Classifying Scheduling Policies with respect to Unfairness
in an M/GI/1

Adam Wierman Mor Harchol-Balter
October 2002
CMU-CS-02-187

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

It is common to classify scheduling policies based on their mean response times. Another important, but
sometimes opposing, performance metric is a scheduling policy’s fairness. For example, a policy that biases
towards short jobs so as to minimize mean response time, may end up being unfair to long jobs. In this
paper we define three types of unfairness and demonstrate large classes of scheduling policies that fall into
each type. We end with a discussion on which jobs are the ones being treated unfairly.

1Carnegie Mellon University, Computer Science Department. Email: acw@cs.cmu.edu.
2Carnegie Mellon University, Computer Science Department. Email: harchol@cs.cmu.edu.
This work was supported by NSF Career Grant CCR-0133077 and by Pittsburgh Digital Greenhouse Grant 01-1.

Keywords: scheduling; unfairness; M/G/1; FB; LAS; SET,; feedback; least attained service; shortest elapsed
time; PS; processor sharing; SRPT; shortest remaining processing time; slowdown.

1 Introduction

Traditionally the performance of scheduling policies has been measured using mean response time (i.e.
sojourn time, time in system) [9, 10, 12, 15], and more recently mean slowdown [1, 4, 5]. Under these
measures, size based policies that give priority to small job sizes at the expense of larger sizes perform quite
well [13]. However, these policies tend not to be used in practice due to a fear of unfairness. For example,
a policy that always biases towards jobs with small sizes is likely to treat jobs with large sizes unfairly
[3, 16, 17, 18].

This tradeoff between minimizing mean response time while maintaining fairness is an important design
constraint in many applications. For example, in the case of Web servers, it has been shown that by giving
priority to requests for small files, a Web server can significantly reduce response times; however it is
important that this improvement not come at the cost of unfairness to requests for large files [6, 9]. The same
tradeoff applies to other application areas; for example, scheduling in supercomputing centers. Here too it
is desirable to get short jobs out quickly, while not penalizing the large jobs, which are typically associated
with the important customers. The tradeoff also occurs for age based policies. For example, UNIX processes
are assigned decreasing priority based on their current age — CPU usage so far. This can create unfairness
for old processes. To address the tension between minimizing mean response time and maintaining fairness,
hybrid scheduling policies have also been proposed; for example, policies that primarily bias towards young
jobs, but give sufficiently old jobs high priority as well.

Recently, the topic of unfairness has been looked at formally by Bansal and Harchol-Balter, who study
the unfairness properties of the Shortest-Remaining-Processing-Time (SRPT) policy under an M/GI/1 sys-
tem [2]; and by Harchol-Balter, Sigman, and Wierman, who address unfairness under all scheduling policies
asymptotically as the job size grows to infinity [7]. In this paper, these results are extended to characterize
the existence of unfairness under all priority based scheduling policies, for all job sizes.

In order to begin to understand unfairness however, we must first formalize what is meant by fair per-
formance. In this definition, and throughout this paper we will be using the following notation. We will
consider only an M/GI/1 system with a continuous service distribution having finite mean and finite vari-
ance. We lef'(z) be the steady-state response time for a job of gjandp < 1 be the system load. That
is p f AE[X], where) is the arrival rate of the system add is a random variable distributed accord-
ing to the service distributiof’(x) with density functionf(x). The slowdown seen by a job of sizeis
S(z) o T(x)/z, and the expected slowdown for a job of sizender scheduling policy is E[S(z)]”.

Definition 1.1 Jobs of sizer are treated fairly under policyP iff E[S(z)]” = 1/(1 — p). Further, a
scheduling policy is fair iff it treats every job size fairly.

Definition 1.2 Jobs of sizer are treated unfairly under policy iff E[S(x)]” > 1/(1 — p). Further, a
scheduling policy is unfair iff there exists a job sizéhat is treated unfairly.

This definition is a natural extension of the notion of fairness used in [2, 7]. Notice that this definition
of fairness has two parts. First, the expected slowdown seen by a job of sumest be a constant (i.e.

Non—preemptive
PS SJF L‘Ji

Remaining Size|"
Bas%c?)

PLCFS
SRPT LRPT

Figure 1: Classification of unfairness showing a few examples of both individual policies and groups of
policies within each class.

independent of). Processor-Sharindg®g) is a common scheduling policy that achieves this. Urieier
the processor is shared evenly among all jobs in the system at every point in time. It is well known that
E[S(x)]P¥ = 1/(1 — p) [20], independent of the job size The second condition of the definition of
fairness is that the particular constant mustibél — p). Although this constant may seem arbitrary, in
Section 2 we will show that/(1 — p) is the lowest possible constant obtainable under any policy with
constant expected slowdown. This fact is a formal verificationtpét — p) is the appropriate constant for
defining fairness.

With these definitions, it is now possible to classify scheduling policies based on whether they (i) treat
all job sizes fairly or (ii) treat some job sizes unfairly. Curiously, we find that some policies may fall into
either type (i) or type (ii) depending on the system load. We therefore défiee classes of unfairness

Never Unfair: Policies under which, for all loads, no job size is treated unfairly.

Sometimes Unfair: Policies under which, for some loads, some job size is treated unfairly; but under which
for other loads, no job size is treated unfairly.

Always Unfair. Policies under which, for all loads, there is some job size that is treated unfairly.

The goal of this paper is to classify scheduling policies into the above three types (see Figure 1). Schedul-
ing policies are typically divided into non-preemptive policies and preemptive policies. We find that non-
preemptive policies can either be Sometimes Unfair or Always Unfair, however preemptive policies may
fall into any of the three types. In this paper, we concentrate on preemptive priority based policies. These
include policies for which (i) a fixed priority is associated with each possible job size (ska.based
policieg, (ii) a fixed priority is associated with each possible job age (adga.based policigsand (iii) a
fixed priority is associated with each possible remaining size (ada@aining size based policieObserve
that (i) includes policies like Preemptive-Shortest-Job-First where short jobs have higher priority, but also
includes perverse policies like Preemptive-Longest-Job-First and others. Observe that (ii) includes policies

like Feedback scheduling where young jobs are given priority, yet also includes other practical policies that
primarily bias towards young jobs and also give high priority to sufficiently old jobs. Observe that (iii) in-
cludes policies like Shortest-Remaining-Processing-Time-First and Longest-Remaining-Processing-Time-
First that bias towards jobs with short and long remaining time respectively, as well as practical hybrids. We
show that all policies in (i) and (ii) are Always Unfair; whereas policies in (iii) can be Sometimes Unfair or
Always Unfair.

Lastly, for the case where jobs are being treated unfairly, we investigiaitsh job sizesare treated
unfairly, and find that these are not necessarily the jobs one would expect. Furthermore, we find that the
answer depends on the system load.

2 Never Unfair

Two well known Never Unfair policies are Processor-ShariPg) @nd Preemptive-Last-Come-First-Served
(PLCFS. Recall thatPLCFSalways devotes the full processor to the most recent arrival. Both of these
policies have the same expected performarnicgs (z)]7% = E[S(z)]FLCFS = 1/(1 — p) for all 2. An
important open problem not answered in this paper is the question of what other policies are in the Never
Unfair class.

We now address why the value bf(1 — p) appears in the definition of Never Unfair. It seems possible
that there is a policy that is boflair in the sense that all job sizes have the same expected slowdown, and
has slowdown strictly less than'(1 — p). We show below that there is no such policy.

Theorem 2.1 There is no policyP such thatE[S(z)]” is independent of and E[S(z)]F < 1/(1 — p).

This theorem follows from the lemma below, which provides a necessary condition for a policy to be
Never Unfair. This necessary condition will be appealed to in the proof of Theorem 4.1.

Lemma 2.1 If scheduling policyP is Never Unfair, thefim, .., E[S(z)]F = 1/(1 — p)

Proof : First, notice that because is Never Unfairlim, .., E[S(x)]” < 1/(1 — p). Thus, we need only
show thatlim, ., E[S(x)]” > 1/(1 — p). We accomplish this by bounding the expected slowdown for a
job of sizex from below, and then showing that the lower bound convergég(tb— p) as we letr — oc.

To lower bound the expected slowdown, we consider a modified p@licy that throws away arrivals
both of size greater thanand of sizey < x such that'(y) > a. Further,Q, , works on the remaining jobs
at the exact moment8 works on these jobs. We will begin by calculating the load made up of jobs of size
less thany in this systemp(y)@=«. We can use Markov’s Inequality to obtain a probabilistic bound that the

response time for a job of sizgis less than some value P(T'(y) < a) > 1 — au{p). Thus, we see that

Qea [T (1t _ Ama (y)
p(y) A/O (1 o _p)> tf(t)dt = p(y) + (1= p)

FCFS Non-—size Based,
Non—preemptive

FB

Age Based

unfairl Preemptjve,
. Size Based

PSJF

Figure 2:A detail of the Always Unfair classification.

wherep(y) D foy tf(t)dt is the load made up by jobs of size less than or equalitoP andms(y) def

foy t2f(t)dt. The key observation of this proof is that@sy, andz get very largep(y)9=« approaches.

As a lower bound on the response time for a job of siaender P, we can consider that up until the
momentx has remaining time, x is allowed to work wheneve®,, ., is idle of jobs of size less than This
occurs whenever the system is empty of jobs of size less than or equal to soméhsizeill finish within
a time. At this point,z is allowed to complete uninterrupted. This provides a lower bound on the response
time of P because all work that we are accounting for must be done uRderorder for P to be Never
Unfair.

P rT—a a
E[T ()] et
E[S(z))? > Sha .

W)Y |z
Now, we must sey anda as functions ofr such that, as we let — oo, we converge as desired. Notice
that ast — oo, we would likep(y) — p, Zz’}{(g)) — 0,and% — 0. Thus, we must have < = andy < =

such thaty — oo anda — oo. We can accomplish this by setting= 4,/x andy = /z. Notice that
ma(y/7) — E[X?] < co asz — oo. Now, looking at expected slowdown we see that as oc:

ElS@)F > x— 4z _i_él\/f_> 1
e(L-pvm 4 Eesy) T e

3 Always Unfair

In this section we will show that a large number of common policies are Always Unfair. That is, many
common policies are guaranteed to treat some job size unfairly under all system loads. In each subsection
we will investigate a class of common policies, proving that the class is Always Unfair. Figure 2 summarizes
the policies that will be looked at in this section.

Section 3.1 illustrates that all non-preemptive policies are Always Unfair when the service distribution
is defined on some neighborhood of zero. However, if the service distribution has a non-zero lower bound
then only non-size based, non-preemptive policies are guaranteed to be Always Unfair. Section 3.2 shows
that any preemptive, size based policy is Always Unfair. In fact, we show that any job size that is given a
fixed, low initial priority upon arrival will be treated unfairly. We next discuss policies where a job’s priority
is a function of its current age. We first investigate a common policy of this type in Section 3.3 and then in
Section 3.4 extend the results to show that every age based policy is Always Unfair.

3.1 Non-size based, non-preemptive policies

The analysis in this section is based on the simple observation that any policy where a small job cannot
preempt the job in service will likely be unfair to small jobs. For example, let us begin with the class of
non-preemptive policies.

Lemma 3.1 Any non-preemptive policy is Always Unfair under any service distribution defined on a
neighborhood of zero.

Proof : We can bound the performance Bf by noticing that, at a minimum, an arriving job of size
must taker time plus the excess of the job that is serving. THEE(z)]” > = + ”2%[[);] Notice that
lim, o E[S(z)]” = co. Thus, there exists somesuch thatF[S(y)]” > 1/(1 — p), forall p < 1. u

This proof can be generalized quite a bit. For any polityuch that at leasi > 0 fraction of the
time a small jobr does not preempt a large job in servié®S(z)]” will have a term dependent dfi[X ?]
which will causeE[S(x)] — oo asz — 0. Such policies are Always Unfair when the service distribution is
defined on a neighborhood of zero. These include all policies where some fraction of the arriving jobs are
tagged as high priority, others are tagged as low priority, and low priority jobs cannot preempt high priority
jobs. Under such differential service policies, those small jobs of low priority will be treated unfairly if the
service distribution is defined on a neighborhood around zero.

However, under general service distributions a much smaller set of policies can be classified as Always
Unfair. These are the non-size based, non-preemptive policies. (Note that the remainder of the possible
non-preemptive policies are explored in Section 4.1.)

Theorem 3.1 All non-size based, non-preemptive policieare Always Unfair.

Proof : Assume that the service time distribution has lower boGng 0 (we have already dealt with the
case ofC = 0). We will show that jobs of siz€" are treated unfairly. Recall that all such policies have the
same expected response time [8].

BT = O+ AE[X?] _CO-p+ A+ C)F(t+C)dt
2(1=p) 1—p
C—Cp+Cp+\[StF(t+C)dt . C
1—p 1—p
where the last inequality follows since the service distribution is required to be non-deterministic. l

5

3.2 Preemptive, size based policies

In this section we analyze size based policies (i.e. policies where a job receives a priority based on its original
size), where higher priority jobs always preempt lower priority jobs. Note one such policy, Preemptive-
Shortest-Job-FirsRSJF), improves overall time in system with respecf8 by biasing towards jobs with

small sizes. It is important to understand the unfairness properties caused by this bias. Further, every policy
in this class will bias against a particular job size, so it is important to understand if unfairness results from
this bias.

Theorem 3.2 Any preemptive, size based policy is Always Unfair.

The remainder of this section will prove this result. We will break the analysis into two cases: (1) when
there exists a finite sized job that has the lowest priority and (2) when there is no finite sized job with the
lowest priority. Case (2) will be broken into two subcases: (2.1) when priorities decrease monotonically (i.e.,
the PSJF policy), and (2.2) when priorities are non-monotonic, but have no finite sized job that receives the
lowest priority. This method of proof will be used again in Section 3.4 and Section 4.3.

It will be helpful in the proofs below if we first analyze the Longest-Remaining-Processing-TRET]
policy. At any given point, th&RPT policy shares the processor evenly among all the jobs in the system
with the longest remaining processing tinkd&RPT has the following expected slowdown [7]:

1 AE(X?] _ E[B(z)] , E[B(V)]

l’

B[S = 1—p * 22(1 —p)2 «x x

whereV is the work in the system seen by an arrival @@) is the length of a busy period started by a job

of sizex. Recall thatE'[V] = éﬁ[iif)] under all work conserving policies.

Lemma 3.2 Under LRPT, for all finite job sizeg, F[S(y)]***T > 1/(1 — p) under any bounded or
unbounded service distribution, for gil Further, E[S(y)]“"*F'T is monotonically decreasing with to

1/(1 = p).
We are now ready to prove case (1).

Lemma 3.3 Any preemptive, size based polieyhat gives some finite job sizeghe lowest possible priority
is Always Unfair.

Proof : We will derive the time a job of sizg spends in the system. L&{(y) = W (y) + R(y) whereWW (y)
is the time untily first receives service (waiting time) afit{y) is the time from whepy first receives service
until it completes (residence time). Notice thamust wait behind all jobs that are already in the system.
So, its waiting time i9V (y) = B(V'). Further, since an arriving job will preempt the job w.p.1, we know
that the residence timB(y) = B(y).

Thus, for jobs of the lowest prioritf[S(y)]T = E[S(y)]*FT. Becausd.RPT has a monotonically
decreasing expected slowdown curve that convergég(tb— p), we can conclude that no matter what job

6

size has the lowest priority, the expected slowdown of that job size will be strictly greatet thiar p).
|
We now move to case (2.1).

Lemma 3.4 Under PSJF there is some job sigesuch that for allz > y and for all p, E[S(x)]"57F >
1/(1 — p) under any unbounded service distribution.

Proof : It is well known that [8]:

pssr _ Ay PF(®)dt
21— p@)? 1—p(@)
Thus,lim, .o, E[S(x)]75/F = 1/(1 — p) since the service distribution is assumed to have finite vari-

ance. To prove the lemma it is sufficient to show tlﬁxaE[S(x)] converges to zero from below as— oo.
By observing that

E[T(2)]

wherep(z)) /x tf(t)dt.
0

iE{S(x)]PSJF _ iE[T(x)]PSJF B :L‘%E[T(@}PSJF —E[T(;g)]PSJF
dx

dx x 2

our goal reduces to showing thatas— oo

v BT — BT @] <0 ®
Let us begin by calculating
a PSJF _ Na? f(z) fgc t2 f(t)dt 3M\a? f () x
e e R (R O3 R ey

which gives us

a L) PSIF _ PPSIF Nz f(x) [y 2 f(t)dt BABf(x) N[y f(t)dt
e e e TG oo (2(1—p<x>>2 2(1—p<x>>2>

Observe that distributions with finite second moments must Hfwe = o(z~3), whereg(x) e

o(h(x)) if limg_ o0 % = 0. Using this observation, we see that
— PSJF PSJF _ AB[X?
xlg{)loxde[T(x)] E[T(z)] = 0+1(0 20— p)? <0
Recalling Equation 1, we can conclude tf#g5(z)] — 1/(1 — p) from above ag: — oc. []

We are now left with only case (2.2).

Lemma 3.5 Any preemptive, size based polieywhere there is no finite job size that receives the smallest
priority is Always Unfair.

Proof : Note that Lemma 3.4 leaves only the case where for every joledizere is a job sizg > = such
that the priority ofy is less than the priority of, but the priorities are not decreasing monotonically.

We will complete the proof by taking advantage of our knowledg@®3F. Choose some job size
such thatPSJF treats all job sizes larger thanunfairly. We know that for some size greater thany, z
has a lower priority than all jobs of smaller size. Thuss treated, with respect to these smaller jobs, as if
it were inPSJF. Further, if jobs larger than have higher priority than, they will simply raiseE[S(2)]F.
Thus,z is treated at least as badly as it would have been uR8dF. Since any such is treated unfairly
underPSJF (by Lemma 3.3), this completes the proof. [|

Notice that under the policies in this section, the job sizes that are treated unfairly depend on how
priorities are assigned. When there is a finite job gizbat receives the lowest priority, thenis treated
unfairly. However, in the case when no job size was given the lowest priority, we see that it is not the
largest job that is treated the most unfairly. This follows from the fact gh#t[S(z)]7/" is decreasing
asx — oo. Thus, some other class of large, but not the largest, jobs is receiving the most unfair treatment.
This observation is discussed in more detail in Section 3.3.2.

3.3 FB

We now turn to a specific policy, Feedbaé&lg) scheduling. UndefB, the job with the least attained service

gets the processor to itself. If several jobs all have the least attained service, they time-share the processor
via PS. This is a practical policy, since a job’s age is always known, although its size may not be known.
This policy improves upoS with respect to mean response time and mean slowdown when the job size
distribution has decreasing failure rate [19]. We have [8]:

A [VtF(t)dt T _
E[T(z)]FB = £)_p())2 + _xp wherep, % \ /O F(t)dt.

Given the bias thaEB provides for small jobs (they are always young), it is natural to ask about the
performance of the large jobs. Thus, understanding the growth of slowdown as a function of the job size
is important. The following Lemma will be useful in evaluatiRB's performance.

Lemma 3.6 For all z andp, E[T(z)]7%7F < E[T(x)]"B.

Proof : The proof is simply algebraic.

PSJF AJg £f(t)at x
ElT () 21— p(0)? T 1 pla)
- _AEXE L@
S @R 1)
IAE[X,?] + 2(1 py)
< 200D i

Theorem 3.3 Under FB scheduling there is some job sjzuch that for alle > y, E[S(2)]F5 > 1/(1—p)
under any service distribution, for gi. Furthermore,E[S(x)]"? is not monotonic .

Proof : The first part of the theorem follows immediately from combining Lemma 3.4 and Lemma 3.6.
For the second part, we show tHakS(z)] ¥ is monotonically increasing for smat| but decreasing as
x — oo. We start by differentiating response time:

d

4 2N*F(z)x [tF(t)dt 2)2F(x) x
dz

l’
(1= pg)? (L=pz)? 1—pa

E[T(x)]""

which gives us

d BT (@)]FP — BT@)FE — (2/\2F(x)x I tF(t)dt) . (2/\17217(1:) Ay tF(t)dt) @

Y dx (1= p.)? T—pa)? (1 po)?

Recall from Equation 1 that the above gives us the sig#-@#[S(z)]FE.
There are two terms in Equation 2. The first term is clearly positive. Notice thatfioch that'(z) > 1
we have:

d

v B[T(2)]"" = E[T(x)]""

> (1—>\px)2 <2x2F(ac) - ;x2> >0 (3)
which shows thafZ[S(z)] ¥ is monotonically increasing for such thatF'(z) < 3.

We now prove that the expected slowdown convergels/t@ — p) from above asx — oco. First, we
know thatlim, . E[S(z)]FZ = 1/(1 — p) [7]. Next, Equation 2 gives us the sign ¢fE[S(z)]5. As
in the proof of Lemma 3.4, for any distribution with finite second moment, we knowRhaj = o(x~2).
Using this observation,

fim - BT (@)~ B @) =

S I L

Thus, there exists some job sizg such that for alt: > zo, E[S(x)]F? is monotonically decreasing in
|

The proof of this theorem shows us that all job sizes greater than a certain size are have higher mean
response time undéiB than undelPS. Counter-intuitively however, the job that performs the worst is not
the largest job. Thus, the intuition that by helping the small feBsnust hurt the biggest jobs is not entirely
true.

Interestingly, this theorem is counter to the common portrayBBah the literature. When investigating
E[S(z)]FB, previous literature has used percentile plots such as Figure 3(b), which hide the behavior of the
largest one percent of the jobs [11]. When we look at the same plots as a function of job size, such as Figure
3(a), the presence of a hump becomes evident. In fact, even under bounded distributions, this hump exists,
seemingly regardless of the bound placed:on

(a) (b)

25 25

20 20

15 15
E[S(x)] E[S(x)]

10 10

iy 5

0

0 2 4 6 8 10 12 14 0 0.2 04 06 08 1
X FIx]

Figure 3:Plots (a) and (b) show the growth &fS(z)]*? for p = .9. In both cases the service distribution
is taken to be Exponential with mean 1. The horizontal line shows fair performance, thugipsian | ?
is above this line FB is treating a job size unfairly.

3.3.1 Whois treated unfairly?

Having shown that some job sizes are treated unfairly uRBescheduling, it is next interesting to under-
stand exactly which job sizes are seeing poor performance. The following theorem places a lower bound on
the size of jobs that can be treated unfairly.

Theorem 3.4 For z such thatp, <1 — /1T —p, E[T(2)]"B < 1/(1 — p).

Proof : The proof will proceed by simply manipulating[7'(z)]F 2.

Ay tE(t)dt v Az [F(t)dt x

E[T(x)]fP =
T) (1 —ps)? L—pz = (1= pa)? L= pe
Pal x(l — px) _ €z
(1= p2)? (1= pz)? (1= pz)?
Letting p, <1 — +/1 — p we complete the proof of the theorem. |

It is important to notice that as increases, so does the lower bound /1 — p on p,. In fact, this
bound converges to 1 as— 1, which signifies that the size of the smallest job that might be treated unfairly
is increasing unboundedly asncreases. Interestingly, this work also provides bounds on the job sizes that
might be treated unfairly und®&SJF due to Lemma 3.6.

3.3.2 Intuition for non-monotonicity

The fact that-B and PSJF have non-monotonic slowdown is somewhat surprising. Below we provide an
intuitive explanation for this phenomenon.

For small jobs, it is clear th&B andPSJF provide preferential treatment. Thus it is believable that the
slowdown should increase monotonically as job size increases.

Next consider a somewhat large jopof sizex, where this job is large enough that with high probability
it is the largest job in any busy period in which it appears. UrkiandPSJF, job 2 will complete only
at the end of the busy period, since it is the largest job in the busy period. Observe thatijbblso only

10

~(a)]) (b)

40 LRPT

E[S(x)]30
20
10
0

10 PSJF

1] 2 4 & XE» 10 12 14

Figure 4: Plot (a) showsE[S(x)]“FFT (above) andE[S(z)]F2 (below). Plot (b) shows?[S(x)]LAPT
(above) andE[S(z)]7°/F (below). In both cases = .9 and the service distribution is taken to be Expo-
nential with mean 1. Notice that the expected slowdown for a job ofrsireler both FB and PSJF quickly
converges to the expected slowdown oihder LRPT.

complete at the end of its busy period undBPT, since all jobs complete at the end of the busy period under
LRPT. Thus the performance of jobunderFB andPSJF may be approximated by the performance of job
2 underLRPT. Next recall from Lemma 3.2, that the expected slowdown ofsjjanderLRPT converges
monotonically from above td/(1 — p) asx — oo. Thus it is plausible that the expected slowdown of job
x underFB andPSJF also converges monotonically from abovelid1l — p) asz — oc.

Figure 4(a) shows th&B does in fact converge in performancd RPT for large job sizes. Figure 4(b)
shows the same fd?SJF.

3.4 Age based policies

FB scheduling is one example of an age based policy (i.e. policies where a job’s priority is some function
of its current age). Age based policies are interesting because they include many hybrid policies where, in
order to minimize mean response time and curb the unfairness seen by large jobs, both sufficiently old jobs
and very young jobs receive preferential treatment.

Note that, as in-B, we will choose to break ties among jobs in the system with the same priority
according toFCFS Thus, when multiple jobs have the same age, and priority is increasing with age, the
job that arrived first will be worked on alone for some period of time; however when multiple jobs have the
same priority and priority is decreasing with age, this lead33@mong the jobs with the same priority.

Theorem 3.5 Age based policies are Always Unfair.

The remainder of this section will prove this theorem using a method similar to the method used in
Section 3.2. We break the analysis into two cases: (1) the case when there exists a finite sized job that has
the lowest priority and (2) when there is no finite sized job with the lowest priority. We begin with case (1).

Lemma 3.7 Any age based polick where there is a finite ag€ that receives the lowest priority is Always
Unfair.

11

Proof : We will show thatP must be unfair to a job of siz€*, whereC™ is infinitesimally larger thai.

First notice that when a job of sizé€* arrives, all the work in the system can be guaranteed to be
completed befor€'* leaves. Further, all arriving jobs of sizewill have min{z, C'’} work completed on
them beforeC'* leaves the system. Thus:

ABIX?] | oy) .
E[T(C+)}P — 2(1-p) _)‘E[X] c

+
1—pc 21=p)(1—pc) 1-pc

Now, notice thatZ[T(C+)]¥ > C* /(1 — p) when
A iy2 +
§E[X]>C7(p—pc)

or equivalently

AE[X?]
Since(1 — p) > (1 — p(C)), the above condition is met for all finite. []

We now move to case (2).
Lemma 3.8 Any age based policy where no finite job size has the lowest priority is Always Unfair.

The proof of this final lemma follows from Theorem 3.3 and an argument symmetric to the proof of Lemma
3.5.

4 Sometimes Unfair

We now move to the class of Sometimes Unfair policies — policies that for gdreat all job sizes fairly, but

for otherp treat some job size unfairly. In Section 4.1 we return to non-preemptive policies and illustrate that
when the service distribution sets a non-zero lower bound on the smallest job size, non-preemptive policies
can avoid being Always Unfair, but cannot attain Never Unfair. In Section 4.2 we show that under the
Shortest-Remaining-Processing-TingRPT) policy for p < % E[S(z)]°FFT is monotonically increasing

in z for all > and is always< 1/(1 — p). However, forp > pe.it, E[S(x)]9#FT is monotonically increasing

in z for all z such thafp(z) < % and is monotonically decreasing infor all x greater than some,. We

also contrast the behavior SRPTunder bounded versus unbounded service distributions. More generally,

in Section 4.3 we show that any remaining size based policy is either Sometimes Unfair or Always Unfair.

4.1 Non-preemptive, size-Based Policies

This section completes the analysis of hon-preemptive policies begun in Section 3.1. It is based on the
observation that if there is a lower bound on the smallest job size in the service distribution, then it is
possible for a non-preemptive policy to avoid being Always Unfair.

12

Theorem 4.1 Any non-preemptive, size-based polieys either Sometimes Unfair or Always Unfair.

Proof : Recall thatim, .., £[S(z)]? = 1 for all non-preemptive policie§, by Theorem 4 from [7]. Thus,
we can apply Lemma 2.1 to conclude that a non-preemptive p@licgnnot attain Never Unfair. Thus,
(being a non-preemptive policy) must be either Always Unfair or Sometimes Unfair.

Observe there are examples of size based, non-preemptive policies in each of the two classes. For in-
stance, it can easily be shown that the Longest-Job-Eidgt) policy is Always Unfair. However, Shortest-
Job-First 8JF) is only Sometimes Unfair — that is, there exist service distributions and loads such that
E[S(x)]%’F < 1/(1 — p) for all z. One example of such a distribution and loadXs— 2) ~ Exp(1) with
p=0.2. u

4.2 SRPT

Under theSRPTpolicy, at every moment of time, the server is processing the job with the shortest remaining
processing time. Th8RPTpolicy is well-known to be optimal for minimizing mean response time [14].
The mean response time for a job of sizis as follows [13]:

A [T 42 A2
L YISEPT 5 Jo 2f()dt + 527 F(x) Tdt
) far ot T
_ A tR@dt e dt
T - @) +/o 1= n(0)
wherep(z) X [Tt f(t)dt.

Theorem 4.2 For z such thatp(z) < 3, E[S(z)]%FFT is monotonically increasing im.

Proof : Begin by defining

mo(z) & /0 ’ t2f(t) =2 /0 ’ tF(t)dt — 22%F ()

Then we can derive

d
x- %E[T(a:)]SRPT =

2N f(x)a? [tF(t)dt N A2 F () L
(1= p(2))? (1=p(2))? 1—=p(2)

which gives us

v LB - BT(@) ST = <2A2f<w>w2 Jo tF(t)dt) N < AtF(@) Ay tF<t>dt>

dx (1= p(x))? (I=p())? (1-p(x))?
x Toodt
(=))
2N f(a)a? [tF(t)dt B Amia(z) x " dt
((1= p(x))? > (2(1 - P(I))2> " (1 - p(@) /0 1- P(U)

13

Recall that this expression provides us with the sign of the derivative of slowdown. There are 3 terms
in the above expression. The first of these terms is clearly positive. The third of these terms is also clearly
positive. We will complete the proof by showing that the third term is of larger magnitude than the second
term.

To obtain a bound on the third term, we can quickly show that

A A (1—p(t) — (1 —p(x))
1 —p(z) /ol—p(t) /0 (1 =p()(1 = p(x)) “

)l
1
o e st @

To further specify this bound we can compute

/Omp(t)dt = A//sf)dsdt =)\//sf)dtds

= 2 [st = s)ds = pla)e — ma(a) ©)
Finally, putting all three terms back together we see that wiieh < %

v LET(@)SFPT — BT(@) ST = (Dggjbw >

da (2))° 1A
- _<%3T§%P> (AmQ >Z

Corollary 4.1 If p < 1, E[S(z)]*®FT is monotonically increasing for alt. FurthermoreE[S(z)]5#FT <
1/(1 — p) for all .

Proof : This follows immediately from the above theorem and by recalling the following result: for any
work conserving scheduling polidy, lim, ., E[S(z)]F < 1/(1 — p) [7]. [|

The observation above thatS(z)]*FT < 1/(1 — p) for all z whenp < 3 was proven in [2] using a
different technique that did not describe the behaviaE (#(2)]°F'T as a function of increasing,.

The previous theorem showed monotonically increasing slowdown for SRPT under low load. We now
show that if load is sufficiently high, the opposite behavior occurs.

Theorem 4.3 There exists @..; < 1 such thatfor allp > p...;, E[S(2)]*#T has monotonically decreas-
ing slowdown forz > z,, for somer,. Further, forp > pe., for all @ > x,, E[S(z)]*FT > 1/(1 — p)
under any unbounded service distribution.

Earlier work (see Theorem 8 of [2]) showed that fds@unded job size distributiothe largest job size
p has the property that[S(p)]*FFT > 1/(1 — p). The above theorem extends this result to unbounded

14

job size distributions by utilizing monotonicity. The monotonicity result above is somewhat surprising. One
might assume that the largest jobs are the ones receiving the most unfair treatmer@RRdEeThis is in
fact the case foboundedob size distributions, however it is not true fanboundedob size distributions.
Proof :

The proof for the unbounded case is somewhat technical, but will follow a similar method to the previous
proof. We will show that ag — oo the derivative of expected slowdown approaches zero from below.

As in Equation 1, the main section of the proof will again look-at: E[T(z)]5RFT — E[T (x)]SEFT.
To evaluate the above expression, we need to evaluate Equation 4. Because evaluating the integral in this
expression is difficult, we apply the Mean Value Theorem, which tells us that there exjsts @, =] such
that

1 T p(x) — p(t) B 1 z .
1 —p(x) /0 1—p(t) dt = 1 — p() (1 — plca)) /0 p(x) — p(t)dt
Ama(x)

(1= p(2))(1 = plca))

Thus we have:

. 2 swpr _ pipgseer _(2X0@e? [T @) Jma) et

g P @I = BT@E = ((1 pl)?) ((1—p<x>>2)+(1—p<x> 8=
SE[X?] N AE[X?]
(1=p)2 (1-p)(1-ple))

So, the derivative of slowdown converges from below when this is less than zero, which occurs when

1*/)(600) > 2*2P
1+ p(eo)

or equivalentlyp > 5

To complete the proof, we need to boun@..). By showing thap(c) < 1 we illustrate g+ such that
whenp > peri, B[S(2)]°7PT will not be monotonic inc.
To understand what(c,) is we letz > 0 and notice

* “p(z) — p(t) 1 /x
x) — tdtg/ dt < x) — p(t)dt
| ot =ott S T [o)~ ott)

o e

I) tydt — 1 — p(x)

So,c, is such that

, K p<1>p(t§) Ut
1—p(cz) N t)dt

t)dt
plez) = fo () p(t)

Jo Bt

15

(b)

(a) 2

15 1.95
12.5 1.9
10
1.85
ES(0] 7.5 L8
5 1.75
2-2 1.7
1.
02 476 81012 14 650246x81°1214
(d)
(c))
10
1.8
8
1.6
E[S(x)] ©
4 1.4
2 1.2
0 1
0 0.2 04 0.6 08 1 0 0.2 0.4 06 08 1
F[x] F[x]

Figure 5: Plots (a) and (c) show the growth df[S(z)]°FFT for p = .9, while (b) and (d) show
E[S(x)]°EPT whenp = .5. In both cases the service distribution is taken to be Exponential with mean
1. The horizontal line shows fair performance, thus whgS (x)]*#FT is above this line SRPT is treating

a job size unfairly.

Thus there exists a..;; < 1 when the second term is bounded away from 1. The remainder of the proof
bounds this value away from 1. Because the remainder of the proof is algebraic, we leave it in Appendix A.
|

The existence of this, size beyond whict&[S(x)]*#FT is monotonically decreasing has gone unno-
ticed by previous research. The reason is that percentile plots are typically used when viewing expected
slowdown. As seen in Figure 5, because the hump occurs around the 99th percentile it is hidden when
looking at the percentile plots. Viewing those same plots as a function of job size, such as in Figure 5 (a)
and (b), reveals the existence of a hump under high load. Note that the peak of the hump occurs far from the
largest job size.

4.2.1 Who is treated unfairly?

Having seen thaBRPTis Sometimes Unfair, it is interesting to consider which job sizes are being treated
fairly/unfairly. The following theorem shows that agncreases, the number of jobs being treated fairly also
increases.

Theorem 4.4 For z such thatp(z) < max{1 — /T — p, 3}, E[T(z)]°®*T <1/(1 - p).

The proof of Theorem 4.4 follows immediately from Theorem 3.4, Theorem 4.2, and the following
lemma, which allows us to bound the performanc&BPTby that undeFB.

16

Lemma 4.1 For all = and p, E[T(z)]°FFT < E[T(z)]"B.

Proof : The proof is simply algebraic

x(l - ch) + %AE[X:cz]
(1 - p$)2
v AUy’ f)dy +2*F(x)

1—py (1= pa)?

v, Ay W)dy + 2°F ()
1—p(x) (1 —p(z))?

T Ay VA f(y)dy + SAa?F ()
1—p(z) (1= p(x))?
E[T(x)]SRPT

E[T(x)]"" =

v

v

4.2.2 Intuition for dependence on load

Similarly to FB, notice thatSRPTexhibits non-monotonicity under high load. Intuitively, this can be ex-
plained in the same way as it was 6B andPSJF in Section 3.3.2. Under high load, the large jobs in an
SRPTsystem do not have the opportunity to increase their priority by reducing their remaining size. Thus,
the largest job to arrive in a busy period will likely be the last to leave. This leads to unfairness.

However,SRPTdoes not always treat large jobs unfairly because during low load, the large job is often
alone in its busy period, which provides it the opportunity to increase its priority as it receives service.
Consequently, the large job will sometimes not be the last job to finish in the busy period.

4.3 Remaining size based policies

SRPTis one example of a remaining size based policy. In this section we will examine the entire class of
remaining size based policies (i.e. policies where a job’s priority is some function of its remaining size).
The class of remaining size based policies includes many hybrid policies where, in order to minimize mean
response time and curb the unfairness seen by large jobs, both jobs with very small and sufficiently large
response times are given preferential treatment.

Note that, as irSRPT, we will choose to break ties among jobs in the system with the same priority
according td=CFS Thus, when multiple jobs have the same remaining size, and priority is inversely related
to remaining size, then the job that has been in the system the longest will be worked on alone; however
when multiple jobs have the same remaining size, and priority is directly correlated with remaining size,
then the server wilPSamong the jobs.

AlthoughSRPTis in this class and is Sometimes Unfair, not all such policies are Sometimes Unfair. For
instance, th&RPT policy is Always Unfair as shown in Lemma 3.2.

17

Theorem 4.5 All remaining size based policies are either Sometimes Unfair or Always Unfair.

The remainder of this section will prove this theorem using the same method that was used in Section
3.4 and Section 3.2. We break the analysis into two cases: (1) the case when there exists a finite sized job
that has the lowest priority and (2) when there is no finite sized job with the lowest priority.

Lemma 4.2 Any remaining size based poli¢yywith a finite remaining siz€' having the lowest priority is
either Always Unfair or Sometimes Unfair.

Proof : We will begin by deriving the expected performance seen by a job of originat’siemtering the

system undeP. Notice that all work initially in the system will be completed beférdegins to be worked
on. In addition, all arrivals during this time that have size less tHawill be completed befor€’ leaves

the system. However, oncg starts being worked on and has remaining gizéhe only arrivals that are
guaranteed to finish beforeé leaves the system are those arrivals of size lesstthahus,

AE[X?] ¢ at
E[T(O)F > - / —
O 2 3000 =p@) " o T=00)
We will now show thatC' will be treated unfairly under high enough load. Using a similar derivation to
that shown in Equations 4 and 5, we can see #{dt(C)]” > 1/(1 — p) when

AE[X2] - C(p—p(C)) + Ama(z)
2(1 - p)(1 - p(C)) 1=p
or, equivalently,)
AE[X?]
S 20T Ama(C) > C(p — p(C))

or, equivalently, ,
-0+ (20?1]5_“; (]C)) - Amg@) > (1= p(C)).

Since(1 — p) > (1 — p(C)), we immediately see thdt cannot be fair ifp(C)) > 1. However, when
C is the upper bound of a bounded distribution an % the bound does not hold. In this case, we need
to look at the system under a higher load. We can raise thatp = p(C) > % in which case the bound
holds.

Whenp(C) < 3 we need to do a more detailed analysis. Sip€) < % we can raise\ so that
p = 2p(C). Notice that if this is not possible, it means that by raisinge madep(C') > % which we have
already dealt with.

Whenp = 2p(C), E[X] = 2m1(C) & QfOC tf(t)dt. Further, this tells us thab[X]| — m,(C) =
m1(C), but alsoE[X]| — m1(C) = [tf(t)dt. Thus,foc tf(t)dt = [7°tf(t)dt. Using this fact, we can
notice that

E[X2]:/Ooot2f(t)dt = /Oct2f(t)dt+/coot2f(t)dt
> mQ(C) + le(C) > QmQ(C)

18

Non—preemptive
PS SJF L‘Ji

Remaining Size|"
Bas%c?)

PLCFS

SRPT

Figure 6:Classification of unfairness proven in this paper.

Thus, we can see that

AE[XZ] Ama(C) Ama(C) Ama(C)
L=o)t <2O<1—p<c>> G)Z“_p)*(cu—p(c» G >><1_”(C”
holds for all finiteC. [|

Lemma 4.3 Any remaining size based poli¢ywhere an infinitely sized job has the lowest priority is either
Sometimes Unfair or Always Unfair.

The proof of this final lemma follows from Theorem 4.3 and an argument symmetric to the proof of Lemma
3.5.

5 Conclusion

The goal of this paper is to classify scheduling policies in an M/GI/1 in terms of their unfairness. Very little
analytical prior work exists on understanding the unfairness of scheduling policies, and what does exist is
isolated to a couple particular policies. This paper is the first to approach the question of unfairness across all
scheduling policies. Our aim in providing this taxonomy is, first, to allow researchers to judge the unfairness
of existing policies and, second, to provide heuristics for the design of new scheduling policies.

In our attempt to understand unfairness, we find many surprises. Perhaps the biggest surprise is that
for quite a few common policies, unfairness is a function of load. That is, at moderate or low loads, these
policies are fair to all jobs. Yet at higher loads, these policies become unfair. This leads us to create
threeclassifications of scheduling policies: Always Unfair, Sometimes Unfair, and Never Unfair (shown in
Figure 1, repeated here for reference). Rather than classifying individual policies, we group policies into
different types: size based, age based, remaining size based, and others. We prove that all size based and
age based policies are Always Unfair, but that remaining size based policies and non-preemptive policies
are divided between two classifications. The result that all size based policies are Always Unfair may seem

19

surprising in light of the fact that one could choose to assign high priority to both small jobs and sufficiently
large jobs in an attempt to curb unfairness.

With respect to designing scheduling policies, we find that under high load, almost all scheduling poli-
cies are unfair. However under low load one has the opportunity to make a policy fair by sometimes in-
creasing the priority of large jobs. For exampRSJF and SRPThave very similar behavior and delay
characteristics, but result in completely different unfairness classifications begR&Jallows large jobs
to increase their priority, where®SJF does not.

A variety of techniques are used in order to classify policies with respect to fairness. For classifying
individual policies it is useful to try to prove monotonicity properties for the policy over an interval of job
sizes. It then suffices to consider the performance of the policy on just one endpoint of the interval. In
classifying a group of policies, it helps to decompose the group into two cases: the case where the lowest
priority job has a finite size/age, and the case where the lowest priority job has infinite size/age. In the latter
case, we find that the fairness properties for the entire group of policies reduces to looking at one individual
policy.

Since so many policies are Always Unfair, and so many others are Sometimes Unfair, it is interesting to
askwhois being treated unfairly. Initially it seems that unfairness is an increasing function of job size, with
the largest job being treated the most unfairly. This is in fact the case for bounded job size distributions.
However, for unbounded job size distributions, we find this usually not to be the case. Instead, unfairness is
monotonically increasing with job size up to a particular job size; and later is monotonically decreasing with
job size. Thus the job being treated most unfairly (“top of the hump”) is far from the largest. Interestingly,
this “hump” changes as a function of load.

The above findings show that we are just beginning to understand unfairness in scheduling policies. This
is a fertile area with many more properties yet to be uncovered.

References
[1] Baily, Foster, Hoang, Jette, Klingner, Kramer, Macaluso, Messina, Nielsen, Reed, Rudolph, Smith, Tomkins,
Towns, and Vildibill. Valuation of ultra-scale computing systems. White Paper, 1999.

[2] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairnedrodeedings of
Sigmetrics 01, 2001.

[3] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling continous job streams.
In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorift988.

[4] Allen B. Downey. A parallel workload model and its implications for processor allocatiorPrdeeedings of
High Performance Distributed Computingages 112-123, August 1997.

[5] M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for dynamic load balanaidiyl
Transactions on Computer Systerh§(3), 1997.

[6] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Implementation of SRPT scheduling in web
servers. Technical Report CMU-CS-00-170, Carnegie Mellon University, 2000.

20

[7] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic convergence of scheduling policies with respect to
slowdown.Performance Evaluatigrt9(1-4):241-256, 2002.

[8] L. Kleinrock. Queueing Systemgolume Il. Computer Applications. John Wiley & Sons, 1976.

[9] M. E. Crovella M. Harchol-Balter and S. Park. The case for SRPT scheduling in Web servers. Technical Report
MIT-LCS-TR-767, MIT Lab for Computer Science, October 1998.

[10] R. Perera. The variance of delay time in queueing system M/G/1 with optimal strategy SReRiv fur
Elektronik und Uebertragungstechnik7:110-114, 1993.

[11] I. Rai, G. Urvoy-Keller, and E. Biersack. FB: An efficient scheduling policy for edge routers to speedup the
internet access. Unpublished manuscript.

[12] J. Roberts and L. Massoulie. Bandwidth sharing and admission control for elastic traffi€C I8pecialist
Seminar 1998.

[13] L. E. Schrage and L. W. Miller. The queue M/G/1 with the shortest remaining processing time discipline.
Operations Resear¢ii4:670-684, 1966.

[14] Linus E. Schrage. A proof of the optimality of the shortest remaining processing time discifpiperations
Research16:678-690, 1968.

[15] F. Schreiber. Properties and applications of the optimal queueing strategy SRPT - aAwsfvyfur Elektronik
und Uebertragungstechnik7:372-378, 1993.

[16] A. Silberschatz and P. Galvi®perating System Concepts, 5th Editidohn Wiley & Sons, 1998.
[17] W. Stallings.Operating Systems, 2nd EditioRrentice Hall, 1995.
[18] A.S. TanenbaumModern Operating SystemBrentice Hall, 1992.

[19] A. Wierman, N. Bansal, and M. Harchol-Balter. A note comparing response times in the M/GI/1/FB and
M/GI/1/PS queues. Technical Report CMU-CS-02-177, Carnegie Mellon University, September 2002.

[20] Ronald W. Wolff. Stochastic Modeling and the Theory of Queugsentice Hall, 1989.

A SRPT is Sometimes Unfair

We now complete the proof of Theorem 4.3.
Proof : To complete the proof, we need to boun@..). By showing thaip(c.,) < 1 we illustrate ap.;
such that whep > p..;+ SRPTwill lack slowdown monotonicity.

To understand what(c,) is, we letz > 0 and notice

. " o) = plt) Lo
[o) —pwa < [T ar < s [@) = gty

z p(z)—p(t)

|- fo T p() dt 1

Jy o) — p(dt = T= p(x)
So,c, is such that

1 _ fow p(1)p(tg) dt

1—p(cz) N t)dt
t)dt

plce) = fO

t
I 8 >p{2§)dt

21

Thus there exists a..;+ < 1 when the second term is bounded away from 1. The remainder of the proof
bounds this value away from 1.

We continue by separating the integral in the denominator into three parts wsind s such that
p(r) = fp(z) andp(s) = gp(x) for f < g € (0,1). Note that this is possible for someunder any
non-constant service distribution.

Cpx)—p®) ., [T pl@)—pk) *p(z) — p(t) “ plx) —p(t)
/Odt - /Odt+/r dt+/s Y P gt

1—p(t) 1—p(t) 1—p(t) 1—p(t)
1 r 1 s
S G / pla) = p(t)t 41— / ple) — p(t)dt
+1_1p(x) [o)~ pityat
def 1 1 1

I T M W R e

Working with each of the pieces, we can derive

4= / pla) — p(t)dt = rpla) — rols) + Ama(r)
0

= (1= fp(x) + Ama(r)
— (1= f)p+ Ama(r) asz — oo

B = /S plx) —pt)dt = (s—r)p(x)— [sp(s) — Ama(s) — rp(r) + Ama(r)]

— S(1— g)p(e) — r(1— F)p(x) + Ama(s) — Ams(r)
— s(l—g)p—7r(1— f)p+ Ama(s) — Ama(r) asz — oo

C= /xp<x>—p<t>dt = (z— 8)p(x) — 2p(x) + Ama(x) + sp(s) — Ama(s)

= —s(1=g)p(z) + Ama(x) — Ama(s)
— —5(1 — g)p+ AE[X?] — Ama(s) asz — oo

Further, we can notice that

Amg(s) =)\/Ortzf(t)dt—i-)\/sth(t)dt

> Amy(s) +r(p(s) — p(r))

= Ama(s) +r(g— fp(x)

= Ama(s) +r(l = f)p(z) — (1 — g)p(x)

— Ama(s)+r(1—f)p—r(l—g)pasr — oo

Using this calculation in the formula fd8, we see that ag — o~

B > (s—r)(1—g)pz

22

and
B < s(1—g)p(x)+ Ama(s)
— 51— g)p+Ama(s) = 5
Thus, forN,(A) > 2 andN,(C) > ¢
A
C

A\VARAYS

CalculatingN(A) we see

(1= f)p+ Ama(r)
(s=r)(L—g)p
r(1—f) N Amg(r)
(s=r)(l—g) (s—7)(1—g)p

Noo(A) >

and similarly forN.(C') we obtain

—s(1 — g)p + AE[X?] — dma(s)

Noo(C)

Vv

(s=r)(1—g)p
So, itis sufficient to have
r(1— f) AE[X?]
Nl = g g
AE[X?] s

(s—r(l—g)p s—r
We now have bounds on the pieces of the integral. So, putting everything together we see that

pew) = 1- D p et

oo p—p(t)
Jo ot
- AA+?+§' -
= T T T 1
A+B+C
S No(A)B+ —t—~B+ L N,(C)B
1—p(r)" "o 1—p(s) 1—p='®
B
= 1"_LN(A)BJF—L%H-J—J\I(C)B
1—p(r)="° 1—p(s) 1—p= '@
1
= 1-
=75 Noo(A) + 1255 + 125, Neo(C)
def 1
= 1—=
l

which tells us that as — oo, -L E[S(z)]°#FT — 0 from below when

1
> 11— =
- 21

23

The quantityi is bounded away from infinity as long as# r, so there exists someg,.;; = 1 — % where,
for any service distribution, ip > p..;+ SRPTdoes not have slowdown monotonicity. |

To better understand this proof it is interesting to look at the special case whereFzp(1). In this
case,f = % g= % E[X?] =25~ % andr ~ % (s andr are very approximate). So, we can calculate

2r 6AE[X?]

>

Noo(4) (s—r) + (s—r)
~ 38

2
No(C) > 6AE[X7] K
(s—r) s—r
~ 35
and
6 3
[> gNoo(A) + 3 + 2N (C)
~ 117.1

Which gives us that fop > .99573, SRPTwill not have slowdown monotonicity under dizp(1)
service distribution. Further, for thepeSRPTis guaranteed to treat some job size unfairly. It is important
to point out the looseness of this bound. By plotting the actual equation for expected time in system under
an Exp(1) distribution we find that the true critical value fpiin this case is just under .7, much lower than
the value obtained using the method in the previous proof.

24

