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Abstract

We present in this report a new framework for maintaining good quality of two dimensional
triangular moving meshes. The use of curved elements is the key idea that allows us to
avoid excessive refinement and still obtain good quality meshes consisting of a low number
of well shaped elements. We use B-splines curves to model object boundaries and objects
are meshed with second order Bézier triangles. As the mesh evolves according to a non-
uniform flow velocity field, we keep track of object boundaries and, if needed, carefully
modify the mesh to keep it well shaped by applying a combination of vertex insertion and
deletion, edge flipping, and curve smoothing operations at each time step. Our algorithms for
these tasks are extensions of known algorithms for meshes build of straight–sided elements
and are designed for any fixed-order Bézier elements and B-splines. We discuss a calculus
of geometric primitives for Bézier curves and triangles that we employ to implement such
operations. Although in this work we have concentrated on quadratic elements, most of the
operations are valid for elements of any order and they generalize well to higher dimensions.
We present results of our scheme for a set of objects mimicking red blood cells subject to a
a priori computed flow velocity field. As a pure geometric exploration, our method does not
account for neither refinement nor coarsening dictated by the simulation results.



1 Introduction

In the Lagrangian paradigm for simulating fluid flows, domain boundaries and object inter-
faces are continuous parts of the fluid they are embedded in and as such they inherit the
same motion experienced by the fluid. Mesh vertices representing both fluid particles and the
embedded objects move subject to the same velocity field which makes easy to deform and
track dynamic object interfaces. A challenging aspect of this approach is to make sure that
the moving meshes remain acceptable and of good quality at all times during the progression
of the physical simulation.

Severe motion of the vertices from one time step to the next may produce tangled or
poorly shaped elements which in turn may lead to unrecoverable errors in the numerical
solver. It is well known that the presence of such bad elements in the mesh may prevent a
simulation to advance and yield meaningful results. Therefore, maintaining the good quality
of an evolving mesh is of crucial importance in the Lagrangian paradigm.

The work we present here is a step towards the broader acceptance and application of the
Lagrangian formulation for simulating time dependent problems. Our goal is to improve the
development of simulations by addressing the geometric aspects of moving meshes. Contrary
to other methods, we do not resort on a complete remesh from scratch at each time step
to achieve good quality. When mesh elements deform beyond acceptable limits, we restore
good quality by applying a set of local topological and geometrical operations which are
extensions of known algorithms used in linear meshes.

In our prototype system, we adopt a multilevel representation for meshes, from input
specification to Delaunay refined meshes. In each level we make use of the cell-tuple data
structure of Brisson [3, 4] which allows representing regular cell complexes of arbitrary di-
mension as well as permits access to ordering information and imposition of orientation on
the complex. To our great benefit, we have augmented this data structure with self-loops
and multiedges.

The rest of this paper is organized as follows: In section 3, we comment works related
to ours. In Section 4, we describe Bézier curves, Bézier triangles, B-splines and explain the
reasons why we opted to use them as geometric building blocks of our simulation process.
In Section 5, we present the basic operations we use to modify evolving meshes and to
keep them well-shaped. Section 6 outlines local smoothing operations that are utilized for
improving the quality of curved elements. Section 7 discusses contingencies related to small
angles in the mesh that arise due to the mesh movement. In Section 8 we describe how all
the respective procedures fit together in our simulation process and in Section 9 we describe
our prototype implementation. In Section 10, we present some experimental results. Finally,
in Section 11, we discuss future work.

2 The Sangria Project

The goal of the Sangria project is to develop parallel geometric and numerical algorithms
for the simulation of complex flows with dynamic interfaces. Our target application is the
simulation of blood flow at the microscopic level where individual cell deformations and
their interactions with the surrounding fluid have to be accounted. Due to the complexities



involved in the simulation of thousands of individual cells, no simulations of blood flow at
this scale exists. However they are crucial to the development of artificial organs, and better
models of macroscopic blood flow.

From a computational perspective the main challenges in microstructural blood flow
simulations are the development of numerical algorithms that stably and accurately deal
with the interaction of moving and deforming domains and the moving fluids around them.
We must maintain the deforming interfaces with a geometric object such as a mesh and
develop efficient geometric algorithms to update the underlying mesh as time evolves. In
this paper we concentrate on such geometric algorithms. The target application is to simulate
blood flow in three dimensions, here we focus first on two-dimensional simulations, utilizing
many procedures which generalize well to higher dimension applications.

3 Related Work

Luo et al. [16] describe methods to obtain a mesh with curved elements starting from a
straight mesh. They use Bernstein polynomials to describe the shape of their elements.
They make use of operations such as edge split, edge swap and edge collapse to correct for
invalid shapes. They look at the Jacobian of the map to determine shape validity. They
however do not consider moving meshes.

Kuprat et al. [13] describe a three-dimensional system for moving meshes, X3D. Their
system modifies the mesh topology to maintain the Delaunay property as the mesh moves.
It also provides mesh smoothing to optimize mesh quality, and mesh refinement by means
of point insertions. They however deal with straight elements.

Also Antaki et al. [1] motivated by the microstructural blood flow problem developed
a two-dimensional parallel dynamic mesh Lagrangian method for flows with dynamic inter-
faces. They generated a new mesh from scratch at every time step to deal with distortion as
the mesh moves. Their mesh used linear elements and did not provide for mesh coarsening.
Our approach is different in that we use quadratic elements for our meshes, and we do not
recompute the mesh from scratch at every step. As an alternate approach, we make local
modifications as the mesh moves to keep it well shaped.

4 Mesh and Element Types

4.1 Bézier Curves and Triangles

We decided to use Bézier curves and triangles to model our mesh elements for two main
reasons. First, using curved instead of linear elements allows us to use meshes with far
fewer elements both for representing geometry and for obtaining accurate numeric solutions.
Second Bézier curves and triangles have very nice mathematical properties that lead to
elegant algorithms.

Bézier curves are completely defined by their control points which form the control poly-
gon. See Figure 1. Similarly Bézier triangles are completely defined by their control points



which form a control net. See Figure 2. For more information about Bézier curves and
triangles see [9, 11] among others.

Figure 1: A quadratic Bézier curve: The quadratic curve is shown in bold. The control
polygon consists of three vertices and two straight segments.

Figure 2: A quadratic Bézier triangle: The boundary of the quadratic triangle is shown in
bold. The control net consists of six vertices and four straight triangles.

4.2 B-Splines

B-splines are a convenient way for us to represent C1 continuous curves. We use B-splines
in two important ways in our code. First, they allow us to represent object boundaries when
we want to enforce C1 continuity. In our target applications of simulating red cells moving
down arteries we use quadratic B-splines to represent cell boundaries. Quadratic B-splines
are made of a sequence of quadratic Bézier curves connected in such a way that the overall
curve is C1 continuous everywhere. They are completely determined by a control polygon or
de Boor polygon, and a knot sequence. Second, B-splines make it much easier for us to move
or slide a mesh point on the curve while only affecting the shape of the curve represented by
the B-spline. Section 7 uses this property to slide mesh points on the curve to handle small
boundary angles that may arise as the mesh moves.

See Figure 3. For more information regarding B-splines the reader can refer to [9, 11].
We move B-splines by sampling points on them and applying the flow field to them to

obtain new positions. Then we perform a least-squares fit to obtain a new control polygon
that best fits the new positions.



Figure 3: A quadratic B-spline and corresponding control polygon. The black points are the
values the curve takes at the knots. The white points are the internal points of the control
polygon.

4.3 Mesh Hierarchies

In our simulations we consider three different level of meshes: the Bézier mesh, the control
mesh, and the logical mesh. The logical and control meshes are straight meshes. The control
mesh is obtained from the Bézier mesh by replacing every curved triangle by four straight
triangles. The vertices of these triangles are the vertices and control points of the curved
triangle. The logical mesh is obtained from the Bézier mesh by replacing every curved
triangle by the straight triangle that results from straightening every edge. See Figure 4.
Figure 5 shows a Bézier mesh and its logical and control meshes.

As we will see below, different operations are performed on different levels of the mesh
hierarchy. Also as the mesh moves, one of our invariants is that the logical mesh is Delaunay.

Figure 4: Bézier triangle and corresponding control (left) and logical triangle (right)



Figure 5: A Bézier mesh (left), its control mesh(right), and logical mesh(bottom)

5 Mesh and Element Operations

When utilizing curved meshes, many basic topological and geometric functions of the mesh
must be handled in a delicate fashion. In 5.1, we describe implementations of some basic
geometric procedures for Bézier elements. In 5.2, we use these primitives to implement a
standard set of operations for a dynamic mesh.

At a high level our strategy to perform exact floating test for linear case such as line-side
tests. But for more complicated test such as curve side test we will only provide function
that correctly return one of three answers. Suppose that C(t) is a parameterized curve, p

is point, and ε > 0 is a small constant then our test must return below, above, or t0. If it
returns below or above then p must be below or above the curve C. On the other hand, if
the functions returns t0 then |p−C(t0)| < ε. We can show that these approximate curve side
test are fast and sufficient for our applications. Jnsson and Vavasis give exact algorithms for
curve side test our hope was to find quicker and simpler methods, [12].

5.1 Geometric Primitives

5.1.1 Point in a Quadratic Bézier

Triangle

In order to determine whether a point p is inside a quadratic Bézier triangle T , we proceed
as follows. First we shoot a random ray r from p and count the number of carrier segments
corresponding to the edges of T that r intersects. Second we count the number of carrier
regions corresponding to the edges of T that p belongs to. The carrier segment of a Bézier
curve is the straight segment between its endpoints. The carrier region is that region bounded



by the curve and its carrier segment. See Figure 6. If the parity of the sum of two quantities
is even, then p is outside of T , otherwise p is inside of T . As with all meshing applications,
the effect of finite-precision calculations must be considered. For straight-line predicates,
namely the determinant line-side test, the adaptive precision methods of [21] are used. For
the determination of whether p belongs to a carrier region, we must use a more subtle
technique. A general curve side test is implemented which recursively subdivides the Bézier
curve using the DeCasteljou algorithm [9]. After a certain level of precision is reached, the
algorithm termilnates and yields a point on the curve which is within ε of p.

Figure 6: The carrier of a Bézier curve

5.1.2 Jacobian of a Bézier Triangle

When using curved elements, an important concern for the accuracy of the solution is the
Jacobian matrix J(ξ) for the function B(ξ) that maps the reference element to the curved
element, where ξ parametrizes the reference triangle in barycentric coordinates. This matrix
may be examined to determine the validity of a curved element for quality metrics of curved
elements as in [16].

When using Bézier elements, there is an important correspondence between the condi-
tioning of the J and the geometric shape of the control net for an element. The quadratic
Bézier triangle is presented herein, but the methods utilized are the same for higher order
Bézier elements and are similar for Bézier tetrahedra. When using the Bernstein basis poly-
nomials for quadratic Bézier triangles, J may be computed directly and can be expressed as
a linear Bézier triangle whose control points are the vector pairs A and B shown in Figure
7(b), so we have that:

J(ξ) =

( ∂B
∂ξ1

∂B
∂ξ2

)

= ξ1

(

A1

B1

)

+ ξ2

(

A2

B2

)

+ ξ3

(

A3

B3

)

For many applications we are also concerned with the determinant |J | of the Jacobian
matrix, which in this case may be expressed as its own scalar-valued quadratic Bézier polyno-
mial in two variables. If we define the scalar value Ci,j = Ai×Bj, then convex combinations
of these cross products are control points for |J |. The layout of these control points for |J |
is shown in Figure 7(c).

Using the convex hull property of polynomials in Bézier form, the |J | for this element can
be bounded by the maximum and minimum of Ci,j. A similar formulation for the Jacobian
of Bézier simplices is discussed in [23]. In this light, it becomes necessary to maintain the
quality of the triangles in the control mesh, which we further discuss in section 5.2.4.
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Figure 7: (a)Bézier control net for an element shown with the relevant vectors. (b) The
Jacobian is a convex combination of the A-B pairs of vectors. (c) The determinant of the
Jacobian as a Bézier polynomial
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Figure 8: Finding reference coordinates for p is locating a root of the polynomial B(ξ)− p.

5.2 Mesh Maintenance Operations

As the mesh domain moves with respect to the solution field, it becomes necessary to modify
the mesh in order to maintain certain quality guarantees. We describe several procedures for
ensuring the quality of the curved mesh. The main operation is that of an edge-flip. This
makes function interpolation as the mesh is modified easier.

5.2.1 Mesh Refinement

When the mesh domain changes, mesh elements may shift in a way that makes them un-
suitable due to size or shape requirements. In either case, we use the traditional method of
inserting circumcenters. The circumcenter of a curved element is taken to be the point p

that is the circumcenter of the overlying logical triangle.
Upon establishing the geometric coordinates of p, the point must then be topologically



located in the curved mesh. This is important so that p may be inserted in a topologically
valid way. The standard topological walk through the graph is generally viable, but may fail
due to overly curved elements. Our approach is to supplement this method with the point
in triangle primitive of section 5.1.1. The combination of these two methods yields a point
location procedure that is reasonably fast in practice.

If p encroaches boundary edge, then instead of inserting p the boundary edge will be
split. Encroachment of boundaries is determined by protective lenses around the boundary
curves. The size for these lenses is an extension of Ruppert’s Delaunay refinement algorithm
[20]. Protective lenses for Bézier curves are defined in [19]. When a boundary edge is refined
a knot is also inserted into the overlying boundary B-spline, introducing another degree of
freedom in the piecewise boundary.

Once the element containing p has been located, it becomes necessary to find the local
coordinates of the point in the element, for geometric reasons and for proper interpolation.
If the geometric basis function for the curved element is B, then the problem is to find ξ

such that B(ξ) = p (Figure 8). In our case, the function B is a quadratic in two variables,
and a root may be found by Newton’s method or any other standard procedure.

Having found the reference coordinates ξ, the point p may be inserted into the mesh using
DeCasteljou’s algorithm for the subdivision of the Bézier triangle into three new triangles.
The subdivision process yields geometric basis functions for the new edges in the curved
mesh.

5.2.2 Edge Flipping

Throughout the lifetime of the mesh, it is desirable to keep mesh elements from becoming
too poorly shaped. One approach that yields quality meshes is to ensure that the overlying
logical mesh has the Delaunay property. This can be accomplished by topologically flipping
edges. The problem that arises is to define a new curved edge between the two elements.

If we view the control nets of the two adjacent Bézier triangles in question, then the
flipping operation can be viewed as the flipping of four edges in the control nets (Figure 9).
This viewpoint has the advantage that it is very easily generalized to higher order Bézier
elements. Upon flipping these four edges, the smoothing techniques described in Section
6 may then need to be applied to the control mesh in order to maintain valid and quality
elements.

5.2.3 Vertex Deletion

The procedure to remove a vertex v from the mesh is based on the algorithm of Deviller
[7] that deletes a vertex of a Delaunay triangulation and retriangulates the resulting cavity
to obtain a new Delaunay triangulation. The algorithm iteratively identifies an ’ear’ of the
cavity that should be contained in the Delaunay triangulation of the cavity upon removal.
This ear is then added to the mesh by way of an edge flip. At the end of this process the
neighborhood of v has the form shown in figure 10. At this point v is deleted from the
topology of the mesh. The three edges and the three triangles adjacent to v are deleted, and
the triangle formed by the three vertices that were adjacent to v is added.
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Figure 9: (a) The dashed edge is flipped in the curved mesh. (b) The corresponding dashed
edges are flipped in the control mesh.

Figure 10: The star of a point to be deleted (left). The configuration after all new Delaunay
ears have been obtained but before the vertex is removed (middle). The mesh with the
vertex removed (right)

5.2.4 Curve Smoothing

In addition to maintaining the quality of the logical mesh as in 5.2.1, it is also necessary
to manage the curvature of individual elements. As a quality metric for the curvature of
a Bézier triangle, we propose the use of the ratio of the determinant of the Jacobian (|J |)
over the area (A) of the Bézier triangle, both of which can be easily computed. For linear
triangles, this ratio is always one, which motivates a natural quality metric for a Bézier
triangle through measuring the deviation of this ratio from one. It is also important that
neither the area nor the Jacobian determinant be negative anywhere in the Bézier triangle,
as this results in an invalid element. Using this criteria to identify poor quality elements,
we make improvements by smoothing the control points of the Bézier triangles in question.
Smoothing techniques are applied to points in the control mesh as in Figure 11 and in Section
6. The improvement in the geometric quality of the control net for the the Bézier triangle



Figure 11: (a) An edge to be smoothed is identified based on it’s quality. (b) The control
mesh (c) Isolate the star of the control point to be move (d) Move control point based on
linear mesh improvement techniques (e) Update the control mesh (f) better quality elements

improves the determinant of its Jacobian as shown in section 5.1.2.

5.2.5 Mesh coarsening

Mesh coarsening is required to keep the mesh from becoming too large. We perform mesh
coarsening by means of the Douglas-Peucker algorithm [8] and the function-based coarsening
paradigm of Talmor et al. [17], [22].

The main idea of the function-based coarsening paradigm is as follows. First a coarsen-
ing function for the mesh is obtained. This is an (approximate) Lipschitz function which
describes the desired spacing of the mesh nodes. The amount by which a Lispchitz function
varies from one point to another is bounded, and hence it is well suited to express the spacing
of well-graded meshes. At every point of the mesh a scaled value of the coarsening function
is used to define the radius of a sphere centered at that point. A maximal subset of the mesh
nodes is seleteced so that none of the corresponding spheres intersect. The selected points
are kept and the other ones are removed.

This basic approach has to be modified when there are boundaries that have to be kept,
as in our case. Our overall procedure to smooth the mesh is as follows. We run the Douglas-
Peucker algorihm on the control polygon of our B-spline boundaries to determine a subset of
the control points to be kept. These points will be present in the coarsened mesh. The rest
of the points, interior or boundary points, are chosen to be in the coarsened mesh according
to the procedure described above.

We should also mention that contrary to other approaches to mesh coarcening, once we
have selected a set of mesh nodes to be kept, we don’t recompute a new mesh from scracth.
Starting from the initial mesh, we remove one by one the vertices that were not selected
using the vertex deletion algorithm we described above.

6 Smoothing control points

The positioning of an internal control point belonging to a curved edge may sometimes
require extra caution. This happens in two situations. First, if the new position due to the
motion of an internal control point results in a tangled control mesh, it needs to be modified
to produce a valid mesh. This is rather a procedure to validate the mesh than help improve
its quality. In the second situation, when a quadratic edge has a high curvature resulting in



very distorted but still valid elements, the internal point is relocated increasing the quality
of the triangles incident to it and consequently lowering the edge curvature (see Figure 11).
Note that in the former case we might decide improving the mesh quality after validating it.
In both situations, only internal control points are repositioned.

To perform point relocation, we turn our attention to smoothing methods. Our goal
here is not to improve current smoothing methods but rather use them to help us solve our
immediate prototyping needs.

Smoothing is modeled as an unconstrained optimization problem, where a single internal
control point is repositioned at a time, while all others are maintained fixed. This is a
common approach adopted in many works, including [5, 10]. Each smoothing call solves

max
x∈K

min
i∈M

{qi(x)} (1)

where M is the index set of the triangles incident to the control point located at x, and qi

gives the quality value of triangle i in M . Provided that

Φ(x) = min
i∈M

{qi(x)}

is a semi-convex function for all x in the feasible region K, we are safe on adopting an
unconstrained optimization approach.

To fix tangled elements, we use the triangle area Ai as the quality measure in (1). In this
case, Φ is a convex function everywhere, and the optimizer is able to find a valid position
for the violating control point, no matter where it is initially located, producing untangled
elements. Since the exclusive goal here is to form a valid mesh, convergence tolerance of the
numerical solution is not relevant and we halt the optimizer as soon as a valid position is
found.

When smoothing is not used to untangle elements but to actually increase the quality of
valid triangles, the quality metric applied is

τ =
4
√

3A

l1
2 + l2

2 + l3
2
,

where li is the length of the i–th edge of the triangle, τ ∈ (0, 1] for valid triangles, τ = 1 for
an equilateral triangle, and τ approaches zero for flat triangles with small or large angles. A
negative τ (A < 0) indicates an invalid triangle that needs to be fixed. The control point is
allowed to move only in the kernel of its surrounding star–shaped polygon.

Figure 12 shows the level sets of Φ when qi = Ai and qi = τi. Note that when smoothing
with τ, points outside the polygon would have a chance to drift away from the desired solution
because there Φ is not convex.

In our prototype, we adopted CFSQP [14] to solve numerically the optimization problem.
It is very stable and it has demonstrated to be efficient enough for our current goals. CFSQP
is a C implementation of the nonlinear programming algorithm FSQP (Feasible Sequential
Quadratic Programming), a variation on the standard SQP scheme generating feasible it-
erates [15]. CFSQP is capable of solving minimax problems of a set of smooth objective
functions with linear and nonlinear equality and inequality constraints. When solving prob-
lems with many sequentially related objective functions, such is our smoothing case, CFSQP



Figure 12: Level curves of Φ for area (left) and quality metric τ. Note in the right figure the
sinks outside the polygon.

gives the option to use an algorithm specially designed for this type of problems. This algo-
rithm considerable reduces the computation time by selecting a small subset of the objective
functions for inclusion in the quadratic programming subproblems.

7 Handling Small Angles

As the mesh domain changes and the quality of the mesh is maintained, it is very important
to prevent small angles in the mesh from causing unbounded refinement due to the ping-pong
effect that is caused due to mutual encroachment. Heuristics for handling small boundary
angles are well understood in the static case [18], but issues arise when the mesh is dynamic.

The first problem is that small boundary angles may arise during the simulation which
were not small angles at the outset. This is solved by bookkeeping near all angles in the input
boundaries as in Figure 13(a). The task seems tedious, but in practice there are relatively
few boundary angles since the boundaries are represented as differentiable B-splines.
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Figure 13: (a) Small angles can arise due to shearing forces. (b) Shearing forces can also
cause stable configurations to become poorly shaped.

The method of corner-lopping, originally proposed by Ruppert[20], is employed to cre-
ate isosceles triangles at input angles. Because the boundaries have curvature, they are
refined so that the secant lengths of the neighboring mesh edges are equal, as in [6, 2]. The
corner-lopping method is useful for preventing mutual encroachment. But as Figure 13(b)
illustrates, when the domain is next moved the carefully constructed isosceles configuration



goes awry. It is undesirable to refine near this angle at every time step, but it is also undesir-
able to allow the triangle spanning the small angle to be sheared into a poorly conditioned
obtuse shape. The method of secant length snapping is now introduced as a solution.

Figure 14: Secant length (dotted line) near small angles can be adjusted using the knot
sequence of boundary B-splines (deBoor controls shown dashed).

The knot sequence of the underlying B-spline of one of the boundary edges may be
adjusted without changing its DeBoor control points in order to vary the position of the
knot in the B-spline. This allows flexibility in the secant length of the quadratic piece in
question, with only a small local change to the boundary shape. The knot may be allowed to
slide along the line connecting the two relevant DeBoor control points. If a suitable secant
length cannot be achieved by adjusting the knot sequence (within a reasonable tolerance),
then the secant length snapping procedure will yield to refinement of the boundary.

8 The Simulation Process

Input for a simulation is given as a topological cell complex representing the boundary, whose
edges are B-splines, which may be closed loops. The initial points along each boundary edge
are taken to be the knots of the B-spline, so that each corresponding edge in the mesh is
a single quadratic segment. At each time step the process proceeds in several stages. First
the given solution for velocity is approximated as a piecewise quadratic on the control mesh.
If the solver in question utilizes the geometric basis functions as a finite-element basis then
this projection is trivial, otherwise a least-squares projection is used.

Next the differentiability condition on the boundary B-splines must be enforced. The
piecewise continuous solution in the control mesh is projected to a new B-spline using least
squares. The geometric basis of the control mesh is then updated to reflect this change and
re-interpolation is done.

Now that an acceptable velocity solution has been found for the control mesh, the entire
mesh is moved forward using ordinary differential equation methods for the velocity.

After the mesh has been moved, it remains to clean the mesh using the methods of section
5.2. First the Delaunay property is enforced on the logical mesh using edge flips as described
in 5.2.2. Triangles with poor curvature are then smoothed using control point smoothing.
Lastly skinny triangles are eliminated through circumcenter and midpoint insertions.

9 The Prototype

We currently have a prototype that implements the ideas that we have described. It is
written using the object oriented scripting language Ruby, and extensions for OpenGL and



GLUT.
The base class to represent geometric objects in our prototype is the CellComplex class.

It is based on the cell-tuple approach of Brisson [3]. An object of this class is a collection
of objects of class Cell which can have arbitrary dimension. A CellComplex object stores
the incidence relation among these cells. From this class we derive the BézierMesh class
which represents two dimensional meshes where the 1-cells and 2-cells are Bézier curves
and triangles respectively of arbitrary degree. These edges and triangles are represented by
objects of class BézierEdge and BézierTriangle both of which are derived from the class
Cell.

BezierEdge BezierTriangle

QuadraticBezierEdge QuadraticBezierTriangle

Cell

BSplineBoundary

BezierMesh

CellComplex

BoundaryMesh

QuadraticBezierMesh

Figure 15: The Class Hierarchy

From the BézierMesh class we derive the QuadraticBézierMesh. This class repre-
sents Bézier meshes where the edges and triangles are of degree two, which are represented by
objects of class QuadraticBézierEdge and QuadraticBézierTriangle which are derived
from BézierEdge and BézierTriangle respectively. In the current implementation, all of
our meshes are instances of the QuadraticBézierMesh class.

We model object boundaries with quadratic B-splines which are implemented by the class
QuadraticBSplines. The set of boundaries is modeled with an object of the class Bound-

aryMesh which is derived from the CellComplex class. Objects of the class Bound-

aryMesh are two-dimensional complexes where every edge is a quadratic B-spline boundary
which are represented by the BSplineBoundary class. The edges can be self-loops, and in
fact in most cases they are.

The class Flow implements flow fields. It has methods to track the motion of particles
in the flow using a Runge-Kutta method of order 4.

The simulation itself is carried out by an object of the Simulator class. An object of
these class tracks a quadratic Bézier mesh and the associated quadratic B-spline boundaries
as they move in a given flow. Finally there is a driver routine which class the simulator
at given time steps and calls the operations described above to keep the mesh and the
boundaries well formed as time evolves.



10 Experimental Results

Figure 16 shows a cross-sectional photograph of red blood cells moving past an obstacle in
blood flow and becoming distorted. We have run several simulations which mimic the flow of
red blood cells past a cylindrical obstacle in order to examine the capabilities of the geomet-
ric mesh maintenance operations in section 5.2. For these simulations, we have assumed the
a priori existence of a flow field around the obstacle. Only the cells themselves are meshed
and updated, so no interaction between the cells or the containing fluid is modeled. Flipping
operations are utilized to maintain the Delaunay property for the logical mesh, and vertex
insertion is used to maintain a minimum angle in the logical mesh of .45 radians (≈ 25.7◦).
The entire mesh is coarsened every 20 timesteps using a geometric spacing function to in-
crease the distance to the nearest neighbor. Figures 17-20 show several snapshots of the
simulation running.

Figure 16: A cross section of red blood cells moving past an obstacle.

Figure 17: Initial configuration for the simulation. A flow field moves the gray cells around
the black hole.

11 Future Work

We have presented work in progress towards the development of a simulation system for
unstructured moving meshes for Lagrangian methods. Aside from the goals of extension to
three dimensions, there are several other goals for design of curved moving mesh simulations.



Figure 18: Differentiable boundaries are maintained with B-splines.

Figure 19: Boundary refinement occurs in areas of increased curvature to maintain a differ-
entiable boundary.

There are several numerical constants involved in the mesh coarsening procedures. We
would like to do more experiments to determine optimal values for them. Further work is
also necessary in examining the interplay of dynamic interfaces within the mesh. Applying
elastic constraints on boundaries affects the methods for which continuity is maintained. A
model that can accomodate the tearing of boundaries is also desired in some moving mesh
simulations and must be examined. We are also considering NURBS to determine if we
would gain from their use. In addition we are in the process of adding code to peform
function interpolation on the mesh as it is modified by operations such as edge flips.
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Figure 20: Curve-smoothing maintains good curvature of Bézier triangles.
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