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Abstract

We present a forward sequent calculus for intuitionistic propositional linear logic (®, 1, &, T,
—o, ®, 0,!) and a corresponding inverse-method search strategy. Our approach centres around
resource management, inspired by similar approaches for backward-directed calculi such as
top-down linear logic programming. Surprisingly, the resource management problems for the
forward direction turn out to have a different character to those of the backward direction,
arising for different connectives. Our approach identifies conditions for which we may relax
linearity to allowing (implicit) weakening. We characterize two such classes of affine behaviour
— as a form of weak sequent designed to handle T-weakening lazily, and as affine contexts to
control the multiplicative unit 1 using a general matching framework.

Partially supported by NSF Grant CCR-9988281 “Logical and Meta-Logical Frameworks”.



Keywords: linear logic, inverse method, resource management



1 Introduction

In this paper, we examine the feasibility of efficient forward reasoning for intuitionistic lin-
ear logic [10, 4], concentrating primarily on the propositional fragment. In forward reasoning,
search for the proof of a goal sequent begins with initial sequents, and uses inference rules to
construct new sequents (using some strategy), with the goal of eventually discovering a proof
of the goal. Thus, it directly contrasts with backward or goal-directed reasoning, which applies
rules in the backward direction to iteratively refine a collection of goals, until all goals be-
come initial (axiomatic). However, the kind of forward reasoning in this paper—the inverse
method [19, 25]—also merits the description “goal-directed” because it restricts all rule appli-
cations to subformulas of the goal sequent, using a strong subformula property of the sequent
calculus. Linear logic disallows arbitrary contraction and weakening; thus the number of oc-
currences of formulas plays a critical role in the proof theory, thereby allowing encodings of
theories with precise counting semantics. A linear hypothesis must have exactly one use in a
proof, which lends a view of a linear hypotheses as resources, and proofs as consumers of such
resources. This has led to various applications in reasoning about state; for example, concurrent
computation [1], or games [17, 2]. Intuitionistic linear logic [4, 8] imposes a strict separation of
plural resources from the singular conclusion, elevating linear implication (—) to the status of
a logical connective independent of other connectives.

The novelty in automated reasoning in linear logic lies in handling resources efficiently —
the resource management problem. We can trace the origin of this problem to the lack of struc-
tural weakening and contraction; indeed, without these rules linear logic with additives and
exponentials becomes undecidable, even for the propositional case [18]. We can recognise the
following classes of resource management problems, which we explain in greater detail in sec-
tion 2.2.

Multiplicative Non-determinism, which arises from multiplicative rules with more than one pre-
miss, for example for @R:

A= A A'=— B
AN = A® B

Absent weakening, in the backward direction such rules must infer a division (into A and A’
above) of the linear resources of the conclusion to distribute into the premisses. Note that this
kind of non-determinism does not exist in a forward reading, where we simply conjoin the
resources of the premisses to construct the conclusion.

Structural Non-determinism, which occurs for unrestricted resources, and the linear resources in
the rules for the additive units, such as T:

A= T

For these rules, the conclusion sequent contains resources that don’t occur structurally in the
(possibly non-existent) premisses. Thus, a forward reading of these rules has to invent this
context using extra-logical means, a futile approach in general because of the lack of a decision
procedure. Fortunately, a clean solution exists for this problem, which we explain in section 3.

Interestingly, the rules for the additive units present significant problems in the backward
direction also. In the common input-output interpretation of (backward) proof search [15, 7,
12], the additive unit T can “consume” an arbitrary number of resources in its branch of the
proof. Thus, proving T ® A may require backtracking if search proceeds down the T branch
first without determining the number of resources needed for the other branch. (For a more
complete discussion, see [7].)



The problem of structural non-determinism thus exists in both forward and backward rea-
soning, but the nature— invention of unknown resources in the forward direction, and alloca-
tion /garbage-collection of resources in the backward direction—differs sufficiently that we can-
not immediately adapt resource management approaches for the latter to the former.

Unknown Use Non-determinism, which to our knowledge has remained unidentified before this
paper, occurs because of the multiplicative unit 1. In the forward direction, the left rule for 1
applies for any sequent; without contraction, iterations of this rule can generate an arbitrary
number of trivially different sequents. Furthermore, in tandem with binary rules such as &L
that don’t require both operands structurally in the premiss, we can iterate a two-rule sequence
to generate arbitrarily many copies of the resources like A & 1. We call this “unknown use”
to show our uncertainty about the exact number of such resources that contribute to the fi-
nal proof. Unlike the previous two cases, we don’t solve this resource management problem
completely in this paper; indeed, by undecidability, such a solution cannot exist.

Other non-deterministic choices do exist during proof search, but they don’t share the pe-
culiar nature of resource management problems, and certainly occur for ordinary (non-linear)
logic also; for example, disjunctive non-determinism for connectives with multiple introduction
rules (on the left or right); conjunctive non-determinism for multi-premiss rules, where the order
of exploration affects search in significant ways;! and various other possibilities. Because of
the standard nature of these problems, we refer readers to the Handbook article on the inverse
method [9].

The rest of this paper has the following organisation — in section 2 we introduce the back-
ward calculus for linear logic, which forms a basis for the rest of the paper. We will show every
one of our systems sound and complete with respect to this calculus, though the notions of com-
pleteness will get increasingly complex. Following a closer analysis of the non-determinism in
this calculus from the viewpoint of forward reasoning (section 2.2), we will develop a sequence
of calculi to tackle the various resource management problems. In section 3 we present a first
forward calculus designed to handle the affine resource non-determinism of the affine units T
and 0. Subsequently, in section 4, we will examine the issue of unknown use non-determinism,
and present a forward calculus with an explicitly identified matching judgement, designed to
handle implicit weakening rules. The resulting sequent calculus will concretely expose all re-
source management problems in the proof theory. In the final section (5), we will describe an
inverse method search procedure using this forward calculus.

Related Work. Resource management in backward reasoning has a relatively long history
given the age of linear and sub-structural logics, with the earliest identification of this issue
in proof search dating back to the work of Harland and Pym in 1991 [11]. Much subsequent
work has examined resource management in the settings of backward proof search and logic
programming for the (linear) uniform fragment [14, 15, 13], most recently by Cervesato et al. [7],
and Harland and Pym [12]. The weakening annotation introduced in this paper bears a strong
resemblance to a similar notation in [7], although the interpretation differs considerably because
of the different nature of forward search.

To the best of our knowledge, resource management in the forward direction has not re-
ceived any satisfactory treatment in the literature. The oldest work on forward-reasoning in
linear logic, due to Mints [20], discusses a kind of resolution calculus for linear logic; however,
his resolution calculus differs significantly from the usual notion of resolution because of the in-
clusion of axiomatic clauses of the form I', T. The context I in these clauses remains unspecified,
so for an implementation it becomes necessary to restrict the use of such axioms, specifically by
discovering permutations in the resolutions steps that allow pushing these axioms downwards.

1In the forward direction, conjunctive non-determinism arises from saturation-based (i.e., fair) search, a necessity to
ensure completeness.



The resolution calculus of Mints suffers from an additional problem, arising from the inclusion
of explicit weakening rules for the classical “why not” modality, ?. Tammet [24] has performed
a fuller examination of the allowable permutations, together with more efficient treatment of
weakening and exponentials, but both Mints and Tammet describe what we now understand
as resource management problems in terms of search strategies. In other words, their calculi
lack the explicit examination of resource management issues in the proof theory, in the style of
Cervesato et al. [7] or Harland and Pym [12]. We have not encountered any other investigations
of forward reasoning in linear logic in our literature survey.

2 Backward Sequent Calculus

We begin with a brief introduction to backward sequent calculi in the style of Gentzen for
propositional linear logic. Propositions, called formulas, consist of atomic formulas, or formulas
joined by connectives from one of the following classes — multiplicative, additive or exponen-
tial. For the multiplicative connectives, we have conjunction (®, 1) and linear implication (—o);
for the additives, conjunction (&, T) and disjunction (&, 0); and for the exponentials the modal
operator (!). We write formulas using capital letters A, B, ..., reserving the letters C' and P as
far as possible to stand for “conclusion” and “atomic formulas” respectively.

We represent facts about formulas using sequents, using the terminology introduced by
Gentzen. Each sequent consists of hypotheses on the left, and conclusions on the right, sepa-
rated by a sequent arrow =>. Because of our intuitionistic setting, we disallow sequents with
more than one conclusion. We divide the hypotheses into zones separated by semi-colons (;),
following the notation invented by Andreoli [3]. Inside a zone, we delineate individual hy-
potheses with commas (), and allow free exchange of hypotheses within a given zone.

In this section, we consider sequents with two zones of hypotheses.? The first one, the un-
restricted zone, consists of hypotheses that can have arbitrarily many uses in a proof, including
none at all; we write this zone schematically as I'. The other zone consists of linear hypotheses
that must have exactly one use in any proof; we write this zone as A. Thus, sequents have the
following schematic form:

;A==

Rules for inferring sequents determine a sequent calculus. Every inference rule consists of
a single conclusion sequent, and a varying number of premisses which may include sequents
or other relations on formulas. Semantically, we shall read these rules backwards — from the
conclusion to the premisses — by connecting them using “if” in the meta-language; i.c., the
conclusion holds if the premisses hold. Inference rules fall into one of two possible classes —
Judgemental Rules, which together with the admissible cut rules (theorem 2) determine the meta-
logical properties of the logic; and Logical Rules that define the nature of logical connectives.
Each logical rule determines the meaning of a single connective in the goal sequent, either on
the left (left rule) or the right (right rule) of the sequent arrow. Every logical rule, when read in
the backward direction, evidently proceeds by analysis of the topmost connective of a principal
formula. (We will refer to the other formulas among the assumptions or the conclusion as side
formulas.)

For our calculus, we identify two judgemental rules. The first, called the rule of initiality (or
just init), states that we may conclude a formulas A if we have a single linear hypothesis A. We
call a sequent initial if we can infer it using init. The other judgemental rule transfers a copy
of any unrestricted resource into the zone of linear resources, when reading the rule from the
conclusion to the premiss. The copied resource continues in the unrestricted context because

2We shall use the terms “zone” and “context” interchangeably.



Judgemental Rules
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Figure 1: Rules for the backward sequent calculus

we may need further copies of it later. The number of applications of this rule for any given
unrestricted resource defines the number of uses of that resource in the proof of the goal.

We further classify logical rules into multiplicative, additive, and exponential rules, cor-
responding to the kind of top-level connective they describe. Multiplicative rules involve a
distribution of the linear context of the conclusion sequent into the linear contexts of the pre-
misses; additive rules require identical side formulas in the premisses and the conclusion; and
exponential rules describe the modal nature of !. Figure 1 lists all the rules.

With the intended backward interpretation of rules, we view logical rules as composing a
derivation tree, where each internal node either analyses one principal connective, or copies a
formula from the unrestricted (global) assumptions, and initial sequents constitute the leaves.
Some structural properties of the unrestricted context follow by simple induction.

Theorem 1 (Structural Properties).
1. (weakening) IfI' ; A = C, then', A; A = C.
2. (contraction) If T, A, A; A = C, thenT', A; A = C.

The cut-free sequent calculus as presented admits structural cut rules. We can prove such a
cut-admissibility theorem using a simple nested structural induction.



Property 2 (Admissibility of Cut).
1. fT;A= AandT ;A" A= C, thenT ; A|A' = C.
2. IfT;-= AandT,A; A = C,thenT ;A" = C.

We omit the fairly standard proof, but see [8, 22].

2.1 Backwards sequent calculi for linear logic — a brief history

A brief note on the genealogy of this presentation of linear logic. We trace the idea of dividing
the hypotheses into an unrestricted and a linear zone back to Andreoli [3] for what he called
a “dyadic system” for (classical) linear logic. This idea has seen considerable use since then:
Hodas and Miller in the setting of logic programming in the uniform fragment [15], Benton
et al. for linear term calculi [6]; more recently by Barber and Plotkin for the system DILL [4],
Polakow and Pfenning for ordered logic [22], and Howe in the setting of focused (backward)
proof search for linear logic [16]. (The last of these unfortunately does not address the problem
of focused proof-search in the two-zone setting, but rather uses it only to establish soundness
and completeness of a one-zone focusing system, with explicit dereliction and promotion rules
for modal contexts of the form IT".)

In an interesting alternate formulation of the separation of linear and unrestricted hypothe-
ses, Benton [5] (who attributes his essential approach to unpublished work of Bart Jacobs in
1993), has described a system called LNL logic (“linear/non-linear”) that consists of two sep-
arate universes of “unrestricted” and “linear” objects, with transitions F and G between the
two arising as categorically adjoint functors. Each universe contains a separate term calcu-
lus, and the functors allow arbitrary combinations of objects as necessary. We don’t use LNL
as the basis for this paper, despite the existence of a reasonably clean cut-free calculus for the
multiplicative-exponential fragment, because a full description of additive connectives remains
open for LNL.

In a recent work, Chang et al. [8] give a backward sequent calculus for a conservative exten-
sion of intuitionistic linear logic with a novel interpretation of the classical ? operator as a monad
of possibility. In this calculus it becomes possible to interpret the classical linear logic, classical
affine logic (i.e., CLL + arbitrary weakening), and the mysterious MIX rules (introduced by Gi-
rard [10]), using uniform parametric translations. We don’t extend our system to include this
possibility monad, though we don’t believe such an extension presents significant problems.?

2.2 Non-determinism in the linear sequent calculus

Before proceeding to the forward sequent calculus, we examine the sources of non-determinism
in the backward sequent calculus. This examination will make the case for the forward calculus
in the next section, and the subsequent inverse method in section 5.

Multi-premiss rules like ® R cause the largest amount of resource non-determinism in the
backward direction.

I'; A=A I';A'= 1B
I;AA — A® B

®R

Knowing just the total linear context A, A’, we face an exponential number of possibilities
for the composition of A and A’. As mentioned in the introduction, We call this form of
non-determinism multiplicative resource non-determinism. In the domain of top down linear
logic programming — refining goals by applying inference rules in the backward direction un-
til they become initial (eg. Lolli [14] or Lygon [26]) — approaches to combating this kind of
non-determinism fall into two broad kinds.

3Not, at least, without focused derivations.



The first kind commit to an input-output interpretation of hypotheses. For the ® R rule for
example, proof search proceeds eagerly along the first premiss until it reaches the initial se-
quents with some unconsumed resources. These unconsumed resources then form the linear
context for the second branch of the derivation tree corresponding to the second premiss. Proof
search therefore becomes completely deterministic, though not free of complications. For ex-
ample, when attempting to prove T ® A, the first branch can consume an arbitrary number
of resources; thus an unprincipled implementation of the input-output idea will continue to
involve a potentially exponential number of backtracking operations. As a possible answer to
such complications, Cervesato et al. [7] refine the sequent judgement with boolean “strictness”
flags and add a context of strict resources, which adequately solves the resource management
problems for the uniform fragment of linear logic.

Approaches of the second kind perform general search with constraint solving. For exam-
ple, in [12], boolean flags mark uses of resources, with inference rules guarded by constraints on
these boolean flags. Particular proof strategies then correspond to particular solutions for these
constraint problems. In fact, we may view the first kind of approach as a kind of solution to
the constraint problem, where the boolean constraints encode the input-output interpretation.
Without detailing such constraint-based resource management systems, we refer to the work of
Harland, Pym and Winikoff, now almost a decade old [11, 13].

Surprisingly, multiplicative resource non-determinism does not occur at all in the forward
reading of such inference rules, where we start with the sequents involving linear contexts A
and A’, and conclude a sequent involving A, A’. We certainly don’t have to select among
exponentially many choices in forward reasoning; lest we give the impression that forward rea-
soning suffers from no resource non-determinism, we quickly point out that different problems
arise in this direction; we focus on these issues for the remainder of this paper.

As mentioned before, the additive units T and 0 bring about complications in the simple
input-output model of backwards search, but these very connectives present problems of a
different nature for forward search.

A7 ' F;A,0:>OOL

The arbitrary linear contexts A (and side formula C) do not occur in the (non-existent) pre-
misses. In the forward direction, we face the seemingly impossible task of inventing these con-
texts from nothing! (A similar situation arises for the unrestricted context in axiomatic rules,
including init.)

The solution to the problem of inventing these unknown formulas lies in a delayed genera-
tion of these formulas, an approach also used by Tammet [24] to describe resolution for classical
linear logic. Cut-free sequent calculi enjoy a subformula property (see section 5), so we have to
create only the portion of these contexts whose composition we can infer from other premisses.
The present paper exposes this lazy generation of resources, both unrestricted and linear, directly
in the proof-theory of the forward sequent calculus.

As a second major source of unknown use non-determinism, we tackle the problem of 1L
and &L rules working in concert. Non-determinism of this form is a neglected topic, primarily
because it doesn't arise in backward-reasoning systems.

A==~ .
[AA=C ;A1=0C
I';AAR1=C I';AA&1l=C

As clearly shown by these rules, A & 1 encodes an “at-most one use” interpretation for the
formula A. The first of these rules describes the “one use” case, and the second the “zero use”
case. We can consider such an encoding as an idiom for recovering affine logic in the exact setting
of linear logic. For forward reasoning, we lose control about when and how often to introduce



A &1 (assuming it occurs as a negative subformula of the eventual goal) using the second of
the above rules. In other words, we cannot determine the multiplicity of the resource A & 1
in any intermediate sequent of the proof, and sequents can therefore grow indefinitely during
search. We approach this resource management problem by constraining the 1L rule (x above);
for more detail, see section 4.

3 Forward reasoning and the additive units

For expository purposes, we build our system of forward reasoning in stages. For the first
stage, we show how to eliminate structural non-determinism by removing the need to “invent”
formulas. Because of the significantly different nature of the resulting calculus, we use — as
the sequent arrow.

We interpret the unrestricted zone as a strict context with implicit contraction. It will contain
only those resources that actually participate in a particular proof of the sequent. For example,
the init rule does not use any unrestricted hypotheses, so we remove the unrestricted context I
entirely from the conclusion to get:

-;ATA init
As a result of this strict interpretation, multi-premiss rules will have different unrestricted con-
texts in the premisses and the conclusion. For these rules, we union (i.e., factor duplicated
hypotheses into a single hypothesis) the unrestricted zones in the premisses to form the unre-
stricted zone in the conclusion.

For the linear zone, we implicitly allow a kind of weakening for the linear context in specific
cases. We cannot of course allow weakening of all linear contexts, so we identify the weakness
of a sequent by means of a Boolean flag w — sequents have the shape I' ; A —" ~, where ~
stands schematically for - or a formula C; we shall abuse notation slightly and write C 2 v to
mean v is either - or C. We define the precise nature of weakness by means of a correspondence
with the backward sequent arrow of the previous section.

;A —"cC corresponds to I'"';A= CforanyI" DT (lin)

;A —ly corresponds to I'';A"= Cforany A’ DA, T"DTand C D vy
(weak)

We call 1-annotated sequents weak sequents. As a global consistency condition for the logic, we
shall ensure that -;- —! - remains unprovable. The judgemental rules require an update. Initial
sequents clearly cannot satisfy (weak) because of the requirement of a single linear hypothesis;
moreover, initial sequents don’t determine any members of the unrestricted context. Therefore,
we give initial sequents the annotation 0, and leave the unrestricted context empty.
——— init
3A—0 A
For the copy rule, the nature of the annotation plays no significant role, so we merely prop-
agate it from the premiss to the conclusion. Furthermore, because in the premiss we already
have the formula A in the linear zone, we don’t include it in the unrestricted zone also. If a

single formula gets copied twice, we contract (U) the unrestricted context to avoid generating
more than one copy of the formula.

F;A7A—>w’y
FU{A};A —"~

copy



For the logical rules, we once again observe three major categories. For the multiplicative
connectives, the weakness of any premiss suffices to produce a weak conclusion, so we obtain
a disjunction of the weakening annotations. For example, for ® R we write

;A —wr A ;A —w B
TUD A A —wive: Ag B

®R

The formulas A and B must exist in the conclusions of the premisses; allowing an empty con-
clusion for any of the premisses makes the conclusion sequent an explicitly weaker form of one
premiss, and therefore will generate no new knowledge.

We perform a further optimisation directly in the logic. Simply applying the correspondence
(weak) to generate the forward rules corresponding to —oR produces the following pair:

r';A,A—'B . A —'B
—o
;A —1A B A —'A-B

RI

The second of these utilises the implicit weakening in (weak) by not requiring A in the linear
context of the premiss. However, if A does indeed occur in A for any reason, then we have a
choice of which rule to apply. The conclusion of applying —R turns out to be stronger than
with —R’ in the sense of (weak), i.e., the linear context in the latter contains an extra A. To
prevent this case, we restrict the application of —R’ with a side-condition of negative existence.

;A —'B A¢A
I';A—'A4—-oB

—oR!

We don’t treat such negative existence conditions as facts in the same way as sequents — for
example, in an implementation, we never enter them into a fact database for use in subsumption
checks.

For the additive rules, we notice that the (implicit) weakenability of weak sequents mani-
fests in the forward direction as a weak equality for the linear contexts, which we write A /w; =
A Jw,, with the following definition

AO=A"J0  if A=A
A/1=A"/0 if ACA
A/1=A"/1  always

This gives us the following form of the &R rule:

r;A—wrA TGA —B  Alw =A" w,
/ / A &R
Tul; AUA” —m 2 Ag B

where we reuse U for the linear contexts to mean a multiplicity-respecting union of elements,
ie., if A occurs m times in A and n times in A’, then it occurs max(m,n) times in A U A’
Dual to the multiplicative connectives, the conclusion of additive rules receive a conjunction of
the annotations of the premisses. For T (the unit of &), we use the annotation 1 (the unit of A).
The annotations propagate for the single-premiss rules, with similar justification as for the copy
rule.

The right rule for ! requires a special restriction for soundness: we cannot allow an annota-
tion of 1 in the conclusion. For simple counterexamples, neither of the following derivations is

“We reuse the same symbol U because unioning for the linear context doesn’t differ operationally from that of the
unrestricted context. The “set” interpretation for the unrestricted context arises out of contraction inherent in the copy
rule.



Judgemental rules
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Figure 2: Rules for a forward sequent calculus

sound with respect to (lin) and (weak):

.;._>01 o1

‘r
—1IT

Figure 2 lists the complete collection of rules for the forward calculus. Except for the initial
rule, rules in the forward direction never introduce any unaccounted resources into the con-
clusion. As a direct result, the conclusion of every rule contains new formulas, making search
knowledge-monotonic. The collection of initial sequents forms the input of a forward search



procedure, so these require careful selection. We discuss this in more detail in section 5 when
we develop the inverse method search procedure.

Soundness and completeness. We now formalise the informally stated correspondences in
(lin) and (weak). Weak sequents in the soundness theorem require a somewhat unusual form in
order to facilitate the structural induction.

Theorem 3 (Soundness).
1. fT;A —°C, thenT ;A = C.
2. IfT ;A —try, thenforany A’ D Aand C 2 ~,T ;A" = C.

Proof. By induction on the derivation F; :: I'; A —0 Cor / = I'; A —! 4. Since every
rule in the forward direction has more restrictions than the corresponding rule in the backward
direction, the induction proceeds in a parallel fashion for all rules. We illustrate with just one
such rule, &R. Suppose we have:

;A —wr A I';A' —w2 B Ajwy = A Jws .
= &
PUT';AUA" —wiiw2 AR B

If wi A wy = 1, then by part (2) on the premisses, we know that:

forany Ay DA, T'; A=A
forany Ay DA’ T'; Ay = B

Given A” D A U A/, instantiate both A; and A, with A” and use & R and weakening for the
unrestricted context in the backward calculus to obtain 'UI'';A” —> A& B, which satisfies part
(2). On the other hand, if w; Aws = 0, then we have two possibilities. If both w; = 0 and wy = 0,
then the rule in the forward direction becomes structurally isomorphic to that in the backward
direction if we weaken both unrestricted contexts to I' U T, so part (1) holds immediately. If
wy = 0 and wy = 1, then by part (2) on the first premiss, and part (1) on the second, we know
that:

;A=A
forany Ay DA, T'; Ay = B

By the matching criterion A/0 = A’/1 we know A" C A, so A UA’ = A. Thus, we instantiate
Ay with A, and then use &R and weakening for the unrestricted context in the backward cal-
culus to get ' UT'; A = A & B, which satisfies part (1). This last case demonstrates the need
for the strengthened induction hypotheses in part (2). O

Dually, for the completeness theorem, we account for the case that the forward calculus
proves a stronger form of the goal sequent.

Theorem 4 (Completeness). IfI'; A = C, then for some ' C T,
1. eitherT'; A —° C,
2. orT'; A" —1 ~ for some A’ C Aandy C C.

Proof. By structural induction on the derivation B of I' ; A = C. For every logical rule of
the backward calculus, the conclusion has a (not necessarily strictly) weaker form than the
corresponding rule(s) in the forward calculus, so the induction proceeds straightforwardly. For
the judgemental rules, init has a trivial verification. The copy rule presents the only interesting
case.
B/
B =TU{A};AJA=C
ru{d}; A=2<=

copy
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If we know that ' U {4} ; A, A —° C, then by the copy rule in the forward direction, we have
ru{A4}; A —° C, which satisfies case (1). On the other hand, if for some I C T, A’ C (A, A)
and v C C, we know thatT'’; A’ —! , then we have two cases:

e A¢ A’, which case trivially satisfies this theorem because A"CAandI’ CT U{A}.

e A € A/, in which case by the copy rule in the forward direction, I'', 4; A"\A —' ~. We
then just note that I'" U {A} C T U {A}. O

Structural Properties. The lazier nature of resources in the forward direction necessitates an
update to the structural meta-theorems about the logic, particularly the cut principles. The
forward direction aims to disallow weakening in all forms, including as admissible structural
rules. The question of contraction never arises in the forward direction because the conclusion
sequents inferred by all rules have implicit contraction. An implementation of this calculus in a
theorem prover would either contract eagerly after every rule application, or use lazy contraction,
the latter of which presents an interesting area for logical treatment.

Theorem 5 (Cut).
1. fT;A —" Aand T/ ;A" A —2 4, then T UT' ; A, A —wiVwe o,
2. IfT; —* Aand T’ A; A —"" ~, then T UT' ; A —*' .

Proof. By lexicographic structural induction on the two given derivations. All the cases of the
proof follow a straightforward pattern, similar to proofs of theorem 2, for example in [§]. O

The forward calculus as presented suffers from no structural non-determinism, but 1L does
present unknown-use nondeterminism as described earlier. In the next section we shall argue
for a removal of the 1L rule by making its applications implicit in the calculus.

4 Affine resources

In the absence of negative 1 in the logic, the forward calculus of the previous section suffices to
remove all resource non-determinism. With the addition of 1, particularly negative occurrences,
we have the problem of affine non-determinism, as mentioned in section 2.2, which arises from
the interaction of 1 with other connectives. For most connectives, 1 has only a unitary function,
where an equivalent proposition can be found which doesn’t require (that particular instance
of) 1. The full list of such equivalences is as follows:>

AR1=1=1 A 1 oA=A 1&1=1 191=1 =1

For the rest of this paper we assume a logic in 1-normal form (1nf), which we define as that
fragment without unitary uses of 1. This simpler fragment allows an examination of the occur-
rences of 1 actually relevant to resource management.

An interesting class of propositions have the form A&1 or 1&A4; as a resource, A&1 provides
a choice of either using A linearly in the proof, or not using A at all, i.e., it encodes an at-most
one use or affine interpretation. Indeed, such propositions allow us to recover affine logic in the
exact setting of linear logic, by translating affine implications A — B into A & 1 — B. There
is another, more popular embedding of affine logic into linear logic that translates A — B into
A—B®T. The difference between the two encodings manifests as a choice between a local and
a global translation — translating into A & 1 — B doesn’t destroy the linear nature of resources,
but A — B ® T makes every resource affine because of the presence of positive ® T. Yet, and
despite the fact that positive T complicates backwards search, encodings in logic programming

5In the presence of quantifiers, we have some additional equivalences: 3z.1 = 1and Vz.1 = 1
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languages like Lolli prefer the second encoding. Rather than repeat this approach and disallow
negative 1, for the rest of this section, we examine the nature of resource non-determinism
caused by negative 1.

4.1 Characterising non-unitary uses of 1

First, consider the effect of removing 1L entirely from the logic. In the 1nf fragment, only the
following instances of 1 remain: A —<1, A &1,18& A, A®1,1¢ A and the formula 1 itself. On
the right, the corresponding rules are fully deterministic. On the left, all of these forms — except
1 itself — have the following specialized rules:

'A—A I';A'=C
I';AAA—-1=C

—1L

I';A=~C I';A,A=2C
&1L,y &1L,
I';AA1=C I';AA1=C
A=C .. raA=C o
[;A 1A= C T, A18A4A=C 2
I'; A A= C I';A=~0C 1L I';A=~C F;A,AﬁCl I
TiA A6l — C © [A10A— C @

We have described the situation with &1 and 1& before and clearly visible above in the
pair of rules 1&L; and &1L, formulas of the form A & 1 define an affine interpretation for the
resource A. We examine this case in detail in the next section. For 14 L and &1L, the premisses
appear to give the formula A a meaning of optional use — we can prove the conclusion C both
in the presence and absence of A. In fact, one might view this kind of optional use (one and
zero times) as the external version of the affine case (at-most one use); thus, one might imagine
a substructural logic where external options are internalised using locally sound and complete
introduction/elimination rules.® Fortunately, the treatment of the affine case in the next section
provides a satisfactory answer for the optional case also.

For the —1L rule, we don’t have a complete answer. We can certainly construct examples
with uncontrolled iteration of this rule, as follows.

'A— 4 I';A'1=C
I';A= A I';AA,A—-o1=C
;A — A T;A,A A A—o1,A—o1— C

We leave a treatment of this and other sources of unknown use non-determinism to future work,
but note that that no complete solution can exist because of the undecidability of multiplicative-
additive-exponential linear logic. On the other hand, categorizing and solving other kinds
of unknown use non-determinism can give decision procedures for larger fragments. These
investigations will depend on the need for the increased expressivity; for example, by showing
how a negative A — 1 gives a more natural encoding than other possibilities.”

In the next section we give first a backward and then a forward calculus to handle the affine
case. One particular note — we remove all hypotheses 1 in the ultimate goal sequent. Thus, we
never need to use the 1L rule at all, so we just discard it. We can easily add these extra 1s to the
goal sequent if needed after search completes.

5To the best of our knowledge, no treatment of such a logic of optional use exists in the literature.
7Such formulas don’t exist in the uniform fragment! [7]
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4.2 Affine zones for the backward calculus

To handle the affine resources, we insert a new affine zone ¥ among the hypotheses of sequents,
giving the following shape for sequents: I' ; ¥ ; A = C. We view this affine zone as a multiset
of formulas, just like the linear zone, but with an additional structurally admissible rule of
weakening (theorem 6).

For the judgemental rules, we have a rule of affine dereliction to turn an affine hypothesis into
a linear hypothesis. This corresponds to committing to an actual use of the affine resource.

I';9;A A= C
I';9,A;A=C

aff-dl
On the other hand, affine resources can remain unused because we allow any number of them
to “escape” through initial and other axiomatic sequents:

F;\IJ;A:>A1mt I‘;\Il;-:>11R F;\IJ;A:>TTR F;\P;A,O:COL

We use the operators 1 & — (and — & 1) to internalise affine use. However, unlike the inter-
nalisation of unrestricted use as !, we restrict these to left-formulas (i.e., as negative formulas in
the eventual goal), and use the usual right rules for & and 1 to infer 1 & A on the right. Figure 3
lists all the rules. No rules require 1 as a resource, but we have (derived) rules for the situations
where 1 occurs as an operand of the principal connective. To enforce an absence of 1 among the
hypotheses, we add some side-conditions to &L.

This presentation of a resource-management motivated three zoned logic bears a strong re-
semblance to a similar system of Cervesato et al. [7] for the domain of (backward-reasoning) lin-
ear logic programming in the uniform fragment. The primary difference lies in the interpreation
of the new zone —strict in [7] versus affine in this paper. The design of their three-zoned system
derives its primary motivation from the nature of & and T, with the strict contexts designed to
handle the additive nature of &. In a similar sense in which strict contexts arise for a system-
atic approach to resource management in backward search, we claim that affine contexts arise
naturally in the setting of forward search.

Structural properties. We obtain an easily shown admissible structural weakening theorem
for the affine context, in addition to the straightforward extension of the structural properties
for the unrestricted context in theorem 1 to the three-zoned setting.

Theorem 6 (New Structural Properties).
(Y-weakening) If I ; W ; A = C thenI' ; W, A; A = C forany A # 1. O

Cut also has new cases to handle cutting affine resources, and a special case that corresponds
to having 1 as a hypothesis in the two-zoned calculus.®

Theorem 7 (Cut). For A # 1,
1. T; ;A= 1andT ;¥ ;A = C,thenT ;¥ , V' ; A;A" = C.
2. IfT; 9 ;A= AandT; V' ;A" A= C, thenT ; ¥, ¥'; A, A" = C.
3. IfT;V; = AandT; V' A; A = C, thenT ; ¥, V' ; A = C.
4. IfT';; = Aand ', A; ¥ ;A = C, thenT ;¥ ; A = C.

8Incidentally, this latter case resembles Girard’s MIX rule for classical two-sided sequent calculi:

I = A I = A’
T, I/ = A,A'

MIX

The logical meaning of MIX has recently been investigated by Chang ef al.. [8].

13



Judgemental Rules

o I'A;V;AA—C copy I';v; A A= C -l

F;\II;A:>AHWf TA; ;A =C F;‘I’,A;A:>Ca )

Multiplicative Rules

I;¥; A=A ;v ;A= B
QR

I';9;AAB=C
;0,9 ;AN = A®B

I';V;A,A® B=C ©

;) v, =1 1
I';v;A— A I';vV;A,B=C
I';9,9;AAN'A—-B=C
;9 ;A=C I';v;AA=— B
[;0;A=—=A—=B

—of

I';9;A=—A
;0,9 ;A AN A—-1=C

R

Additive Rules
I'; 9, A A= C B#1 I I'; 9, A;A = C 1
T;U;AA&B=C YT U A A81—C
I';v;A,B=—"C A;«él&L I';v.B;A = C
T;0;A,A&B— C 2 ,U;A1&B—C &
I'; ;A=A I';v;A— 1B
R ————— TR
I';9;A=— A&B I';9,A=T

&L

1L

I';v;AA=—C I';v;A,B=—"C
[;V;A A0 B—C
I';9;AA=—C I';9;A=0C 1L I';v;A=20C I';v;A,B=—"C
T;0;A A0l — C © T;0;A168— C
[;v;,A=A I';v;A= B
PR, PRy
I';9;A=— A B I';9;A— A®B

I';9;A,0—=C 0L
10L

Exponential Rules
F’A;\P;A:Cm r;; =A4 R
L;V; A\l A= C " I;v;, = 14"

Figure 3: Backward sequent calculus extended with affine contexts
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Proof. By a lexicographic structural induction; e may appeal to the induction hypothesis for a
smaller cut formula, or else if the cut formula is the same then the cases in the order presented,
or else if one of the derivations becomes smaller. The proof in detail isn’t particularly surprising;
see [22, 8] for similar proofs. O

Correctness. In order to show soundness, we employ a useful shorthand, ¥ &1, to stand for
a context consisting of every proposition A in ¥ replaced with A &1 or 1 & A, as appropriate.
We obtain a succinct soundness theorem.

Theorem 8 (Soundness). IfT' ;¥ ;A = C, thenT' ; ¥V & 1,A = C.

Proof. By induction on the structure of the derivation D of I' ; ¥ ; A = C. All cases except
init and 1R have trivial verifications. For these two rules, we first chain an alternating sequence
of 1L and &L; to account for all linear hypotheses in ¥ & 1, and then use init or 1R in the
two-zoned system, respectively. O

We also obtain a strong completeness theorem, schematic for affine contexts.
Theorem 9 (Completeness). IfI'; A = C, then ' ; ¥ ; A = C for any V.
Proof. By straightforward structural induction on the derivation of I ; A = C. O

This section has served primarily a motivational purpose; we now turn our attention to our
original goal of controlling affine non-determinism in forward reasoning.

4.3 Affine contexts in the forward calculus

Like before with the unrestricted contexts, in the forward direction we create only that subset
of the affine context that we can infer from other premisses and the conclusion, with the sole
difference that in order to maintain the affine interpretation, we treat the affine context multi-
plicatively, Rules for formulas with 1 as an operand require particular attention; for example,
consider the following tempting possibilities for A & 1:

L; U, A; A —Yy I;U;A —%xy A¢gT
&1L &1L/
I ;AA&1 —"xy L;v;AJA1T —"y

The &1L’ rule lacks any structural control on the number of occurrences of A & 1. We have
already seen this problem before in the presence of the 1L rule, removing which makes the
iterative nature of this rule obvious. We attack this problem by treating this second instance
as a kind of weakening; thus, we use the second of the above rules only after we have more
information about the multiplicity of A & 1.

When do we learn anything about the multiplicity of a formula? Certainly, we can never
infer the exact multiplicity of any given formula by just looking at the final goal sequent — this
would make the fragment decidable, and we already know that linear logic in the presence of
additive connectives is undecidable. However, we do know that the multiplicity of linear A &1
exceeds the multiplicity of A in the affine context; this suffices to control the iteration of &1L’
as follows — remove this rule entirely from consideration during search, and assume for every
other rule with a weak premiss that the formula A & 1 exists implicitly in the linear context.

Of course, in the proof theory it becomes tedious to modify every logical rule with the tests
and side conditions corresponding to these implicitly present affine resources, so for this paper
we introduce a layer of abstraction between the inference rule and the matching conditions that
enable the rule. This gives us an interesting logic of matching conditions. Conceptually, match-
ing conditions in the forward direction generalize the notion of occurrence in a context, written
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exactly like adjunctions (I, A) for historical reasons. This notation makes perfect sense in back-
ward reasoning, because the contexts, ambiently or explicitly, serve as parameters for the search
procedure. In contrast, because information flows in the opposite direction in forward reason-
ing, inference rules construct the contexts of the conclusion from those of the premisses, treating
contexts as localized (first-class) objects.” As a matching condition, adjunction describes only
the rather simple condition of occurrence.

In order to obtain a more complex and process-oriented view of matching, we define a new
judgement on zoned contexts I' ; ¥ ; A (written T):

THY +A

which we read “Y admits the adjunction Y', A.” This judgement takes T and A as input, and pro-
duces the output T' if it succeeds. The rules for this judgement proceed purely in the bottom-
up direction, with the output T’ read off from the completed derivation. The key property
maintained by this matching judgement is the matching lemma (11); roughly, it describes an
allowable and evident weakening.

The simplest rule for this judgement merely admits the trivial adjunction.

e
TEY +-
The remaining rules fall into three categories for the three different zones. For the linear zone:

T;T;AFY +A
T;U0;AAFT+AA

l_linear

For the affine zone:
F;U;AFY +A F;0;AFY +A
T;0,A;AFT AL A81 X1 T;0,A;AFT+A1&A
I;0;AFT +A A¢\IIF, I;0;AFY +A Agé\llk,

1&

T;U;AFY+A A1 & T;U;AFY+A 184 &
For the unrestricted zone:
L;U;AFY +A - T;U;AFYT +A A¢I‘}_,
D,A;U;AFT +A 1A T;U;AFYT +AIA !

In section 3 (figure 2) we included additional conditions of non-existence for the multiplicative
rules ®L;, ® L, and —R’. Negative existence shows up as a failure of the matching condition;
concretely, we write Y I/ A if for no T’ can we show T + T’ + A. Armed with this matching
judgement, we reconstruct the forward calculus of section 3 using affine contexts and other
insights of section 4; figure 4 lists the rules. In every rule of figure 2 requiring a particular form
for the contexts in the premisses, we use our matching judgement in place of special contexts
for the premisses. Additionally, the matching judgement obviates the left rules 1&L, &1L and
IL, so we simply omit them.

Correctness. As expected, the comparitively complex nature of these rules makes soundness
and completeness non-trivial properties. In fact, even simple statements of correspondence,
like (lin) and (weak) before, seem difficult to obtain. For a manageable description, we have to
invoke the matching judgement.

9We find this phenomenon in an even stronger form when we add quantifiers and relax all equalities to unifiability -
existential variables in backward search are treated globally, affecting otherwise disjoint branches in the derivation tree,
and requiring undo operations for backtracking. Forward reasoning localizes these variables, giving a much simpler
view of unification.
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Judgemental rules

init
A=A
T —"y THT;V;A)+ A T —" THT;T;A)+ A

3 co
;v A; A —"y aff-dl TVA; ;A —% y Py

Multiplicative connectives
T —"xy THT;V;A)+ A B I
I';9;,AJA® B—" ~ ®
T —ly THT;T;A)+ A THB
IM; ;A A® B —'~
T —ly THIT;V;A)+ B THA
I;9;A,A® B —'~
I; ;A —"1 A ;v ;A —» B
/ / / \Y ®R 0 1R
rur’,; v, v;A A" —"1V"2 AR B e —0 1

®L1

L;¥;A —"1 A T —"2 TH@,;V;AY+B
TUT ;0,0 A, A A—0 B —"1V" 4

—L

T —%y TYTFY+A CDny T—'Cc THA
—oR!

/ w AOR 1
T —YA—o(C T —"A—o(C

Additive Connectives
T —Yey T —Yey
THT;V;A)+ A B#1 THT;V;A)+B A#1

L L
&la I';v;,AJA&B —" v &l

I';v;AJA&B —"~
L; ;A —"1 A ;v ;A —“2 B Ajwi = A’ Jws
&R —— TR

TUT; TUY ;AUA" —virw2 4o B sy —t T
T —Yy
YH(@T;T;A)+ A ;v ;A —w2 4 Ajwi = A’ Jws
/ / ’ AN ’ @IL
Tul; TUT ;AUATAST —"172 v Uy
T/_)wz,_yl
T;0;A —"y TH@;V;AY+B AJwy = A’ Jws
/ ’ ’ wi Aw / 1®L
Trur’; vuv' ; AUA" 16 B —"1"2 yUxy
T %U’l 'Y fr/ %wg 'Y/
YH(T;V;A)+ A T H(T;¥;AY+B AJwy = A Jws
SL
TUTl; YUY ;AUA"A® B —"1""2 y U~
T —"A ®R T —*B ®R oL
T—)“)AEBB 1 T_>UJA®B 2 ;;0_>1

Exponential rules
T—"A YHET; )+

'R
r;; - —%14

Figure 4: Forward sequent calculus with affine contexts and matching judgement
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r;v;A —%C corresponds to ;v ;A= C
forany IV O T, %' D ¥, and A’ D A
such that (I'; ¥/'; A" F (T7; 07 ; A) 4+ (A'\A) (lin’)
I;0;A —ly corresponds to ;v ;AN = C
forany IV O T, ¥' DU, A'DA,and C D vy (weak’)
To start with, we need to establish some properties of the matching judgement.

Lemma 10 (Bounding). If (T; ¥ ; A) - (I'; ¥'; A") + A", then:
1. TVCI, ¥ CUand A' CA;and
2. WT\TY), (B\U) & 1, (A\A') C A",

Proof. Structural induction on the derivation of (I'; ¥ ; A) - (I'; ¥/ ; A") + A”. O
Additionally, we require a matching lemma that drives the completeness theorem.
Lemma 11 (Matching). If Y = Cand Y + (D ; ¥ ;A) + A’ thenT ;U ; A|A' = C.

Proof. Structural induction on the derivation of M :: T - (I'; ¥ ; A) + A’. We illustrate with a
pair of cases.

(i) The last rule of M is bFjpear, i.€..
L; ;AT ;A)+A
T;U0;AAF(T; 0 ;AN +A" A

r;v,AA=C hypothesis
I';9;A = A—oC —R
;A A" = A—C ind. hyp.
I'; ;A AN A= C —oR inversion

(ii) The last rule of M istg3, i.e.,

T; ;AT ;0 ;A)+A"
;0 A;AFT;0 ;A + A" A1

' v,A4;A\A=C hypothesis
r;v;AA&1=°C &1L
I';9;A —= A&1—C —R
;0 ;A A" = A&1—-C ind. hyp.
I'; ;A A" A8&1=C —oR inversion

The other cases follow similarly. For the matching rules for the unrestricted context, we appeal
to theorem 1 (extended for the affine zone). O

With these lemmas, we may now prove soundness and completeness of the forward calculus
with respect to the backward calculus. Although the soundness theorem doesn’t differ much
from before, the completeness theorem has a somewhat unusual form, depending on the match-
ing judgement. Nevertheless, we can prove these theorems purely by structural induction on
the derivations. The difficulty in these theorems lies not in the inductions themselves, which
follow straightforwardly, but rather in the choice of sufficiently strong induction hypotheses
that make the inductions valid.
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Theorem 12 (Soundness).
1. fY —CthenY = C.
2. IfT;U; A —tythenT ;¥ ;A = C forany A" D Aand C 2 ~.

Proof. By structural induction on the derivation of T —* +, similar to the proof of theorem 3,
but using the matching and bounding lemmas as required. We omit the easy details. O

Theorem 13 (Completeness). If I ; ¥ ; A = C, then for some T C T, ¥' C U, and v C C such
that the following match holds

(F/;\IJ/;A) |_ (F//;\DII;AH) + AII/

one of the following hold:
1. either T ;0" ; A", A" —0 C;
2. or T ;0" ;AT A" —1 y for some AT C A"

Proof. By structural induction on the derivation D of I' ; ¥ ; A = C, using the bounding and
matching lemmas. We have the following characteristic cases for the last rule in D:

1. init, copy, aff-dl, 1R, TR or ! R; these cases follow immediately because the rules in the
forward and backward direction differ structurally only in the presence of the matching
derivation, for which we invoke the matching lemma.

2. 1&L or &1L; for example

D/
D — I';,A;A=C
I';9;AA&1=C

1&L

Invoking the bounding lemma (case 1), assume givenI'y UT's C T' and ¥4, ¥y C (T, A).
Then, we have
1. if Fl ; \Ifl ; A, !FQ, l:[12 &1 —0 C, then
1. if1& A € ¥y &1, then we satisfy case (1);
2. otherwise, ¥1, ¥y C ¥ and we satisfy case (1).
3. otherwise, I'; ; Uy ; A/ /1Ty, ¥y & 1 —0 C for some A’ C A; the above argument still
applies, except now we satisfy case (2) instead of (1).
4. Other rules require a similar but simpler enumeration of possibilities. O

Lest the completeness theorem give the impression that matching as a judgement makes for-
ward reasoning unusably complex, we restate the correspondences (lin’) and (weak’) in simpler
terms using the bounding lemma.

r;v;A—°C corresponds to I';v,AN'=C

forany I" O T, ¥' O ¥, and for A’ O A where every element of A"\A has one of the forms
A&1,1&A, or!A;and

[;0;A —ly corresponds to I'; v ;AN =C

foranyI" O, ¥' D0, A’ DA,and C D .

These correspondences finally enable a usable model of affine non-determinism in the presence
of negative 1 in the logic. In the next and final section of this paper, we discuss the implemen-
tation of this calculus in the inverse method.
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5 The inverse method

For an actual implementation we must investigate a focusing version of the forward calculus,
but we can already see many features of the inverse method by working with the calculus
without focusing. Historically, the inverse method for classical (non-linear) logic owes its de-
velopment to Maslov [19]. Subsequently, Voronkov [25], Mints [21], and more recently Tam-
met [23, 24] have adapted it for non-classical and intuitionistic logics, though not for linear
logic. Mints [20] has investigated resolution calculi for classical linear logic, but his methods
don’t have an immediate application to the inverse method. We describe the key issues for
the inverse method for linear logic in this section, and refer interested readers to the handbook
article [9] on the inverse method for a more complete reference.

Subformula property. This key technical property makes the inverse method possible. Stated
simply, in cut-free sequent calculus proofs, we need to consider only sequents composed of
subformulas of the goal sequent. To illustrate, assuming we have sequents containing A and
B, then we never consider a rule to infer a sequent about A & B from these sequents, unless
A & B occurs as a subformula of the goal sequent. Formally, we present this property property
in terms of a subformula relation for propositions. To describe the subformula relation in its
strongest form, we decorate subformulas with certain marks:

1. Sign (also known as polarity), which we write as a superscript * or ~ (or possibly both).
The operands of all binary connectives inherit the sign of the formula, with the exception
of A — B, for which A receives the opposite sign. Formulas to the right of the sequent
arrow recive the positive sign, and those on the left the negative sign. Thus, these signs
indicate the side of the sequent arrow where the formula occurs as a principal formula.

2. Weight, which we write as a subscript |, and schematically as .. Top-level formulas in
the unrestricted context, and operands of ! receive this decoration, but the subformulas
do not inherit the decoration. These signs, therefore, determine whether the formula is
allowed to occur in the unrestricted context, and thus serves as a guide for the copy rule.

3. Affineness, which we indicate as a subscript g, and schematically as ,. Similar to the weight
decoration, only top-level formulas in the affine context, and the operand A in A & 1 and
1 & A, receive this mark, and subformulas don’t inherit it.

The decorated subformula relation < describes a relation between decorated formulas, generated
freely from the following rules. (We omit the trivial rules for propositional constants.)

AT < (AxB)E, B* < (Ax B)Z, Lok € {®, &, B}
AT < (A B);, B* < (A—B)y,
AfF < (14)%, AL < (A&, AL < (1A,

Using this relation, we may state the subformula property for the forward calculus in the
strongest form as follows:

Theorem 14 (Subformula Property). Any sequent appearing in a proof of T ; Ug ; A~ = C™
must have the form:

_ - N ~ e +
ALLAY, . i Big,Bag,...; Dy, Dy,... = ("'

where every formula A;, By, D~ and C'™ relates to some formula in T, UW, UA™ U {C*} by the
subformula relation <.

Proof. Straightforward structural induction on the derivation of I'| ; Uz ; A~ = C't. O

By theorem 13, sequents in the forward calculus contain a subset of formulas in the backward
calculus. Thus,
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Corollary 15 (Subformula Property for the Forward Calculus). In proving I'; ;U5 ;A™ — CF
we need only consider suequents consisting of subformulas in the sense of Thm.14.

Proof. Contrapositively, given a proof of I'; ; W, ; A~ — C7, if it refers to sequents consisting
of non-subformulas of the goal, use theorem 13 to create a corresponding proof in the backward
calculus, then note a violation of theorem 14. O

Labelling and specialized rules. The subformula property gives us the core of the inverse
method procedure. We start with intial sequents of the form -;-; A= —% A", where A occurs as
both a positive and a negative subformula of the goal sequent. Since we need some way to refer
to subformulas of the goal sequent, we label label all subformulas with new fresh (propsitional)
labels, which we write using the propositonal variable L.

We also specialize all rules to these labels by means of a pre-processing stage before entering
into the main search procedure. We don’t maintain general rules for conjunction, disjunction
etc., but instead have a version of every rule for every label, with the label taking the role of
the principal formula. We can even perform further optimizations on these rules, for example,
pre-computing all compositions of invertible rules (which necessarily have bounded depth),
because the subformula property guarantees that we require no additional rules to prove any
(provable) goal sequent. Search then proceeds by a saturation based strategy, applying all pos-
sible rules to the fringe of a database of facts.

Subsumption. Because of the conjunctive non-determinism in the forward direction, arising
from the saturation-based search, it becomes critical to detect redundancies using a process of
sequent subsumption. The only complications in our linear setting lie in handling the linear
context for weak sequents, for which we allow subsumption of sequents with weaker contexts
even though we don’t have an admissible structural theorem for weakening the linear con-
text of weak sequents. Nevertheless, we don’t lose completeness because we can always use
the stronger sequent for any purpose the weaker sequent might serve; indeed, we justify the
negative-existence conditions for —R’, for example, with exactly this reason.

In the presence of quantifiers, the order of contraction, which takes the form of a sequence
of unification steps (known as factoring), and subsumption becomes a critical issue. Eager fac-
toring, i.e., before any subsumption tests, might end up as useless work if the sequents don’t
lead to a proof. This problem exists already for the unrestricted case, and for the linear case the
only complications occur in additive rules that perform multiset unions. we shall examine the
exact nature of factoring for these cases in a future work; fortunately, this problem doesn’t exist
in the propositional fragment in this paper.

Search procedure Finally, a brief summary of the search procedure:

1. Label all subformulas of the goal sequent, and decorate using signs, weights and affinities.

2. Determine all initial sequents for atomic formulas with both signs.

3. Specialize all left rules for negative subformulas, all right rules for positive subformu-
las, instances of the copy rule for heavy subformulas, and instances of aff-dl for affine
subformulas.

4. Starting from the initial sequents, apply the inference rules in a fair way (saturation
search), adding new facts to a database used for subsumption checks. As an optimiza-
tion, after applying all possible rules for a given sequent, mark the sequent as “old”, and
never consider it for generating new facts again. Thus, the unmarked sequents form the
active fringe of the database.

5. Stop when we match the goal sequent, using the conditions of the completeness theorem
(theorem 13). Otherwise, if no rules apply, abort the search procedure.
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6 Conclusion

We have presented a forward sequent calculus for the propositional linear logic. Our calculus
has the following properties from the perspective of resource management:

e No undetermined resources. We identify sequents with weakenable linear contexts, and
introduce such resources implicitly.

e Controlled affine resources. All rules have structural resource introductions, controlled by
tight matching criteria.

Our framework is sufficiently general that it admits some ready extensions. As remarked
earlier, extending the calculus to first order connectives requires relaxing equalities to unifica-
tion. While it is relatively straightforward for the logical rules, the negative existence conditions
in the matching rules require special consideration.

In order to complete a practical implemention of an inverse method theorem prover that
uses this forward calculus, we require two important theoretical extensions — (1) a version of the
sequent calculus that incorporates focused derivations in the sense of Andreoli [3, 16], and (2) an
efficient indexing mechanism. Focused derivations impose strict controls on rule application,
allowing the creation of big-step derived inference rules, and thereby cuts down on the number
of new sequents. We shall examine the interactions between inversion, focusing, and matching
in a future work.

Another key issue occurs with the rule —1L that allows a kind of uncontrolled applica-
tion. While somewhat rarer, this scenario no doubt fits the definition of a resource management
problem, since it allows the linear context to grow uncontrolledly. We see two possibilities for
handling this — one would attempt to re-apply our guiding maxim of “control through lazi-
ness”, and derive a further refinement of the matching judgement for these cases. A more
promising approach would use a possibility monad [8] to handle A — 1 by translating their
uses into Girard’s MIX rule, and then using an interpretatino of MIX in the possibility monad.
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