, the join operators.

4.1 Scan operators

FSCAN. Two or more queries that open afile scan on the same
relation can potentially merge into a single packet serving al
common queries. The packet merging process in the FSCAN
operator works as follows. Whenever a new scan packet is
inserted into the queue, it will first examine whether there
exists a scan packet that works on the same relation. If it does,
then there are two cases:

1. The existing scan packet is still in its initialization state (it
hasn't retrieved any tuples). In that case we can safely attach
the new scan regardless of the predicate the new scan uses. For
every tuple that the scan operation retrieves from a relation, it
must go through the list of the merged packets to check if it
matches any of the predicates and post the tuple into the
respective scan's parent buffer.

2. The exigting packet is already in the middle of the scan. In
that case we have 3 dternatives: (a) Do nothing and enqueue a
separate packet for the new scan. (b) Put the existing scan on
hold until the newly arrived scan catches up with it. This can be
dangerous, because in scenarios in which new scan packets
constantly arrive we can infinitely delay the execution of the
common part. (c) Break the new packet into two parts. The first
part will scan the relation’s part that is needed to catch up with
the existing scan (thistechniqueisalso used in [6]). The second
part will be merged with the existing scan packet. The problem
with thissolution isthat it can destroy the tuple ordering for the

new scan. If the query plan depends on the file scan producing
the tuples in certain order, this is unacceptable. In QPIPE, we
can use information from the optimizer to figure out whether it
is safe to break packetsinto two. Note that if the existing scan’s
parent operator didn't consume any tuples yet and the new scan
has anidentical predicate, we can safely merge these two scans.
All the tuples that the first scan already posted into the parent
buffer will need to be copied into the new scan’s parent buffer
of the new scan. This technique can have a significant benefit
for highly selective scans by allowing us to attach to them very
late in the process. Packet splitting is done by copying the scan
iterator of the main packet to the ones that need to detach.

ISCAN. The most straightforward merging technique in index
scans is to merge packets with exactly the same predicates, that
haven't activated their parent yet. We can still exploit partialy
overlapping predicates, but the effectiveness heavily depends
on the order the queries arrive at ISCAN and the nature of the
overlapping predicates. For example, consider two queries that
have the following predicates. P1:a>10, P2:a>15. If Q2 arrives
while Q1 has still not crossed the value ‘15’ in the index, then
the two queries can merge. However, if the gap between the
two values is large then we may end up delaying the second
query. On the other hand, if Q2 is already activated when Q1
arrives at ISCAN then, if we don’'t care about the ordering of
the output tuples, we can break Q1 index scan in to two scans
and merge the second one (the same way asin FSCAN). Split-
ting is again done by copying the index scan iterator.

4.2 Sorting operators

SORT is a*“stop-and-go” operator, in the sense that it needs to
consume its whole input before starting producing any output
tuples. This property effectively allows for awide time window
during which newly arrived queries at the same stage and with
the same subexpression can merge with existing ones. There
are 3 cases when inserting a new packet in the SORT's queue
and find another packet working on the same subexpression. In
all cases the new packet sets a flag to notify the children of that
node that they no longer need to work.

1. The existing packet is still scanning or sorting the file. This
is the easiest case since the newly arrived packet can safely
attach to the working packet without any extrawork.

2. The existing packet has started filling the parent buffer, but
the parent operator is not yet activated. In this case we need to
copy the existing packet’s parent record buffer into the new
packet’s one. After thisis done the two packets can be merged
and proceed as normal.

3. The existing packet iswell ahead into reading the sorted file.
In this case merging the two packets is not possible but we can
reuse the aready sorted file. The new packet increases a usage
counter on the sorted file (so that is not deleted when the cur-
rent packet is done) and opens anew scan on the sorted file.

When the parents have different consuming rates we first try to
double the buffers to avoid splitting. Otherwise, we split the
packets by reusing the sorted file. A new scan is opened at the

20

point the split happens and the sorted file's usage counter is
increased.

4.3 Aggregating operators

New packets can always merge with existing ones as long as
the parent operator hasn’t consumed any tuples. Note that a
simple aggregate expression (i.e. without a GROUP BY clause)
produces a single tuple, so merging is always possible. When-
ever there are multiple aggregate results, merging is possible
while the parent operator is not yet activated. Since aggregate
expressions in general can have a much lower tuple producing
rate than consuming, the time window of opportunity for merg-
ing identical subexpressions can be wide.

Splitting is actually more complicated than in the previous
operators. We are currently considering the following two alter-
natives. (a) Dump (materialize) the output of the active packet
and point the detached packets to that output (this approach is
also used in [4]). (b) Traverse the main packet’s tree and copy
all of its state into the detached packets. The trade-off in these
two approaches is additional storage vs. the overhead for creat-
ing and activating all the children for the detached packets.

4.4 Pipelined join operators

Merging and splitting works exactly as in the aggregate opera-
tors. When joins produce output at a high rate (e.g., a nested-
loop cross product) the time window for performing a merge
can be very small. However, highly selective join predicates
can lead to larger time windows.

5. EXPERIMENTATION

All the experiments are run against a synthetic database based
on the Wisconsin benchmark specifications [5]. This suite
specifies a ssimple schema and relatively ssimple select, project,
join, and aggregate queries. The reason we opted for the Wis-
consin benchmark (which, in today’s context can be viewed as
a micro-benchmark) and not for a TCP-C/H workload is that
we wanted to have a deeper understanding of why our new
design performs differently than the original system. With
TCP-C/H it would have been difficult to map system behavior
to the exact components of a specific query. The same
approach has been successfully used to characterize modern
commercial DBMS hardware behavior [8]. We used 100,000
200-byte tuple tables for the big tables (bigl and big2 in the
experiments) and 10,000 tuples for the small table.

All experiments are run on a 4-way Pentium-111 700MHz SMP
server, with 2MB of L2 cache per CPU, 4GB of shared RAM,
running Linux 2.4.18. Both systems (QPIPE and PREDA-
TOR's original execution engine) run the DBMS server on a
single process implementing user-level threads. This way we
effectively reduce the SMP system into a uniprocessor one.
The reason we wanted to use that specific machine was to off-
load the processor running the DBMS server from OS-related
tasks (since those will be naturally scheduled on the free pro-
cessors). All numbers reported, unless otherwise noted, refer to
the time a query spends inside the execution engine. Whenever

>

small

bigl big2
common
subtrees

SELECT *

FROM small, big1, big2

WHERE (small.a= bigl.a) AND (bigl.a = big2.a)
AND (bigl.aBETWEEN X AND Y)

bigl: a>X AND a<Y

Total response time (sec)

200 ._’_./I—’" L
150 y & & H
v v
4’/v

100 —
——QPIPE
== Original

50
0 T T T T T
0 20 40 60 80 100 120

Interarrival interval (sec)

Figure 4. SORT reusing in 2 join queries

output tuples are produced, we discard those to avoid invoking
client-server communication, since the query might be still
active inside the execution engine. Before taking any measure-
ments we first enable the results for verification purposes.

5.1 Implemented techniques

In al of the experiments the following techniques were imple-
mented and tested: merging SCAN and ISCAN packetsin their
initialization phase, merging and splitting SORT packets at all
phases, merging AGGREGATE and JOIN packets at al phases.

5.2 Merging at SORT

We sent two similar 3-way join queries to both our system and
the original execution engine. The left part of Figure 4 shows
the SQL statement and the execution plan for those queries. We
used the integer attributes from the Wisconsin Benchmark for
all joining and group-by attributes. The only difference in the
two queries is the range of index scanning for table big2 (i.e.,
the values of X and Y differ in the two queries). While both
joins in the plan are not common across the two queries
(because of the different index scan predicates) the actual join
algorithm which is sort-merge in this case exhibits commonal -
ity in the sort operations. Both queries need to sort tables big2
and small on attribute a. As long as the temporary sorted files
are used (when created, sorted, or read), QPIPE can avoid
duplicating the ongoing work for any newly arrived queries.

The graph in the right part of Figure 4 shows the total elapsed
time from the moment the first query arrived until the systemis
idle again. We vary the interarrival time for the two queries
from 0 secs (i.e.,the two queries arrive together) up to the time
it takes the first query to finish when aone in the system (i.e.,
the second query arrivesimmediately after the first one finishes
execution). The graph shows that QPIPE is able to perform
packet merging at the SORT stage, thereby exploiting com-
monality for most of a query’s lifetime (that’s why the line for
QPIPE remains flat most of the time) and provide up to 25%
reduction in the total elapsed time. Note that both systems per-
form better when the queries arrive close to each other, since
the system can overlap some of the 1/Os between the 2 queries.
Also, note that when both queries execute with no overlap

21

between them (right most data points) QPIPE results into a
slightly higher total elapsed time because of the stage queue
overhead (this overhead actually pays off when there are multi-
ple queriesinside QPIPE).

5.3 Merging at AGGREGATES

In Figure 5, we repeat the same experiment with two different
queries. These are aggregate queries that need to use the sort
stage to satisfy the GROUP BY clause. Again, QPIPE isableto
reuse the already sorted file for the second query.

5.4 Merging at JOIN

Figure 6 shows the plan for another pair of queries. This time,
welet X1, Y1, X2, and Y 2 be the same for both queries. In this
case, QPIPE is able to merge the packets from the two different
queries during the merge phase of the sort-merge join. Again
QPIPE is able to produce up to 40% lower total elapsed time.

5.5 Throughput experiment

As alast experiment we created a random mix of queries from
the Wisconsin Benchmark and used 2 clients that continuously
picked a query from that mix and sent it to both systems. We
measured the throughput for both systems. QPIPE was able to
sustain 0.00262 queries/sec while the origina system only
0.00201 queries/sec. These benefits came from merging pack-
ets at different operators during the experiment.

6. DEMO

We designed a demo for graphically displaying common sub-
tree exploitation in QPIPE. We added code to QPIPE to period-
ically dump the state of each stage on afile. A cgi-bin script
reads this information and continuously updates an html page
containing information of the system’s current state (queue uti-
lization, query status and common subexpression expl oitation).
We opted for plain html and not Java, for simplicity. In the
future we plan to use Java and provide smoother graphical rep-
resentations and also introduce the ability to configure QPIPE
and workload parameters.

common
subtrees

\:

i\ | SELECT a, b, min(d)
FROM bigl
GROUP BY a,b, ¢

El)
—
o 80
o o— ———
— 70
(] /
E o0 4
=
0 50
S sl A —h— A— A
@
30
o
= =&~ QPIPE
E 10 ‘-I-Original
0 :
0 10 20 30 39.4762

Interarrival interval (sec)

Figure 5. SORT reusing in 2 aggregate queries

common
subtrees

>
small

>

bigl hig2

SELECT *
FROM small, bigl, big2

WHERE (small.a=higl.a) AND (bigl.a= big2.a)
AND (bigl.aBETWEEN X1 AND Y1)
AND (hig2.aBETWEEN X2 AND Y2)

AND (smal.aBETWEEN X3 AND Y3)

bigl: &X 1AND a<Y1l big2: a>X2 AND a<Y2

160
S 140
@
\(l)/ 120
g = /
= 100
b3

80
< o . &
8_ A 4) 4) 4
60
o
= 40 ——-QPIPE
° -8 Original
= 20

0 T
0 20 40 60 69.807

Interarrival interval (sec)

Figure 6. JOIN and SORT reusing in 2 join queries

7. CONCLUSIONS

Query subexpression commonality has been traditionally stud-
ied in multiple query optimization [2]. The optimizer is respon-
sible for identifying common execution sub-paths across
multiple queries during their optimization phase. In this paper
we explored all the potential techniques for exploiting common
query subexpressions during a query’s lifetime, inside QPIPE.
Similarly to [4], our approach relies heavily on pipelining of
the results of common subexpressions. However, our tech-
niques apply dynamically at run-time without needing to know
in advance the consumption and producing rates of different
operators in given queries. Furthermore, we avoid intermediate
result materialization (in the case of aslow consumer) by either
doubling the record buffers or performing packet splits. We
presented experiments that demonstrate the feasibility and ben-
efits of our approach.

8. REFERENCES
[1] S. Harizopoulosand A. Ailamaki. “A Case for Staged Database
Systems.” To appear, CIDR’03.

[2] T. K. Sdllis. “Multiple Query Optimization.” ACM Transac-
tions on Database Systems, 13(1):23-52, March 1988.

22

[3] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. “Efficient and
Extensible Algorithms for Multi Query Optimization.” In Proc.
SIGMOD, 2000.

[4] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. “ Pipelin-
ing in Multi-Query Optimization.” In Proc. PODS, 2001.

[5] D. Dewitt. "The Wisconsin Benchmark: Past, Present, and
Future," in The Benchmark Handbook, J. Gray, ed., Morgan Kauf-
mann Publishers, San Mateo, CA (1991). http://
www . benchmarkresources.com/handbook/4 . html

[6] C. Cook. “Database Architecture: The Storage Engine”. Mis-
crosoft SQL Server 2000 Technical Article, July 2001. Available
online at: http://msdn.microsoft.com/library/

[7] G Gregfe. “Iterators, Schedulers, and Distributed-memory Par-
alelism”. Software-practice and experience, Vol. 26 (4), 427-452,
April 1996.

[8] A. Ailamaki, D. J. Dewitt, M. D. Hill, and D. A. Wood.
“DBMSs on a modern processor: Where does time go?’ In Proc.
VLDB, 1999.

Entropy-Based Histogram Construction

Mengzhi Wang
Computer Science Department
Carnegie Mellon University

(mzwang@cs .cmu. edu)

ABSTRACT

Histograms give accurate selectivity estimation for range
predicates. This project proposes to use entropy plot for
measuring the accuracy of the histograms and introduces
a top-down construction algorithm based on the measure-
ment. The algorithm works for both one-dimensional and
multi-dimensional histograms. The evaluation on synthetic
workloads demonstrates that the algorithm produces his-
tograms of high accuracy.

1. INTRODUCTION

Query optimizers in database systems take advantage of his-
tograms for selectivity estimation of predicates. Accurate
histograms help to produce better query plans. Histograms
usually group tuples into buckets by the tuple values and
store the summary information of the buckets. The his-
togram construction algorithm should focus on finding the
combination of buckets of high uniformity to minimize the
overall selectivity estimation error because the estimation
assumes uniform tuple distribution within histogram buck-
ets. However, existing histogram construction algorithms
usually rely on heuristic rules rather than an accurate mea-
surement for the quality of histograms.

This project proposes the entropy plot for measuring the ac-
curacy of the histograms. The entropy plot tests the unifor-
mity of the tuple distribution within the histogram buckets
by calculating entropy value at different granularities. The
measurement is able to guide the top-down histogram con-
struction algorithm to refine the buckets of high irregular
tuple distribution. The evaluation on synthetic workloads
suggests that the entropy plot is effective in measuring the
accuracy of the histograms and the algorithm is able to gen-
erate histograms of high quality.

The rest of the report is organized as follows. Section 2 lists
some representative work on the area. Section 3 introduces
the entropy plot as the measurement for histogram accuracy.
Section 4 sketches the entropy-based top-down histogram

23

construction algorithm for both one and multi-dimensional
data. Section 5 compares the accuracy of the algorithm to
other existing ones. Section 6 concludes the report.

2. RELATED WORK

One-dimensional histograms give selectivity estimation for
predicates on a single attribute. Poosala et. al. provided a
very nice taxonomy on one-dimensional histograms[7].

Multi-dimensional histograms are used for selectivity esti-
mation of predicates on multiple columns. Techniques for
constructing multi-dimensional histograms range from early
equi-depth histograms [6] to recent ones including MHIST
and SVDI[8], Wavelets[5], Self-Tuning histograms[1, 2], and
Baysian network[3, 4]. Most of these algorithms build the
histograms by recursively splitting the buckets. However,
the splitting is usually based on heuristic rules rather than
the quality of the histograms.

This project proposes to use the entropy plot as the mea-
surement for histogram accuracy. The histogram construc-
tion algorithm guided by the measurement, thus, is able to
generate more accurate histograms.

3. UNIFORMITY AND ENTROPY

This section introduces the entropy plot and how to use it
to measure the accuracy of a histogram.

3.1 Bucket Uniformity

Suppose we are building a histogram on a set of columns.
The columns form a multi-dimensional Cartesian space. The
histogram usually divide the multi-dimensional space into
non-overlapping hyper-rectangles such that the whole space
is covered by the hyper-rectangles. These hyper-rectangles
are usually known as buckets. The histogram maintains the
boundaries of the buckets and the number of tuples within
the buckets.

The accuracy of the histogram depends on the tuple distri-
bution within the histogram buckets. A range predicate is
also a hyper-rectangle within the multi-dimensional space
and the selectivity estimation is to find out the number of
tuples within the hyper-rectangle. The estimation algorithm
scans all the buckets that have overlap with the predicate
and assumes uniform tuple distribution within each bucket
to estimate the tuples in the overlap region. When a bucket
has a partial overlap with the predicate, the contribution of
the bucket is the product of the total number of tuples within

the bucket and the ratio of the overlap volume to the bucket
volume. Thus, the accuracy of the histogram is determined
by how close the tuple distribution is within the buckets to
the uniform distribution. The closer the buckets are to the
uniformity, the more accurate the selectivity estimation will
be. The goal of the histogram construction, therefore, is
to divide the multi-dimensional space into buckets of high
uniformity.

Uniformity of the tuple distribution within the histogram
buckets comes from the following two aspects.

1. Uniform spreads. The column value combinations
that appear in the relation should uniformly spread
out within each bucket.

2. Uniform frequencies. All the column value combi-
nations have the same frequencies in the relation.

Both conditions are critical for accurate selectivity estima-
tion. MaxDiff(V,A) outperforms most one-dimensional his-
tograms because it takes both spread and frequency into
consideration during the construction; however, rather than
using a measurement for bucket uniformity, it relies on the
heuristic rule that the difference in area is a good indication
of the bucket uniformity. With an accurate measurement
of the bucket uniformity, the construction algorithm should
produce histograms of higher quality.

This project proposes the entropy plot for bucket uniformity
measurement. The entropy plot is based on the concept of
entropy, which measures the uniformity of a discrete proba-
bility function. The following section presents entropy and
entropy plot.

3.2 Entropy and Entropy Plots

Entropy measures how far away a probability distribution
function is from the uniform distribution. Entropy on
a discrete probability distribution function P = {p;|i =
1,2,...,N} is defined as

N
H(P)=— pilog,pi, (1)
i=1

The entropy value H equals to log, N if P is a uniform dis-
tribution function. High skewness of the distribution results

in small entropy value. When H reaches the minimum value
of 0, the probability function P looks like this:

1 =k
Pi= 0, i#k.

Applying entropy to a histogram bucket tells whether the
column value combinations have uniform frequencies, but it
provides no information about the spread uniformity of these
value combinations. The latter information can be gathered
by calculating the entropy value at different granularities.

Let’s first use a one-dimensional bucket as an example to
illustrate the idea. The value range of the bucket is divided
into 2" equi-length intervals at scale n and the number of
tuples in each of the intervals are counted. The entropy

24

Entropy plot

15 ‘
Bucket 1 P
/,/

Q Bucket 3 -x o
= 10 | - |
g - oo KoK
> ’ .
Q- A % *
o /’*
€ 5| |
w

0 ‘ ‘
0 5 10 15

Scale

Figure 1: Uniformity and entropy plot.

value at scale n is then calculated using these counts as the
probability that a tuple falls into these intervals. Plotting
the entropy value against the scale yields the entropy plot
for the bucket. It is first used in bursty traffic modeling [9]
for measuring the burstiness of the traffic.

The shape of the entropy plot tells how far away the bucket
is from an ideally uniform bucket. If the bucket is uniform
in both spread and frequency, the entropy value equals to n
when the scale n is small as the equi-length intervals should
contain roughly the same number of tuples. When the scale
n becomes larger such that the interval is smaller than the
spread, further dividing the intervals doesn’t change the en-
tropy value any more and the entropy plot shows a flat tail
of log, V, where V' is the number of column value combina-
tions within the bucket.

Figure 1 shows the entropy plots on three one-dimensional
buckets.

e Bucket 1 is uniform in both spread and frequency.
The spread is 1. The entropy plot forms a line of slope
1. No further division of the bucket is needed.

e Bucket 2 is also uniform in spread and frequency, but
the spread is 32. The entropy plot starts with slope 1
and becomes flat after the interval is smaller than 32.
No further division of the bucket is needed, either.

e Bucket 3 is not uniform in either spread or frequency.
Further division of the bucket into several buckets should
yield better selectivity estimation.

Extending the entropy plot to multi-dimensional buckets is
straightforward. At scale n, all the d dimensions of a bucket
is divided into 2" equi-length intervals and the entropy value
is calculated on the (2")? hyper-cubes. If the bucket is uni-
form in both frequency and spread, the entropy plot assumes
a slope of d at small scales and has a flat tail at value log, V,
where V' is the number of distinctive value combinations in
the bucket.

3.3 Error Estimation

6 Error estimation

Ideal entropy plot

Entropy value
w
I

|

Real entropy plot

0 |
0 4 8
scale

Figure 2: Error estimation for a bucket.

The distance between the entropy plots of a bucket and the
ideal uniform bucket is proportional to the estimation error
if the bucket is used for selectivity estimation. Ideally, the
entropy plot for a uniform bucket has a slope of d at small
scales and a flat tail of value log, V', where V' is the number
of distinctive value combinations in the bucket. The real
entropy plot of the bucket always lies beneath the ideal en-
tropy plot. The area between the two entropy plots gives the
selectivity estimation error (the shaded area in Figure 2).

Calculating the area requires complex computation. An ap-
proximation of the area is the sum of the difference between
the entropy values at all the scales. In the following discus-
sion of the algorithm, we use this approximation instead of
the real area as the measurement of the selectivity estima-
tion error.

4. ENTROPY-BASED HISTOGRAM CON-
STRUCTION

This section describes the top-down histogram construc-
tion algorithm based on selectivity estimation error mea-
surement.

4.1 Algorithm Overview

The construction algorithm adopts a top-down approach as
outlined in Figure 3. It starts with a bucket that contains
the whole multi-dimensional Cartesian space and recursively
selects a bucket for splitting if more storage space is avail-
able. Two decisions are involved here: to select a bucket
for division and to figure out how to split the bucket. The
following two sections discuss the solutions in details.

4.2 Finding Split Bucket

The algorithm should select the bucket that yields the great-
est reduction in the overall selectivity estimation error. We
approximate this by choosing the one with the greatest se-
lectivity estimation error given by the entropy plot. When
comparing the errors of the buckets, several weighting fac-
tors can be taken into consideration.

e Tuples in bucket. Buckets with a large number of
tuples in them should have high priorities over small
buckets.

e Workload. Buckets of high access frequency should
have high priorities.

25

e INPUT: The columns in a relation for his-
togram construction and the number of available
storage space.

e OUTPUT: A histogram on the designated
columns.

e ALGORITHM: Build a bucket to contain the
whole multi-dimensional space. Repeat the fol-
lowing steps if there is still storage space avail-
able.

1. Select a bucket for splitting
2. Decide the best division for the bucket.

3. Split the bucket into two buckets.

Figure 3: Top-down construction algorithm.

In the experiments, the algorithm weighs the estimation er-
ror by the number of tuples in the bucket and selects the
one with the maximum weighted error. Actually, this re-
duces the expected estimation error if the query follows the
tuple distribution.

4.3 Finding Split Point

Similarly, the best split point should produces the great-
est reduction in the estimation error. Exhaustive search
involves too much computation; so we use heuristic rules to
find the best split point.

4.3.0.1 One-dimensional histograms.
The following rules for splitting the histogram buckets are
considered.

¢ Rule Random selects a random value within the
bucket.

o Rule Middle chooses the value that divides the bucket
into two buckets of the same number of distinctive
value combinations.

e Rule Median uses the median value so that the two
new buckets have roughly the same number of tuples.

¢ Rule MaxDiff employs the value that has the maxi-
mum difference in area change as in MaxDiff(V,A).

Figure 4 compares the performance of these rules on syn-
thetic workload as described in Section 5.2. (a) compares
the performance of the rules on data of different skewness
with 12 bucket histograms and (b) shows the effect of the
storage space on data of skewness 1.5. Overall, Rule Median
works the best.

The difference between the rules becomes significant for data
of high skewness as Figure 4 (a) has shown. For data of low
skewness, the tuple distribution is very close to uniform;
therefore, the position for the splitting doesn’t make a lot
of difference in the quality of the histograms. On the other
hand, picking the wrong position can be disastrous for data

Division rules on skewness

200 % ‘
0 Random
- o% | Median -
o 150 % MaxDiff =
5]
2 100%
8
()
T 509 |
0 % \VW ! !
0 0.5 1 15 2

Skewness
(a) On dataset of different skewness

Division rules on storage

200 % !
0 Random
. 150% | Median - |
5 0 - MaxDiff -
q) .
2 1000 1
B R,
3] e
X g5gop | e ® *————w,,,,,, 7
0% ‘ ‘
6 12 18 24

of buckets
(b) On different storage space

Figure 4: Comparison of the splitting rules for one-dimensional histograms. The error is averaged over 10,000
queries on 10 randomly generated datasets of the same skewness. Each dataset contains 500,000 tuples on
100 distinctive values ranging from 0 to 500. (a) assumes 12 buckets and (b) assumes the skewness of 1.5.

of high skewness. A good rule for finding the split point is
very important.

The accuracy of the selectivity estimation improves when
more storage space is allowed because the histograms ap-
proximate the real data distribution better with more buck-
ets. The distinction for different splitting rules diminishes
with more storage; however, the relative position doesn’t
change. Rule Median remains the best one for all the cases.

4.3.0.2 Multi-dimensional histograms.

The algorithm needs to decide not only the split point, but
also along which dimension the splitting should be for multi-
dimensional histograms. Once the splitting dimension is de-
cided, the algorithm can use the similarly splitting point
rules as in the one-dimensional histogram construction algo-
rithm. Finding the splitting dimension also follows heuristic
rules. Following are some of the rules.

e Rule Optimal finds the dimension that produces the
maximum reduction in estimation error.

e Rule Random randomly picks a dimension.

e Rule Range selects the dimension with the largest
value range.

e Rule MaxDiff picks the dimension with the greatest
difference in area.

In the experiments, we use Rule Range to determine the
split dimension and Rule Median for finding the split point.

4.4 Construction Cost

Calculation of the entropy plot needs calculation of entropy
value on all the granularities. This can be done in a single
pass of the data because the calculation on different is inde-
pendent. After the bucket splitting, the algorithm needs to
calculate the entropy plot for the two new buckets.

26

The entropy-based histogram construction algorithm requires
more computation than MaxDiff(V,A) as we need to recalcu-
late the entropy plots for the new buckets after each bucket
splitting.

The construction cost for multi-dimensional histograms is
in the same order as MHIST-2. MHIST-2 searches for the
bucket with the maximum difference in area for splitting
and the entropy-based algorithm searches for the one with
the maximum estimation error. Both require recalculation
of the statistics of the new buckets for further splitting.

5. EVALUATION METHOD

This section evaluates the entropy-based histogram construc-
tion algorithm using synthetic workloads. The results show
that the entropy-based histograms provide more accurate
selectivity estimations in most cases because of the right
guideline for bucket splitting.

5.1 Methodology

We compare the accuracy of histograms by relative error.
The relative error for a query is defined as
—-FE
Error = QT, (2)
where @ is the result size and E is the estimation from the
histograms.

The following two sections present the comparison for one-
dimensional and multi-dimensional histograms respectively.
All the queries are generated randomly and they all have re-
sult sizes larger than 10. Each point in the graph is the aver-
age relative error of 10,000 queries over 10 random datasets.
The dataset generation algorithm is presented in the follow-
ing sections.

5.2 One-DimensionalHistograms
The one-dimensional histograms are evaluated with datasets
of Zipfian distribution. There are total of 500,000 tuples on

One-dimensional histogram on skewness
100 %

MaxDiff(V,A)
5 5%]
5]
L 50% ¢t 1
a ~
©
o 250% + ////// |
0 % L L L
0 05 1 15 2

Skewness
(a) On dataset of different skewness

One-dimensional histograms on storage

100 % e
° MaxDiff(V,A) ——
5 5%
E \\\\\
2 50% | T
8 T
L \\\\\
T 250 -~
0% : :
6 12 18 24
of buckets

(b) On different storage space

Figure 5: Comparison of entropy-based one-dimensional histogram to MaxDiff(V,A).

100 distinctive values ranging from 0 to 500 and the tuple
distribution has skewness ranging from 0.5 to 2.

Figure 5 compares the performance of the entropy-based his-
tograms to MaxDiff(V,A) histograms on (a) data of different
skewness for 12 bucket histograms and on (b) histograms of
different size for data of skewness 1.5. All the histograms
have the same type of buckets; so we show the storage space
as the number of buckets. The histograms store the mini-
mum value, the maximum value, the number of distinctive
values, and the total number of tuples for a bucket. That
is, 8 bytes per bucket. A histogram of 12 buckets occupies
96 bytes.

The entropy-based histogram outperforms MaxDiff(V,A) even

though MaxDiff(V,A) is proved to have the best overall per-
formance by previous study. Entropy-based histogram con-
struction directs the bucket splitting to the one in the most
need. On contrary, MaxDiff(V,A) bases the bucket bound-
aries on values of maximum area difference in the hope that
it produces the uniform buckets. Apparently, the entropy-
based histogram construction algorithm is more effective in
producing high quality histograms.

5.3 Multi-Dimensional Histograms
Two datasets are used in comparing the multi-dimensional
histograms.

e Dataset Zipf is generated with Zipfian distribution
on random value combinations within two-dimensional
space. The cardinality of the relation is 1,000,000. All
the columns have 100 distinctive values ranging from
0 to 500. The value combinations are randomly gener-
ated along each dimension. The skewness ranges from
0.5 to 2.

e Dataset Gaussian has 10 independent Gaussian clus-
ters of tuples within the two-dimensional space. The
number of tuples of the clusters follows Zipfian distri-
bution of skewness from 0.5 to 2. The standard devi-
ation of the Gaussian clusters is 25. The value ranges
from 0 to 500 on each dimension.

We present the results on the following histograms.

27

e Attribute Value Independence. One-dimensional
histograms are maintained on the columns and the
selectivity estimation assumes no correlation between
the column values.

e Multi-grids. The multi-dimensional space is divided
into regular grids and the boundaries of the grids are
derived from the one-dimensional MaxDiff(V,A) his-
tograms.

e MHIST-2. The algorithm recursively finds the bucket
that has the maximum difference of area along one di-
mension among all the buckets and divides the bucket
into two.

e Entropy-Median. The top-down multi-dimensional
histogram construction algorithm uses the median value
as the division point for splitting the buckets.

In the first case, all the storage space is divided evenly on all
the dimensions for the one-dimensional histograms. For all
the other histograms, each bucket takes up 2 x d + 1 values,
where 2 x d are for the boundaries on d dimensions and the
additional value for the total number of tuples. We assume
that each value takes 2 bytes in storage.

Figure 6 shows the relative error of these histograms on the
two datasets. The graphs show the sensitivity of the his-
tograms to the data skewness with 500-byte histograms and
the sensitivity to the available storage space on datasets of
skewness 1.5. Different histograms yield different accuracy
for the two datasets because of the different characteristics
of the datasets. Overall, the entropy-based histograms ap-
proximate both datasets better than the other histograms.

Generally, the histograms of the same size become less ac-
curate for datasets of high skewness and additional storage
space usually improves the accuracy of the histograms.

Entropy-based histograms produces accurate approximation
of the tuple distribution in most cases. For clustered datasets
like Dataset Gaussian, entropy-based histograms perform
significantly better than all the other histograms by focus-
ing on the regions of irregular tuple distribution. On dataset
of higher degree of random tuple frequencies but less ran-

Multi-dimensional histograms on skewness

Relative error

Multi-dimensional histograms on storage
150 % "

AVI

[

" Entrgpy-Median R

100 %

509% | o]

0% : :
260 Bomo irss (1)) 2000

Storage(in bytes)

(a) Performance comparison on Dataset Zipf.

9 T T T
1000 % AV
= MHIST-2 =
2 100% Entropy-Median 1
(]
(4]
=
E 0,
e 10% ¢ E
1% L L L
0 0.5 1 1.5 2
Skewness
Multi-dimensional histograms on skewness
9 T T T T L— T T
1000 % — \\\
- \\
~
S
5 ‘ :
2 100% ¢ E
8
& AVl ——
MHIST-2 -
Entropy-Median =
10% L 1 1 1 1 1
04 06 08 1 12 14 16 18 2

Skewness

Relative error

Multi-dimensional histograms on storage

1000 % [S
100 % | e E
AVl ——
MHIST-2 -~
Entropy-Median o
10 % : :
250 500 750 1000
Storage

(b) Performance comparison on Dataset Gaussian.

Figure 6: Multi-dimensional histogram comparison.

dom value spreads, multi-grid histograms work as well as,
sometimes even better than, the entropy-based histograms.

5.4 Summary

The entropy-based histogram construction algorithm iden-
tifies buckets of high degree of irregularity for further re-
finement. The result on one-dimensional histograms implies
that entropy plot approximates the estimation error very
well. Entropy-based multi-dimensional histograms produce
histograms of high quality. Better heuristic rules on bucket
splitting should lead to even better performance.

6. CONCLUSIONS

The project proposes a top-down histogram construction al-
gorithm employing the entropy plot as the measurement
of bucket uniformity. By calculating the entropy value at
different scales for histogram buckets, the entropy plot ap-
proximates the selectivity estimation error of the buckets for
range predicates. Thus, the construction algorithm is able
to focus on buckets of high estimation error for refinement,
resulting in histograms of high accuracy.

S

(9]

The algorithm handles both one-dimensional and multi-dimensional

data. The evaluation has shown that the entropy-based his-
togram construction algorithm is able to generate high qual-
ity histograms and outperforms existing histograms in most
cases.

7. REFERENCES
[1] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning
histograms: building histograms without looking at data. In

28

SIGMOD’99, 1999.

Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano.
STHoles: a multidimensional workload-aware histogram. In
SIGMOD’01, 2001.

Lise Getoor, Ben Taskar, and Daphne Koller. Selectivity
estimation using probabilistic models. In SIGMOD’01, 2001.

D. Margaritis, C. Faloutsos, and S. Thrun. NetCube: a
scalable tool for fast data mining and compression. In
VLDB’01, 2001.

Yossi Matias, Jeffrey Scott Vitter, and Min Wang.
Wavelet-based histograms for selectivity estimation. In
SIGMOD’98, 1998.

M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multi-dimensional
queries. In SIGMOD’88, 1988.

V. Poosala, Y. Ioannisdis, P. Haas, and E. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD’96, 1996.

Viswanath Poosala and Yannis E. Ioannidis. Selectivity
estimation without the attribute value indepedence
assumption. In VLDB’97, 1997.

M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the
spatio-temporal correlation in real traffic data. In
Performance’02, 2002.

On the Performance of Main-Memory Indices

%
Démian Nave
Pittsburgh Supercomputing Center
Carnegie Mellon University
Pittsburgh, PA 15213

dnave@psc.edu

ABSTRACT

Databases in main memory rely heavily upon fast and ef-
ficient in-core indices, much as traditional databases rely
upon highly-tuned out-of-core indices. Several cache-friendly
index data structures have been suggested and validated ex-
perimentally and/or theoretically. However, there is a dis-
tinct lack of empirical data covering a wide range of archi-
tectures, workloads, index data structures, and other pa-
rameters to justify (or disprove) the need for cache-aware
data structures on current hardware.

The study conducted in this paper is a first look at the
performance of typical main-memory index data structures.
Results show that the T-tree is a poor choice for main mem-
ory indices, while B-tree variants perform very well across
many problem sizes. Additionally, experiments interchang-
ing linear and binary search within a tree node show the
non-intuitive result that linear search generally outperforms
binary search.

1. INTRODUCTION & RELATED WORK

The design of data structures and algorithms meant to tol-
erate the ever widening ” processor-memory gap” is a funda-
mental challenge in building efficient database systems [2, 6].
Available experimental evidence, although primarily mea-
suring performance of disk—based systems, intuitively sug-
gest similar problems for databases in main memory.

Chilimbi et al. [10] describe general techniques such as struc-
ture reordering and tree coloring for improving the cache
performance of pointer-based data structures at the pro-
gramming and compiler level. Graefe and Larson [12] re-
view existing techniques to improve the cache performance
of B-trees, including prefetching, cache-line sized nodes, and
compression. Ailamaki et al. [1] propose a per-page colum-
nar layout of on-disk relations, and show that this fairly

*This work was supported by the NIH National Center for
Research Resources #P41 RR06009

HotDB' 02, December 15, 2002, Pittsburgh, PA.

29

simple change results in meaningful improvements to a com-
mercial database system. Madden et al. [14] briefly describe
their use of State Modules (STeMs) [15] which encapsulate
an index data structure for processing continuous joins on
data streams. In this context, an efficient main-memory in-
dex data structure is essential to support high-throughput
responses to continuous queries.

Cache—-oblivious algorithms [11] and data structures [3, 4]
have been shown to be optimal with respect to the number
of memory block transfers, independent of the transfer (e.g.
cache block) size. Though theoretically optimal, existing
cache-oblivious data structures are not yet ready for general
use; Prokop conjectures that at cache—obliviousness costs
at least O(log N) versus the best application—specific algo-
rithms and data structures. Indeed, insertion and deletion
in the best available data structure has amortized complex-
ity O(logg N + log? N/B), where N is the number of keys,
and B is an unspecified unit of transfer. This is a logarith-
mic factor more expensive than the guaranteed O(logg N)
insertion and deletion complexity of B-trees.

On the other hand, cache—conscious data structures [9] take
advantage of prior knowledge of the underlying memory hi-
erarchy to better organize data for both temporal and spa-
tial locality. A number of cache-conscious index data struc-
tures (for general keys) have been proposed, including T-
trees [13], Cache-Sensitive Bt -trees (CSB™-trees) [17], par-
tial key T- and B-trees (pkT-, pkB-trees) [5], prefetching
Bt-trees (pBT-trees) [7], and fractal prefetching Bt -trees
(fpB*-trees) [8]. Each of these data structures is designed
to make best use of the memory hierarchy by intelligently
organizing both the nodes of the search tree and the tree
itself.

The T-tree [13] appears to be the earliest suggested index
data structure designed to take advantage of the memory
hierarchy. A T-tree is a balanced binary search tree whose
nodes contain several keys. The left child of a T-tree node
contains keys less than the minimum key in the node, while
the right child contains keys more than the maximum key.
As new keys are inserted and deleted, rotations like those
of an AVL tree are performed to keep the tree balanced. T-
trees have the advantage of simplicity, but the depth of the
tree and the need to balance the tree by rotations appear to
decrease performance versus cache-conscious trees [16].

CSB™*-trees [17] store the children of a BT-tree node con-

| | CPU/MHZ [RAM | 0OS | Compiler |
Alpha 4-way || 21264A/667 | 4GB | Tru64 Unix V5 | cxx V6.5
Intel 2-way PIIT/733 .5GB | Linux V2.4.18 | g+4 V3.2

Table 1: Basic parameters of the machines used to collect data.

tiguously in memory. As a result, internal tree nodes need
contain only a single pointer to the beginning of the memory
block containing its children. This allows more keys to be
packed into a tree node, both increasing fan-out and decreas-
ing tree depth. The improved search performance comes at
the price of increased cost of insertion and deletion, since
more keys must be copied each time a node is split or coa-
lesced. The authors propose segmented nodes and memory
preallocation to reduce the cost of updates, but their exper-
iments demonstrate that updates are still more expensive
than in typical BT -trees. It may be worthwhile to note that
their experiments do not make clear the impact on perfor-
mance of better memory management (rather than cache
management).

Partial key trees [5] are designed to improve cache perfor-
mance by storing only the difference between lexicograph-
ically adjacent keys. This has the effect of reducing cache
misses in the case of arbitrary-length keys, but updates and
searches are more expensive than a typical main-memory
(but not necessarily cache-conscious) B-tree implementa-
tion. The authors conjecture that partial-key trees will out-
perform T- and B-trees as long as processor speed improves
more quickly than main memory latency.

Chen et al. [7] suggest the insertion of hardware prefetch
instructions into the search and range-scan functions of a
typical main-memory BT -tree. Rather than explicitly mod-
ifying the index data structure to reduce cache misses, this
technique serves to provide better overlap of cache misses
and useful work by leveraging the non-blocking cache and
highly parallel pipeline offered in recent processors. Their
simulations show that, given an architecture fitting the simu-
lation parameters, BT -tree search can be improved by nearly
30% by using larger nodes and by inserting instructions to
prefetch adjacent cache-line sized blocks within a node.

In a later paper [8], Chen at al. propose a two-level data
layout scheme to help optimize both disk and cache perfor-
mance. At the coarse level, a BT-tree with large node width
is constructed as the primary layout. The nodes of this tree
are either page-size nodes enclosing small second-level search
trees (disk-first), or variable-width nodes enclosing interior
nodes from a cache-optimized tree (cache-first). The perfor-
mance data suggest that these data layouts are quite effec-
tive at improving disk and cache performance, but at the
expense of increased space (highly undesirable for in-core
databases). Even so, the combination of prefetching with a
more advanced main-memory specific tree layout may prove
to be highly effective in improving the performance of in-
core indices.

Although a variety of main-memory index schemes are avail-
able, it is not clear which offer the most promise in improving
the performance of main-memory database or data stream
operations. Very little "real-world” experimentation has

30

been provided; in fact, most of the experiments assume both
fixed-size keys and a uniform key space (even in the case of
the partial key trees [5], though they use large key sizes),
and many present simulator data as the primary source of
results. Moreover, the cache-aware data structures seem to
incur some performance penalty with respect to their sim-
pler counterparts. For example, pkT-trees and pkB-trees re-
quire more expensive search algorithms which affect overall
performance, and all of the cache-conscious indices except
pBT-trees incur significant overhead from complex updates.

Finally, over all of the work reviewed, there was very little
variety in the experimentation; consequently, there seems
to be no clear evidence to motivate any of the cache-aware
alternatives to simple B-trees and their variants. The study
conducted in this paper is a first look at the performance
of popular main-memory index data structures, with the
primary aim of focusing attention on the best-performing
data structure for future (or even current) improvements.
The data presented in Section 3 were gathered from several
index structures: T-trees, standard B-trees, “fat” B-trees in
which leaves are packed with keys, and standard BT -trees.
Implementation details are provided in Section 2. Results
show that:

1. All of the B-tree variants performed far better than
T-trees, and basic B-trees performed better than fat
B-trees and BT -trees for small problem sizes (2 million
operations or smaller).

. For the problem sizes studied, binary search within
an index node performed significantly better only for
T-trees (this data will not be presented). For the B-
tree variants, binary search outperformed linear search
only for large node sizes, but generally did not reduce
run-time below the best time with linear search.

2. IMPLEMENTATION

Four basic data structures were implemented for the per-
formance analysis presented in Section 3: T-trees, standard
B-trees, “fat” B-trees in which leaves are filled with keys,
and standard BT -trees. For all of the data structures, keys
can be referenced directly or indirectly, depending upon the
word size of the target machine and the needs of the appli-
cation. Also, updates were implemented recursively, while
searches were implemented iteratively. These choices were
made solely to reduce the complexity of the implementation.

T-Trees A T-tree is a wide-node variant of an AVL bi-
nary search tree. Like an AVL tree, search time is
bounded due to the balance condition, and balance is
maintained by rotations (simple pointer adjustments).
However, a T-tree node can contain several keys, thus
potentially reducing the height of the search tree and

| | || Size | Line Size | Word Size | Assoc. | Lat. | Miss |
Icache 64K 64B pseudo 2-way 3 13
Alpha 4-way | Dcache || 64K 64B 8B set 2-way 4 14
L2 8M 64B direct 6 ~ 110
Icache 16K 32B 4-way 3 13
Intel 2-way Dcache || 16K 32B 4B 4-way 3 14
L2 256K 32B 8-way 4 ~ 115

Table 2: Memory hierarchy and other configuration parameters for each machine. Latencies are expressed

in cycles.

improving cache utilization. T-trees are simple to im-
plement, but fair poorly due to high data movement
and search costs. The overhead per node is 2 pointers
(one to each child) and one or two integers, depending
upon how the key count and node balance variables
are stored. In the experiments, the 2 integer version
was used to help align the node in memory.

B-Trees The prototypical B-tree is an efficient multi-way
search tree in which balance is maintained by con-
structing the tree roots-first through node splitting,
merging, and rebalancing. Each node of a B-tree nor-
mally contains m pointers to child subtrees and m — 1
keys from the indexed data set. The value of key 7 in a
B-tree node is guaranteed to lie between the values of
the keys in subtrees ¢ and ¢+ 1. The fundamental ben-
efit of B-trees is the shallow tree depth—-O(log,, N)—
where N is the number of indexed keys. A B-tree node
requires a boolean flag to indicate whether the node is
a leaf or interior, and an integer containing the num-
ber of keys. A space efficient means of storing these
values is by using bit-fields, which also helps to align
a tree node in memory.

“Fat” B-trees Fat B-trees support the obvious optimiza-
tion of packing 2m — 1 keys into the leaf nodes of a
B-tree (interior nodes are unchanged). Some overhead
may be incurred due to having two different memory
layouts and two functionally different node types, but
in many cases the savings in memory versus storing
empty child pointers can offset these costs.

Bt-Trees A BT-tree is a B-tree variant in which the leaf
nodes of the tree contain the keys to be indexed, while
the interior tree nodes contain only a subset of the keys
to guide searches. BT-trees are ideal for workloads
which require fast linear searching of indexed while
still enabling fast searching due to a shallow tree depth.
Updates are somewhat more difficult with BT -trees as
compared to B-trees, and in particular deletion.! BT-
tree nodes are identical to fat B-trees except for leaf
nodes, in which an additional “sequence pointer” takes
the place of a key to link one leaf node with the next
leaf in key order.

In each of these data structures, keys are grouped together
with the corresponding child pointers grouped immediately

LAt the expense of some additional logic, deletion could be
implemented by marking off deleted keys, since the index is
expected to grow.

31

after. This layout optimizes searches within a node by clus-
tering keys in contiguous cache blocks. For shallow trees,
cache misses due to searching down the tree would intu-
itively be less costly than those searching within a (wide)
node. For the B-tree variants, interior and leaf nodes were
constrained to be the same size (with different numbers of
keys) for simplicity. The basic variable in all of the data
structures is the node size, which bounds the maximum
number of keys per node. For the T-tree, the difference be-
tween the minimum and maximum number of keys was fixed
at 2. For the B-tree variants, if m is the desired minimum
number of interior keys, then the minimum and maximum
number of interior and leaf node keys are:

e maximum 2m —1 for all interior nodes (and B-tree leaf
nodes);

e minimum 2m and maximum 4m — 1 keys for fat B-tree
leaves; and

e minimum 2m — 1 and maximum 4m — 2 keys for B*-
tree leaves.

These constraints were chosen to ensure that exactly 4m —1
pointers or keys were stored per node. In the case of the
BT -tree, one slot in a leaf node is reserved for a sequence
pointer to allow for range scans over the tuples pointed to
by the leaf keys. Keys are assumed to be either pointers into
a key (e.g. for string keys), or the key value itself (e.g. when
a table consists of only a column of integral values). This
decision was made as a trade-off to storing arbitrarily sized
keys inside a node; while this is possible, it is far easier to
indirectly reference a key from the tuple it indexes. Further-
more, storing arbitrary keys inside a node would increase the
memory footprint of the index and potentially increase the
tree height; both of these effects in aggregate are arguably
less desirable than the additional costs of storing pointers to
the keys.

3. EXPERIMENTATION

Data were collected from two systems: a 4-way Alpha SMP
and a 2-way Intel SMP, using only a single processor on
each machine. These SMP machines were chosen since they
represent typical database platforms available today. Ta-
ble 1 gives the basic system parameters for these machines.
Memory hierarchy configurations and other CPU-related pa-
rameters appear in Table 2. All code was written in C++
without templates or polymorphism, and native compilers

Insert Timev. Node Size Search Timev. Node Size Delete Time v. Node Size
- Intel System 0 Intel System 0 Intel System
- ! ! ! ©—0 500000 ! ! ! 6—6500000 ! ! 6—0500000
=—81000000 G—8 1000000 G—8 1000000
2000000 2000000 2000000
& -©500000 (Bin) & -©500000 (Bin) & -©500000 (Bin)
P - 81000000 (Bin) =z &-21000000 (Bin)| g -2 1000000 (Bin)
"§9, 2000000 (Bin) ég, 2000000 (Bin) ég, 2000000 (Bin)
2z > ~
g £ g
= = =
Sl 1 Bul |
B 5 8
@-Q-g---—g- —6
Il Il Il L L L o Il Il Il Il Il L L L I=} Il Il Il Il Il L L L
64 128 192 256 320 _ 384 448 512 128 192 256 320 _ 384 448 512 64 128 192 256 320 _ 384 448 512
Norde Size (hvtes) Node Size (hvtes) Node Size (hvtes)
Insert Timev. Node Size Search Timev. Node Size Delete Timev. Node Size
° Alpha Sysem Alpha System ° Alpha System
Z T T &—a 1000000 8 T T =5 1000000 8 T T 51000000
8 2000000 - 2000000 = 2000000
4—A 5000000 4—A 5000000 4—45000000
o 10000000 ol 10000000 ol 10000000
_&r & - £1000000 (Bin) " & - £1000000 (Bin) o -5 1000000 (Bin)
8 sl 2000000 (Bin) gl 2000000 (Bin) R 2000000 (Bin)
g 4 -4 5000000 (Bin) g 4 -A5000000 (Bin) g 4 -45000000 (Bin)
@8, 10000000 (Bin) Bol 10000000 (Bin) Bal 10000000 (Bin)
Py @ @
£ £ E
=Sr B ESr — ESr —
= 5 $ol a
Ba- B ﬁ 3 3 8r e, B
gk A - F A\N\A_A N N |F et S N h
e Y R —A —=A
ar — ElS — Eis —
i 2 & i T 5 ol _f-o-f-o-g-o T & ol 1 B . 7 T 5
64 28 192 48 512 64 128 248 512 128 192 384 448 512

25 320 384
Node Size (bytes)

2 25% 320
Node Size (bytes)

256 320
Node Size (bytes)

Figure 1: B-tree insertion, search, and deletion performance—Intel (Top) and Alpha (Bottom) systems. These
plots show that different experiment sizes produce similar trends. “(Bin)” in the legend refers to the binary

search experiments (dashed lines).

with architecture-specific optimization were chosen for com-
pilation when available.?

The results presented below were drawn from experiments
over the following group of parameters:

Systems Alpha, Intel

Operations Insert, Delete, Search
Operation count | 250,000-10,000,000

Node sizes 64-512 bytes

Node search Linear and Binary Search

The times shown in all plots are the average of 10 runs (Al-
pha system) or 5 runs (Intel system). Note that outliers—
data points more than 1 standard deviation from the mean—
are included since there was little effect on the final data.
Less than 5% of data consisted of outliers, all of which can be
attributed to spontaneous operating system cycles on oth-
erwise idle machines.

The following set of experiments were conducted:

The Insertion Experiment. In each insertion experiment,
a stable index was first built from an in-memory table
consisting of 1 million random word-size keys. Then,
N random word-size keys were inserted into the table,
where N is one of the problem sizes described above.

2Compaq CXX V6.5 offers very powerful optimization op-
tions, like interprocedural optimizations and object file reor-
ganization. The only advanced option I used was blind (i.e.
without profiling) object file reorganization to potentially
improve instruction ordering.

32

The Search Experiment. In each search experiment, a
stable index of N random word-size keys was first built
from an in-memory table, where NN is one of the prob-
lem sizes described above. Then, the search procedure
was called for each of the N keys, randomly shuffled.

The Deletion Experiment. In each deletion experiment,
a stable index of V41,000,000 random word-size keys
was first built from an in-memory table, where N is
one of the problem sizes described above. Then, the
deletion procedure was called on N keys, randomly
shuffled.

Figure 1 depicts the raw insertion, deletion, and search per-
formance data for the B-tree implementation on both sys-
tems for several experiment sizes. These data show the “op-
timal” node sizes at the minima of the computation time
curves for each problem size; in general, the minima lie on
the linear search curves. In the Intel experiments, the op-
timal size falls between 96 and 128 bytes, while, in the Al-
pha experiments, the optimal size falls between 224 and 256
bytes. Note that additional experiments are needed to de-
termine if prefetching within a node would further improve
performance for linear node search, since the optimal node
sizes are already quite large. Also, large node sizes gener-
ally degrade performance; this suggests that node-grouping
B-tree variants like CSB™-trees would most likely perform
poorly, especially for update-heavy workloads.

It is interesting to note that, although binary search offers
lower performance than linear search at large node sizes,
the computation time with binary search flattens as the
node size grows. This is to be expected, since intuitively,
binary search is cheaper than linear search when the logic
and memory-to-cache data movement required to adjust the

Search Timev. Node Size

Intel System

20

o—oOT-Tree
=—aB-Tree

Leaf B-Tree
LH—AB+-Tree

|

Search Time (seconds)
10

?

| | | |
64 128 192 256 320

384 448
Node Qize (hvte)
Search Timev. Node Size

° Alpha System

N ‘ ‘ o—oT-Tree
=—aB-Tree

Leaf B-Tree

A—AB+-Tree

ol -

ksl

©

o

i

2ol i

£

<

[S]

3 . 5
- 2N = = 4
o | | | | | | | |

64 128 192 256 320 384 448 512
Node Size (bytes)
Figure 2: Index search performance for 2 million

operations—Intel (Top) and Alpha (Bottom) systems.
T-trees perform poorly, while the B-tree variants all
have similar performance. Note that the optimal
node sizes are quite large, at 128 bytes for the Intel
system and 256 bytes for the Alpha system.

Search Timev. Node Size
Alpha System, 10 million Search Ops

‘ ‘ ‘ o—oB-tree (Lin)
o & --oB-tree (Bin)
o =—=a FatB-tree (Lin)
. = - -8 FatB-tree (Bin)
8 B+-tree (Lin)
& B+-tree (Bin)
Bal .
— 0
Q
£
'_
<
[S]
Bl f
8 | | | | | | 1 1
64 128 192 256 320 384 512
Node Size (bytes)

Figure 3: B-tree, Fat B-tree, and BT -tree search per-
formance for 10 million operations—Alpha system.
The BT-tree index offers the best search perfor-
mance for this large problem size.

33

search interval endpoints becomes less expensive than the
memory-to-cache data movement cost of linear search. This
trend holds for all of the B-tree variants; in the T-tree ex-
periments (not shown), binary search always performs better
than linear search due to the higher T-tree node occupancy
(generally m — 2 elements if m is the maximum number of
keys).

Figure 2 depicts the search performance for all of the imple-
mented index structures (insertion and deletion show roughly
the same trends as in fig. 1, with deletion being the most
expensive operation). The various B-tree computation time
curves for the Intel experiments are composed of data from
both the linear and the binary node search experiments to
better demonstrate the performance of those data struc-
tures. Times to the left of the 256 byte node size corre-
spond to linear search, while those to the right correspond
to binary search. The 256 byte node size was chosen as the
transition because the linear and binary search time curves
for the B-tree variants crossed at or near 256 bytes in all
of the Intel experiments. The Alpha plots are not adjusted,
since the crossover occurs at or near 512 bytes in these ex-
periments.

Note that, for the large Alpha experiments, the crossover
node size from linear search to binary search appears to be
moving closer to the optimal node size for linear search. A
closer view for 10 million searches with the B-tree, fat B-
tree, and Bt-tree appears in fig. 3. Additional experiments
are needed to follow this trend. This figure also shows that
the BT-tree performs slightly better than the other B-tree
variants in this large search experiment. For insertion and
deletion, however, the fat B-tree performs the best due to
reduced logic versus the B*-tree, and due to decreased tree
height and better memory performance at the leaves.

Total L2 Data Movement Cyclesv. Node Size
Intel System, 2 Million Search Op's

8 ‘ ‘ ‘ 6—oB-Tree(Lin)
? =—a B-Tree (Bin)
)
&
c
S o
= o 7
3
:
>3
sSeF i
©
|
)
N
-
Q | | 1 | | | | |
© e 128 192 256 320 384 448 512
Node Size (bytes)

Figure 4: Total L2 data movement cost (cycles) for
2 million B-tree searches—Intel system. This figure
depicts the total number of cycles that the L2 was
busy moving data to and from the CPU.

The final plot, fig. 4, depicts the total number of cycles that
the L2 was busy moving data to and from the CPU during
the B-tree 2 million search experiment on the Intel system.
This data gives some idea of the upper-level memory traffic
seen during this search experiment. For the 128 byte node

size, roughly 73 million cycles were spent by the L2 moving
data, or about .1 seconds out of 5. This plot also shows that
the L2 spent about the same amount of time moving data
for both linear and binary search at the 128 byte node size.
This is not surprising since, on average, the nodes of the
B-tree are 70% full (around 11 keys with a 128 byte node
size), and both linear and binary search would visit about
half of those keys.

4. CONCLUSIONS

The results of the study conducted in this paper show that
the T-tree, an often implemented index, is a poor choice for
main memory indices, even for the simple queries used in the
experiments. B-trees, on the other hand, perform very well,
with a basic B-tree implementation performing well with
small problems, and with the fat B-tree performing better
for large problems. The data also support the non-intuitive
result that linear search generally outperforms binary search
for the optimal node sizes found in the experiments.

There is a wide variety of experiments yet to perform to bet-
ter understand how main-memory indices behave on avail-
able hardware. For example:

e Much larger experiments should be performed than
those presented here; incorrect conclusions could be
drawn from the small problem size experiments.

e The cache performance of the B-tree indices should
be measured more rigorously with hardware perfor-
mance counters where available. For example, the In-
tel Pentium 4 processor provides a wealth of informa-
tion through its performance counters.

e Cache misses cost more cycles on a Pentium 4 than on
the Pentium III studied here, so it may be worthwhile
to test cache-aware data structures on the Pentium 4.

e Application-specific microbenchmarks should be run
with real query mixes to guage the effects of interaction
between index operations.

Additional experimental data is available upon request from
the author.

5. ACKNOWLEDGEMENTS

A portion of this work was performed using the computa-
tional facilities of the Terascale system at the Pittsburgh Su-
percomputing Center, Pittsburgh, PA. The author is also in-
debted to the reviewers for gently suggesting ways to greatly
improve an original draft of this work.

6. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving relations for cache
performance. In Proceedings of 27th VLDB
Conference, pages 169-180, 2001.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. Dbmss on a modern processor: Where does
time go? In Proceedings of the 25th VLDB
Conference, pages 266277, 1999.

34

[3] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious b-trees. In Proceedings of the 41st
Annual IEEE Symposium on Foundations of
Computer Science, pages 399-409, 2000.

[4] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A
locality-preserving cache-oblivious dynamic dictionary.
In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 29-38, 2002.

[5] P. Bohannon, P. Mcllroy, and R. Rastogi.
Main-memory index structures with fixed-size partial
keys. In Proceedings of the ACM SIGMOD
Conference, pages 163-174, 2001.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database architecture optimized for the new
bottleneck: Memory access. In Proceedings of the 25th
VLDB Conference, pages 54—65, 1999.

[7] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving
index performance through prefetching. In Proceedings
of the ACM SIGMOD Conference, pages 235-246,
2001.

[8] S. Chen, P. B. Gibbons, T. C. Mowry, and
G. Valentin. Fractal prefetching b+-trees: optimizing
both cache and disk performance. In Proceedings of
the ACM SIGMOD Conference, pages 157-168, 2002.

[9] T. M. Chilimbi, M. D. Hill, and J. R. Larus.
Cache-conscious structure layout. In Proceedings of the
ACM SIGPLAN PLDI Conference, pages 1-12, 1999.

[10] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making
pointer-based data structures cache conscious. IEEFE

Computer, 33(12):67-74, 2000.

[11] M. Frigo, C. E. Leiserson, H. Prokop, and

S. Ramachandran. Cache—oblivious algorithms. In
Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pages 285-297,

1999.

[12] G. Graefe and P.-A. Larson. B-tree indexes and cpu
caches. In Proceedings of the 17th International

Conference on Data Engineering, 2001.

[13] T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. In Proceedings of the 12th VLDB Conference,

pages 294-303, 1986.

S. Madden, M. Shah, J. M. Hellerstein, and

V. Raman. Continuously adaptive continuous queries
over streams. In Proceedings of the ACM SIGMOD
Conference, pages 49—60. ACM Press, 2002.

V. Raman. Interactive Query Processing. PhD thesis,
UC Berkeley, 2001.

J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In Proceedings of
the 25th VLDB Conference, pages 7889, 1999.

J. Rao and K. A. Ross. Making b+—trees cache
conscious in main memory. In Proceedings of the ACM
SIGMOD Conference, pages 475—486, 2000.

Counting the Number of Flows for Continuous Monitoring °

Hyang-Ah Kim
School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213. USA

hakim+@cmu.edu

ABSTRACT

A network flow is a stream of packets with the same IP
header patterns. In this paper, we address the problem of
counting distinct flows seen on a high speed link. Because
the packet arrival rate is high in today’s networks, the flow
counting program, which must peek at all incoming packets,
should run fast to keep up with the wire speed. The demand
for fast processing limits the number of memory references
and requires fast memory that is small and expensive.

Bitmap-based algorithms proposed for the fast estimation
of the number of active flows [8] have the problem of un-
derestimation. We suggest a timestamp-vector based al-
gorithm that exploits the fast estimation of bitmap-based
algorithms without the underestimation problem. Instead
of keeping all active flow information, our algorithm hashes
flows to a timestamp-vector and estimates the number of
flows based on the timestamp-vector. Compared to the
bitmap-based algorithms, the timestamp-vector algorithm
reduces the possibility of underestimation of the number of
active flows. Experiments with an IP header trace suggest
that the timestamp-vector algorithm reduces the error of
the bitmap-based algorithm by 82%. The timestamp-vector
needs more memory space than the bitmap of the same num-
ber of entries but the memory requirement is still low enough
to implement the algorithm on a small, fast cache memory.

1. INTRODUCTION

Network traffic monitoring and measurement system is a

promising application that could benefit from streaming database

techniques. Network traffic monitoring requires processing
a stream of fast arriving packets. The packet stream is not
only fast arriving but also potentially unbounded in size so
that it is not possible to store all the packets in the stor-
age. Streaming database techniques such as efficient stream
processing and the use of approximation, synopsis, and sam-
pling could help a network monitoring system to process IP
packets quickly and reduce the memory requirement to ser-
vice queries on various statistics of network traffic.

Sprint has developed a network traffic measurement system,
called Continuous Monitoring System [14], which stores re-

*An extension of this work is published and presented in
Globecom 2003 General Conference with the title of ” Count-
ing Network Flows in Real Time.”

35

Network Measurement System

0C-48
(2.4Gbps) Flow
Counting
Me;m?ry CPU| program
_/
_2 P/ A
’7 . ‘P » Front side
Packet dg bus
Sensor A pture 6.4
(optical Device
splitter) PCl Bus 1 Query the
4.2Gbps = QD/ Number of
800Mbp Flows
PCI Bus 0 /
4.2Gbps I =
100M: pPs -
Ethernet

Figure 1: Continuous Monitoring System

cent packet traces from a high speed optical link into a circu-
lar buffer in local hard disk while performing online analysis
to extract statistics on the traces. Figure 1 shows the archi-
tecture of Continuous Monitoring System, which is deployed
on a high speed computer connected to an optical splitter
of an OC-48 link. The network administrator may move
the traces in the circular buffer to other place before it has
been erased if detailed offline investigation on the snapshot
is required.

The online analysis programs such as a flow counting pro-
gram indicate when the administrator needs to look into
the trace stored in the buffer. In addition, the result of the
analysis programs works as a summary of the network traf-
fic, which is much smaller than the original trace and can be
kept permanently for future reference. The online analysis
can be thought as a (static) continuous query over packet
streams. As discussed in many papers on stream database
systems [12, 4, 3], the online analysis needs to be fast enough
to keep up with the data arrival rate, and uses small amount
of storage.

In this paper, we design an algorithm for the Continuous
Monitoring System’s online analysis program that estimates
the number of active flows. A flow is a stream of network
packets having the same packet header patterns. For exam-
ple, a flow can be thought of as a stream of packets that have
the same source IP address, destination IP address, source
port number, destination port number, and protocol field.
1 A Flow identifier is a combination of values in certain IP

!The definition of a flow is user-configurable as long as the

header fields that distinguish one flow from another.

Counting the number of active flows is useful for DoS at-
tack detection, port scan detection, and other network prob-
lem detection. A sudden increase in the number of active
flows can be a symptom of DoS attacks or port scan if
we define a flow with a combination of source address and
source/destination port numbers. Sudden decrease in the
number of flows may indicate that there are network rout-
ing problems or changes. Upon such a big change, network
administrators take the traces in the hard disk of Continu-
ous Monitoring System and investigate the problem.

There exist algorithms to estimate the number of active
flows using bitmap data structures [8] but these algorithms
tend to underestimate the actual number of flows. In this pa-
per, we investigate why they underestimate the flow count,
and then extend the algorithms with a timestamp-vector to
address the problem. The timestamp-vector algorithm needs
more memory than the bitmap-based algorithms. However,
the timestamp-vector algorithm still requires less memory
than the approach of storing per-flow states while estimat-
ing the number of flows more accurately. In our experiment
with a real IP packet trace, the timestamp-vector algorithm
reduces the estimation error by 82% compared to a bitmap-
based algorithm using the same amount of memory.

The remainder of the paper is organized as follows. Section 2
presents the previous related work. In Section 3, we present
applications that make use of flow counting or may benefit
from the accurate and fast flow counting algorithms. In Sec-
tion 4, we explain the bitmap-based algorithm in detail and
describe the problem of underestimation in online analysis
of the number of flows. Section 5 presents the timestamp-
vector algorithm we are proposing and Section 6 shows ex-
perimental results. We conclude the paper with discussing
the issues requiring further study and the way to improve
the accuracy of the algorithm.

2. RELATED WORK

General purpose traffic measurement systems, such as Cisco’s
Netflow [6], report per-flow records for very fine grained
flows. The systems can be used for flow counting, but are
not optimized for the purpose. These systems need a large
amount of memory to keep per-flow record.

Ideally, the states should be in high speed SRAM (which
is expensive and relatively small) to gather statistics on
quickly arriving packets. However, Netflow stores the per-
flow state in slower speed DRAM, which slows down the
whole packet processing because there are so many flows.
Cisco recommends the use of sampling at speeds above OC-
3: Netflow samples one packets out of z packets and only
the sampled packets result in updates to the flow cache that
keeps the per-flow state. Unfortunately, sampling packets

definition is based on the distinct IP header patterns. In
this paper, we use source and destination IP addresses and
ports along with protocol number to define a flow and a
flow is terminated if there is no activity for a certain du-
ration. However, the algorithm should work with different
definitions of a flow such as packets originated from specific
destination IP addresses or belonging to a specific applica-
tions

36

and then estimating the number of flows from the set of
sampled packets results in extremely poor accuracy. This
is because uniform random sampling tends to produce more
samples of large flows, thereby biasing any simple estimator
that uses the number of flows in the sample.

There are two main approaches to counting distinct records
or items: sampling based counting [5, 11] and synopsis based
counting [9, 16]. Sampling-based approaches are known to
be inaccurate and substantial lower bounds on the required
sample size are shown by Charikar et al. [5]. The most
widely applicable synopsis method is probabilistic counting
introduced by Flajolet and Martin [9]. Whang et al. [16]
proposed a probabilistic counting algorithm using bitmap.

Recently, Estan et al. [8] applied the linear-time probabilistic
counting for the flow counting problem and built a set of
algorithms. All those algorithms count the number of flows
in a discrete window or a certain measurement interval. In
Section 4, we look into the problem caused by the discrete
measurement interval.

We expect the use of sliding windows instead of discrete
measurement intervals can mitigate the problem. Cormode
et al. [7] proposed an algorithm to compute Hamming Norms
of data streams and the Hamming Norm of a single stream is
the number of distinct values in the stream. The algorithm
considers the insertion and the deletion of values but it is
not clear how to use the deletion operation to discard the
expired flows. Gibbons et al. [10] addressed the counting
problem for sliding windows. However, for the practical use
of the algorithm, we need modify the algorithm greatly in
order to reduce the large time overhead for the linked-list
maintenance and the space overhead to store an additional
hash table (hashed by the flow identifiers) and multiple in-
stances of Wave for higher accuracy.

The timestamp-vector-based algorithm we are proposing in
this paper is similar to the one presented in Estan et al. [§]
but addresses the problem of discrete measurement intervals
by using timestamp-vector.

3. APPLICATIONSOF FLOW COUNTING

In this section, we present the applications that can benefit
from accurate flow count estimation algorithms.

e Detecting port scans Intrusion detection systems
warn of port scans when a source opens too many con-
nections within a given time. The widely deployed
Snort IDS [13] uses the naive approach of storing a
record for each active connection (flow). Since the
number of sources can be high, it requires large amount
of memory. The scalability is particularly important
in the context of the recent race to provide intrusion
detection systems to keep up with wire speed [1].

e Detecting denial of service attacks To differenti-
ate between legitimate traffic and an attack, we can
use the fact that DoS tools use fake source addresses
chosen at random. If for each of the suspected victims
we count the number of sources of packets that come
from some networks known to be sparsely populated,

M,

«— To —
10 000 000
«—To —
O 100 £, 0—0
L,O-O O ©

Actual # of Flows 3 3 3 1 1 2
Using Discrete 3 ¢ 2 3 1 ¢ o 2
Measurement Interval
Using Timeout 3 3 3 1 2
Interval ly Iy 1, Iy I I

O Packet from flow <f;:s,d,sp,dp,p>

D Overestimation
<:> Underestimation

Figure 2: Measurement Method and Estimation Er-
ror

M Measurement Interval

T, Timeout to define flow expiration

a large count is a strong indication that a DoS attack
is in progress.

¢ General measurement Often counting the number
of distinct values in given header fields can provide
useful data. For example, one could measure the num-
ber of sources using a protocol version or variant to
get an accurate image of protocol deployment. An-
other example is dimensioning the various caches in
routers, which benefits from prior measurements of
typical workload. The caches include packet classifica-
tion caches, multicast route caches for Source-Group
state, and ARP caches.

e Packet scheduling While there are scheduling algo-
rithms that compute the fair share of the available
bandwidth without using per-flow state (ex. CSFQ [15]),
they require explicit cooperation between edge and
core routers. Being able to count the number of dis-
tinct flows that have packets in the queue of a router
might allow the router to estimate the fair share with-
out outside help.

4. PROBLEM OF DISCRETE MEASURE-

MENT INTERVAL

Bitmap-based algorithms accurately estimate the number of
flows seen in a fixed measurement interval, M [8]. The main
idea of the algorithm is to update a bitmap structure during
a measurement interval and, at the end of every measure-
ment interval, count the number of updated entries in the
bitmap to estimate the number of flows. Then, he bitmap
is flushed for the next measurement interval. To update the
bitmap structure, the algorithm uses a hash function® on
the flow identifiers to map each flow to a bit of the bitmap.
All the bits in the bitmap are set to zero at the beginning of

2Estan et al. assume in their analysis that the hash func-
tion distributes the flows randomly. In an adverse setting,
the attacker who knows the hash function could produce
flow identifiers that produce excessive collisions thus evad-
ing detection. This is not possible if we use a random seed
for the hash function. In our work and analysis, we also
assume such a hash function that uniformly distribute flow
identifiers.

37

a measurement interval. Whenever a packet comes in, the
flow identifier is calculated and the bit corresponding to the
identifier is set to 1. Assuming b is the size of the bitmap and
z is the number of zero bits at the end of the measurement
interval, the estimated number of active flows, 1, is bln (g)
To provide a better accuracy, they propose variations of the
algorithm but all of them are designed to estimate the num-
bers in a fixed and discrete interval.

The disadvantage of using discrete intervals (or discrete win-
dows) is the possibility of underestimation. Figure 2 depicts
the problem. Even though flow fo is still active, the algo-
rithm does not know the existence of fo in the interval I;
because there is no packet belonging to fo in I;. Therefore,
the estimation after I is lower than the total number of
actually existing flows.

Figure 3 shows how much we underestimate if we use meth-
ods based on a fixed and discrete measurement interval. We
draw the graph of the actual number of flows by recording
the start and end times of all the flows in a 10 minute-long
IP packet trace and querying the number of active flows at
the moment every minute. Then, we split the trace into dis-
crete M second-long pieces and count the total number of
flows observed in each piece to emulate the algorithms using
discrete measurement intervals.

If the measurement interval M is short, the underestimation
becomes large because we miss a lot of flows that are still
active but happen to send no packet during the interval. If
we employ larger M, the possibility of underestimation de-
creases but the algorithm returns the accumulated number
of flows for M seconds and the result is different from what
we want.®> Moreover, the algorithm with large M cannot
quickly respond to a sudden change in the number of flows
because it should wait until the measurement interval M
finishes. Considering the purpose of online monitoring, we
cannot tolerate such large delay.

One approach to address the underestimation problem is to
employ the concept of timeout and keep the information of
the flows that have sent packets in last T, seconds. By the
way, we should be careful when we choose the value for T,
since timeout introduces the possibility of overestimation as
we see in the interval I in Figure 2.

5. TIMESTAMP-VECTOR ALGORITHM
5.1 Algorithm

Instead of a bitmap, we use a timestamp-vector that keeps
the timestamp of a packet arrival. Let’s start with 32bit
long timestamp. The update of the vector and estimation
is done in the same way as in the bitmap-based algorithms.
The difference is that, when a packet comes in, we update
the value of the timestamp-vector entry with the timestamp
of the packet arrival. When we need to count the number
of entries to estimate the number of flows, we compare the
values stored in the timestamp-vector against the current
time and only count the entries updated in last 7|, seconds.

3The point in the graph of M = 60sec corresponds to the
total number of flows observed in the last 60second interval.
Some flows might be terminated early in the interval, but
they are reported at the end of the interval.

Update

Query

Timestamp-vector, TV

4]
3
4
-1
Q — Hash 4 -1
Packet flowid
arrival
y
0
Timestamp -1
Counter
2
Ly
1

/* Called upon a query to retrieve the
number of flows observed during
last t seconds*/

Estimation () {
/* Count younger-than-t,, entries */

ont
>0 a x in {
nt ntim()
i 0 {
a (nt)

i@ t

/* Calculate the number of flows
using count and the size of TV */

tn aat (ont si)

Figure 4: Flow Counting with timestamp-vector

180 : ‘ : :
actual value (1sec sampling interval)
160 r 3 M = 1sec - B
M =10sec =

g 140 M:= 60sec ~= i
g 120 1
= 100 & . y b . 1
> 80 1
2
€ 60 r 1
>
Z 40+ S 1

20 [mmaat sanest s S L

O 1 1 1 1 1
0 100 200 300 400 500 600
Time(sec)

Figure 3: Limitations of flow counting with discrete
measurement intervals

Given c is the number of entries updated in last ¢ seconds,
the estimated number of flows, n = bln ﬁ Figure 4 de-
picts the operations for the timestamp-vector update and
the query on the number of flows. By selecting an appropri-
ate T,, we can avoid the underestimation caused by short
measurement intervals. Also, the timestamp-vector is not
flushed out at the end of the measurement interval and thus,
we could query the number of flows active for an arbitrary
period.

5.2 Implementation Issues

Compared to the bitmap-based algorithms, the timestamp-
vector algorithm requires more memory. If we employ a
32bit timestamp, the timestamp-vector will be 32 times larger
than a bitmap of the same number of entries. However, if we
use smaller counters instead of storing the 32bit timestamp
and round the counter when the counter reaches the maxi-
mum, we can reduce the size of the timestamp-vector. For

38

example, if we need to take into account the flows observed
in less than ¢ seconds, only log,t + 1 bits for each entry is
sufficient: log, t bits for counter value, and 1 bit to indicate
the entry is never touched.

6. EVALUATION
6.1 Experimental Setup

The purpose of our experiment is to compare the accuracy
of the algorithms, and measure the time for processing. We
have implemented the bitmap-based flow counting algorithm
and the timestamp-vector algorithm. Then, we compare the
error against the result of the program counting the actual
number of flows.

We have run the implemented algorithms on a Red Hat
Linux 7.1 in Pentium IIT 900MHz machine with a 256KB
L2 cache, and 1GB main memory. We simulate Continuous
Monitoring System by reading an IP packet header trace
from a hard disk connected with SCSI. Note that our mea-
surement omits the overhead caused by data transfer from
the packet capture card to the main memory in Figure 1,
and the total execution time in real Continuous Monitoring
System would be slightly longer than the value we have from
the experiment.

For the experiments, we use a 10 minute-long IP packet
header trace collected from an OC-48(2.5Gbps) link in the
Internet2 network [2]. During the trace collection, the aver-
age traffic bandwidth was 800Mbps and the average packet
transfer rate was 140Kpkts/sec. The trace contains 885K
flows when we use 64sec as the idle time value to decide
the end of each flow. Table 1 gives a summary description
of the trace. Throughout the experiment, we assume 64sec
idle time to terminate a flow.

6.2 Configuring Timeout 7,

Name IPLS-CLEV-20020814-100000
Duration 2002.08.14 10:00 10:10am EST
Average Traffic Volume 800Mbps
Average Packet Rates 140K pkts/sec
Flows 884537

Table 1: OC48 Trace used for the experiment

60 Underestimation

50 | optimal timeout
40 +
30t

20 1

Overhead(sec)

10

O 1 1 1 1 1 h
0 10 20 30 40 50 60

Time to make an incorrect guess(sec)

Figure 5: Normalized Underestimation and Overes-
timation Overhead

In this section, we examine what is the appropriate value
for T, to minimize the possibility of underestimation and
overestimation mentioned in Section 4. Assuming we query
the number of flows every second, we try to choose appropri-
ate T,. We collected the inter-packet-arrival time in flows
and computed the overhead defined by the minutes when
we can make a wrong guess on a flow expiration. Since we
use 64sec idle time to decide the real flow termination, T,
should be less than 64sec to avoid large overhead caused by
overestimation. Figure 5 shows the overhead we obtain by
analyzing the trace. The two overhead graphs cross when
T, = 7. That means we can get better estimation for the
actual number of flows, when we query with T, = 7 every
second.

6.3 Accuracy

Now we compare the accuracy we can achieve with the
timestamp-vector algorithm to the bitmap-based algorithm.
For accuracy measure, we use the distance of two functions
f(z) and g(x) defined by [|f—gl| = /3=, (F(z) — g(@))?. We
compute the distance of the result of each algorithm to the
actual number of flows sampled every second to retrieve the
number of currently active flows. We make a query every
second and when we use the timestamp-vector algorithm,
we use 7 for the value of T,. We run the experiment with
three different hash functions (CRC based hash functions)
and average the distances. For the bitmap-based algorithm,
we use the same amount of memory for maps (5KBytes).*
With the timestamp-vector algorithm, we reduced the er-
ror by 82%. Figure 6 depicts the results of the algorithms
and the actual number of flows graph. To see the possibility

“We chose the number of entries in the timestamp-vector
based on the analysis of Estan et al. [8]. The timestamp-
vector size guarantees that the algorithm estimates the total
number of observed flows during T, with 1for bitmap-based
algorithm.

39

Algorithm Distance
Bitmap based (M =1) 353823.33
Bitmap based (M = 7) 96076.45
timestamp-vector based (T, = 7) | 65913.18

Table 2: Distance to the real number of flows

40 : : ‘ ‘
actual number of flows
35 f
o bitmapWigkeM=1 =
& L o= g
F 30 Counterm?ﬂg ;To=7 -
3 25t H
S 20
& 15
S 10
z o
- s LRSI
0 100 200 300 400 500 600
Time(sec)

Figure 6: Comparison of two algorithms

that we get better estimation with longer measurement in-
terval for bitmap based algorithm, we also present the result
measured with 7sec measurement interval for bitmap based
algorithm. The result with 7sec interval is still far from the
actual number of flows and, moreover, it is not able to report
the number of flows more often than 7 seconds.

6.4 Time Requirement

We measure the time each algorithm takes to process the
10minute long trace. Both the bitmap-based algorithm and
the timestamp-vector algorithm take about 40seconds to
process the trace. The fast execution is due to the simple
algorithm to update the data structures and the small re-
quirement for the memory. 4KBytes bitmaps or timestamp-
vectors fit into a small high-performance memory. When we
store a record for each active flow as Snort does, we need to
allocate at least about 2.8Mbytes memory to store the flow
information in the trace we are using. Since the memory is
dynamically allocated and we cannot keep all the records in
a small cache, the processing requires more time than when
we use bitmap or timestamp-vector.

7. FUTURE WORK
e Adaptive T,

It is the most challenging to predict the end of a flow
when we implement the online flow counting algorithm.
Since we do not know the correct end of a flow only
with the information in the IP packet header, we had
to rely on the timer. A large timeout value introduces
great amount of overestimation overhead. Especially,
if there are many short flows, the overestimation over-
head is much greater than the benefit we will have by
eliminating the possibility of underestimation. If there
exist many short flows, we had better choose small 7T,
for our timestamp-vector algorithm and if there are
many long flows with large packet inter-arrival inter-
vals, it will be better to use larger T,. In this work, we

chose T, suitable for the trace we used but if the flow
duration distribution or the characteristics of the inter-
packet-arrival time are different from those observed in
our trace, our T, will not be appropriate any longer.
Moreover, with advent of new Internet applications,
we expect the traffic pattern changes over time. To
address this problem, we need to make the algorithm
and its application adaptively adjust T, depending on
the previous network observations.

Protocol Specific Flow Termination

In practice, protocol specific termination information
such as TCP FIN field is used in conjunction with the
timeout method to find out the exact flow termina-
tion [6, 13] but, in this work, we only considered a
timeout method to indicate flow termination. The re-
liance on the timeout leads to overestimation as we
saw in Section 4. We need to extend our algorithm to
exploit the protocol specific information to reduce the
chance of overestimation. For example, we can add
an extra bit for each entry in the timestamp-vector to
mark if we have observed a protocol specific termina-
tion packet of the flow mapped to the entry. When we
query the number of currently active flows, we only
need consider the entries that are not expired and
whose termination indication bit are not set. Con-
sidering TCP is a dominant protocol in the current
Internet and TCP uses the explicit flow termination
packets we can exploit, the extension of the algorithm
will greatly reduce the overestimation at the cost of
time and space.

8. CONCLUSION

In this paper, we proposed an algorithm to estimate the
number of distinct flows seen on a high speed link. The
packet arrival rate is high in today’s networks and, therefore,
the flow counting algorithm should run fast to keep up with
the wire speed. The demand for fast processing requires
to limit the number of memory references and exploit fast
memory that is usually small and expensive.

There exist algorithms estimating the number of distinct
flows using a small bitmap and it requires small amount of
memory and a few number of memory references. However,
the algorithm tends to underestimate the number of active
flows when deployed for online analysis. We extended the
bitmap-based algorithms using a timestamp-vector instead
of a bitmap and avoid the case underestimating the num-
ber of flows. By reducing underestimation, the timestamp-
vector algorithm improved the estimation accuracy greatly
while still using a small amount of memory compared to the
techniques to store per-flow states.

9. REFERENCES

[1] Cisco offers wire-speed intrusion detection, December
2000.
http://www.nwfusion.com/reviews/2000/1218rev2.html.

[2] NLANR MNA team. NLANR MOAT: PMA Trace
Archive, September 2002.
http://pma.nlanr.net/Traces/long/iplsl.html.

[3] S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Record, 30(3), September 2001.

40

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams - a new class of data
management applications. In the 28th International
Conference on Very Large Data Bases, August 2002.

[6] M. Charikar, S. Chaudhuri, R. Motwani, and
V. Narasayya. Towards estimation error guarantees for
distinct values. In the 9th Symposium on Principles of
Database Systems, 2002.

[6] Cisco. Netflow.
http://www.cisco.com/warp/public/732/Tech /netflow.

[7] G. Cormode, M. Datar, P. Indyk, and
S. Muthukrishnan. Comparing data streams using
hammming norms (how to zero in). In the 28th VLDB
Conference, August 2002.

[8] C. Estan, G. Varghese, and M. Fisk. Counting the
number of active flows on a high speed link. Technical
Report CS2002-0705, UCSD, May 2002.

[9] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for database applications. Journal of
Computer and System Sciences, 31(2):182-209,
October 1985.

[10] P. B. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In the Fourteenth
Annual ACM Symposium on Parallel Algorithms and
Architectures, August 2002.

[11] P. Haas, J. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct
values of an attribute. In the 21st VLDB Conference,
1995.

[12] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over
streams. In ACM SIGMOD International Conference
on Management of Data, June 2002.

[13] M. Roesch. Snort - lightweight intrusion detection for
networks. In the 13th Systems Administration
Conference, USENIX, 1999.

[14] Sprint. Ip monitoring project, 2002.
http://ipmon.sprintlabs.com.

[15] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fiar
queueing: A scalable architevture to approximate fair
bandwidth allocations in high speed networks. In the
ACM SICOMM, September 1998.

[16] K.-Y. Whang, B. T. Vander-Zanden, and H. M.
Taylor. A linear-time probabilistic counting algorithm
for database applications. ACM Transactions on
Database Systems, 15(2):208-229, 1993.

Statistical Analysis of Histograms

Deepayan Chakrabarti
Center for Automated Learning and Discovery
School of Computer Science
Carnegie Mellon University

deepay@cs.cmu.edu

ABSTRACT

In modern databases, histograms are the tools of choice for
storing statistics regarding the distribution of data. They
are heavily used by the query optimizer, and their accuracy
is critical to the performance of the database system. But,
the information stored in histograms is usually used in a
purely ad-hoc manner; to our knowledge, there has been
no proper statistical study of histograms, and how to use
them in the database context. Here, we attempt to do that,
and find statistically-correct solutions to several problems.
These include showing how histograms can yield expected
sizes of range queries and joins, and how to update his-
tograms using feedback in a statistically sound manner. We
also propose to attach an extra value (called variance) to
each bucket in a histogram, along with the height of that
bucket. We show how this is extremely useful for various
other operations.

1. INTRODUCTION

! Histograms are the heart of most database catalogs.
They are used to maintain approximate information about
the data stored in the database. While considering a par-
ticular query plan, current optimizers use heuristics based
on histogram data to estimate the sizes of intermediate and
final result sets generated by that plan. The goodness of the
final generated query plan depends to a great extent on the
accuracy of these numbers. A statistical study of the prob-
lem of estimating these numbers would give a lot of insight
into the problem. We would also understand the assump-
tions that the heuristics inherently make, and the conditions
when such assumptions are valid.

There has been some recent work on updating histograms
using feedback of results obtained during query execution.
The general procedure of building the feedback loop is de-
scribed in [7], and Aboulnaga and Chaudhuri [1] describe
heuristics for updating histograms based on this data. We
explore this idea in detail, and find the assumptions under
which these heuristics operate. This is useful in situations
where the assumptions are not expected to hold; in such
cases, the user could be pre-warned.

In addition, we propose to use statistical techniques to
find measures of confidence on the estimates of result sizes.
This might be important if the optimizer gives the user an

!Submitted to ICDE 2004

41

estimate of the expected time required for query execution.
A higher confidence level on the result sizes would translate
into higher confidence regarding the optimality of the query
plan. Another major utility of confidence values is in up-
dating histograms. We will describe our technique for doing
this later in the paper.

The rest of the paper is organized as follows. Section 2
describes related work in the area of using/updating his-
tograms. In Section 3, we present our model of the his-
togram, and show why this is a reasonable model. Based on
this model, we develop theoretical results for using/updating
histograms in Section 4. This is followed by our conclusions
in Section 5.

2. RELATED WORK

There has been a lot of work on maintaining statistics
about the data stored in a database. One nice model was
described by Chen and Roussopoulos [3], where the authors
use a linear combination of model functions to approximate
the true distribution of data. The coefficients of the linear
combination are adjusted using query feedback. But, in this
case, figuring out the correct family of model functions might
be hard; not all datasets will easily fit the same model family.

In general, histograms are the method of choice for storing
statistics about the data in today’s databases. Hence, we
focus on histograms for our work. Poosala et al [6] give an
excellent breakdown of the existing histograms into several
categories. The categories most relevant to our work are:

o Equi- Width histograms: The maximum minus mini-
mum value in each bucket of the histogram is approx-
imately the same for all buckets.

e Equi-Depth histograms: The frequency of points in
each bucket is approximately the same for each bucket.

Our model is also general enough to handle cases where the
histogram buckets are neither equi-width nor equi-depth.

In [5], Poosala and Ioannidis attempt to estimate join sizes
using two different techniques. The first is to build a multi-
dimensional histogram, and the second uses Singular Value
Decomposition. But building a multi-dimensional histogram
is costly, and SVD requires sampling followed by operations
on large matrices. We attempt to find out how existing one-
dimensional histograms can be used for join-size estimation,
and this is a different problem.

Gibbons et al [4] describe a method of maintaining his-
tograms by always keeping a backing sample. In our ap-
proach, we would like to use the intermediate results dur-
ing query execution to maintain the histogram, avoiding the
need for a backing sample.

Stillger et al [7] describe the LEO (LEarning Optimizer)
used in DB2. This uses a feedback loop inside the database,

where intermediate results are remembered for future queries.

But in this case, the intermediate results are primarily just
stored, and no attempts are made to update the histograms
themselves.

One paper which describes work very related to ours is
that of Aboulnaga and Chaudhuri [1], where the authors also
try to update histograms using query results. But, theirs is
a more ad-hoc (heuristic based) technique; we use statistics
to tackle the problem. We show that under certain assump-
tions, the heuristics are actually validated by statistics.

3. MODELING THE PROBLEM

In previous sections, we have described the usefulness of
histograms in current database systems, and made the case
for a formal treatment of the problem. In this section, we
start this process by building a model for the histograms.
In the following discussion, we always try to present the
assumptions being made.

We begin with one-dimensional histograms. For each bucket

of the histogram, we typically store the range of values it
encompasses, and the number of points falling within that
range. For our analysis, the exact range is not so important
as the spread, that is, the difference between the maximum
and minimum values allowed in that bucket. Let us number
all the buckets in a histogram from 1 to MaxzBuckets. We
represent bucket number z with the symbol bx. The width
of this bucket is represented by wy,, and the height by hp,.
Thus, for an equi-width histogram, ws, is approximately
constant for all z, and for an equi-depth histogram, the hp,
values are almost constant. In some cases, we might want
to talk of the height of some subset of a bucket; that is, the
number of datapoints falling within a certain portion of one
bucket. If this subset region of a bucket z is represented by
Sz, then we represent the height within this region by hs..

Now, the height of a bucket hy, is the number of data-
points which fall within the range of bucket x. Thus, it is a
random variable with a Binomial distribution, which can be
fully described by specifying the total number of datapoints
N and the probability pz of a datapoint falling in bucket x.
Thus,

hpz ~ Bin(N, pz) (1)

Normally, we will not always have exact values for N or pzx.
But if N is large (which is true in general), the Binomial
distribution can be well approximated by a Normal distri-
bution, with mean Hp, and standard deviation oyp,.

hbz ~ N(Hbtby U'b:c) (2)

The disadvantage of using this equation is that it allows
hy: to be a continuous variable, whereas we know that hy.
can only have discrete (integral) values. The advantage is
that using this equation makes the following analysis much
easier, given that the Normal distribution is very friendly to

42

analytical studies. For large NN, there should be very little
negative effects of making this assumption. Hence, from
now on, we consider hp, to be normally distributed. All the
symbols described above are concisely shown in Table 1.

With this formulation, the height of a bucket hy, has an
expected value of Hy, and a variance of o;,. This informa-
tion can be easily maintained in the histogram, by storing
these two values for each bucket. In current systems, no
measure of variance is kept; this is equivalent to storing
only the value of Hp,.

Whenever the histogram is completely recomputed by a
complete pass over the data, the variance in hy, is zero, for
all buckets x; that is, we have the maximum possible confi-
dence in the value of hy,. But over time, this is changed due
to inserts and deletes in the database (updates can be viewed
as a combination of insert and delete). Updating the cor-
responding histogram bucket for every insert/delete would
slow down the database a lot; so keeping the histogram up-
to-date does not seem possible. Thus, the variance of hy,
increases over time, and our confidence in the histogram de-
creases.

To model this, we propose that insertions and deletions
occur according to a Poisson distribution. This effectively
assumes that the expected number of inserts/deletes on ev-
ery bucket increases in proportion to the length of time since
the histogram was completely computed. Using Naddp,(t)
and Ndely, (t) to denote the number of insertions and dele-
tions respectively on bucket x over time interval ¢,

Naddy,(t) ~ Pois(A\gd? t)
Ndely, (t) ~ Pois(A\i<' 1)

®3)
(4)
(5)
Here, A\2%? and A¢¢! are the proportionality constants for
additions and deletions respectively on bucket z. We shall
use A, when the discussion refers to both insertions and
deletions.

For both insertions and deletions, the proportionality con-
stant could be modeled in at least the two following ways:

e It could be the same for all buckets. This assumes
that the probability of additions/deletions is uniformly
distributed over the entire domain of the data.

(6)

e It could be proportional to the height of the corre-
sponding bucket. This assumes that the probability
of insertions/deletions into a bucket is proportional to
the number of elements already in the bucket. So the
buckets with the most elements would see the maxi-
mum activity.

)\bl =)\b2 = ... =)\b—MazBuckets

)\bz X hbz

(7)

The correct way to model this proportionality constant
would depend on the properties of the database.

4. THEORETICAL RESULTS

In the previous section, we described the variables in the
problem, and gave methods to model them. In this sec-
tion, we shall use those models to find statistical answers to
questions about how to use histograms.

Symbol Meaning

bx Bucket number z

hoe Actual height of bucket number x

hsz Height in a subset Sz of bucket z

Hy, Mean/Expected height of bucket x

Obe Standard deviation of hp,

Wh Width of bucket number z

N Total number of datapoints

px Probability of a datapoint falling in bucket z
MazxBuckets | Total number of buckets in a histogram

Table 1: Table of Symbols

The questions we wish to ask (and answer) are:

e Estimating the result size of a range query

e Estimating the result size of a join, where one-dimensional

histograms exist on the joining attribute in both tables

e Updating a one-dimensional histogram, based on feed-
back on the exact result size of a range query

¢ Quantifying the decay in quality of the histogram over
time, due to insertions and deletions

We now look at each of these problems in turn.

4.1 Estimatingtheresult sizeof arangequery

If there is a one-dimensional histogram on the attribute
of the range query, then it can provide information about
the result size. Let us denote the range by R. Let the
intersection of R with bucket z be denoted by Rs,. Thus,

MaxBuckets

>

i=1

R = Roi

To proceed further, we need the following two assump-
tions:

1. The heights of the buckets in the histogram are mutu-
ally independent. This means that knowing the height
of one bucket gives us no extra information about the
height of any other bucket in the histogram.

2. Inside a bucket, the datapoints are spread uniformly
over the width of the bucket. Since we do not have
any information about the distribution of datapoints
inside a bucket, this appears to be a fair assumption.
The assumption should work better when the width of
each bucket is relatively small.

These assumptions allow us to approximate the probability
distribution of the datapoints within the the entire domain,
using just the information provided by the histogram.

For bucket x, the subset which is included in the range
query is Rpz. Let us call the height of this subset (that is,
the number of datapoints which fall inside this subset of the
box) hgr,,, and its width wg,,.

The number of points which fall within R is a random
variable; let us call it hg. Thus,

MaxBuckets

>

i=1

hr = (8)

thi

43

Now, our estimate of the result of the range query is just
the expected number of points that fall within R, which is
just the expected value of hr.

MaxBuckets
E hry;

i=1

E

E[hr] (9)

MaxBuckets

>

i=1

E [thi] (10)

Now, given the value of hy,, the height of the subset is
distributed as:

hry, ~ Bin(hps, “:Ziz) (11)

" Elhr,,] = E[E[hr,, |] (12)
= E[hbz<%>] (13)

= wa.(%> (14)

This is essentially saying that expected height of a subset of
a bucket is the expected height of the entire bucket, multi-
plied by the fraction of the bucket included in the subset.

Var (hr,,) E[Var (hr,, | hoz)]

+Var (E[hr,, | hs])
- E [h,,w. (wR“> : (1 -
Wy
+Var (hbz. (wR”” >>
Whz
= H,,. (“’R_bw>) <1 _ %)
Whg Whz
w 2
(e ()
Woz
where Hj, is the mean of random variable hy,, that is, the
expected value of the height of bucket x. This gives the

variance on the estimated result size.
Using Equation 14 in Equation 10,

MaxBuckets w
R .
E Hy,;. _tbi
Woi

i=1

N

WR s
Wy

(17)

E[hr] = (18)
This is the estimate for the result size of the range query.
We note that only assumption 2 is used to derive this result.

We also want to find the variance of this result. The
variance would give us some idea of the confidence we can
have in our estimate. Now,

MaxBuckets
Var (hg) = > Var(hr,) (19)
i=1
MaxBuckets w w
- Y Ha <—Rbi).(1——’%i>
: Wh; Whi
=1
w 2
+<a,,$.(R)) (20)
Woz

We used both assumptions to find the variance.

Thus, Equations 18 and 20 give the expectation and vari-
ance of the result size of the range query. This leads to the
issue of the method of interpreting the variance, and pre-
senting it to the user in an understandable way. The best
way to do this is to provide confidence intervals; that is, to
say that the result lies within a certain range of values with,
say, 95% probability.

To be able to give precise confidence intervals, it is neces-
sary to understand the distribution of hz in detail. We can
consider two cases:

e When R is aligned with bucket boundaries (that is,
there is no bucket which is partially inside R; either
it is completely inside, or completely outside): here,
hr is the sum of several normal variables, and hence
is itself normal.

e When R is not aligned with bucket boundaries: here,
we could find no pre-existing distribution for hr. But
since it is the sum of several independent random vari-
ables (see equation 8), we can use the Central Limit
Theorem (Casella and Berger [2]) to approximate it
with a normal distribution. The approximation gets
better as the number of buckets contained in R in-
creases, which happens when there are lots of buckets
in the histogram (a fine-grained histogram) and when
R is relatively large.

In both these cases, we end up considering hr to be a
normal variable. There exist proper confidence bounds for
normal variables, which can be found in standard Statis-
tics textbooks [2]. To give an example, the true result of
the range query lies between (E [hr] — 1.64 * Var (hr)) and
(E[hr] + 1.64 « Var (hr)) with 90% probability. We can
find such confidence bounds depending on the probability
value that the user gives the system.

One other interesting fact is that the variance of the result,
as shown in Equation 20 depends on the expected height of
buckets Hp, and the fraction of the range query falling in-
side a bucket, but not on the actual width of the bucket
itself. This tends to support the view that it is better to
have some wide buckets, if that allows the heights of all the
buckets to be kept low. On the other hand, this reasoning
is highly dependent on the assumptions made previously; if
we have wider buckets, there is less likelihood of the unifor-
mity assumption holding. Thus, we would expect the “cor-
rect” combination of heights vs widths in a histogram to be
somewhere in between equi-depth and equi-height. This is
exactly what is observed by Poosala et al [6].

4.2 Estimating theresult size of ajoin, where
one-dimensional histograms exist on the
joining attribute in both tables

To statistically analyze the join of two tables over one
attribute, we assume the following:

1. The joining attribute is countable (that is, it cannot
be a floating point number).

2. The distributions of attribute values in the two tables
are independent.

44

3. Datapoints are uniformly distributed within each bucket.

Assumption 1 is needed because with uncountably infinite
sets, the probability of having two attribute values being the
same (which is needed for a join) becomes zero. Assumption
2 is a decidedly weak assumption, and possibly far from the
truth. But, it appears to be the only fair assumption in the
absence of extra data. Assumption 3 is again only a fair
assumption in the absence of extra data.

Suppose we are joining tables A and B. Let the domain
of the joining attribute be D. The number of datapoints
having attribute value i (¢ € D) is a random variable, which
we represent by hta(i) and htp(i) for tables A and B re-
spectively. We represent the result of joining A and B by
Join(A, B). Then,

E[Join(A,B)] = E[thA(i).htB(i) (21)
1€ED
= Y E[hta(i).hts(i)] (22)
1€D
= > E[hta(i)].E[hts(i)] (23)
1€D

Now, from assumption 3,

hta (i) ~ Bin (height a(bucket (7)), widtha(bucket(i)))
(24)
where bucket(i) is the bucket corresponding to attribute

value 7 for table A, and height 4 (bucket(i)) and width a (bucket(7))

are the height and width of that corresponding bucket. The
notation is similar for table B. Thus,

. height o (bucket(i))
E [ht = 2
[t (7)) width a (bucket(i)) (25)
Using Equation 25 in Equation 23, we get:
E [Join(A, B)] (26)

height 4 (bucket(i)) heightp (bucket(i))
width a (bucket(i)) widthp(bucket (7))

23

1€ED

This gives the formula for estimating the cardinality of a
join. We see that it iterates over every value in the domain
D of the joining attribute. In practice, we need to iterate
only over those values which occur in both A and B. It can
be simplified in the case when the bucket boundaries are the
same for both tables.

4.3 Updatingaone-dimensional histogram, based

on feedback on the exact result size of a
range query
Let us denote the range of the query by R. As in Sec-
tion 4.1, we break up this range based on the buckets in the
histogram.

MaxBuckets

>

i=1

MazBuckets

>

i=1

R = Rbi,and,hn = thi

Thus, our aim in this subsection is: given the ¢rue number
of datapoints falling within the range R, we wish to update
the histogram using this information.

More precisely, suppose we are given that

MawxBuckets

>

i=1

hry, = S (27)

where S is the correct result of the range query. Then, what
can we say about the the height of a bucket, given the result

MaxBucket
Z azx ucesthi:S)-7

of the range query (hy; | (i1

Consider a bucket z. Either it is completely contained
inside R or it isn’t. Let us consider the case when it is com-
pletely contained. Thus, R, is actually the entire bucket
x.
Denoting the probability distribution of a variable by p(.)

and all the buckets (from 1 to MaxBuckets) by All Buckets,

we have:
p (hbz |

MaxBuckets
x p (Z hr,; =S| hbw) P (hoa)

i=1

MaxBuckets
> hr, =S

(28)

thi =5- hbz | hbz
i€ AllBuckets,i#x

p (hod29)

x p

hr,; =S — hie
i€ AllBuckets,i#x

x p .p(hoe) (30)

This follows from an application of Bayes Theorem, and
holds for all buckets which are fully contained within the
range query. For the last step, we are assuming that the
heights of the buckets are independent of each other. This
is the same as assumption 1 of Section 4.1. For all buck-
ets completely outside the range query, the independence of
buckets means that the range query gives no new informa-
tion about them, and so, no update is required for them.
Now, from our model (Section 3), we have:

hei ~ N (Hpi, 05;)

Since all the hy;s are independent for the different buckets
i, we have:

%
i€ AllBuckets,i#x

2
~N g Hbi: E Op;
i€ AllBuckets,i#x 1€ AllBuckets,i#x

Using Equation 32 in Equation 30, we see that
p (hbz | Zi]\itimBuckets thi — S)

mals, and is hence another normal with mean and variance
given by:

(31)

is the product of two nor-

MaxBuckets

>

i=1

Mean = E |:hbi | hr,, = S:|

45

2
Hp.. (ZieAllBuckets,i;ﬁz Ubi)

2
ZiEAllBuckets Obi

X 2
(S - zi€AllBuckets,i;éz Hbl) Obi

+ T) (32)
i€ AllBuckets Tbi
MaxBuckets
Variance = Var | hy; | E hr,; =S
i=1
2
Obz \/ZiEAllBuckets,i;écc O
= (33)

2
ZieAllBuck'ets O

Thus, once the true result size of a range query is given,
we can update the values Hp, and o3, for every bucket x
which is completely within the range R of the range query.
The important contribution of this set of equations is that
it gives us a way to update the histogram given the true
result of a range query, using our previous knowledge of the
histogram.

There are a few insights from this set of equations:

e The equations assume that we already have some ex-
isting values for the mean and variance of the buckets,
before we get the result of the range query. This will
usually be true, since, these values will be generated
when the histogram is first created.

e Aboulnaga and Chaudhuri [1] had considered this prob-
lem, but had not taken variances into account. When
we have no idea of variances, we can assume that
hpz is actually binomially distributed, as shown in
Equation 1. In such a scenario, the variance o2, o
the mean Hj,. When we plug this into our equations
for updating the histogram, the results obtained are
ezactly the same as the heuristics that Aboulnaga and
Chaudhuri end up using.

There is also the case when some buckets are only par-
tially contained in the range query. The ST-histogram uses
the same heuristic in this case too. In spite of a lot of ef-
fort, we could not find any analytical expression to update
those buckets. The main problem is that under those cir-
cumstances, the distribution we end up getting is not any
well-known distribution; and it does not appear to be very
amenable to analytical techniques. We still hope to work
more on that particular problem. We also note that, even
when there are some buckets which are only partially con-
tained in the range query, the update mechanism described
above works for all other buckets which are fully contained
within the range query.

4.4 Quantifyingthedecay in quality of thehis-
togram over time, due to insertions and
deletions

Whenever we recompute the histogram by doing a com-
plete pass over the database, our confidence in the histogram
becomes maximum, and the variance in the heights of the
buckets becomes zero. But, over time, due to insertions

and deletions, the quality of the histogram degrades; and
the variance in the heights of the buckets increases. In Sec-
tion 3, we proposed a Poisson model of insertions/deletions.
We now use this model to show how to change the variance
in the heights of the buckets over time.

We first briefly recapitulate the model described in Sec-
tion 3. We use Naddy, (t) and Ndely.(t) to denote the num-
ber of insertions and deletions respectively on bucket x over
t time units.

Naddy, (t) ~ Pois(A\id?.t) (34)
Ndelps(t) ~ Pois(As'.t) (35)
(36)

Here, A\{% and \{¢' are the rates of additions and deletions
respectively on bucket z. These values will vary for different
systems, and need to be measured for each database.

Given the mean (Hy,) and variance (o2,) for bucket = at
some time instant, we want to check how these values would
have changed over the following ¢ time units. Again, there
is one assumption to be made:

1. The rate of insertions/deletions is very low compared
to the heights of the buckets. If this is not the case,
we have to analytically make sure the height of buckets
does not go negative, and the analysis becomes more
complicated. Also, when the insertions and deletions
are few, the basic normal distribution of the height is
not changed too much. Thus, we can continue assum-
ing that the normal distribution properly represents
the bucket heights.

Now,

hba (t) =

hye (0) + Naddy, (t) — Ndelpo () (37)

E [hys (£)] E [h2 (0)] + E [Naddy, (t)] — E [Ndely (t)]

Hye (0) + (,\ggd - Afgl) it (38)

The analytical formula for the variance is heavily depen-
dent on how the rates Ay, are related to the heights hy,.
When they are independent of each other (and this is a se-

vere limitation), we have:
Var (he=(t)) = Var (h(0))
+ Var (Naddy.(t)) + Var (Ndely (1))

i (0) + (Aﬂjd + Af;l) t (39)
An obvious alternate case is when the rate is proportional
to the height; we still have no analytical solutions for that
case.

The above equations tells us the expected height and vari-
ance in height of a bucket if there have been no queries (and
the corresponding histogram updates) over it for the past ¢
time units.

5. CONCLUSIONS

Histograms are the heart of most database catalogs. They
are used to maintain approximate information about the

46

data stored in the database. We give, to our knowledge,
the first statistical analysis of histograms in a database con-
text. We develop statistically sound solutions to various
problems involving histograms. These include: how to get
the estimated cardinality of a range query or a join, and
how to properly update the histogram if we are given the
true result of a range query. This allows us to progressively
update the histogram based on feedback from the query ex-
ecution stage. It also implies that the portions of the his-
togram which get accessed most will also be the ones which
are most up-to-date.

We also introduce the concept of storing an extra value
(called variance) in each histogram bucket, along with the
expected height of the bucket (which is what histograms
currently store). This variance is very useful in properly
updating the histogram, and can also be used to provide
confidence ranges on questions we ask of the histogram.

One other interesting observation is that the variance in
the result of a range query depends on the heights of the
buckets in a histogram, but not on their width. This means
that it might be good to minimize the height of all buckets,
given the constraints on storage space for the histogram.
This is a possible plus-point for equi-depth histograms as
against equi-width histograms.

6. REFERENCES

[1] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning
histograms: Building histograms without looking at
data. In SIGMOD, 1999.

George Casella and Roger L. Berger. Statistical
Inference. Duxbury Press, 1990.

Chung-Min Chen and Nick Roussopoulos. Adaptive
selectivity estimation using query feedback. In
SIGMOD, 1994.

Phillip B. Gibbons, Yossi Matias, and Viswanath
Poosala. Fast incremental maintenance of approximate
histograms. In VLDB, 1997.

Viswanath Poosala and Yannis E. Ioannidis. Selectivity
estimation without the attribute value independence
assumption. In VLDB, 1997.

Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas,
and Eugene J. Shekita. Improved histograms for
selectivity estimation of range predicates. In SIGMOD,
1996.

Michael Stillger, Guy Lohman, Volker Markl, and
Mokhtar Kandil. LEO - DB2’s learning optimizer. In
VLDB, 2001.

Historical Queries in IrisNet

Suman Nath
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA-15232, USA

sknath@cs.cmu.edu

ABSTRACT

Recently there has been a spur of research in processing
queries on data stream. However, the issues related to stor-
ing historical data from a continuous stream and enabling
queries on that data have not yet been adequately addressed
in the literature. In this paper we investigate the challenges
for enabling historical queries in a real system, contain-
ing (XML) data derived from continuous sensor feeds. We
present the first implementation of the basic mechanisms
to deal with the challenges within a XML database engine,
and report the preliminary results. We also pose a number
of very specific open challenges on this topic.

1. INTRODUCTION

The widespread deployment of sensors and the prolifera-
tion of the Internet have fuelled the development of appli-
cations that treat data as a continuously evolving stream,
rather than a fixed set [5, 10]. One class of such applications
operate on wide area sensor networks and depend on storing,
processing and querying the data generated by sensors [4,
7). However, modern sensors (e.g., webcams) may produce
a mammoth volume of data with high rate which poses sig-
nificant challenges in storing, processing and querying the
events notified by the sensors.

For many applications, storing the historical sensor data
and enabling queries on that are extremely important. For
example, a monitoring system may like to post-mortem the
data stream to detect the reason of an unusual event hap-
pened in the past. Another example can be data mining
applications that may like to discover patterns in the data
streams, and thus predict the future. Current query process-
ing research on data stream, that mostly focuses on dealing
with the current data or data within a pre-specified win-
dow [3, 10], is not sufficient to store large volume of sensor
data over an extended period of time and hence not suitable
for these types of applications. Some data stream systems
include the possibility of incorporating query processing on
historical data [5, 6], but they have not yet investigated the
challenges related to it and the mechanisms to address them.

In this paper we address the challenges related to storing
historical sensor data and enabling queries on that in the
context of IRISNET(Internet-Scale Resource-Intensive Sen-
sor Network services) [11], an infrastructure for deploying
wide area sensor services, which is currently under develop-

Project paper for the course 15-823:
DATABASE SYSTEMS

HOT topics in

47

ment at Intel Research, Pittsburgh. We also describe the
design and implementation of the basic mechanisms to deal
with the challenges.

Our approach is to store a reasonable approximation of
the historical data. The approximation of the stored data
is crucial at the situations where sensors produce a huge
amount of data and either the data should be stored in the
main memory for fast query processing or the secondary
storage is too small to store enough sensor data to answer
historical queries. Since the stored data is an approximation
of the real sensor data, this approach provides only approxi-
mate answers to the queries. An efficient mechanism should
work within the limited storage and still reasonably approx-
imate the answers to most of the queries.

The contributions of this paper are:

e We address the main challenges to enable historical
queries in IRISNET.

e We survey a class of approximate storage schemes suit-
able for IRISNET, and provide simple guidelines for
choosing the right one. We also propose an exponen-
tially decaying sampling technique, which can be very
useful for many applications.

e We show how the mechanisms for storing historical
data and enabling query on that can be implemented
in an XML database engine.

The rest of the paper is organized as follows. Section 2
gives a brief description of the IRISNET. Section 3 discusses
the main challenges of enabling historical queries on IRIS-
NET. Section 4 describes the approximate storage schemes
to be implemented in IRISNET, and used by application de-
veloper in the way discussed in Section 5. Section 6 de-
scribes the semantics of the query on the approximate stor-
age schemes we have implemented in IRISNET. Section 7
presents the experimental results. Finally, we pose a few
specific research questions in Section 8 and conclude in Sec-
tion 9.

2. THEIRISNET

IRISNET is an infrastructure for services (e.g., a parking
space finder (PSF)) based on resource rich sensors (e.g., we-
bcams connected to laptops). IRISNET is composed of a dy-
namic collection of two types of nodes: Sensing Agents (SA)
and Organizing Agents (OA). Nodes in the Internet partici-
pate as hosts for SAs and OAs by downloading and running
IRISNET modules. OAs run on regular PCs in the Internet
and create a self organizing overlay network to maintain a
distributed database of the real time sensor feeds and other

historic data and support queries on that data. SAs run on
laptop/PDA class processors connected to the sensors (e.g.,
webcams) and collect the raw sensor feeds, extract useful
information from that, and send the filtered information to
the OAs.

Service developers deploy sensor-based services by orches-
trating a group of OAs dedicated to the service. As a result,
each OA participates in only one sensor service (a single
physical machine may run multiple OAs), while an SA may
provide its sensor feeds and processing capabilities to a large
number of such services.

IRISNET envisions a rich and evolving set of data types,
aggregate fields, etc., within a service and across services,
best captured by self-describing tags. In addition, each sen-
sor takes readings from a geographic location, so it is natural
to organize sensor data into a geographic/political-boundary
hierarchy. Hence, sensor-derived data is stored in XML since
it is well-suited to representing such data. IRISNET uses the
XPATH query language, because it is the most-widely used
query language for XML, with good query processing sup-
port.

The group of OAs for a single service is responsible for
collecting and organizing sensor data in order to answer
the particular class of queries relevant to the service (e.g.,
queries about parking spots for a PSF service). Each OA has
a local database for storing sensor-derived data; these local
databases combine to constitute an overall sensor database
for the service. IRISNET relies on a hierarchically organized
database schema (using XML) and on corresponding hier-
archical partitions of the overall database, in order to define
the responsibility of any particular OA. Thus, each OA owns
a part of the database in the hierarchy. An OA may also
cache data from one or more of its descendants in the hi-
erarchy. A common hierarchy for OAs is geographic, while
it is also possible for a service to define indices based on
non-geographic hierarchies. In IRISNET, such hierarchies
are reflected in the XML schema. Each service can tailor
its database schema and indexing to the particular service’s
needs, because separate OA groups are used for distinct ser-
vices.

A user’s query, represented in the XPATH language, se-
lects data from a set of nodes in the hierarchy. IRISNET
provides mechanisms to route the query to the OA able to
answer the query. Upon receiving a query, an OA queries its
local database and cache, and evaluates the result. If nec-
essary, it gathers missing data by sending subqueries to its
children OAs, who may recursively query their children, and
so on. Finally the answers from the children are combined
and the result is sent back to the user.

IRISNET currently supports queries only on the most re-
cent sensor data. In the next section, we address the prob-
lem of supporting queries on historical sensor data in it.

3. HISTORICAL QUERIESON STREAM

To support historical queries on a typical sensor based ser-
vice developed in IRISNET, the following primary challenges
need to be addressed first.

1. Since sensors may produce data at a huge rate, and
the data stream is assumed to be infinite, OAs can-
not store the whole stream. Then what should be the
mechanisms for storing the historical data? If multi-
ple such mechanisms are given, which mechanism is
the right choice for a particular type of data?

48

2. Assuming that IRISNET provides a set of mechanisms
for storing historical data, how can the service devel-
opers use them within their services? How can they
tune the parameters of these mechanisms?

3. How can a query be answered using the historical data
stored using some predefined storage mechanism? What
will be the semantics of the answers when the data re-
quired for answering the query is stored only partially
or approximately?

In the rest of the paper we describe how we address these
challenges in IRISNET. In Section 8 we pose some more
challenges (mostly for optimization purposes) we plan to
address in our future research.

4. STORING HISTORICAL DATA

‘We consider data entering IRISNET as a time ordered se-
ries of tuples (streamID, timestamp, data). All the tuples
in a stream have the same streamID. The data can range
from simple scalar value (e.g., average parking spot availabil-
ity) to complex multimedia object(e.g., image of a parking
spot).

Like other data in IRISNET, historical data is stored as
XML documents. However, historical data may comprise
large objects (e.g., multimedia data). Those large objects
are stored as external files in the secondary memory, and
the XML documents contain the corresponding file names.
This is necessary for the current XML database engine im-
plementations (e.g., Xindice [1]) which need the whole XML
documents to be in the main memory for processing them.
Moreover, this enables inter-service sharing, as well as more
efficient image and query processing.

Since, the data stream is assumed to be infinite, OAs can
store only part or approximation of the historical data. In
the rest of this section we describe two different storage mod-
els and some schemes for this purpose. Unless specified ex-
plicitly, the schemes have been implemented in IRISNET us-
ing the Java APIs of Xindice, IRISNET’s local XML database
engine.

4.1 Partial Storage Model

In this model tuples are stored over a sliding window (e.g.,
last one thousand tuples or last one hour). The model be-
haves like a step function: all the tuples within the speci-
fied window are stored while the tuples outside the window
are discarded. The model is suitable when all the histori-
cal queries refer to the times within the sliding window and
the available storage allows a large enough circular buffer to
store all the tuples within the sliding window.

The advantage of this model includes its simplicity and
its accuracy of the answers to the queries within the win-
dow. However, this approach has a number of limitations.
It cannot answer queries on the data outside the window.
Even if the data is periodic, queries outside the window can
not be answered if the window is smaller than the period.
Storing all the tuples over the complete window may be a
huge waste, since user may not care about the exact an-
swer for some event happened long ago within the window
— only a reasonable approximation may suffice. Moreover, if
the storage is limited and the tuple arrival rate is high, the
window can be too small to be useful in practice. All these
suggest that, a step function like sliding window is not be
the most effective storage model for many applications.

14
=
o8 \ Exponential (S=100)
g
006 \%
o Exponential (S=200)
c
6 0.4+ . .
] \ Uniform (S = 1000)
= i e,
E 0.2 M
0 ' N A pmins
0 500 1000 1500
Age

Figure 1: Empirical distribution of inclusion proba-
bility with different sampling schemes

4.2 Approximate Storage Model

In this model tuples with old timestamps are stored only
approximately and thus data spanning an extended period
of time can be stored within the limited storage. Many dif-
ferent approximation schemes can be imagined within this
model. In contrast to the sliding window model where the
window is fixed, this model fixes the amount of available
storage and the approximation scheme. This approach is
ideal for many applications having limited storage and re-
quiring only approximate answers to the queries on rela-
tively old data.

One important factor needs to be decided while using this
model is the right approximation scheme to use. The deci-
sion depends on the amount of available storage, type (e.g.,
scalar or multimedia) and nature (e.g., rapidly or slowly
changing) of the data being stored and the type of the query
needs to be answered. We here describe a set of approxima-
tion schemes. We also provide simple guidelines for choosing
the right one from them.

4.2.1 Sampling using aging function

This scheme stores only a fixed size random sample of the
tuples. Fized size indicates that the target sample size is
pre-specified. Random sample indicates that, at any point
of time, the inclusion probability of a tuple seen previously in
the stream is given by a particular probability distribution.

Sampling is a good choice for storing historical data in a
limited storage when individual tuples are independent and
there is no prior knowledge about the types of queries that
would be made on the data (e.g., data mining application).

Given that the sample is taken over the whole life of the
stream whose size is not known a priori, it is not trivial to
maintain such a random sample [§8]. We here consider two
fixed size random sampling techniques.

Simple random sampling. The classic reservoir sam-
pling algorithm[8], an online sampling algorithm over a fixed
sample size (= S) and unknown stream size, ensures uniform
inclusion probability of the tuples seen so far. The algorithm
works as follows.

1. Add the first k items to the sample.

2. On arrival of the n’th tuple, accept it with probability
k/n. If accepted, choose an evictee from the sample set
uniformly at random, to be replaced by the n’th tuple.

Figure 1 shows the result of the simulation of this algo-

rithm with S = 1000 and total stream size N = 10,000 and
verifies the fact that all the tuples in the stream belong to
the sample with a constant probability S/N [8].

49

This uniform sampling scheme is suitable in the situations
where all the tuples seen so far are equally important.

Exponentially decaying sampling. For most of the
applications recent tuples are more important than the old
tuples, and so the sample should include more of the recent
tuples so that queries on recent data can be answered more
accurately than those on old data.

In such a sample, inclusion probability of a tuple decreases
with its age (we define age of a tuple to be the number of
tuples arrived after it), according to some predefined aging
function. However, the sample should be continuously up-
dated with the arrival of tuples so that at any point of time,
the distribution of the probability of any of the tuples seen
so far being present in the sample follows the aging function.
In other words, the aging function should slide with time.

We here propose an exponentially decaying aging func-
tion, where the inclusion probability exponentially decreases
with the tuple’s age. For example, consider that the sample
stores a tuple with age between ¢ and ¢ + 1 hour with prob-
ability a~*, where a is some constant. This means, at any
point of time, it contains all the tuples arrived in last one
hour, 1/a of the tuples arrived in the previous hour and so
on. The following algorithm approximates this behavior.

1. Add the first k tuples to the sample.

2. On arrival of a tuple, choose an evictee from the sam-
ple set uniformly at random, to be replaced by the newly
arrived tuple.

We now calculate the probability that a tuple with age ¢ is
present in the sample. When the tuple first arrived, it is al-
ways included into the sample. On arrival of each tuple after
that, the probability that the tuple is selected as an evictee
is 1/k. Thus, the probability that it has not been evicted
from the sample when its age is ¢ is (1 — 1/k)! ~ e ¥k,
Thus the inclusion probability exponentially decreases with
the age t.

Figure 1 shows the inclusion probability of the tuples sam-
pled using this approach with sample size S = 100 and 200
and stream size N = 10,000. The graph shows that the in-
clusion probability decreases exponentially with the age of
the tuples, as expected.

Exponentially decaying sampling is more suitable in situ-
ations where recent tuples are more important than the old
ones.

4.2.2 Siding window of reference tuples

This scheme uses a circular buffer to store only the refer-
ence tuples so the tuples not stored (non-reference tuples)
can be approximated (e.g., using interpolation) from the ref-
erence tuples. The decision of whether a tuple is considered
to be a reference tuple depends on some selection criteria.
For example, if the data is scalar, and the selection criterion
is difference = 2, then a tuple will be stored as a reference
tuple only if its value differs from the last reference tuple by
at least 2. The selection criteria present tradeoffs between
the accuracy of approximating the non-reference tuples and
the time span over which data can be stored within the lim-
ited storage. Very fine grained selection criteria store more
reference tuples and hence provide better approximation of
the non-reference tuples. On the other hand, since more
reference tuples are stored, only the history over a limited
time may be maintained.

This scheme is more appropriate for data that do not
change too often over time.

<state Qid=’PA’> <city @id=’Pitt’> <block Qid=1>
<available-parking-spots>
<historical> yes </historical>
<storage> SAMPLE_EXP_DECAY </storage>
<sample-size> 100 </sample-size>
<value> 0 </value> <timestamp> 0</timestamp>
</available-parking-spots>
</block></city></state>

Figure 2: Specification of the storage scheme within
the XML schema

4.2.3 Lossy Compression

Lossy compression techniques can be used to store histor-
ical multimedia data. For example,

e For video data, frames can be sampled using expo-
nentially decaying sampling described before. More-
over, the fidelity of sampled frames may decrease with
their age. For example, recent video frames can be
stored as high resolution color frames, while the older
frames may be stored as low resolution, black and
white frames. Finally, each video frame can be com-
pressed using existing multimedia compression algo-
rithms.

e Scalar data represented as a time series can be com-
pressed using wavelets. The fidelity of compression
may decrease with age of the data.

As mentioned before, the multimedia data will be stored
as external files and compressed using an external compres-
sion engine. Note that, the compression is transparent to
the IRISNET, since XML documents only use the file names
to refer to the objects. IRISNET has not yet incorporated
any compression engine to support this scheme.

4.2.4 Synopsis

If the types of historical queries are known a-priori, syn-
opses data structures [9, 3] can be used to maintain statis-
tics about the historical data. Synopsis can maintained be
over a sliding window or over the whole life time of the
stream. Currently, IRISNET does not support any synopsis
data structures.

5. PROGRAMMING MODEL

Different storage schemes supported by IRISNET are ex-
posed to the service developer through well known APIs. In
the similar spirit of XML based RPC mechanisms [2], a ser-
vice developer specifies the storage schemes to be used and
corresponding parameters in self describing XML tags, as
part of the XML schema. Since the choice of approximation
scheme depends on the type and nature of the data, storage
schemes may be defined at the granularity of each individual
data item within the schema.

Figure 2 shows part of the schema used by the PSF service
where the service developer wants to store the historical data
of available parking spots. The storage scheme to be used
is the exponential decay sampling with sample size 100.

6. QUERY MECHANISM

In IRISNET, queries can be asked along two different axes:
space and time. As described in Section 2, IRISNET supports
queries on current sensor data in any geographic locations
within its hierarchy. If the data spans the space covered

50

by multiple OAs, IRISNET generates subqueries, gathers the
required data by routing the subqueries to the correspond-
ing OAs, and finally aggregates the responses to generate
the final answer. Incorporating historical queries enables
IRISNET to process queries along the time axis too.

Since historical data is stored only approximately, answers
to the queries on it will be approximate too. The semantics
of the answer to a query depend on the query itself, the type
and nature of the data and the approximation scheme and
parameters used to store the historical data. In addition to
the query answer, IRISNET provides some extra hints about
the stored data on which the query was processed. The
hints, along with the query itself, data type and the approx-
imation scheme used provides the users with the semantics
of the answer.

We have implemented four different storage schemes for
historical data: sliding window storage (SW), uniform (US)
and exponentially decaying sampling (ES) and reference tu-
ple storage (RT). IRISNET currently supports the following
two types of queries on these storage schemes.

e Time point query: This type of historical queries
refer to some fixed point of time ¢ in the past (e.g.,
total available parking spots at 10 a.m. today). SW
storage scheme can answer the query only if ¢ is within
the window, in which case the answer is accurate. RT
scheme can answer the query if there is any reference
tuple beyond the query time point. In all the cases,
the query is answered using the tuple with the largest
timestamp ¢’ < t. The timestamp ¢’ of the tuple used
to answer the query is returned as part of the answer
as the hint.

e Time range query: This type of historical queries
refer to a window of time (¢1,t2) in the past (e.g., aver-
age available parking spots between 10-11 a.m. today).
For all the schemes except the RT storage, the query is
answered using all the tuples with timestamps ¢’ such
that t; < t' < ta. (Again, SW storage scheme can
answer the query only if both the ¢; and t2 are within
the window.) For RT storage, all the tuples between
the two tuples with timestamps t; and t, are used,
where t} is the largest timestamp with ¢} < ¢; and ¢,
is the largest timestamp with t5 < t5. Total number
of tuples used to calculate the answer, t; and t, are
provided as hints with the answer.

The semantics of the answers, however, also depend
on the particular storage scheme used. For example,
the answer to the query for average parking spots on
data stored using US storage is an un-weighted average
whereas the same on data stored using ES storage is
an exponentially weighted average.

The implementation of the time-point queries in IRISNET
is straightforward. XPATH provides functions to select the
tuple with the largest timestamp ¢’ < ¢t. Time range queries
for the schemes other than the RT storage is also straight-
forward to implement using XPATH’s range query. How-
ever, to implement a time-range query with the range (¢1, t2)
with RT storage, two subqueries need to be made to find
the positions (with respect to all the siblings) of the two
boundary tuples. Then all the tuples between these two po-
sitions are extracted from the database and used to answer
the query. To produce the final query answer, the tuples

B Sliding Window

O Simple Random
Sampling

M Exp. Decaying
Sampling

O Reference
Tuple

Average Time (ms)

W Complete
Stream

Database
Update Query Query

Time point Time Range

Figure 3: Time taken by database operations under
different storage scheme

selected using the time-range query may need further pro-
cessing (e.g., calculating the average value of the tuples)
within the Java code.

7. EXPERIMENTAL RESULTS

This section presents an experimental study of our imple-
mentation, which seeks to answer the following two ques-
tions: (1) What is the raw performance of the implementa-
tion, in terms of database update and querying time? and
(2) What is the approximation error of the answer to a his-
torical query under different storage schemes?

7.1 Experimental Setup

We have implemented the mechanisms to support queries
on historical data in IRISNET by extending OA’s code writ-
ten in Java, and using OA’s local XML database Xindice.
The queries are made using the XPATH language. All the
results presented here are produced using an OA running on
Redhat 7.3 Linux in a lightly loaded Pentium-III, 1.8 GHz
machines with 512 MB RAM.

We here consider four approximate storage schemes we
have implemented in IRISNET: SW (sliding window), US
(uniform sampling), ES (exponentially decaying sampling)
and RT (reference tuple) storage. We compare them with
the complete storage (CS) scheme, where the complete stream
is stored in the database. In all the storage schemes, we as-
sume that the storage size is constrained to store at most
1000 tuples while the whole stream consists of 10,000 tuples.
We use a synthetic workload of the stream where the data
values of the tuples denote the total number of available
parking spots. The number of available spots is modelled
using a random walk model, with equal probability of the
value of a newly arrived tuple being unchanged, increased
or decreased by one (equivalently, the probability of a car
entering or leaving the lot) from that of the previous tuple.

Since database update is expected to be much more fre-
quent than the historical queries, maintaining indices on the
database is expensive (in general, maintaining index in XML
database is more difficult than maintaining that in relational
database). So for evaluating the queries we consider un-
indexed database. We consider time-point and time-range
queries, where times are chosen using a Zipf like distribu-
tion, with the recent times chosen more often than the old
times as the query point. On average, a query is made on
arrival of 10 tuples.

7.2 Costs of database operations

Figure 3 shows the average time required for different
database operations in our implementation. The first set

51

of bars shows the per tuple database update time. On con-
trary of our belief, we found that the database update time
in Xindice increases linearly with the size of the database!
Since approximate storage schemes use smaller database (equal
to the sample size), they get advantage in database update
time even though each of their updates requires multiple
database operations (deletion of the evictee, insertion of
the new tuple etc.). This explains why the CS scheme has
worse database update time than the approximate storage
schemes. All approximate schemes, except the RT scheme,
take almost equal database update time (which is propor-
tional to the sample size). The RT scheme stores a tuple
only if it is different from the last reference tuple by at least
a threshold of 2. This explains why its per tuple database
update time is less than the other approximate schemes.

Figure 3 also shows that queries on CS scheme take much
more time than those on approximate storage, due to the
fact that without any index, queries take times proportional
to the database size. For time point query, all the approxi-
mate schemes take almost same average query response time
because of their equal sample size. The figure also shows
that, time-range queries take slightly more time than the
time point queries. This is because of the extra processing
of the tuples outside Xindice (to compute the average, for
example). The semantics of the queries in RT scheme sug-
gest that, for each time range query, two subqueries need
to be made, which explains its high query response time for
time range queries.

7.3 Approximation errorsin query answers

‘We consider two different types of approximation errors of
time-point query answers while evaluating the performance
of different storage schemes. The first one, value-error, is
the difference of the answer found using the complete stor-
age and that found using the approximate storage scheme.
This depends on the nature of the data (e.g., how often the
values change), and we here use the synthetic stream de-
scribed in Section 7.1. The second type of error, called time-
error, is the difference of the time specified in the query and
the timestamp of the tuple used to answer the query. This
is independent of the data value, and indicates the tempo-
ral closeness of the answer desired and the answer returned
by the system. Although we here evaluate the time-point
queries, errors for time-range queries can be explained sim-
ilarly.

Figure 4(a) and 4(b) show the value-error and time-error
respectively, of different storage schemes. SW provides ac-
curate answers if the query time point is within the window
size (=1000), while the RT scheme provides almost accu-
rate answers over a larger window (=6000) with the same
amount of storage. Beyond those window, these two schemes
just use the tuple closest to the query time point, and thus
experience very bad value and time-errors. For US scheme,
error remains constant all over the life time of the stream,
but it is worse than the errors with SW and RT schemes
within their window. ES scheme provides very good accu-
racy of the queries on recent time, and the error worsens
with the time point of the query.

Figure 4(c) shows the average query response errors as-
suming that most of the queries are made on recent time
points (i.e., the query time point follows a Zipf-like distri-
bution). As expected, RT and ES schemes give very small
error for such queries.

Sampling
Uniform \

Sampling

*‘”w Uniform Sampling| 3.26 104.19

20 1600

12 | Sliding Reference

14 W'ndiw Tuple™~__ 1200 { Sliding
2 124 Uniform Exponential 5 Window
@ Samplin € £
' pind M/ Sampling & 500 1
2 g)
< =
) g et ||

41 400 -

2

04 : ; . i ol

0 2000 4000 6000 8000 10000 0
Query point (time)

Reference
Tuple

ValueError | Time Error

Exponential

Sliding Window 419 35128.89

Reference Tuple 0.52 50.95

4000 6000 8000

Query point {time) Exp. Sampling 0.67 15.65

(a) Value-Errors of query answers

(b) Time-Errors of query answers

(c¢) Average Error

Figure 4: Accuracy of query answers with different storage schemes.

8. OPEN CHALLENGES

This section lists a few challenges that are yet to be ad-
dressed in the context we have discussed in this paper.

8.1 Resource management

Resources (e.g., storage, computation) are allocated per
instance of the approximation scheme. If a service wants
to archive n different data items (e.g., number of available
parking spots, number of red cars, snapshot of the spots
etc.), n different approximation schemes will be instantiated
for it, one for each data item. Since, the accuracy of the
historical query increases with the amount of resources used
by the approximation scheme, multiple services running on
the same physical machine may contend with each other for
resources. One big challenge in this context would be to
manage the available resource, and dynamically allocate it
among the contending services.

8.2 Adaptivity of the approximation schemes

The appropriate approximation scheme to be used de-
pends on the nature of the data, which may change over
time. For example, during the busy period of the day, the
total number of available spots in a parking lot changes fre-
quently, and so ES scheme may be a good choice for storing
historical data. However, at night or on weekends, when
the parking spot availability data do not change too often,
the best approach may be to sample less often or to use the
RT scheme. Dynamically detecting the nature of the data,
and accordingly adapting the approximation scheme is a big
challenge in this context.

Dynamic resource management poses other challenges for
the storage mechanisms to adapt with the available resource.
For example, if the sample size of the ES scheme is increased,
it is not clear how the sampling algorithm should be adapted
accordingly, or how the immediate queries should be an-
swered with the expected semantics.

8.3 Error propagation along the space axis

If the historical query spans a geographic region covered
by multiple OAs, IRISNET produces the final answer by ag-
gregating the responses from different OAs. However, dif-
ferent OAs may use different approximation schemes for the
same data, or even if the they all use the same approxima-
tion scheme, they may use different parameters (e.g., due to
different resource constraints, different OAs may have dif-
ferent sample size). Thus, different degree of approximation
errors form different OAs will be propagated along the path
of aggregation. It is not obvious what the semantics of the
final answer would be with this type of aggregation.

52

9. FUTURE WORK AND CONCLUSION

In this paper we have presented the challenges to store
historical data and enable queries on that in a system where
data comes as a continuous stream from powerful sensors.
We have presented the implementation and performance
evaluation of the basic mechanisms implemented in IRISNET
to address the challenges. We also have presented the bigger
picture and a few specific research challenges in this domain.
The work is ongoing. The next steps we are actively taking
include addressing the challenges posed in section 8.

10. REFERENCES

[1] Apache xindice. http://xml.apache.org/.

[2] XML RPC. http://www.xmlrpc.com/.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems. In
Proceedings of 21st ACM Symposium on Principles of
Database Systems (PODS), June 2002. Madison,
Wisconsin, USA.

[4] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proceedings of the Second Intl. Conf.
on Mobile Data Management, January 2001. Hongkong.

[5] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,

S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams — a new class of data
management applications. In Proceedings of Very Large
Databases (VLDB), August 2002. Hongkong, China.

[6] S. Chandrasekaran and M. Franklin. Streaming queries over
streaming data. In Proceedings of Very Large Databases
(VLDB), August 2002. Hongkong, China.

[7] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan.
Cache-and-query for wide area sensor databases. Submitted
for publication.

[8] C. Fan, M. Muller, and I. Rezucha. Development of
sampling plans by using sequential (item by item) selection
techniques and digital computers. Journal of the American
Statistical Association, 57:387—402, 1962.

[9] P. B. Gibbons and Y. Matias. Synopsis data structures for
massive data sets. DIMACS: Series in Discrete
Mathematics and Theoretical Comp. Sc.: Special Issue on
Eaxternal Memory Algorithms and Visualization, A, 1999.

[10] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
Proceedings of the ACM SIGMOD int. conference on
management of data, June 2002. Madison, Wisconsin, USA.

[11] S. Nath, A. Deshpande, Y. Ke, P. B. Gibbons, , B. Karp,
and S. Seshan. Irisnet: An architecture for
compute-intensive wide-area sensor network services.
Submitted for publication, Intel Technical Report
IRP-TR-10, 2003.

