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Abstract

Argument by backward induction forces us to conclude that two “rational” players will defect on every
turn of the Finitely Repeated Prisoner’s Dilemma (FRPD) game, thus performing significantly worse than
agents with imperfect rationality. When this game is treated from an evolutionary perspective, using the
standard evolutionary model, we encounter a similar paradox: a population which cooperates through turn
k can be invaded by a strategy which cooperates through turn ¥ — 1, and this process continues until the
population is dominated by defectors. However, though the strategy of continual defection is evolutionarily
stable, it is inferior to nearly all other FRPD strategies: a bistable equilibrium occurs, in which a very small
proportion of the other strategy can take over the population. Thus we propose and defend an alternative
evolutionary model, a random invasion model in which “evolutionary dominance” is used instead of Maynard
Smith’s invasion criteria. This model combines the Lamarckian spread of ideas through a population with
Darwinian natural selection of the organisms adopting those ideas, and thus is a more reasonable model of
communicating populations. When the new evolutionary model is applied to the Finitely Repeated Prisoner’s
Dilemma, we find that defectors dominate the population for very short FRPD games, but as game length
increases, it becomes more and more certain that successful strategies will cooperate until near the end of the
game. Defining rationality based on evolutionary fitness (or fictitious evolutionary play) using this model,
we achieve a resolution to the Finitely Repeated Prisoner’s Dilemma paradox. Additionally, the model can
be generalized and applied to many other decision situations, and thus it serves as a possible standard for
rational decision-making under uncertainty.
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1 Introduction

The Prisoner’s Dilemma is a widely used game-theoretic model of interactions between indi-
viduals with partially conflicting goals. Each player must choose between two options: coop-
eration for mutual benefit, and defection for individual benefit (harming the other player).
The payoffs to each player are determined by the choices of both players; these possibilities
are given in Table 1.

If both players cooperate, each receives a high payoff R as a reward for mutual cooper-
ation. If both defect, each receives a low payoff P as a punishment for mutual defection. If
one player defects while the other cooperates, the defector receives a very high payoff T" as a
temptation to defect, and the cooperator receives a very low sucker payoff S. The Prisoner’s
Dilemma is defined by 7" > R > P > S and 2R > T + S. Despite the fact that mutual
cooperation is preferred to mutual defection, each player scores higher if he defects regardless
of the opponent’s choice, and hence mutual defection is the only “rational” outcome of the
single-shot Prisoner’s Dilemma game.

In an “Iterated Prisoner’s Dilemma” (IPD), a Prisoner’s Dilemma interaction is repeated
between the same two players over a number of rounds. Based on past results, reciprocal
altruism can develop, enabling mutual cooperation to become a rational option. The IPD
game has sparked various theories of the evolution of cooperation based on reciprocity (Ax-
elrod, 1984), and these models have been applied to fields ranging from economics to biology
(Maynard Smith, 1982; Axelrod, 1984; Milinski, 1987).

1.1 The Finitely Repeated Prisoner’s Dilemma paradox

The Finitely Repeated Prisoner’s Dilemma (FRPD) is a variant of the Iterated Prisoner’s
Dilemma in which the number of rounds N is given and known in advance by both players.
We would expect that two rational strategies would be able to achieve cooperation in the
FRPD; however, under the assumption of common knowledge of rationality, we can use
an argument of “backward induction” to show that each player defects continually. The
argument proceeds as follows: on round N, both players will defect, as in the one-shot
Prisoner’s Dilemma. Then on round N — 1, both players know that, whatever they do now,
both will defect on the next round in any case. Since the player’s move on round N — 1
will not influence the opponent to reciprocate cooperation on future moves, it is rational to
defect on round N — 1. This argument can be applied to round N — 2 and each preceding
move, in turn, and we reach the conclusion that two rational players will defect on every
round. But human players tend to treat the FRPD as a Prisoner’s Dilemma interaction of
indeterminate length until nearly the end of the game: mutual cooperation is achieved until
the final few rounds. Thus we have a “paradox of rational choice” in which perfectly rational
agents perform significantly worse than agents with imperfect rationality. In other words, in
the FRPD, it is not necessarily rational to be “rational.”

Thus the Finitely Repeated Prisoner’s Dilemma game presents a serious challenge to the
notion of game-theoretic equilibrium solutions as a theory of rationality in repeated games.
Various researchers have attempted to resolve this paradox, but none of the proposed solu-
tions are widely accepted. These include weakening the assumption of “common knowledge



P2

C D
P1 C[R/R|S/T
D [T/S | P/P

Table 1: Prisoner’s Dilemma Payoffs to P1/P2

of rationality” to “common belief of rationality” (Kreps et al, 1982; Binmore, 1987). In this
interpretation, the equilibrium solution is defined as “rational play,” but a player’s certainty
of his opponent’s rationality is weakened to “belief with probability 1” (Binmore) or “belief
with probability 1 — €” (Kreps et al). Though Kreps et al have shown that cooperation can
result in the FRPD if both players assume some non-zero probability of non-equilibrium play,
this assumption of “uncertain belief” is not a reasonable definition of “common knowledge”
and so does not resolve the original paradox. Moreover, defining rationality as the equi-
librium solution, but allowing moves out of equilibrium, leads to a “self-defeating” concept
of rationality in which it is better to make the irrational move; thus the common belief in
“rational play” under this definition would not be a reasonable assumption.

1.2 The evolutionary FRPD paradox

A more promising solution to the Finitely Repeated Prisoner’s Dilemma paradox lies in the
concept of “evolutionary games.” In these models, evolution is driven by natural selection:
strategies which earn higher average payoffs have higher “evolutionary fitness,” and are able
to survive and reproduce, while less successful strategies die off. If we assume that the main
goal of a decision-making agent is to achieve long-term survival in the evolutionary sense,
we can consider “rational” behavior to be following the strategy which achieves the greatest
evolutionary success.

However, the use of evolutionary games does not immediately resolve the FRPD paradox:
using standard evolutionary models, we find that continual defection is the most evolution-
arily successful strategy. In fact, we observe an evolutionary equivalent of the backward
induction argument. First assume that we have a population of continual cooperators; this
strategy can be invaded, and taken over, by a strategy that cooperates until move N —1 and
defects on move N. The strategy that cooperates until move N — 1, in turn, can be taken
over by a strategy that cooperates until move N — 2, and defects thereafter. This process
continues, with each strategy being invaded by a strategy that starts defecting one round
earlier, until the population consists entirely of continual defectors. Continual defection is
an evolutionarily stable strategy (ESS), a strategy which cannot be invaded by any other
strategy, and thus the evolutionary process ends with a population of defectors. In order to
resolve the paradox, then, we must examine the FRPD game, and our evolutionary model,
in greater detail.



2 The Finitely Repeated Prisoner’s Dilemma game

A Finitely Repeated Prisoner’s Dilemma game is defined by the 4-tuple of payofts (T,R,P,S)
and the number of rounds N. We will consider payoff tables with P = 0, § = —1, and
T =1+ R. These can be thought of as describing the following situation: on each round,
each player independently decides whether to give the other player a “gift” costing him one
point and awarding the other player 7" points, 7" > 1. We will initially assume 7" = 3, but
will also examine other values of 7.

A strategy for the FRPD is a method of deciding whether to cooperate or defect on any
given turn, based on the results of previous turns that game. To simplify our calculations, and
present the paradox in its most common and essential form, we assume that once cooperation
has failed (i.e. either player has defected), it cannot be resumed, and the rest of the game
will consist of mutual defection. Since we have assumed P = 0, this is equivalent to an
FPRD game that stops upon either player’s defection, similar to the “centipede” game.
Alternatively, we can think of this as a standard no-noise FRPD, with all strategies chosen
from the strategy space C; (0 < i < N). A strategy C; will cooperate on turn k if and only
if both of the following are true: k£ < ¢, and its opponent has cooperated on turns 1 through
k — 1. Thus Cy always defects, and Cy always reciprocates cooperation with cooperation.

We now define W(X|Y) as the total payoff to strategy X in an N-round FRPD game
against strategy Y: W (X|Y) = N, p(i), where p(i) is the payoff received by X after
turn . Then we can compute W(C;|C;) for all 4 and j. There are three cases. First, if
1 = 7, both strategies will cooperate until round 7 and defect thereafter, receiving total
payoff ¢R. Second, if ¢+ > j, strategy C; receives j reward payoffs, followed by a sucker
payoff. Thus its total payoff is jR+ S. Third, if ¢ < j, strategy C; receives 7 reward payoffs,
followed by a temptation payoff. Thus its total payoff is ¢R + T. We can summarize this as
W (C;|C;) = Rmin(i, j) + T6(¢ < j) + S6(i > j), where 6 = 1 if the expression is true and
0 = 0 if false.

3 The standard evolutionary model

We begin by considering one well-known model for evolutionary games: the invasion model
proposed by Nowak & Sigmund (1992, 1993). This model assumes that a large homogeneous
population of a given strategy X is visited periodically by mutant strains. We first select
the initial strategy X randomly (assuming some, possibly uniform, prior distribution) from
a given space of strategies. Then we repeat the following steps: a mutant strain Y is selected
randomly (using the prior distribution) from our space of strategies, and the mutant strain
either takes over the population (replacing strategy X) or dies off. To compute which of
these outcomes will occur, we use the invasion criteria of Maynard Smith (1982): strategy
Y invades strategy X if W(Y|X) > W(X|X), or W(Y|X) = W(X|X) and W(Y]Y) >

! This statement of the problem makes it clear why defection is the only rational (and reasonable) alter-
native in a one-shot Prisoner’s Dilemma game. Both players choose independently whether or not to give a

gift, and giving a gift always harms the gift-giver, so it makes sense for a self-interested individual to both
behave rationally (not give a gift) and hope that the opponent behaves irrationally.




W(X|Y). If Y invades X according to the Maynard Smith criteria, then Y will take over
the population; otherwise the initial population of X will continue.

To apply this to the Finitely Repeated Prisoner’s Dilemma, we can use the equation for
W (C;|C;) derived in the previous section to determine when strategy C; can be invaded
by Cj, 1 7é 7. Cj can invade if W(C]|CZ) > W(CJC’,), or W(CJ‘C,) = W(CZ|CZ) and
W(CJ|CJ) > W(CZ|CJ) First, we know W(CZ|CZ) = 1R. Then lfj > 1, we know W(C]|Cz) =
iR+S < W(C;|C;), so C; cannot invade. If j < 4, we know W (C;|C;) = jR+T. In this case,
Cj can invade if jR+T > iR; solving for j, we obtain j > ¢ — L. Since £ > 1, we know that
C; can always be invaded by C;_;. It may also be possible for C; to be invaded by strategies
that defect even earlier, that is, by C;_j for £ > 1. Assuming T'= R + 1 as stated above,
this will occur for low values of the reward payoftf R: C; can be invaded by C;_; if R < ﬁ
In any case, the result of this model is clear: the number of rounds of cooperation decreases
monotonically, until Cy (the strategy that defects continually) dominates the population.
Since no other strategy can invade Cjy, the evolutionary process halts at this point.

In fact, this result can be extended to the space of all Finitely Repeated Prisoner’s
Dilemma strategies. For any strategy S = Sy, let S; denote the strategy which follows
strategy S through turn ¢, and defects for the remainder of the game. Let k£ be the last
turn on which S; has some non-zero probability of cooperating against its clone; it is clear
that £ < i. Then if £ > 0, we know W (S,_1|5;) > W (S;|Si), so Sk_1 invades S;. This
process continues, with each strategy being taken over by a strategy that starts defecting at
least one round earlier, until the population is taken over by a strategy with k£ = 0: at this
point the population consists entirely of continual defectors. Since the strategy of continual
defection is evolutionarily stable, the evolutionary process halts at this point, leaving us with
a population of defectors.

4 Improving the evolutionary model

Maynard Smith’s invasion criteria, and the related notion of evolutionary stability, serve as
the foundations for much of the field of evolutionary game theory. However, these criteria
make several assumptions which may be unreasonable when modeling some types of real-
world interactions. First, the Maynard Smith criteria only deal with a pair of strategies at
a time, and assume that one of the two strategies “wins” (and takes over the population)
before any more invasion occurs. In real interactions, however, multiple strategies can coex-
ist in a stable equilibrium in which neither strategy dominates. Even if stable equilibria do
not occur, more complicated evolutionary interactions can result when multiple strategies
attempt to invade simultaneously: for example, Boyd & Lorberbaum (1987) have shown
that an evolutionarily stable strategy (though impervious to invasion by any single strategy)
can be taken over by the combined action of multiple strategies. Thus the Maynard Smith
criteria are an oversimplification of evolutionary interactions; however, this oversimplifica-
tion is necessary because the complexity of the model is dramatically increased by allowing
multi-strategy interactions. In some cases, these interactions may lead to cyclical population
patterns, and the result of the model may vary significantly depending on the amount of time
between successive invasions. Since we are attempting to approximate the evolutionary suc-
cess of strategies (in order to determine which strategy is “best” and hence rational to play),
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rather than precisely forecasting how strategies will evolve, it seems that the extra realism
of multiple strategy interaction is not worth the resulting increase in model complexity.

A more soluble difficulty, and one more immediately relevant to the Finitely Repeated
Prisoner’s Dilemma, is that Maynard Smith’s invasion criteria assume that the population of
the invading strategy is vanishingly small compared to the population being invaded. This
assumption would be accurate if the population was invaded by only a single invader at a
time (resulting either from migration or mutation), and this invader had no others of its kind
to interact with. However, we can think of many situations where this assumption does not
hold, for example migration by multiple invaders, or multiple simultaneous mutations. This
assumption would also be broken occasionally by the essential randomness of the evolution-
ary process: a single individual with below-average evolutionary fitness might survive long
enough to reproduce, and invader-invader interactions could occur between its offspring, in-
creasing the evolutionary fitness of the offspring enough for them to invade. Another factor,
which we will discuss in more detail below, is the possibility of communication: a mutant
individual may convince members of the population being invaded to adopt its behavior
patterns, or simply be imitated by members of the population.

The assumption of a single invader lies at the heart of the evolutionary FRPD paradox.
To see this, we must first examine the Maynard Smith criteria in greater detail. As stated
above, strategy Y invades strategy X if W(Y|X) > W(X|X), or W(Y|X) = W(X|X) and
W(YY) > W(X|Y). We write Y > X if Y invades X, and Y # X otherwise. Since Y > X
is primarily dependent on W (Y|X) and W(X|X), and X > Y is primarily dependent on
W(X|Y) and W(YY), it is clear that X > Y and Y > X may be true or false independently
of each other. This leads to four possibilities:

. X >Y and Y # X. In this case, any initial proportion of strategy X can take over,
and completely wipe out, strategy Y. We say that X dominates Y, and write X > Y.

II. X #Y and Y > X. In this case, any initial proportion of strategy Y can take over, and
completely wipe out, strategy X. We say that Y dominates X, and write ¥ > X.

III. X > Y and Y > X. In this case, no matter what the initial proportions of strate-
gies X and Y, the two strategies reach a stable equilibrium where the proportion of strategy
X is given by:
_ WXY) -wXy)
P=wEy)y = wily)  wx) - w(X|X)

In this case, we write X & Y.

IV. X # Y and Y # X. This is a bistable equilibrium, in which either strategy X or
strategy Y will take over the population depending on the initial proportions of the two
strategies. X will take over if its initial proportion is higher than:
W({Yly) - w(XxJy)
m =
W(X|X)-W(Y|X)+W({Y)-W(X|Y)

In this case we write X & Y.



For the FRPD, we have noted that Cj, the strategy which always defects, is evolution-
arily stable. Thus C; # C, for all ¢ > 0. However, assuming R > 1, it is also true that
Co # C; for all i > 1. Thus Cj is in a bistable equilibrium with C;, for ¢ > 1. We can
use the above equation for m to compute the proportion of C; needed to take over the pop-
ulation. Assuming ¢ > 1, we know W (Cy|Cy) = 0, W(C;|C;) = iR, W(Cy|C;) = T, and
W(C;|Cy) = S. Then m = 52— = ﬁ 1)R. For large i, C; can take over a population of

Cy even if it only makes up ;,Rvgryssmazl flra,ction of the population. For example, assuming
R =2 and ¢ = 1000, C; will take over as long as its proportion is at least ﬁ of the popula-
tion. Similarly, for ¢ > j, C; and C exist in bistable equilibrium, but C; will take over even
if it makes up only a very small fraction of the population: m = m

From this result, it is clear that the Finitely Repeated Prisoner’s Dilemma is not ade-
quately described by the standard evolutionary model. “Evolutionary backward induction,”
where C; is taken over by C;_1, can occur in the evolutionary FRPD. However, it should also
be possible for C; to be taken over by C; where j >> i, as long as our model abandons the
unreasonable assumption of a single invader. In the following section, we propose an alter-
native evolutionary model, based on the dominance criterion of Neill (2001), which allows

both of these two types of “invasion” to occur.

5 An alternative evolutionary model

Our evolutionary model is identical in form to the Nowak-Sigmund invasion model discussed
above. First, we randomly select the initial strategy X. Then we repeat the following steps:
a mutant strain Y is selected randomly, and we compute whether the mutant strain takes
over the population (replacing strategy X) or dies off.

How do we use this model to calculate the evolutionary success of a strategy, and hence,
whether that strategy is “rational” in an evolutionary sense? One option is to simulate
the model for a large number of time steps 7', and count the number of time steps t; that
each strategy C; dominates the population. Then the evolutionary performance of C; is
approximated by the proportion of turns dominating the population, ’%

A better alternative is to treat the process as a Markov chain. We compute in advance
the probability of transitioning from each strategy to every other strategy on a given turn;
of course, this is only possible if the number of strategies is finite, and only feasible if that
number is relatively small. The probability F;; of transitioning from C; to C} is the product
of two probabilities: the prior probability p; that strategy j will attempt to invade, and the
probability g;; that the invasion attempt will succeed. For a uniform prior, p; = 1/M for
all strategies, where M is the total number of strategies. For the Nowak-Sigmund invasion
model, ¢;; = 1 if j invades 7, and ¢;; = 0 otherwise. Once we have computed P;; for
each ¢ and j, we can compute the stationary distribution of the Markov chain by solving
the matrix equation Px = z. Then z; is the exact proportion of turns we would expect
the population to be dominated by each strategy C;, and hence, an exact measure of each
strategy’s evolutionary performance.

Now that we have outlined our model and the performance measure derived from it,
we consider how our model will compute g;;, the probability that strategy C; succeeds in
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invading strategy C;. As discussed above, the Nowak-Sigmund model relies totally on the
Maynard Smith invasion criteria, which assume that the invading population is small and
hence the invader’s self-payoff W (C;|C;) is nearly irrelevant. This is a poor assumption to
make for the FRPD, since a high self-payoff by the invading strategy may allow cooperators
to take over defectors with only a small proportion of the population initially cooperating.
Thus, rather than using the Maynard Smith criteria, we use the “evolutionary dominance”
criterion of Neill (2001), which takes the invader’s self-payoff into account. Not surprisingly,
this criterion is based on the four possible outcomes (X dominates Y, Y dominates X, stable
equilibrium, bistable equilibrium) defined above.

5.1 The dominance criterion

Neill (2001) presents the dominance score dom(X|Y) as a measure of the evolutionary per-
formance of strategy X against strategy Y. The dominance score of X against Y is 1 if X
dominates Y, 0 if Y dominates X, and between 0 and 1 otherwise. If X and Y exist in
stable equilibrium, the dominance score of X against Y is the proportion of strategy X in
the equilibrium population. If X and Y have a bistable equilibrium, the dominance score of
X against Y is the proportion of strategy Y needed to take over the population. Thus the
dominance score is defined in terms of the relationships and quantities above:

1 if X >V
0 ifYy > X
P fX&Y
1-m ifX&Y

dom(X|Y) =

In all cases, higher dominance scores dom(X|Y) correspond to a better evolutionary perfor-
mance of X against Y. Also, we note that the dominance score presents a “constant-sum”
measure of evolutionary performance: dom(X|Y) + dom(Y|X) = 1. If X performs well
against Y, then Y performs poorly against X, and vice-versa. Neill (2001) argues that this
constant-sum property makes the dominance score a useful measure of performance: we
would expect successful strategies to have high dominance scores against most other strate-
gies, regardless of whether or not those strategies are cooperative. Thus, assuming a given
space of possible strategies to choose from, each strategy’s performance is measured by its
mean dominance score against all strategies in that space, and the strategy with the highest
dominance score is chosen. Moreover, the dominance score has the essential property that
will be needed to resolve the Finitely Repeated Prisoner’s Dilemma: it does not make the
assumption of a single invader, and thus takes the self-payoff of the invading strategy into
account.

However, there are several serious problems with relying on the average dominance score
as a measure of evolutionary performance. First, it is not reasonable to assume that per-
formance against every strategy is equally important; it is more important to perform well
against successful strategies, since these are the strategies that will survive (and hence, in-
teract with other strategies). Second, a strategy’s mean dominance score does not directly
correspond to the strategy’s performance in any specific evolutionary model. Nevertheless,
as we will demonstrate below, use of the dominance score as a transition probability has a
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clear interpretation as part of an evolutionary invasion model. Thus the dominance score,
though not sufficient to measure the evolutionary performance of a strategy, will be a useful
component of an evolutionary model which allows us to better accomplish this task.

5.2 Putting it all together

We have now presented all of the necessary components of our evolutionary model: an
invasion model based on the Nowak-Sigmund model, and the dominance score which will
be used as the probability of transitioning from one strategy to another. Thus the model
operates as follows: on each time step, an invading strategy C is selected at random to invade
the current population of strategy C;. Then with probability dom(C;|C;), C; takes over the
population, replacing Cj; with probability dom(C;|C;) = 1 — dom(C}|C;), the population of
C; remains. As discussed above, we can use Markov chains to compute the proportion of time
that each strategy dominates the population. To do so, we find the stationary distribution
of the Markov chain represented by the transition matrix P, where P;; = dom(C};|C;)p; for
J # 1. Assuming a uniform prior over M strategies, this reduces to F;; = W

Note that for a transition matrix, each row must add to one, and hence P; = 1-37,; P;.
Expanding this expression, and simplifying, we get:

T M M B M

From this, we can see that the self-transition probability P;; is related to the average domi-
1

nance score of C; by P;; = dom(C;) + ﬁ, where the extra 5= results from the probability
of a strategy being randomly selected to “invade” itself. (In this case, the population of C;
remains whether or not the “invasion” is successful.) Thus the average dominance score,
though not itself sufficient as a performance measure, does correspond to an important
quantity in our model.

These definitions raise an obvious and important question: why is evolutionary dominance
better than evolutionary invasion for determining which of the two strategies takes over the
population? Note that the dominance score agrees with the Maynard Smith criteria for two
of the four possible evolutionary outcomes: if C; dominates C;, C; will take over Cj, and if
C; dominates C;, C; will not take over C;. The differences occur when two strategies are
in stable or bistable equilibrium. In stable equilibrium, the Maynard Smith criteria assume
that the invasion is successful with probability 1, while the dominance score assumes that the
invasion is successful with probability according to the equilibrium proportion of the invader
in the population. Obviously, neither of these two models is completely realistic: in real-
world interactions the two strategies would coexist, and on the next time step a third strategy
would attempt to invade the mixture of the two. As discussed above, allowing this sort of
multi-strategy interaction would dramatically increase the complexity of the model, making
it both unpredictable and computationally infeasible. Assuming that only one strategy is
allowed to dominate the population at a time, the dominance score corresponds to the most
reasonable solution: randomly picking a single organism from the combined population at
stable equilibrium, and carrying that organism’s strategy on to the next time step.



The dominance score also differs from Maynard Smith’s criteria in its treatment of
bistable equilibria. Recall that in a bistable equilibrium Cj} & ¢, C; takes over a pop-
ulation of C; if its initial proportion is greater than m. The Maynard Smith criteria assume
a single invader: the proportion of the invader C; in the population is negligible, so C'; cannot
take over C;. The dominance score, on the other hand, assumes that C; takes over C; with
probability 1—m. This assumption is equivalent to assuming that the initial proportion of C}
in the population is chosen randomly from a uniform probability distribution on (0,1). This
does not make immediate sense for invasion by either mutation or migration: the number of
mutants is likely to be small (though not necessarily negligible) compared to the underlying
population, and the size of a migratory population is likely to be smaller than the size of the
population it is migrating into.

However, the assumption makes much more sense when dealing with a communicating
population. It is well known that the spread of ideas through a communicating population
can occur at much shorter time scales than those required for natural selection. Thus our
model views each evolutionary time step as a two-stage process: the “Lamarckian” spread
of the invading strategy through the population, followed by Darwinian natural selection.

In this model, a single mutant conceives of an “idea” which is contrary to the established
idea and thus prescribes a different pattern of behavior (i.e. a different strategy for the real-
world interaction described by our model). This idea is then spread (by direct communication
or by imitation of behavior) to various members of the population, who in turn spread the
idea to others, until the idea has been distributed through the entire population. Some
proportion of the population will adopt the invading idea, changing their behavior as a
result, and pass the changed behavior on to their offspring by teaching or imitation. Since
the learned behavior is passed directly to the offspring, this part of the evolutionary process
is Lamarckian from the organism’s perspective, though it can also be viewed as the natural
selection of “fitter” ideas. In any case, we assume that the proportion of the population
initially adopting the invading idea is independent of the actual effect of adopting that idea
on the organism’s evolutionary fitness; the idea may be attractive to a large segment of
the population, or only a small minority, regardless of its long-term benefits or harms.?
Since we do not have knowledge of the multitude of other factors which may make a given
strategy attractive or unattractive, it makes sense to assume that a random proportion
of the population initially adopts the invading strategy. We can then apply Darwinian
natural selection to compute which strategy has higher evolutionary fitness in the combined
population; this strategy will take over the population, and wipe out the other strategy, as
above. Note that the initial communication and adoptation of an invading strategy does
not affect the eventual evolutionary outcome unless it is in bistable equilibrium with the
strategy being invaded; of course, adoptation would also affect the evolutionary outcome in
other cases if the entire population adopted only one of the two strategies, but our model
does not allow this to occur.

2In reality, the initial proportion of the population adopting an idea may be positively correlated with its
long-term evolutionary success; this depends on whether the benefits and costs are immediately apparent.
Allowing for correlation complicates the mathematics, but does not change our overall result. Also, a
non-uniform probability distribution can be used for the initial proportion of invaders; we consider this
generalization below.



5.3 Applying the model

Thus we have argued that our model is a more useful representation of real-world evolution-
ary interactions in a communicating population. It deals well with both stable and bistable
equilibria, both of which are handled poorly by the Nowak-Sigmund model. We now consider
how this can be applied to the Finitely Repeated Prisoner’s Dilemma paradox. First, we
note that no stable equilibria occur between C; strategies in the FRPD game; we observe
only dominance and bistable equilibria. For R > 1, C; dominates C; if j = ¢ — 1, is dom-
inated by C; if 7 = ¢ + 1, and is in bistable equilibrium otherwise. As derived above, for
Jj > 1, C; can take over C; with only a very small initial proportion of the population; thus
in our model, the probability of C; taking over Cj is nearly 1. Hence we expect to observe
two phenomena: “evolutionary backward induction” (C; invaded by C; ;) and “evolutionary
forward progression” (C; invaded by Cj, j > ¢). For a large number of rounds NN, and for
most strategies C;, there are a large number of strategies C; with j > ¢. Under the typical
assumption of a uniform prior, we would expect evolutionary progression to be much more
common than evolutionary backward induction; as a result, we would expect the evolution-
ary process to be “pushed” toward continual cooperation rather than continual defection,
resulting in domination of the population by strategies that cooperate until nearly the end of
the game. If this expectation is satisfied, we have resolved the evolutionary FRPD paradox.

6 Results

We now examine the evolutionary performance of each strategy C;, using our new evolution-
ary model, for various game lengths N. Note that there are N +1 strategies, Cy through Cl,
to consider for a given N. We use Markov chains to compute the equilibrium probability
that each strategy dominates the population, as discussed above. This gives us a transition
matrix P with

e ifj=14-1
" ifj=i+1

P = min((N+1251?£13)(TT,1), N£r1) if j=i—k k>1
max(mﬂ) ifj=i+k k>1

=304 b5 ifj=1

We initially assume the 7" = 3 payoff table, [T' R P S] = [3 2 0 -1]. For example, if N =3
we obtain the 4x4 transition matrix

Y
Il
el
il by = e}
olo

—

[e>)

q>|»—»—l|»—t O |~
[o2] [e=)

Sl S

Computing the stationary distribution z of this matrix by solving Pz = x, we obtain z = [.32
.23 .24 .20]. Thus for N = 3, C; (continual defection) is the best performing strategy. We
now present the results, assuming 7' = 3, for a variety of N. First, we define strategy C; as
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“cooperative” if it cooperates at least 90% of the game (i > .9N), and “uncooperative” if it
cooperates at most 10% of the game (i < .1N). Then for each N, we calculate the stationary
distribution, and from this we find 3 values: the best strategy C; (i.e. the strategy with
the highest z;), the proportion of the time the population is dominated by “cooperative”
strategies, and the proportion of the time the population is dominated by “uncooperative”
strategies. These results are given in Table 2.

N | stationary distribution best C; | cooperative | uncooperative
1 [[10] 0 0 1

2 | [6.2.2] 0 2 .6

3 | [32.23 .24 .20] 0 2 .32

4 | [18 .17 .21 .24 .20] 3 2 18

5 | [10.11 .15 .21 .23 .20] 4 2 .10

6 | [.06.07.10 .15 .20 .22 .19] 5 .19 .06

8 | [.03.03.04.07.10 .14 .19 .22 .19] 7 .19 .03
10 | [.01 .02 .02 .03 .04 ....14 .18 .21 .18§] 9 .39 .03
20 | [.002 .002 .003 ....09 .13 .17 .19 .17] 19 .53 .007
30 | [.001.001 .001 ....09 .12 .16 .18 .17] 29 .63 .004
40 | [4x10°*....05.06 .09 .12 .16 .18 .16] 39 71 .002
50 | [3x107*....05.06 .09 .12 .15 .17 .16] 49 .76 .002
100 | [6 x 107° ....05 .06 .09 .11 .14 .16 .15] 99 .88 7x 1074
200 | [1 x 1075 ....05 .06 .08 .11 .14 .15 .14] 199 .94 3x10™*
400 | [3x 1075 ....05 .06 .08 .10 .13 .14 .14] 399 97 2 x 1074
800 | [8 x 1077 ....05 .06 .08 .10 .12 .14 .13] 799 .99 8 x 107°

Table 2: FRPD results for 7' =3

Thus defectors dominate the population for very short games, but for longer games, the
population is dominated by strategies that cooperate until near the end of the game. For
N = 20, less than 1% of dominating strategies were uncooperative, and more than 50%
of dominating strategies were cooperative. For N = 800, less than .01% of dominating
strategies were uncooperative, and 99% were cooperative. Cj, the strategy which always
defects, was the most successful for N < 3, but for all N > 3, the most successful strategy
was Cn_1.

Our empirical results clearly show that the proportion of “cooperative” strategies goes to
1 as N goes to infinity. In fact, we can prove a stronger result than this: for any constant k,
0 < k < 1, the proportion of strategies cooperating through turn kN goes to 1 as N — oco.
In other words, if we had chosen 99.999% instead of 90% as the threshold for a “cooperative”
strategy, the population would still be dominated by cooperative strategies for large enough
N. A proof of this result is given in the appendix.

Next we examine the effects of changes in the payoff table on the distribution of dom-
inating strategies. For a number of different values of T, we compute three values: the
proportion of cooperative dominating strategies for N = 20, the proportion of uncooperative
dominating strategies for N = 20, and the “break-even point” N,, the smallest N such that
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the cooperator C'y outperforms the defector Cy. As above, we assume R =T — 1, P = 0,
and S = —1.

T | cooperative (N = 20) | uncooperative (N = 20) | N,
1.01 0 1 935
1.1 .055 D27 95
1.2 .106 218 29
1.5 214 .057 13
2.0 .348 .020 7
2.5 458 .011 )
3.0 .b34 .007 4
3.5 .088 .006 4
4.0 .628 .004 4
5.0 .685 .003 3
10.0 797 .001 3
100.0 .896 1x107% 3

Table 3: FRPD results for varying T

As can be seen from these results, our choice of T strongly affects the proportion of
cooperative strategies that dominate the population for a given N. Increasing 7" increases
the proportion of cooperative strategies: for 7" ~ 1, defectors will dominate the population
unless N is very large, but for 7" > 1, cooperators will dominate the population for all
N > 3. For “normal” values of T (2 < T < 4), the break-even point between cooperation
and defection varies from 4 to 7 rounds. This demonstrates that the choice of payoff table is
important, but if the game is long enough, cooperation until near the end of the game can
be achieved even if the reward for cooperating is small.

7 Generalizing the model

Thus we have presented an alternative model of the evolution of behavior, argued for its appli-
cability to a communicating population, and demonstrated that it resolves the evolutionary
FRPD paradox. We now consider the model’s usefulness as a paradigm for “evolutionary
rationality,” that is, its applicability to any arbitrary game. First, rather than working with
the total payoff W(X|Y'), we should use w(X|Y), the expected value of the average payoff
per round to X against Y. We were able to use the simpler quantity W (X|Y") in our analy-
sis of the FRPD because the number of rounds was finite, all strategies were deterministic,
and our model assumed no noise; these assumptions may not be true in general. Second,
we note that the model can only be used with a finite set of strategies: thus for infinitely
long games such as the Iterated Prisoner’s Dilemma, we must choose some finite space of
strategies, such as the low-memory edge strategies (Neill, 2001) or finite automata of a given
size. Even for finitely repeated games, the number of possible strategies M can be very
large. For the Markov chain solution method, we must compute O(M?) dominance scores,
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and then compute the stationary distribution of an MxM matrix; this is infeasible for large
M. Alternatively, we can run the simulation for a large number of rounds as described
above, but this may take a long time to converge to values close to the stationary distribu-
tion. Thus, even for finitely repeated games, we may want to restrict the space of strategies
we are considering. For example, restriction of the FRPD strategies to those of the class
C; reduced the size of the strategy space from O(22") to O(N). Of course, if the strategy
space is restricted arbitrarily, we must qualify our claim of rationality: the strategy is only
“evolutionarily rational” with respect to the restricted strategy space under consideration.

Another generalization of the model is necessary if we have some meta-information about
the “real” evolutionary model of the population of strategies we are considering. In particu-
lar, we are interested in the probability distribution u(z) of the initial proportion of invaders
in the population. This may vary based on the type of invasion (migration or mutation),
frequency of invasion, amount of communication, and tendency to adopt new ideas. For
example, use of the dominance score is only correct if u(z) is uniform on (0,1), which may
occur in populations with large amounts of communication and a reasonable likelihood of
adopting new ideas. On the other hand, if we consider a population where invasion occurs
by mutation, and communication is nonexistent, u(x) may be Poisson with a low mean (pro-
portional to the mutation rate). This would mean, in the case of a bistable equilibrium with
C; & C;, that C; is extremely unlikely to take over the population unless m = 0.

Thus we define the generalized dominance score dom,(X|Y) as the probability that
strategy X succeeds in invading strategy Y, given some probability distribution u(zx) of
the initial proportion of invaders in the population. dom, (X|Y) is identical to the standard
dominance score, dom(X|Y'), except in the case of a bistable equilibrium. In this case,
assuming X & Y, the probability that X takes over Y is equal to the probability that
the initial proportion of invaders is greater than m: dom,(X|Y) = [} u(x)dz. Similarly,

assuming X & Y, we know Y '&" X, so dom,(Y|X) = fL . u(z)dz. For the standard
dominance score, u(z) = 1, so dom,(X|Y) = 1 — m and dom,(Y|X) = m. Note that in
general, we are not guaranteed that dom,(X|Y) + dom,(Y|X) = 1. Often, we assume a
function u such that there is a smaller likelihood of accepting the invading idea than the
idea being invaded, so dom, (X|Y) + dom,(Y|X) < 1 for almost all values of m.

Nevertheless, we can deduce several properties of dom, (X|Y'), again assuming X & Y.
We assume that the initial population u(z) always consists of a mixture of the two strategies:
thus P(u(z) = 0) = P(u(x) = 1) = 0. This implies lim,, o dom, (X|Y) = 1. Similarly,
lim,,,_,; dom, (X |Y) = 0. Finally, since u(z) is non-negative, we know that dom,(X|Y") is
non-increasing for increasing m.

These properties allow us to prove an important result: the evolutionary FRPD para-
dox is resolved for an evolutionary invasion model using any generalized dominance score
dom, (C;|C;) as the invasion probability ¢;;. To see this, we consider goy, the probability
that an attempted invasion of the defector Cy by the cooperator Cy is successful. For large
N, we know Cy & C, with m = m Thus limy_,em = 0. Now, if our inva-
sion model uses a generalized dominance score, we know gony = dom,(Cy|Cy), and thus
limN_,oo qon = th_mo domu(C’N|CO) = llmm_m dOIIlu(CN|00) = 1. From thiS, it is clear
that evolutionary forward progression can occur, and the population becomes dominated by
cooperators for N — oo.
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It should be noted that, under models where X & Y implies dom, (X |Y") = 0 except for
m = 0, very large N may be required for cooperation to succeed. For example, consider a
model where the initial proportion of invaders is uniformly distributed on (0 €), fore = 0. In
this case, gony = 1 — m, so for gy > .9, we must have N > 1+ (T iy~ For example,
for e = .001 and T = 3, we obtain N > 5001.

Another interesting example occurs when the initial proportion of invaders is some fixed
quantity u(z) = ug. This may occur in models such as Bicchieri & Rovelli (1995), where
most players are “adaptive” (readjusting their strategy at the end of each FRPD interaction,
according to its relative success), but a small proportion of the population are “fanatics”
who maintain their original strategy regardless of its relative success. In this case, gon is 1 if

(T 0 is less than ug, and 0 otherwise. For ug = .01 and T" = 3, C'y can take over
C’O if 5\7 > 5

The model can also be generalized to certain multi-player games, such as the repeated
Tragedy of the Commons (an n-player variant of the FRPD). In this game, the payoff to
each strategy on a given round depends on whether the strategy cooperates or defects,
and the number of its opponents that cooperate. We consider here the variant in which a
player receives the reward or temptation payoff only if every opponent cooperates, and the
punishment or sucker payoff otherwise. Again assuming that the proportion of invaders is
some fixed quantity u(x) = ug, we find that gox is 1 if m = m is less than uj ™!, and
0 otherwise. For ug = .01, T = 3, and n = 10, Cy can only take over Cy for N > 5x 107 +1.

Thus, for some generalized dominance scores, the game length must be very long for
cooperation to be rational. Nevertheless, since cooperation is rational for long enough games,
the evolutionary FRPD paradox is resolved.

8 Conclusions: toward an adaptive model of rational
choice

Having resolved the evolutionary FRPD paradox, we now turn to the question of whether this
solution resolves the original Finitely Repeated Prisoner’s Dilemma paradox. Our answer,
after some discussion, is a qualified “yes.” Aumann (1995) argues convincingly that, when
rationality is defined as “habitual payoff maximization” according to the subgame perfect
equilibrium (Selten, 1975), common knowledge of rationality implies backward induction.
Thus we have two alternatives: to accept the subgame perfect equilibrium as a normative
definition of rationality, and therefore to accept the impossibility of cooperation in the FRPD
with common knowledge of rationality, or to reject this definition of rationality as unrea-
sonable. As is clear from this paper, this author prefers the latter approach; however, the
creation of a single theory of rationality which both always prescribes reasonable behavior
as “rational,” and has good computational and theoretical properties, is a (very difficult!)
open question.

One avenue of research that may lead toward this goal is a paradigm we call adaptive
rationality. Adaptive rationality assumes a multitude of possible rational decision proce-
dures, each based on different assumptions about the meta-game. The meta-game is the
larger context in which the decision situation is embedded: this includes a performance
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measure (possibly based on some evolutionary model), and the distribution of opponent
strategies. Neither of these is known for certain within the context of the game unless ad-
ditional meta-information I is supplied, and hence assumptions must be made. A rational
decision procedure is a method for choosing a strategy: it must be optimal with respect to
some set of assumptions A that is compatible with the given meta-information I. A strategy
picked according to any rational decision procedure is defined to be “rational,” and it is
impossible to know which decision procedure a given “rational” opponent will choose. There
is no way of determining theoretically which one of these procedures is “better” for a given
real-world interaction: this simply depends on which set of meta-game assumptions more
accurately models the specific situation, and this can only be determined empirically, on a
case-by-case basis. Also, though a rational decision-maker must form some initial assump-
tions about the meta-game, it can modify these assumptions over the course of a game,
“adapting” to the behavior it has observed. In fact, if the opponent’s behavior contradicts
the assumptions underlying the current strategy of an adaptively rational decision-maker,
that decision-maker must modify its assumptions (and if necessary, its strategy) to achieve
compatibility with its observations.

For example, if no meta-information is given, the subgame perfect equilibrium is a rational
decision procedure. It is optimal with respect to the assumption that all opponents are
also rational in the “subgame perfect” sense (thus assuming deviations from equilibrium
play are due to a “trembling hand”). For the FRPD, it is also optimal with respect to
the assumption of a Nowak-Sigmund evolutionary model. On the other hand, the subgame
perfect equilibrium is not optimal with respect to any assumption that implies the rationality
of cooperation in the FPRD. If we were given incompatible meta-information of this sort,
the subgame perfect equilibrium would not be a rational decision procedure.

Similarly, if no meta-information is given, various rational decision procedures can be
derived from our evolutionary model. Under the assumptions that our evolutionary model
corresponds well to the meta-game of the real-world interaction we are considering, and that
it is rational to choose a strategy with high evolutionary success, “evolutionary rationality”
is a rational decision procedure. In this case, the rational decision-maker performs a pro-
cess of “fictitious evolutionary play,” simulating the evolutionary model given some space of
strategies, and chooses the strategy which dominates the population the highest proportion
of the time; this is only feasible for a decision-maker with massive computational powers.
Alternatively, one can assume that the opponent has evolved according to our model (and
thus is selected at random from the stationary distribution), and maximize expected pay-
off based on this assumption. Another rational decision procedure, usable by a rational
decision-maker with more limited computational resources, could be “changing one’s mind”
using the model: starting with a random strategy, and repeatedly deciding whether to keep
that strategy or change to another random strategy based on the (generalized) dominance
score. In this case, we choose the strategy that dominates the population at the end of the
simulation; for long enough simulations, this is equivalent to computing and sampling from
the stationary distribution.

Additionally, we note that the evolutionary solution method presented here gives some
hints at possible modifications of the subgame perfect equilibrium, in order to create a
(non-evolutionary) rational decision procedure which is compatible with the rationality of
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cooperation in the FRPD. The idea here is not to prevent the backward induction argument
from occurring, but to also allow the possibility of forward progression: a rational player
decides C; makes more sense than C;, j > 1, and thus switches from C; to C;. This would
require a definition of the subgame perfect equilibrium which can take non-equilibrium moves
into account, adapting to the opponent’s play; more research is necessary to determine
whether this can be achieved.

Finally, we note an interesting corollary of our evolutionary model: as compared to
non-communicating populations, communicating populations are dominated more often by
cooperative strategies, resulting in higher average payoffs to all members of the population.
In other words, the communicating population does not get stuck in poor but evolutionar-
ily stable strategies (“local maxima” of the evolutionary space), resulting in better average
performance. This may allow a communicating subpopulation to out-compete another sub-
population which does not communicate among themselves: in other words, natural selection
will select for the evolution of communication.

These philosophical arguments aside, we briefly summarize our main result: an alternative
model of the evolution of behavior, based on our rejection of the Maynard Smith assumption
of a single invader. This model leads to a performance measure, the proportion of time
a strategy dominates the population under our model. If we define rationality based on
optimizing this performance measure, our model resolves the Finitely Repeated Prisoner’s
Dilemma paradox, demonstrating that cooperation is always possible for sufficiently long
games. Additionally, the model can be generalized and applied to many other decision
situations, and thus it serves as a possible standard for rational decision-making under
uncertainty.
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10 Appendix

Theorem: For our evolutionary model, using transition probability F;; = dor?v(ifiwa-), and for
any constant k& (0 < k < 1), the proportion of strategies cooperating through turn kN goes
to 1 as the number of turns N — oc.

Proof: Let x; denote the proportion of strategy C; in the stationary distribution. For
simplicity of notation, we assume that £V is not an integer; we call a strategy C; “cooper-
ative” if kN <4 < N, and “uncooperative” if 0 <7 < EN. Let x4, denote the proportion
of cooperative strategies in the stationary distribution, and x;,, denote the proportion of
uncooperative strategies. Let Py, denote the probability of switching to an uncooperative
strategy, given that the current strategy is cooperative:

SN x2S P
Zﬁ[km L

Plow =

Similarly, let Pp;g, denote the probability of switching to a cooperative strategy, given that
the current strategy is uncooperative:

kN
ZzL:OJ Ty Ejv e Fig
Zsz](;[J i

Prigh =

We know that 5, = ﬁﬁg@. From this, we can find an upper bound for z;,, by computing
an upper bound for Py, and a lower bound for Pj;y,. To do this, we rely on the following
observation: for j > 4, P;; is decreasing with ¢ and increasing with j, and Pj; is decreasing
with j and increasing with i. Thus P,,, the weighted average of Z JPZJ for all + =

[kN]...N, is bounded by:
LN ]

Bow < Z P[kN]j

=0

Similarly, Py;gpn, the weighted average of E;-V: v Bij foralli=0...|kN|, is bounded by:

N
Puigh > > Py
J=[kN]
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dom(g;|cy)

We now simplify each expression using P;; = , where dom(C;|C;) equals 1 if

N+l
i—jzl,mlfz j >1,and 1 —dom(C;|Cj) if i — j < 0. Thus:
kN 1 kN |1 1 1 EN] 4
Py < Py = ———+ ~ = 1+ —
;0 NV = N1 EO 2N+ 1)([kN] —j)  N+1 ;2]

Similarly for Ppign:

i g: ( : ! ) 1 N““m( 1)
B R N+1 2(N+1)(G-[kN])) N+1{ ; 2j

[EN]+1

We now look at the asymptotics using Z” 1 = O(logb—loga). Thus Plow < ¥ 1O(log kN) =

O( ) for fixed k. Similarly, Pygn > N+1O((N — kN) —log(N — kN)) = O(1) for fixed

O leXN .
k. Thus i, = Boqf,rlghigh < (O(Jf) ) =0 (IOZgVN), which converges to 0 as N — oco. Thus

Thigh = 1 — Ty converges to 1 as N — oo. O
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