
A Boolean Approach to Unbounded, Fully Symbolic

Model Checking of Timed Automata

Sanjit A. Seshia Randal E. Bryant

March 2003

CMU-CS-03-117

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A shorter version of this paper will appear at CAV ’03.

Abstract

We present a new approach to unbounded, fully symbolic model checking of timed automata that
is based on an efficient translation of quantified separation logic to quantified Boolean logic. Our
technique preserves the interpretation of clocks over the reals and can check any property expressed
in the timed µ calculus. The core operations of eliminating quantifiers over real variables and
deciding separation logic are respectively translated to eliminating quantifiers on Boolean variables
and checking Boolean satisfiability (SAT). We can thus leverage well-known techniques for Boolean
formulas, including Binary Decision Diagrams (BDDs) and recent advances in SAT and SAT-based
quantifier elimination. We present preliminary empirical results for a BDD-based implementation
of our method.

This research was supported in part by a National Defense Science and Engineering Graduate Fellowship and by
ARO grant DAAD19-01-1-0485.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclusions contained in this document are those of
the authors, and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Department of Defense or the U.S. Government.

Keywords: Timed automata, Model checking, Boolean logic, Separation logic, Quantifier
elimination

1 Introduction

Timed automata [2] have proved to be a useful formalism for modeling real-time systems. A timed
automaton is a generalization of a finite automaton with a set of real-valued clock variables. The
state space of a timed automaton thus has a finite component (over Boolean state variables) and an
infinite component (over clock variables). Several model checking techniques for timed automata
have been proposed over the past decade. These can be classified, on the one hand, as being
either symbolic or fully symbolic, and on the other, as being bounded or unbounded. Symbolic
techniques use a symbolic representation for the infinite component of the state space, and either
symbolic or explicit representations for the finite component. In contrast, fully symbolic methods
employ a single symbolic representation for both finite and infinite components of the state space.
Bounded model checking techniques work by unfolding the transition relation d times, finding
counterexamples of length up to d, if they exist. As in the untimed case, these methods suffer
from the limitation that, unless a bound on the length of counterexamples is known, they cannot
verify the property of interest. Unbounded methods, on the other hand, can produce a guarantee
of correctness.

The theoretical foundation for unbounded, fully symbolic model checking of timed automata
was laid by Henzinger et al. [11]. The characteristic function of a set of states is a formula in
separation logic, a quantifier-free fragment of first-order logic. Formulas in Separation Logic (SL)
are Boolean combinations of Boolean variables and predicates of the form xi ./ xj + c where
./∈ {>,≥}, xi and xj are real-valued variables, and c is a constant. Quantified Separation Logic
(QSL) is an extension of SL with quantifiers over real and Boolean variables. The most important
model checking operations involve deciding SL formulas and eliminating quantifiers on real variables
from QSL formulas.

In this paper, we present the first approach to unbounded, fully symbolic model checking of
timed automata that is based on a Boolean encoding of SL formulas and that preserves the in-
terpretation of clocks over the reals. Unlike many other fully symbolic techniques, our method
can be used to model check any property in the timed µ calculus or Timed Computation Tree
Logic (TCTL) [3]. The main theoretical contribution of this paper is a new technique for trans-
forming the problem of eliminating quantifiers on real variables to one of eliminating quantifiers
on Boolean variables. In some cases, we can avoid introducing Boolean quantification altogether.
These techniques, in conjunction with previous work on deciding SL formulas via a translation
to Boolean satisfiability (SAT) [17], allow us to leverage well-known techniques for manipulating
quantified Boolean formulas, including Binary Decision Diagrams (BDDs) and recent work on SAT
and SAT-based quantifier elimination [13].

Related Work. The work that is most closely related to ours is the approach based on
representing SL formulas using Difference Decision Diagrams (DDDs) [14]. A DDD is a BDD-like
data structure, where the node labels are generalized to be separation predicates rather than just
Boolean variables, with the ordering of predicates induced by an ordering of clock variables. This
predicate ordering permits the use of local reduction operations, such as eliminating inconsistent
combinations of two predicates that involve the same pair of clock variables. Deciding a SL formula
represented as a DDD is done by eliminating all inconsistent paths in the DDD. This is done by
enumerating all paths in the DDD and checking the satisfiability of the conjunction of predicates
on each path using a constraint solver based on the Bellman-Ford shortest path algorithm. Note
that each path can be viewed as a disjunct in the Disjunctive Normal Form (DNF) representation
of the DDD, and in the worst case there can be exponentially many calls to the constraint solver.
Quantifier elimination is performed by the Fourier-Motzkin technique [10], which also requires

1

enumerating all possible paths. In contrast, our Boolean encoding method is general in that any
representation of Boolean functions may be used. Our decision procedure and quantifier elimination
scheme use a direct translation to SAT and Boolean quantification, respectively, avoiding the need
to explicitly enumerate each DNF term. In theory, the use of DDDs permits unbounded, fully
symbolic model checking of TCTL; however, the DDD-based model checker [14] can only check
reachability properties (these can express safety and bounded-liveness properties [1]).

Uppaal2k and Kronos are unbounded, symbolic model checkers that explicitly enumerate
the discrete component of the state space. Kronos uses Difference Bound Matrices (DBMs) as
the symbolic representation [19] of the infinite component. Uppaal2k uses, in addition, Clock
Difference Diagrams (CDDs) to symbolically represent unions of convex clock regions [6]. In a
CDD, a node is labeled by the difference of a pair of clock variables, and each outgoing edge
from a node is labeled with an interval bounding that difference. Note that while Kronos can
check arbitrary TCTL formulas, Uppaal2k is limited to checking reachability properties and very
restricted liveness properties such as AFp.

Red is an unbounded, fully symbolic model checker based on a data structure called the Clock
Restriction Diagram (CRD) [18]. The CRD is similar to a CDD, labeling each node with the
difference between two clock variables. However, each outgoing edge from a node is labeled with an
upper bound, instead of an interval. Red represents separation formulas by a combined BDD-CRD
structure, and can model check TCTL formulas.

A fully symbolic version of Kronos using BDDs has been developed by interpreting clock
variables over integers [8]; however, this approach is restricted to checking reachability for the
subclass of closed timed automata1, and the encoding blows up with the size of the integer constants.
Rabbit [7] is a tool based on this approach that additionally exploits compositional methods to find
good BDD variable orderings. In comparison, our technique applies to all timed automata and its
efficiency is far less sensitive to the size of constants. Also, the variable ordering methods used in
Rabbit could be used in a BDD-based implementation of our technique.

Many fully symbolic, but bounded model checking methods based on SAT have been developed
recently (e.g., [5, 15]). These algorithms cannot be directly extended to perform unbounded model
checking.

The rest of the paper is organized as follows. We define notation and present background
material in Sections 2 and 3. We describe our new contributions in Sections 4 and 5. We conclude
in Section 6 with experimental results and ongoing work.

2 Background

We begin with a brief presentation of background material, based on papers by Alur [2] and
Henzinger et al. [11]. We refer the reader to these papers for details.

2.1 Separation Logic

Separation logic (SL), also known as difference logic, is a quantifier-free fragment of first-order
logic. A formula φ in separation logic is a Boolean combination of Boolean variables and separation
predicates (also known as difference bound constraints) involving real-valued variables, as given by
the following grammar:

φ ::= true | false | b | ¬φ | φ ∧ φ | xi ≥ xj + c | xi > xj + c

1Clock constraints in a closed timed automaton do not contain strict inequalities.

2

We use a special variable x0 to denote the constant 0; this allows us to express bounds of the form
x ≥ c. We will however use both x ./ c and x ./ x0 + c, where ./∈ {>,≥}, as suits the context.
We will denote Boolean variables by b, b1, b2, . . . , real variables by x, x1, x2, . . . , and SL formulas by
φ, φ1, φ2, Note that the relations > and ≥ suffice to represent equalities and other inequalities.

Characteristic functions of sets of states of timed automata are SL formulas. Deciding the
satisfiability of a SL formula is NP-complete [11].

Quantified Separation Logic. Separation logic can be generalized by the addition of quan-
tifiers over both Boolean and real variables. This yields quantified separation logic (QSL). The
satisfiability problem for QSL is PSPACE-complete [12]. We will denote QSL formulas by ω, ω1,

2.2 Timed Automata

A timed automaton T is a tuple 〈L,L0,Σ,X , I, E〉, where L is a finite set of locations, L0 ⊆ L is a
finite set of initial locations, Σ is a finite set of labels used for product construction, X is a finite
set of non-negative real-valued clock variables, I is a function mapping a location to a SL formula
(called a location invariant), and E is the transition relation, a subset of L×Ψ×R×Σ×L, where
Ψ is a set of SL formulas that form enabling guard conditions for each transition, and R is a set of
clock reset assignments. A location invariant is the condition under which the system can stay in
that location. A clock reset assignment is of the form xi := x0 + c or xi := xj , where xi, xj ∈ X
and c is an integer constant,2 and indicates that the clock variable on the left-hand side of the
assignment is reset to the value of the expression on the right-hand side. We will denote guards by
ψ,ψ1,

Two timed automata are composed by synchronizing over common labels. We refer the reader
to Alur’s paper [2] for a formal definition of product construction. Note that in contrast to the
definition of timed automata given by Alur [2], we allow location invariants and guards to be
arbitrary SL formulas, rather than simply conjunctions over separation predicates involving clock
variables.

The invariant IT for the timed automaton T is defined as IT =
∧

l∈L[enc(l) =⇒ I(l)],
where enc(l) denotes the Boolean encoding of location l. We will also denote a transition t ∈ E
as ψ =⇒ A, where ψ is a guard condition over both Boolean state variables (used to encode
locations) and clock variables of the system, and A is a set of assignments to clock and Boolean
state variables.

2.3 Timed µ Calculus and TCTL

We express properties of timed automata in a generalization of the µ calculus called the timed µ
(Tµ) calculus. A formula ϕ of the Tµ calculus is generated by the following grammar:

ϕ ::= X | φ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 . ϕ2 | z.ϕ | µX.ϕ | νX.ϕ

z is a specification clock variable (i.e., z 6∈ X) and X is a formula variable used in fixpoint
computation. The formula ϕ1 . ϕ2 means that the formula ϕ1 is true at the present state, and
remains true (as time elapses) until some transition is taken, at which time formula ϕ2 becomes
true; thus “.” is essentially a next-state operator. The formula z.ϕ is true in a state where ϕ is true
after setting specification clock variable z to zero. The expression µX.ϕ stands for the least fixpoint
of ϕ, where X is a formula variable bound inside ϕ; ν denotes the greatest fixpoint operator.

Henzinger et al. [11] show that the Tµ calculus can express the dense-real-time version of
Computation Tree Logic (CTL), Timed CTL (TCTL) [3]. TCTL generalizes CTL by allowing

2The assignment xi := c is represented as xi := x0 + c. Wherever we use xi to denote a clock variable, i > 0.

3

atomic propositions to be any SL formula, and in addition contains formulas of the form z.ϕ where
z is a specification clock variable and ϕ is a TCTL formula in which z appears free; the latter class
enables one to write time-bounded properties. We omit the details for brevity.

Several model checkers are specialized to check reachability properties. Using the notation of
the Tµ calculus, a reachability property is a formula of the form

φinit =⇒ ¬µX.[φerr ∨ (true . X)]

where φinit is the initial set of states, and φerr characterizes the bad states; the formula evaluates
to true if no error state is reachable from any initial state.

3 Fully Symbolic Model Checking

We use a model checking algorithm given by Henzinger et al. [11]. This algorithm checks that
a timed automaton T satisfies a specification given as a Tµ formula ϕ. The algorithm always
terminates, and generates a SL formula |ϕ|, such that, if T is non-zeno (i.e., time can diverge from
any state), then |ϕ| is equivalent to IT .

The algorithm is fully symbolic since it avoids the need to enumerate locations by representing
sets of values of both Boolean state variables and clock variables as SL formulas. It performs
backward exploration of the state space and uses the following three special operators over SL
formulas:

1. Time Elapse: φ1
� φ2 denotes the set of all states that can reach the state set φ2 by

allowing time to elapse, while staying in state set φ1 at all times in between. Formally,

φ1
� φ2

.
= ∃δ{δ ≥ x0 ∧ φ2 + δ ∧ ∀ε[x0 ≤ ε ≤ δ =⇒ φ1 + ε]} (1)

where φ + δ denotes the formula obtained by adding δ to all clock variables occurring in φ,
computed as φ[xi + δ/xi, 1 ≤ i ≤ n], where x1, x2, . . . , xn are the clock variables in φi (i.e.,
not including the zero variable x0).

2. Assignment: φ[A], where A is a set of assignments, denotes the formula obtained by simul-
taneously substituting in φ the right hand side of each assignment in A for the left hand side.
Formally, if A is the list b1 := φ1, . . . , bk := φk, x1 := xj1 + c1, . . . , xn := xjn + cn, where each
bi is a Boolean variable, each xj is a clock variable, and for each xjl

, jl = 0 or cl = 0, then

φ[A] = φ[φ1/b1, . . . , φk/bk, xj1 + c1/x1, . . . , xjn + cn/xn]

Assignments are thus performed via substitutions of variables.

3. Weakest Pre-condition: preT φ denotes the weakest precondition of φ with respect to the
timed automaton T . Formally,

preT φ = IT ∧ (φ ∨
∨

t∈E

pret(IT ∧ φ))

where for a transition t = ψ =⇒ A

pret(φ) = ψ ∧ φ[A]

Note that preT is defined using assignments and Boolean operations.

4

The model checking algorithm is defined inductively on the structure of Tµ formulas:

• |φ| := IT ∧ φ

• |¬ϕ| := IT ∧ ¬|ϕ|

• |ϕ1 ∨ ϕ2| := |ϕ1| ∨ |ϕ2|

• |ϕ1 . ϕ2| := |(|ϕ1| ∨ |ϕ2|) � preT (|ϕ2|)|

• |z.ϕ| := |ϕ|[z := 0]

• |µX.ϕ| is the result of the following iteration:

φnew := false;
repeat

φold := φnew ;
φnew := |ϕ[X := φold]|;

until(φnew =⇒ φold);
returnφold;

As can be seen from the algorithm description above, apart from Boolean operators, the main
components of the algorithm are: quantifier elimination in the time elapse operation, substitution of
state variables in an assignment, and the decision procedure used to check containment in fixpoint
computation. For a fully symbolic model checker that represents state sets as SL formulas, these
model checking operators can be defined as operations in QSL. We elaborate below.

Time Elapse. Consider the formula on the right hand side of Equation 1, the definition of the
time elapse operator. This formula is not in QSL, since it includes expressions that are the sum of
two real variables (e.g., x+ δ). However, it can be transformed to a QSL formula, by using instead
of δ and ε, variables δ and ε that represent their negations:

∃δ{δ ≤ x0 ∧ φ2 + (−δ) ∧ ∀ε[δ ≤ ε ≤ x0 =⇒ φ1 + (−ε)]} (2)

Formula 2 is expressible in QSL, since the substitution φ[xi +(−δ)/xi, 1 ≤ i ≤ n] can be computed
as φ[δ/x0].

3 This yields,

∃δ{δ ≤ x0 ∧ φ2[δ/x0] ∧ ∀ε(δ ≤ ε ≤ x0 =⇒ φ1[ε/x0])} (3)

Finally, we can rewrite Formula 3 purely in terms of existential quantifiers:

∃δ{δ ≤ x0 ∧ φ2[δ/x0] ∧ ¬∃ε(ε ≤ x0 ∧ δ ≤ ε ∧ ¬φ1[ε/x0])} (4)

A procedure for performing the time elapse operation therefore requires one for eliminating
(existential) quantifiers over real variables from a SL formula.

Checking Containment. Containment of one set of states, φnew, in another, φold, is checked
by deciding the validity of the SL formula φ = φnew =⇒ φold (or equivalently, the satisfiability of
¬φ). There are several procedures that can decide separation formulas (e.g., [17, 4, 15]).

3Note that substituting x0 by δ or ε can be viewed as shifting the zero reference point to a more negative value,
thus increasing the value of any clock variable relative to zero (e.g., [5, 14]).

5

4 Model Checking Operations using Boolean Encoding

We now show how to implement the fundamental model checking operations using a Boolean encod-
ing of separation predicates. We first describe how our encoding allows us to replace quantification
of real variables by quantification of Boolean variables. This builds on previous work on deciding
a SL formula by transformation to a Boolean formula [17]. We then show how we represent SL
formulas as Boolean formulas, allowing the model checking operations to be implemented as op-
erations in Quantified Boolean Logic (QBL), and enabling the use of QBL packages, e.g., a BDD
package.

In the remainder of this section, we will use φ to denote a SL formula over real variables
x1, x2, . . . , xn, and Boolean variables b1, b2, . . . , bk. Also, let ./, ./1, ./2∈ {>,≥}.

4.1 From Real Quantification to Boolean Quantification

Consider the QSL formula ωa
.
= ∃xa.φ, where a ∈ [1..n].

We transform ωa to an equivalent QSL formula ωbool with quantifiers over only Boolean variables
in the following three steps:

1. Encode separation predicates:

Consider each separation predicate in φ of the form xi ./ xj+c where either i = a or j = a. For
each such predicate, we generate a corresponding Boolean variable e./,c

i,j . Separation predicates
that are negations of each other are represented by Boolean literals (true or complemented
variables) that are negations of each other; however, for ease of presentation, we will extend
the naming convention for Boolean variables to Boolean literals, writing e>,−c

j,i for the negation

of e≥,c
i,j .

Let the added Boolean variables be e
./i1

,ci1

i1,a , e
./i2

,ci2

i2,a , . . . , e
./im ,cim

im,a for the upper bounds on xa,

and e
./j1

,cj1

a,j1
, e

./j2
,cj2

a,j2
, . . . , e

./j
m′

,cj
m′

a,jm′
for the lower bounds on it.

We replace each predicate xa ./ xj + c (or xi ./ xa + c) in φ by the corresponding Boolean
variable e./,c

a,j (or e./,c
i,a). Let the resulting SL formula be φa

bool.

2. Add transitivity constraints:

Notice that there can be assignments to the e./,c
i,a and e./,c

a,j variables that have no corresponding
assignment to the real valued variables. To disallow such assignments, we place constraints
on these added Boolean variables. Each constraint is generated from two Boolean literals that
encode predicates containing xa. We will refer to these constraints as transitivity constraints
for xa.

A transitivity constraint for xa has one of the following types:

(a) e./1 ,c1
i,a ∧ e./2 ,c2

a,j =⇒ (xi ./ xj + c1 + c2),
where if ./1=./2, then ./=./1, otherwise, we must duplicate this constraint for both
./=./1 and for ./=./2.

(b) e./1 ,c1
i,j =⇒ e./2 ,c2

i,j , where c1 > c2 and either i = a or j = a.

(c) e>,c
i,j =⇒ e≥,c

i,j , where either i = a or j = a.

6

Note that a constraint of type (a) involves a separation predicate (xi ./ xj + c1 + c2). This
predicate might not be present in the original formula φ.4

After generating all transitivity constraints for xa, we conjoin them to get the SL formula
φa

cons.

3. Finally, generate the QSL formula ωbool given below:

∃e
./i1

,ci1

i1,a , e
./i2

,ci2

i2,a , . . . , e
./im ,cim

im,a .∃e
./j1

,cj1

a,j1
, e

./j2
,cj2

a,j2
, . . . , e

./j
m′

,cj
m′

a,jm′
.[φa

cons ∧ φ
a
bool]

We formalize the correctness of this transformation in the following theorem.

Theorem 1 ωa and ωbool are equivalent.

Proof: To show that ωa and ωbool are equivalent, we show that ωa =⇒ ωbool and ωbool =⇒ ωa.
Denote the formula ωa =⇒ ωbool by ω1 and ωbool =⇒ ωa by ω2. Note first that the free

variables in both implications are the real-valued variables x1, x2, . . . , xa−1, xa+1, . . . , xn and the
Boolean variables b1, b2, . . . , bk. For all i and j, the values assigned to xi and bj by an assignment
A are denoted by A[xi] and A[bj] respectively.

1. We first show that ω1 is valid.

Let A denote an arbitrary assignment to all free variables and to the bound real variable xa

in ωa such that A[ωa] = true. We extend A with an assignment to the Boolean variables

e
./i1

,ci1

i1,a , e
./i2

,ci2

i2,a , . . . , e
./im ,cim

im ,a and e
./j1

,cj1

a,j1
, e

./j2
,cj2

a,j2
, . . . , e

./j
m′

,cj
m′

a,jm′
, such that A[ωbool] = true

and hence A[ω1] = true.

Define an evaluation of the newly added Boolean variables according to the following rules:

A[ec,./a,j] = A[xa ./ xj + c] ∀j 6= a, for all constants c and relations ./ (5)

A[ec,./i,a] = A[xi ./ xa + c] ∀i 6= a, for all constants c and relations ./ (6)

Since A[ωa] = true, A[φ] = true. Further, using Equations 5 and 6, we can conclude that
A[φa

bool] = A[φ] because φa
bool is obtained from φ by replacing predicates (xa ./ xj + c) and

(xi ./ xa + c′) (for all i, j and for all constants c, c′) with Boolean variables ec,./
a,j and ec

′,./
i,a .

Therefore, A[φa
bool] = true.

To show that A[ωbool] = true, we need to additionally show that A[φa
cons] = true. We

consider an arbitrary transitivity constraint of each type:

(a) e./1 ,c1
i,a ∧ e./2 ,c2

a,j =⇒ (xi ./ xj + c1 + c2).

Suppose A[e./1 ,c1
i,a] = A[e./2 ,c2

a,j] = true. Then, by Equations 5 and 6, we conclude that
A[xi] ./1 A[xa] + c1 and A[xa] ./2 A[xj] + c2. If ./1=./2=./, we can infer A[xi] ./
A[xj] + c1 + c2, and thus A[xi ./ xj + c1 + c2] = true. If ./1 6=./2, then we can infer
A[xi ./1 xj + c1 + c2] = A[xi ./2 xj + c1 + c2] = true.

(b) e./1 ,c1
i,j =⇒ e./2 ,c2

i,j , where c1 > c2 and either i = a or j = a.

Suppose A[e./1 ,c1
i,j] = true. Then, by Equations 5 and 6, A[xi ./1 xj + c1] = true. Since

c1 > c2, A[xi ./2 xj + c2] = true, and hence A[e./2 ,c2
i,j] = true.

4This addition is analogous to the “tightening” step performed in difference-bound matrix based algorithms

7

(c) e>,c
i,j =⇒ e≥,c

i,j , where either i = a or j = a.

Exactly as for type (b) constraints, A[e>,c
i,j] = A[xi > xj + c] = true. Therefore,

A[xi ≥ xj + c] = true and hence A[e≥,c
i,j] = true.

Thus, A satisfies all transitivity constraints, and hence A[φa
cons] = true, completing the proof

for the first part.

2. We now show that ω2 is valid.

Let A denote an arbitrary assignment to all free variables and to the bound Boolean variables
in ωbool such that A[ωbool] = true. We extend A with an evaluation of xa such that A[ωa] =
true and hence A[ω2] = true.

Since A[ωbool] = true, we know that A[φa
cons] = true (i.e., the transitivity constraints are

satisfied by A) and A[φa
bool] = true.

Suppose we can find a value A[xa] that satisfies the following equations:

A[xa ./ xj + c] = A[ec,./
a,j] ∀j 6= a, ∀ constants c (7)

A[xi ./ xa + c] = A[ec,./
i,a] ∀i 6= a, ∀ constants c (8)

Then, A[φa
bool] = A[φ] because φa

bool is obtained from φ by replacing predicates (xa ./ xj + c)

and (xi ./ xa + c′) (for all i, j and for all constants c, c′) with Boolean variables ec,./
a,j and ec

′,./
i,a .

Since A[φa
bool] = true, A[φ] = true, and hence A[ωa] = true.

A value A[xa] that satisfies Equations 7 and 8 exists if:

A[xa] ≥ A[xj] + c if A[ec,≥
a,j] = true (9)

A[xa] < A[xj] + c if A[ec,≥
a,j] = false (10)

A[xa] > A[xj] + c if A[ec,>
a,j] = true (11)

A[xa] ≤ A[xj] + c if A[ec,>
a,j] = false (12)

In the above equations, w.l.o.g., we use literals encoding lower bounds on xa (e.g., ec,≥
a,j) in

place of those encoding upper bounds (e.g., e−c,>
j,a).

Let
Ua = min

j,c s.t. e
c,./
a,j =false

(A[xj] + c)

and
La = max

j,c s.t. e
c,./
a,j =true

(A[xj] + c)

Ua and La are respectively the tightest upper and lower bounds on A[xa].

Define the ordering relation � as follows

� =

{

≥ if the tightest bounds are non-strict, i.e., A[xa] ≤ Ua and A[xa] ≥ La

> otherwise
(13)

Then, the inequalities 9 to 12 can be satisfied if:

Ua � La (14)

8

In other words, if the minimum upper bound on A[xa] is greater (or greater than or equal to)
the maximum lower bound on A[xa].

To show that the above is true, it is enough to show that for any pair of upper and lower
bounds on A[xa], the relation � holds, and so it holds in particular for the minimum upper
bound and the maximum lower bound. For example, for the two inequalities A[xa] < A[xj]+c1
and A[xa] ≥ A[xk] + c2 to be true we need that A[xj] + c1 > A[xk] + c2.

Therefore, consider two arbitrary indices j and k different from a. We need to consider four
cases based on evaluations of the Boolean literals ec1,./

a,j and ec2,./
a,k . Note that cases in which

both literals evaluate to true or both to false only give rise to two lower bounds or to two
upper bounds. By the transitivity constraints of types (b) and (c), if the minimum upper
bound (or maximum lower bound) is satisfied, then every other upper bound (or lower bound)
will be satisfied.

The four cases are enumerated below:

(a) ec1,>
a,j = false, ec2,≥

a,k = true.
This implies that

A[xj] ≥ A[xa]− c1 and A[xa] ≥ A[xk] + c2

We need to show that
A[xj] + c1 ≥ A[xk] + c2

Or
A[xj] ≥ A[xk] + (c2 − c1)

The last inequality is true, since A satisfies the transitivity constraint e−c1,≥
j,a ∧ ec2,≥

a,k =⇒
(xj ≥ xk + c2 − c1).

(b) ec1,≥
a,j = false, ec2,>

a,k = true.
This case is identical to the one above, with ≥ and > interchanged.

(c) ec1,>
a,j = false, ec2,>

a,k = true.
This implies that

A[xj] ≥ A[xa]− c1 and A[xa] > A[xk] + c2

We need to show that
A[xj] + c1 > A[xk] + c2

Or
A[xj] > A[xk] + (c2 − c1)

The last inequality is true, since A satisfies the transitivity constraint e−c1,≥
j,a ∧ ec2,>

a,k =⇒
(xj > xk + c2 − c1).

(d) ec1,≥
a,j = false, ec2,≥

a,k = true.
This case is identical to the one above, with ≥ and > interchanged.

Thus, we can conclude that Equation 14 is satisfied, and that completes the proof of this
part.

�

Example 1 Let ωa = ∃xa.φ where φ = xa ≤ x0∧x1 ≥ xa∧x2 ≤ xa. Then, φa
bool = e≥,0

0,a ∧e
≥,0
1,a ∧e

≥,0
a,2 .

φa
cons is the conjunction of the following constraints:

9

1. e≥,0
0,a ∧ e

≥,0
a,2 =⇒ x0 ≥ x2

2. e≥,0
1,a ∧ e

≥,0
a,2 =⇒ x1 ≥ x2

Then, ωbool = ∃e≥,0
0,a , e

≥,0
1,a , e

≥,0
a,2 .[φ

a
cons ∧ φ

a
bool] evaluates to x0 ≥ x2 ∧ x1 ≥ x2.

�

The quantifier transformation procedure described here works even when φ is replaced by a
QSL formula with quantifiers only over Boolean variables.

Note also that the transformation procedure we present here differs from the one presented by
Strichman et al. [17] in that the latter is concerned with preserving satisfiability only, whereas the
former must produce an equivalent formula that preserves all satisfying assignments to the free
variables.

4.2 Deciding SL formulas

Suppose we want to decide the satisfiability of φ. Note that φ is satisfiable iff the QSL formula
ω1..n = ∃x1, x2, . . . , xn.φ is.

Using Theorem 1, we can transform ω1..n to an equivalent QSL formula ωbool with existential
quantifiers only over Boolean variables encoding all separation predicates. As ωbool is a QBL
formula with only existential quantifiers, we can simply discard the quantifiers and use a Boolean
satisfiability checker to decide the resulting Boolean formula.

Note that the procedure described above can be viewed as one way to implement the procedure
of Strichman et al. [17].

4.3 Representing SL Formulas as Boolean Formulas

In our presentation up to this point, we have not used any specific representation of SL formulas.
In practice, we encode a SL formula φ as a Boolean formula β. The encoding is performed as
follows. Consider each separation predicate xi ./ xj + c in φ. As in Section 4.1 earlier, we introduce
a Boolean variable e./,c

i,j for xi ./ xj +c, only this time we do it for every single separation predicate.
Also as before, separation predicates that are negations of each other are represented by Boolean
literals that are negations of each other. We then replace each separation predicate in φ by its
corresponding Boolean literal. The resulting Boolean formula is β.

Clearly, β, by itself, stores insufficient information for generating transitivity constraints. There-
fore, we also store the 1-1 mapping of separation predicates to the Boolean literals that encode
them. However, this mapping is used only lazily, i.e., when generating transitivity constraints
during quantification and in deciding SL formulas.

4.3.1 Substitution.

Given the representation described above, we can implement substitution of a clock variable as
follows. For a clock variable xi, we perform the substitution [xi ← xk + d] (where k = 0 or

d = 0), by replacing all Boolean variables of the form e./,c
i,j and e./

′ ,c′

j,i , for all j, by variables

e./,c−d
k,j and e./

′,c′+d
j,k respectively, creating fresh replacement variables if necessary. Substitution of a

Boolean state variable by the Boolean encoding of a separation formula is done by Boolean function
composition.

10

5 Optimizations

The methods presented in Section 4 can be optimized in a few ways. First, we can be more
selective in deciding when to add transitivity constraints. Second, we can compute the time elapse
operator more efficiently by a method that does not explicitly introduce the bound real variable
ε, and hence does not introduce new quantifiers over Boolean variables. The third optimization
concerns eliminating paths in a BDD representation that violate transitivity constraints. As is
well-known, the size of a BDD is very sensitive to the number and ordering of BDD variables.
In the case of model checking timed automata, new Boolean variables are created as the model
checking proceeds, while generating transitivity constraints, and while performing substitutions of
clock variables. This has the potential to add several BDD variables on each iteration. Finally, we
can use an over-approximation technique to to reduce the number of BDD variables added on each
model checking iteration. While all four techniques presented in this section help in reducing the
number of BDD variables, only the last two are specialized for BDDs.

5.1 Determining if Bounds are Conjoined

Suppose φ is a SL formula with Boolean encoding β, and we wish to eliminate the quantifier in
∃xa.φ. As described in Section 4.1, a transitivity constraint for xa involves two Boolean literals that
encode separation predicates involving xa. For a syntactic representation of β, as the number of
constraints grows, so does the size of [βa

cons∧β
a
bool], the Boolean encoding of [φa

cons∧φ
a
bool]. Further,

new separation predicates can be added when a transitivity constraint is generated from an upper
bound and a lower bound on xa. For a BDD-based implementation, this corresponds to the addition
of a new BDD variable. We would therefore like to avoid adding transitivity constraints wherever
possible.

In fact, we only need to add a constraint involving an upper bound literal and a lower bound
literal if they are conjoined in a minimized DNF representation of β.5 From a geometric viewpoint,
this means that we check that the predicates corresponding to the two literals are bounds for the
same convex clock region. This check can be posed as a Boolean satisfiability problem, which
is easily solved using a BDD representation of β. Let the literals be e1 and e2. Then, we use
cofactoring and Boolean operations to compute the following Boolean formula:

e1 ∧ e2 ∧ [β|e1=true ∧ ¬(β|e1=false)] ∧ [β|e2=true ∧ ¬(β|e2=false)] (15)

Consider the subformula ei ∧ [β|ei=true ∧ ¬(β|ei=false)] for i = 1, 2. This formula represents the
set of input combinations e in which ei must be set to true in order for β(e) to evaluate to true.
Thus, the conjunction of the subformulas for i = 1 and i = 2 is satisfiable only if there exists a
non-empty set of input combinations e in which both e1 and e2 must be set to true for β(e) to
evaluate to true. Viewed alternately, Formula 15 expresses the Boolean function corresponding to
the disjunction of all terms in the minimized DNF representation of β that contain both e1 and e2
in true form. Therefore, if Formula 15 is satisfiable, it means that e1 and e2 are conjoined, and we
must add a transitivity constraint involving them both.

Note however, that since β does not, by itself, represent the original SL formula φ, finding that
e1 and e2 are conjoined in β does not imply that they are bounds in the same convex region of φ.
However, the converse is true, so our method is sound.

5A conservative, syntactic variant of this idea has been proposed earlier by Strichman [16].

11

5.2 Quantifier Elimination by Eliminating Upper Bounds on x0

The definition of the time elapse operation introduces two quantified non-clock real variables: δ
and ε. We can exploit the special structure of the QSL formula for the time elapse operation so
as to avoid introducing ε altogether. Thus, we can avoid adding new quantified Boolean variables
encoding predicates involving ε.

Consider the inner existentially quantified SL formula in Formula 4 in Section 3, reproduced
here:

∃ε(ε ≤ x0 ∧ δ ≤ ε ∧ ¬φ1[ε/x0])

Grouping the inequality δ ≤ ε with the formula ¬φ1[ε/x0], we get:

∃ε{ε ≤ x0 ∧ (δ ≤ x0 ∧ ¬φ1)[ε/x0]} (16)

Finally, treating δ as a clock variable, we can revert back to ε from ε, transforming Formula 16
to the following form:

∃ε[ε ≥ x0 ∧ (δ ≤ x0 ∧ ¬φ1) + ε] (17)

Formula 17 is a special case of the formula ωε given by

ωε = ∃ε.ε ≥ x0 ∧ φ+ ε

for some SL formula φ. From a geometric viewpoint, φ is a region in Rn and ωε is the shadow
of φ for a light source at ∞n. Examples of φ and the corresponding ωε are shown in Figures 1(a)
and 1(c) respectively.

We can transform ωε to an equivalent SL formula φub by eliminating upper bounds on x0, i.e.,
Boolean variables of the form e./,c

i,0 . The transformation is performed iteratively in the following
steps:

1. Let φ0 = φ. Let e./1 ,c1
i1,0 , e./2 ,c2

i2,0 , . . . , e./m ,cm

im,0 be Boolean literals encoding all upper bounds on
x0 that occur in φ.

Note that an upper bound literal e
./j ,cj

ij ,0 occurs in φ, if it appears in some term in the min-
imized DNF representation of φ. This can be checked by evaluating the Boolean function
[β|

e
./j ,cj
ij ,0

=true
∧ ¬(β|

e
./j ,cj
ij ,0

=false
)], where β is the Boolean encoding of φ, and checking that it

is not false.

2. For j = 1, 2, . . . ,m, we construct φj as follows:

(a) Replace all occurrences of xij ./j x0 + cj in φj−1 with e
./j ,cj

ij ,0 to get φ0,j−1
bool .

(b) Construct φ0,j−1
cons , the conjunction of all transitivity constraints6 for x0 involving e

./j ,cj

ij ,0

and clock variables in φ0,j−1
bool .

(c) Construct the formula φj , a disjunction of two terms:

φj = {(φ0,j−1
bool ∧ φ

0,j−1
cons)|

e
./j ,cj
ij ,0 =true

} ∨ {[¬(xij ./j x0 + cj)] ∧ [φ0,j−1
bool |e

./j ,cj
ij ,0 =false

]}

The first disjunct is the region obtained by dropping the bound xij ./j x0 + cj from
convex sub-regions of φj−1 where it is a lower bound on xij , while letting time elapse
backward. The second disjunct corresponds to sub-regions where ¬(xij ./j x0 + cj) is
an upper bound; these regions are left unchanged.

6We can use the optimization technique of Section 5.1 in this step.

12

The output of the above transformation, φub, is given by φub = φm. The correctness of this
procedure is formalized in the following theorem.

Theorem 2 ωε and φub are equivalent.

Proof: We make use of the following lemmas.

Lemma 1 For all j = 1, . . . ,m, ∃ε.ε ≥ x0 ∧ φj−1 + ε is equivalent to ∃ε.ε ≥ x0 ∧ φj + ε.

Proof:(Lemma 1)
We give the proof for an arbitrary j satisfying 1 ≤ j ≤ m. Let ωj−1 and ωj respectively denote
∃εj−1.εj−1 ≥ x0 ∧ φj−1 + εj−1 and ∃εj.εj ≥ x0 ∧ φj + εj. Notice that we have renamed the bound
variable ε.

1. First, we show that ωj−1 =⇒ ωj. Let A be an assignment to the free and bound variables in
ωj−1 such that A[ωj−1] = true. This means that A[φj−1 + εj−1] = true. Extend A so that
A[εj] = A[εj−1]. Thus, A[εj−1 ≥ x0] = A[εj ≥ x0] = true.

We consider two cases.

(a) Case 1: A[(xij ./j x0 + cj) + εj−1] = true.

Note that by construction,

φ0,j−1
bool = φj−1[e

./j ,cj

ij ,0 /(xij ./j x0 + cj)]

From the two equalities above, and since A[εj] = A[εj−1], we get

A[φj−1 + εj−1] = A[φ0,j−1
bool |e

./j ,cj
ij ,0 =true

+ εj]

In addition, the transitivity constraints are satisfied, i.e.,

A[φ0,j−1
cons |e

./j ,cj
ij ,0 =true

+ εj] = true

because φ0,j−1
cons |e

./j ,cj
ij ,0 =true

+ εj only involves real-valued variables. Therefore,

A[φj−1 + εj−1] = A[(φ0,j−1
bool ∧ φ

0,j−1
cons)|

e
./j,cj
ij ,0 =true

+ εj]

Thus, we conclude that

A[φj−1 + εj−1] = A[φj + εj] = true

which in turn implies that

A[εj−1 ≥ x0 ∧ φj−1 + εj−1] = A[εj ≥ x0 ∧ φj + εj] = true

and so
A[ωj−1] = A[ωj] = true

This concludes the first case.

13

(b) Case 2: A[(xij ./j x0 + cj) + εj−1] = false.

Since
φ0,j−1

bool = φj−1[e
./j ,cj

ij ,0 /(xij ./j x0 + cj)]

and, in addition, A[εj] = A[εj−1], we have

A[φj−1 + εj−1] = A[φ0,j−1
bool |e

./j,cj
ij ,0 =false

+ εj]

Now, since A[φj−1 + εj−1] = true, we get

A[φ0,j−1
bool |e

./j,cj
ij ,0 =false

+ εj] = true

and
A[[¬(xij ./j x0 + cj) ∧ φ

0,j−1
bool |e

./j,cj
ij ,0 =false

] + εj] = true

and so, we conclude that

A[φj + εj] = A[εj ≥ x0 ∧ φj + εj] = A[ωj] = true

which concludes case 2.

Thus, ωj−1 =⇒ ωj.

2. We next show that ωj =⇒ ωj−1.

Let A be an assignment to the free and bound variables in ωj such that A[ωj] = true. This
means that A[φj + εj] = true. We wish to extend A by an assignment to εj−1 so that
A[φj−1 + εj−1] = true and A[εj−1 ≥ x0] = true.

We consider two cases.

(a) Case 1: A[(φ0,j−1
bool ∧ φ

0,j−1
cons)|

e
./j ,cj
ij ,0 =true

+ εj] = true.

Therefore,

A[φ0,j−1
bool |e

./j ,cj
ij ,0 =true

+ εj] = true (18)

and
A[φ0,j−1

cons |e
./j ,cj
ij ,0 =true

+ εj] = true

If A[(xij ./j x0 + cj) + εj] = true, then using the equality

φ0,j−1
bool = φj−1[e

./j ,cj

ij ,0 /(xij ./j x0 + cj)] (19)

we can set A[εj−1] = A[εj], which yields A[(xij ./j x0 + cj) + εj−1] = true, and so using
Equations 18 and 19, we get

A[φj−1 + εj−1] = A[φj + εj] = true (20)

However, if A[(xij ./j x0 + cj) + εj] = false, then we must find an alternate assignment
to εj−1, such that A[(xij ./j x0 + cj) + εj−1] = true. Then, we can conclude, as above,
that Equation 20 holds.

14

Consider, w.r.t. the assignment A, all lower bounds on x0 that occur in φj−1 + εj (and

hence in φ0,j−1
bool +εj); more precisely, a lower bound on x0 is a predicate (x0 ./k xik+ck)+εj

such that A[(x0 ./k xik + ck) + εj] = true.

If no such lower bound on x0 exists, then we can set εj−1 to any value that results in
A[(xij ./j x0 + cj) + εj−1] = true, because there is no lower bound to be violated by
increasing the value of a clock variable.

So suppose at least one lower bound on x0 exists in φj−1. Define the value vs as

vs = min
k s.t. A[(x0./kxik

+ck)+εj]=true

(−ck −A[xik + εj]) (21)

Note that vs ≥ 0 since A[(x0 ./k xik + ck) + εj] = true for all k in Equation 21.

Let l be the k for which the minimum on the right-hand side of Equation 21 is attained.
If there are many such k, say k1, k2, . . . , kd, set l according to the following rules:

i. If there exists ki for which ./ki
=>, set l to any one such ki.

ii. Otherwise select l to be any one of k1, k2, . . . , kd.

Thus,

vs = −cl −A[xil + εj] (22)

Next, we define a positive real number χ as follows:

χ =

{

χ0 if ./l=>, and where χ0 ∈ (0, A[xij − xil − cj − cl])

0 otherwise
(23)

Note that A[xij − xil − cj − cl] is non-negative and is strictly positive when ./l=>. This

is because there exists a transitivity constraint in φ0,j−1
cons of the form

(e
./j ,cj

ij ,0 ∧ x0 ./l xil + cl) =⇒ (xij ./j xil + cj + cl)

which occurs in φ0,j−1
cons |e

./j ,cj
ij ,0 =true

as

(x0 ./l xil + cl) =⇒ (xij ./j xil + cj + cl)

If ./j 6=./l, the following constraint also holds:

(x0 ./l xil + cl) =⇒ (xij ./l xil + cj + cl)

Since A[(x0 ./l xil + cl) + εj] = true, the following equalities hold:

A[(xij ./j xil + cj + cl) + εj] = A[xij ./j xil + cj + cl] = true (24)

A[(xij ./l xil + cj + cl) + εj] = A[xij ./l xil + cj + cl] = true (25)

Thus, A[xij − xil − cj − cl] is non-negative and is strictly positive when ./l=>.

We now show that vs−χ ≥ 0. If χ = 0, clearly vs−χ ≥ 0. So, assume that ./l=>, and
thus χ ∈ (0, A[xij − xil − cj − cl]). Then we can conclude the following:

vs − χ = −cl −A[xil]−A[εj]− χ

> −cl −A[xil]−A[εj]−A[xij − xil − cj − cl]

= −cl −A[xil]−A[εj]−A[xij] +A[xil] + cj + cl

= cj −A[xij]−A[εj]

≥ 0 (since A[(xij ./j x0 + cj) + εj] = false)

15

Intuitively, vs−χ is a non-negative real number we can add to all clock variables without
violating lower bounds on x0 in φj−1 + εj .

Now, define A[εj−1] as follows:

A[εj−1] = A[εj] + vs − χ (26)

Since vs − χ ≥ 0, A[εj−1] ≥ A[εj].

Given the above assignment to εj−1, we first show that A[(xij ./j x0 +cj)+εj−1] = true.
We have the following sequence of equalities:

A[(xij ./j x0 + cj) + εj−1]

= A[xij] +A[εj−1] ./j cj

= A[xij] ./j cj −A[εj−1]

= A[xij] ./j cj − vs + χ−A[εj]

= A[xij] ./j χ+ cj −min
k

(−A[xik + εj]− ck)−A[εj]

= A[xij] ./j χ+ cj + (A[xil + εj] + cl)−A[εj]

= A[xij] ./j χ+A[xil] + cj + cl

= true (since χ ∈ (0, A[xj − xl − cj − cl]) and from Eqn. 24)

We next show that the assignment to εj−1 in Equation 26 preserves the truth assignment
to other bounds on x0; i.e., bounds in φj−1+εj other than (xij ./j x0+cj)+εj. Formally,
we show that for all bounds x0 ./k xik + ck where k 6= j:

A[(x0 ./k xik + ck) + εj−1] = A[(x0 ./k xik + ck) + εj]

Note that the value of separation predicates of the form xik1
./ xik2

+ ck1k2
is unaffected

by the assignment to εj or εj−1.

If A[(x0 ./k xik + ck) + εj] = false, then A[(x0 ./k xik + ck) + εj−1] = false, since
A[εj−1] ≥ A[εj].

On the other hand, if A[(x0 ./k xik + ck) + εj] = true, then

A[(x0 ./k xik + ck) + εj−1]

= 0 ./k A[xik] + ck +A[εj−1]

= 0 ./k A[xik] + ck +A[εj] + vs − χ

= 0 ./k (ck +A[xik]) +A[εj] + (−cl −A[xil + εj])− χ

= (−ck −A[xik]) ./k (−cl −A[xil])− χ

= true (since χ ≥ 0 and from Equations 21 and 22)

To sum up, we have shown that A[(xij ./j x0+cj)+εj−1] = true, even though A[(xij ./j

x0 + cj) + εj] = false. Thus, we can conclude that

A[φj−1 + εj−1] = A[φj + εj] = true

This completes the proof for the first case.

16

(b) Case 2: A[[¬(xij ./j x0 + cj) ∧ φ
0,j−1
bool |e

./j,cj
ij ,0 =false

] + εj] = true.

Thus
A[φ0,j−1

bool |e
./j,cj
ij ,0 =false

+ εj] = true

and
A[(xij ./j x0 + cj) + εj] = false

Letting A[εj−1] = A[εj] and from Equation 19, we get

A[φj−1 + εj−1] = true

as required.

Thus, ωj =⇒ ωj−1.

From parts 1 and 2 above, we conclude that ωj−1 and ωj are equivalent.
�

Lemma 2 Suppose the SL formula φ does not contain any separation predicates that are upper
bounds on x0; i.e., any satisfying assignment to φ sets all upper bounds on x0 to false, and all
lower bound predicates to true. Then, ∃ε.ε ≥ x0 ∧ φ+ ε is equivalent to φ.

Proof:(Lemma 2)
We first show that φ =⇒ (∃ε.ε ≥ x0 ∧ φ+ ε).

Let A be an assignment to the variables in φ such that A[φ] = true. We extend A with an
evaluation of ε so that A[ε] = 0 = A[x0]. Then, A[ε ≥ x0 ∧ φ + ε] = true, since A[φ + ε] = A[φ].
Therefore, A[∃ε.ε ≥ x0 ∧ φ+ ε] = true. Thus, φ =⇒ (∃ε.ε ≥ x0 ∧ φ+ ε).

Next, we show that (∃ε.ε ≥ x0 ∧ φ + ε) =⇒ φ. Let A be an assignment such that A[∃ε.ε ≥
x0 ∧ φ + ε] = true. Thus, A[ε ≥ x0] = true and A[φ + ε] = true. Since φ does not contain
any separation predicates that are upper bounds on x0, for any lower bound x0 ./k xk + ck on x0,
A[(x0 ./k xk + ck) + ε] = true and for an upper bound xl ./l x0 + cl on x0, A[(xl ./l x0 + cl) + ε] =
false.

Then, since A[ε] ≥ 0,

A[(x0 ./k xk + ck) + ε] = true = A[x0 ./k (xk + ε) + ck] = A[x0 ./k xk + ck]

Similarly, for an upper bound predicate on x0, A[xl ./l x0 + cl] = false.
It then follows that A[φ] = true.

�

From Lemma 1, we infer that ωε = ∃ε.ε ≥ x0 ∧ φ0 + ε is equivalent to ∃ε.ε ≥ x0 ∧ φm + ε.
Additionally, since φm does not contain any upper bounds on x0, using Lemma 2, we conclude that
ωε is equivalent to φm = φub. This completes the proof of Theorem 2.

�

Example 2 Let the subformula φ of ωε be

φ = (x1 ≥ x0 + 3 ∧ x2 ≤ x0 + 2) ∨ (x1 < x0 + 3 ∧ x2 ≥ x0 + 3)

φ is depicted geometrically as the shaded region in Figure 1(a). It comprises two sub-regions, one
for each disjunct. The lower bounds on these regions, x1 ≥ x0 + 3 and x2 ≥ x0 + 3, are upper
bounds on x0. We encode these by e≥,3

1,0 and e≥,3
2,0 .

17

Figure 1(b) shows φ1, the result of eliminating e≥,3
1,0 . Formally, we calculate

φ0,0
bool = (e≥,3

1,0 ∧ x2 ≤ x0 + 2) ∨ (¬e≥,3
1,0 ∧ x2 ≥ x0 + 3)

φ0,0
cons = (e≥,3

1,0 ∧ x2 ≤ x0 + 2) =⇒ (x1 ≥ x2 + 1)

Then, applying step 2(c) of the transformation, we get

φ1 = (x2 ≤ x0 + 2 ∧ x1 ≥ x2 + 1) ∨ (x1 < x0 + 3 ∧ x2 ≥ x0 + 3)

Similarly, in the next iteration, we introduce and eliminate e≥,3
2,0 to get φ2, shown in Figure 1(c),

which is equivalent to ωε.
�

Note that the QSL formula obtained after eliminating the inner quantifier in Formula 4 is not
of the form ωε, and so we cannot avoid introducing the δ variable.

3 x1

x2

2-

3

(a) φ0 = φ

3 x1

x2

2-

3

x1 = x2 + 1

(b) φ1

3 x1

x2

2-

3

x1 = x2

(c) φ2 = ωε

Figure 1: Eliminating upper bounds on x0

x1 = x2 + c1 + c2

(a) Exact

x1 = c1

x2 = c2

x1 = x2 + c1 + c2

(b) Weakened

Figure 2: Weakening Transitivity Constraints. The shaded area denotes the region satisfying
the constraint.

5.3 Overapproximation by Weakening Transitivity Constraints

In spite of the methods of Sections 5.1 and 5.2, generating transitivity constraints while eliminating
the quantifier on δ might create too many new BDD variables, causing the BDD to blow up. In
the case of reachability properties, a partial solution is to weaken the transitivity constraints added

18

so as to not create new variables, yielding an overapproximation of the time elapse operation.
For reachability properties, overapproximating the time elapse (“pre”) operation makes our model
checking procedure incomplete, but retains soundness.

Consider a transitivity constraint for δ of type (a) as defined in Section 4.1, reproduced below:

e./1 ,c1

i,δ
∧ e./2 ,c2

δ,j
=⇒ (xi ./ xj + c1 + c2)

We replace the above constraint by the following weakened constraint:

e./1 ,c1

i,δ
∧ e./2 ,c2

δ,j
=⇒ [(xi ./1 x0 + c1) ∨ (x0 ./2 xj + c2)] (27)

The difference between the two constraints is depicted geometrically in Figure 2.
Note that the consequent of the weakened constraint (Formula 27) only involves separation

predicates involving xi, xj, and x0, and these already occurred in formula φ of Formula 4, since
they are the predicates in which δ was substituted for x0. Thus, we avoid adding new BDD
variables.

5.4 Eliminating Infeasible Paths in BDDs

Suppose β is the Boolean encoding of SL formula φ. Let φcons denote the conjunction of transitivity
constraints for all real-valued variables in φ, and let βcons denote its Boolean encoding. Finally,
denote the BDD representations of β and βcons by Bdd(β) and Bdd(βcons) respectively.

We would like to eliminate paths in Bdd(β) that violate transitivity constraints, i.e., those
corresponding to assignments to variables in β for which βcons = false. We can do this by us-
ing the BDD Restrict operator, replacing Bdd(β) by Restrict(Bdd(β),Bdd(βcons)). Informally,
Restrict(Bdd(β), Bdd(βcons)) traverses Bdd(β), eliminating a path on which βcons is false as
long as it doesn’t involve adding new nodes to the resulting BDD. Details about the Restrict

operator may be found in the paper by Coudert and Madre [9].
Since eliminating infeasible paths in a large BDD can be quite time consuming, we only apply

this optimization to the BDD for the set of reachable states, once on each fixpoint iteration.

6 Experimental Results

We implemented a model checker that uses BDDs to represent Boolean functions and incorporates
all the optimizations described in Section 5. The model checker is written in the OCaml language
and uses the CUDD package7 for BDD manipulation. We have performed preliminary experiments
comparing the performance of our model checker for both reachability and non-reachability TCTL
properties, without using the over-approximation scheme of Section 5.3. For reachability properties,
we compare against the other unbounded, fully symbolic model checkers, viz., a DDD-based checker
(DDD) [14] and Red version 4.1 [18], which have been shown to outperform Uppaal2k and
Kronos for reachability analysis. For non-reachability properties, such as checking that a system
is non-zeno, we compare against Kronos and Red, the only other unbounded model checkers that
check such properties.

As an illustrative example, we use Fischer’s protocol for mutual exclusion. Tools such as DDD

and Red that we compare against have been shown to perform well on this example for reachability
properties. The automaton for the ith process in this protocol is shown in Figure 3. We ran two

7http://vlsi.colorado.edu/~fabio/CUDD

19

experiments with this example. The first experiment compared our model checker against DDD and
Red, checking that the system preserves mutual exclusion (a reachability property). In the second
experiment, we compared against Kronos and Red for checking that the product automaton is
non-zeno (a non-reachability property). All experiments were run on a notebook computer with a
1 GHz Pentium-III processor and 128 MB RAM, running Linux. We ran DDD, Kronos, and Red

with their default options. For our implementation, we turned off dynamic variable reordering in
CUDD. To come up with a static variable ordering, we classified the BDD variables in our Boolean
encoding as follows. The first class, Cid, consists of variables encoding the shared integer id. For
each i, class C(i) contains the BDD variables encoding locations and clock constraints for process i.
Finally, class C(i, j) encodes predicates relating clock variables from processes i and j. We used a
static variable ordering that groups together variables in the same class, places class Cid at the top,
orders C(i) before C(j) if i < j, and places C(i, j) right after C(j) for j > i. New BDD variables
added during model checking are inserted into the order at positions that depend upon the class
they fall into. The same static variable order was used for the corresponding Boolean variables and
separation predicates in DDD.

x[i]<=10
id!=i

x[i]>10 & id=i

x[i]:=0; id:=iid:=0

idle[i]
rdy[i]

x[i]<=10

id=0 x[i]:=0

crit[i] wait[i]

Figure 3: Fischer’s mutual exclusion protocol. The timed automaton for the ith process is
shown.

Table 1 shows the results of the comparison against DDD and Red for checking mutual exclusion
for increasing numbers of processes. We refer to our model checker as TMV. For DDD and TMV,
the table lists both the run-times and the peak number of nodes in the decision diagram for the
reachable state set. We find that DDD outperforms TMV due to the blow-up of BDDs. In
spite of the optimizations of Section 5, the peak node count in the case of DDD is less than that
for TMV for the larger benchmarks. In particular, in addition to eliminating infeasible paths as
TMV does, the local reduction operations performed by DDD during node creation can eliminate
unnecessary DDD nodes without adding any time overhead. For example, DDD can reduce a
function of the form e1 ∧ e2 ∧ e3 under the transitivity constraint [e1 ∧ e2] =⇒ e3 to simply the
conjunction e1 ∧ e2. The BDD Restrict operator cannot always achieve this as it is sensitive
to the BDD variable ordering. Furthermore, TMV contains many other BDDs, such as those
for the transitivity constraints, to which we do not apply the Restrict optimization due to its
runtime overhead. Finally, in comparison to Red, we see that while TMV is faster on the smaller
benchmarks, Red’s superior memory performance enables it to complete for 7 processes while
TMV runs out of memory.

Table 2 shows the comparison with Kronos and Red for checking non-zenoness. The time
for Kronos is the sum of the times for product construction and backward model checking. We
notice that while Kronos does better for smaller numbers of processes, the product automaton
it constructs grows very quickly, becoming too large to construct at 6 processes. The run times
for TMV, on the other hand, grow much more gradually, demonstrating the advantages of a

20

Number of Red DDD TMV

Processes Time Time Reach Set Time Reach Set
(sec.) (sec.) (peak nodes) (sec.) (peak nodes)

3 0.21 0.06 130 0.11 101
4 1.13 0.14 352 0.38 316
5 4.53 0.33 854 1.85 1127
6 15.11 0.90 2375 17.41 4685
7 46.31 2.65 6346 * *

Table 1: Checking mutual exclusion for Fischer’s protocol. A “*” indicates that the model
checker ran out of memory.

fully symbolic approach. For this property, the BDDs remain small even for larger numbers of
processes. Thus, TMV outperforms Red, especially as the number of processes increases. These
results indicate that when the representation (BDDs) remains small, Boolean methods for quantifier
elimination and deciding SL can outperform non-Boolean methods by a significant factor.

Number of Kronos Red TMV

Processes Time (sec.) Time (sec.) Time (sec.) Reach Set
(peak nodes)

3 0.03 0.28 0.24 28
4 0.23 1.30 0.44 39
5 1.98 5.05 0.80 54
6 * 17.80 2.15 69
7 * 57.95 6.61 88

Table 2: Checking non-zenoness for Fischer’s protocol. A “*” indicates that Kronos exited
with an “out of memory” error.

Although they are preliminary, our results indicate that our model checker based on a general
purpose BDD package can outperform methods based on specialized representations of SL formu-
las. The drawback of our BDD-based implementation is its poor memory performance on some
examples. However, there is still scope for improving our implementation, especially in finding
more efficient ways of eliminating unnecessary BDD nodes as is possible with DDDs. Furthermore,
note that the memory problems we face arise from our use of BDDs, while the techniques we have
presented in this paper can make use of any representation of Boolean functions. In particular,
we are starting to work on a SAT-based implementation of our method; such an implementation
might better handle the growth in the number of Boolean variables. Finally, we are also explor-
ing heuristics for automatically generating good BDD variable orderings, such as those based on
compositional methods [7].

Acknowledgments

We thank Joël Ouaknine and Ofer Strichman for their comments. We also thank the authors of
DDD and Red for providing their tools and answering our queries.

21

References

[1] L. Aceto, P. Bouyer, A. Burgueno, and K. G. Larsen. The power of reachability testing for
timed automata. Theoretical Computer Science, To appear.

[2] Rajeev Alur. Timed automata. In N. Halbwachs and D. Peled, editors, Computer-Aided
Verification, volume 1633 of Lecture Notes in Computer Science, pages 8–22. Springer-Verlag,
July 1999.

[3] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[4] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korniowicz, and Roberto Se-
bastiani. A SAT based approach for solving formulas over boolean and linear mathematical
propositions. In Andrei Voronkov, editor, 18th International Conference on Automated Deduc-
tion (CADE), volume 2392 of Lecture Notes in Computer Science, pages 195–210. Springer-
Verlag, July 2002.

[5] Gilles Audemard, Alessandro Cimatti, Artur Korniowicz, and Roberto Sebastiani. Bounded
model checking for timed systems. In Doron Peled and Moshe Y. Vardi, editors, Formal
Techniques for Networked and Distributed Systems - FORTE’02, volume 2529 of Lecture Notes
in Computer Science, pages 243–259. Springer, November 2002.

[6] Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Effi-
cient timed reachability analysis using clock difference diagrams. In N. Halbwachs and D. Peled,
editors, Computer-Aided Verification, volume 1633 of Lecture Notes in Computer Science,
pages 341–353. Springer-Verlag, July 1999.

[7] Dirk Beyer. Improvements in BDD-based reachability analysis of timed automata. In
Jose Nuno Oliveira and Pamela Zave, editors, Proceedings of the 10th International Symposium
of Formal Methods Europe (FME), volume 2021 of Lecture Notes in Computer Science, pages
318–343. Springer-Verlag, 2001.

[8] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic verification
of timed automata. In O. Grumberg, editor, Computer-Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 179–190. Springer-Verlag, 1997.

[9] Olivier Coudert and Jean Christophe Madre. A unified framework for the formal verification of
sequential circuits. In Proc. Intl. Conference on Computer-Aided Design (ICCAD’90), pages
126–129, 1990.

[10] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combi-
natorial Theory A, 14:288–297, 1973.

[11] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193–244, 1994.

[12] Manolis Koubarakis. Complexity results for first-order theories of temporal constraints. In
Proc. 4th International Conference on Principles of Knowledge Representation and Reasoning
(KR’94), pages 379–390, 1994.

22

[13] Ken L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
E. Brinksma and K. G. Larsen, editors, Proc. 14th Intl. Conference on Computer-Aided Veri-
fication (CAV’02), LNCS 2404, pages 250–264. Springer-Verlag, July 2002.

[14] J. B. Møller. Simplifying fixpoint computations in verification of real-time systems. In Proc.
Second Workshop on Real-Time Tools, Copenhagen, Denmark, 1 August 2002.

[15] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and O. Maler. Verification of timed
automata via satisfiability checking. In Proc. Formal Techniques in Real-Time and Fault-
Tolerant Systems FTRTFT’02, volume 2469 of Lecture Notes in Computer Science, pages
225–244, 2002.

[16] O. Strichman. Optimizations in decision procedures for propositional linear inequalities. Tech-
nical Report CMU-CS-02-133, Carnegie Mellon University, 2002.

[17] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas with SAT. In
E. Brinksma and K. G. Larsen, editors, Proc. 14th Intl. Conference on Computer-Aided Veri-
fication (CAV’02), LNCS 2404, pages 209–222. Springer-Verlag, July 2002.

[18] Farn Wang. Efficient verification of timed automata with BDD-like data-structures. In Proc.
4th Intl. Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI), volume
2575 of Lecture Notes in Computer Science, pages 189–205, New York, January 2003.

[19] Sergio Yovine. Kronos: A verification tool for real-time systems. Software Tools for Technology
Transfer, 1(1/2):123–133, October 1997.

23

