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1 Introduction

Traditionally the performance of scheduling policies has been measured using mean response time (i.e.

sojourn time, time in system) [9, 10, 12, 15], and more recently mean slowdown [1, 4, 5]. Under these

measures, size based policies that give priority to small job sizes at the expense of larger sizes perform quite

well [13]. However, these policies tend not to be used in practice due to a fear of unfairness. For example,

a policy that always biases towards jobs with small sizes is likely to treat jobs with large sizes unfairly

[3, 16, 17, 18].

This tradeoff between minimizing mean response time while maintaining fairness is an important design

constraint in many applications. For example, in the case of Web servers, it has been shown that by giving

priority to requests for small files, a Web server can significantly reduce response times; however it is

important that this improvement not come at the cost of unfairness to requests for large files [6, 9]. The same

tradeoff applies to other application areas; for example, scheduling in supercomputing centers. Here too it

is desirable to get short jobs out quickly, while not penalizing the large jobs, which are typically associated

with the important customers. The tradeoff also occurs for age based policies. For example, UNIX processes

are assigned decreasing priority based on their current age – CPU usage so far. This can create unfairness

for old processes. To address the tension between minimizing mean response time and maintaining fairness,

hybrid scheduling policies have also been proposed; for example, policies that primarily bias towards young

jobs, but give sufficiently old jobs high priority as well.

Recently, the topic of unfairness has been looked at formally by Bansal and Harchol-Balter, who study

the unfairness properties of the Shortest-Remaining-Processing-Time (SRPT) policy under an M/GI/1 sys-

tem [2]; and by Harchol-Balter, Sigman, and Wierman, who address unfairness under all scheduling policies

asymptotically as the job size grows to infinity [7]. In this paper, these results are extended to characterize

the existence of unfairness under all priority based scheduling policies, for all job sizes.

In order to begin to understand unfairness however, we must first formalize what is meant by fair per-

formance. In this definition, and throughout this paper we will be using the following notation. We will

consider only an M/GI/1 system with a continuous service distribution having finite mean and finite vari-

ance. We letT (x) be the steady-state response time for a job of sizex, andρ < 1 be the system load. That

is ρ
def= λE[X], whereλ is the arrival rate of the system andX is a random variable distributed accord-

ing to the service distributionF (x) with density functionf(x). The slowdown seen by a job of sizex is

S(x) def= T (x)/x, and the expected slowdown for a job of sizex under scheduling policyP is E[S(x)]P .

Definition 1.1 Jobs of sizex are treated fairly under policyP iff E[S(x)]P = 1/(1 − ρ). Further, a

scheduling policy is fair iff it treats every job size fairly.

Definition 1.2 Jobs of sizex are treated unfairly under policyP iff E[S(x)]P > 1/(1 − ρ). Further, a

scheduling policy is unfair iff there exists a job sizex that is treated unfairly.

This definition is a natural extension of the notion of fairness used in [2, 7]. Notice that this definition

of fairness has two parts. First, the expected slowdown seen by a job of sizex must be a constant (i.e.
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Figure 1: Classification of unfairness showing a few examples of both individual policies and groups of
policies within each class.

independent ofx). Processor-Sharing (PS) is a common scheduling policy that achieves this. UnderPS

the processor is shared evenly among all jobs in the system at every point in time. It is well known that

E[S(x)]PS = 1/(1 − ρ) [20], independent of the job sizex. The second condition of the definition of

fairness is that the particular constant must be1/(1 − ρ). Although this constant may seem arbitrary, in

Section 2 we will show that1/(1 − ρ) is the lowest possible constant obtainable under any policy with

constant expected slowdown. This fact is a formal verification that1/(1− ρ) is the appropriate constant for

defining fairness.

With these definitions, it is now possible to classify scheduling policies based on whether they (i) treat

all job sizes fairly or (ii) treat some job sizes unfairly. Curiously, we find that some policies may fall into

either type (i) or type (ii) depending on the system load. We therefore definethree classes of unfairness:

Never Unfair: Policies under which, for all loads, no job size is treated unfairly.

Sometimes Unfair: Policies under which, for some loads, some job size is treated unfairly; but under which

for other loads, no job size is treated unfairly.

Always Unfair: Policies under which, for all loads, there is some job size that is treated unfairly.

The goal of this paper is to classify scheduling policies into the above three types (see Figure 1). Schedul-

ing policies are typically divided into non-preemptive policies and preemptive policies. We find that non-

preemptive policies can either be Sometimes Unfair or Always Unfair, however preemptive policies may

fall into any of the three types. In this paper, we concentrate on preemptive priority based policies. These

include policies for which (i) a fixed priority is associated with each possible job size (a.k.a.size based

policies), (ii) a fixed priority is associated with each possible job age (a.k.a.age based policies), and (iii) a

fixed priority is associated with each possible remaining size (a.k.a.remaining size based policies). Observe

that (i) includes policies like Preemptive-Shortest-Job-First where short jobs have higher priority, but also

includes perverse policies like Preemptive-Longest-Job-First and others. Observe that (ii) includes policies
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like Feedback scheduling where young jobs are given priority, yet also includes other practical policies that

primarily bias towards young jobs and also give high priority to sufficiently old jobs. Observe that (iii) in-

cludes policies like Shortest-Remaining-Processing-Time-First and Longest-Remaining-Processing-Time-

First that bias towards jobs with short and long remaining time respectively, as well as practical hybrids. We

show that all policies in (i) and (ii) are Always Unfair; whereas policies in (iii) can be Sometimes Unfair or

Always Unfair.

Lastly, for the case where jobs are being treated unfairly, we investigatewhich job sizesare treated

unfairly, and find that these are not necessarily the jobs one would expect. Furthermore, we find that the

answer depends on the system load.

2 Never Unfair

Two well known Never Unfair policies are Processor-Sharing (PS) and Preemptive-Last-Come-First-Served

(PLCFS). Recall thatPLCFSalways devotes the full processor to the most recent arrival. Both of these

policies have the same expected performance:E[S(x)]PS = E[S(x)]PLCFS = 1/(1 − ρ) for all x. An

important open problem not answered in this paper is the question of what other policies are in the Never

Unfair class.

We now address why the value of1/(1− ρ) appears in the definition of Never Unfair. It seems possible

that there is a policy that is bothfair in the sense that all job sizes have the same expected slowdown, and

has slowdown strictly less than1/(1− ρ). We show below that there is no such policy.

Theorem 2.1 There is no policyP such thatE[S(x)]P is independent ofx andE[S(x)]P < 1/(1− ρ).

This theorem follows from the lemma below, which provides a necessary condition for a policy to be

Never Unfair. This necessary condition will be appealed to in the proof of Theorem 4.1.

Lemma 2.1 If scheduling policyP is Never Unfair, thenlimx→∞E[S(x)]P = 1/(1− ρ)

Proof : First, notice that becauseP is Never Unfair,limx→∞E[S(x)]P ≤ 1/(1 − ρ). Thus, we need only

show thatlimx→∞E[S(x)]P ≥ 1/(1 − ρ). We accomplish this by bounding the expected slowdown for a

job of sizex from below, and then showing that the lower bound converges to1/(1− ρ) as we letx →∞.

To lower bound the expected slowdown, we consider a modified policyQx,a that throws away arrivals

both of size greater thanx and of sizey < x such thatT (y) ≥ a. Further,Qx,a works on the remaining jobs

at the exact momentsP works on these jobs. We will begin by calculating the load made up of jobs of size

less thany in this system,ρ(y)Qx,a . We can use Markov’s Inequality to obtain a probabilistic bound that the

response time for a job of sizey is less than some valuea: P (T (y) < a) ≥ 1− y
a(1−ρ) . Thus, we see that

ρ(y)Qx,a = λ

∫ y

0

(
1− t

a(1− ρ)

)
tf(t)dt = ρ(y) +

λm2(y)
a(1− ρ)
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whereρ(y) def= λ
∫ y
0 tf(t)dt is the load made up by jobs of size less than or equal toy in P andm2(y) def=∫ y

0 t2f(t)dt. The key observation of this proof is that asa, y, andx get very large,ρ(y)Qx,a approachesρ.

As a lower bound on the response time for a job of sizex underP , we can consider that up until the

momentx has remaining timea, x is allowed to work wheneverQx,a is idle of jobs of size less thany. This

occurs whenever the system is empty of jobs of size less than or equal to some sizey that will finish within

a time. At this point,x is allowed to complete uninterrupted. This provides a lower bound on the response

time of P because all work that we are accounting for must be done underP in order forP to be Never

Unfair.

E[T (x)]P ≥ x− a

1− ρ(y)Qx,a
+ a

E[S(x)]P ≥ x− a

x
(
1− ρ(y) + λm2(y)

a(1−ρ)

) +
a

x

Now, we must sety anda as functions ofx such that, as we letx →∞, we converge as desired. Notice

that asx →∞, we would likeρ(y) → ρ, λm2(y)
a(1−ρ) → 0, and a

x → 0. Thus, we must havea ¿ x andy ¿ x

such thaty → ∞ anda → ∞. We can accomplish this by settinga = 4
√

x andy =
√

x. Notice that

m2(
√

x) → E[X2] < ∞ asx →∞. Now, looking at expected slowdown we see that asx →∞:

E[S(x)]P ≥ x− 4
√

x

x
(
1− ρ(

√
x) + λm2(

√
x)

4
√

x(1−ρ)

) +
4
√

x

x
→ 1

1− ρ

3 Always Unfair

In this section we will show that a large number of common policies are Always Unfair. That is, many

common policies are guaranteed to treat some job size unfairly under all system loads. In each subsection

we will investigate a class of common policies, proving that the class is Always Unfair. Figure 2 summarizes

the policies that will be looked at in this section.
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Section 3.1 illustrates that all non-preemptive policies are Always Unfair when the service distribution

is defined on some neighborhood of zero. However, if the service distribution has a non-zero lower bound

then only non-size based, non-preemptive policies are guaranteed to be Always Unfair. Section 3.2 shows

that any preemptive, size based policy is Always Unfair. In fact, we show that any job size that is given a

fixed, low initial priority upon arrival will be treated unfairly. We next discuss policies where a job’s priority

is a function of its current age. We first investigate a common policy of this type in Section 3.3 and then in

Section 3.4 extend the results to show that every age based policy is Always Unfair.

3.1 Non-size based, non-preemptive policies

The analysis in this section is based on the simple observation that any policy where a small job cannot

preempt the job in service will likely be unfair to small jobs. For example, let us begin with the class of

non-preemptive policies.

Lemma 3.1 Any non-preemptive policyP is Always Unfair under any service distribution defined on a

neighborhood of zero.

Proof : We can bound the performance ofP by noticing that, at a minimum, an arriving job of sizex

must takex time plus the excess of the job that is serving. Thus,E[T (x)]P ≥ x + ρE[X2]
2E[X] . Notice that

limx→0 E[S(x)]P = ∞. Thus, there exists somey such thatE[S(y)]P > 1/(1− ρ), for all ρ < 1.

This proof can be generalized quite a bit. For any policyP such that at leastq > 0 fraction of the

time a small jobx does not preempt a large job in service,E[S(x)]P will have a term dependent onE[X2]
which will causeE[S(x)] →∞ asx → 0. Such policies are Always Unfair when the service distribution is

defined on a neighborhood of zero. These include all policies where some fraction of the arriving jobs are

tagged as high priority, others are tagged as low priority, and low priority jobs cannot preempt high priority

jobs. Under such differential service policies, those small jobs of low priority will be treated unfairly if the

service distribution is defined on a neighborhood around zero.

However, under general service distributions a much smaller set of policies can be classified as Always

Unfair. These are the non-size based, non-preemptive policies. (Note that the remainder of the possible

non-preemptive policies are explored in Section 4.1.)

Theorem 3.1 All non-size based, non-preemptive policiesP are Always Unfair.

Proof : Assume that the service time distribution has lower boundC > 0 (we have already dealt with the

case ofC = 0). We will show that jobs of sizeC are treated unfairly. Recall that all such policies have the

same expected response time [8].

E[T (C)]P = C +
λE[X2]
2(1− ρ)

=
C(1− ρ) + λ

∫∞
0 (t + C)F (t + C)dt

1− ρ

=
C − Cρ + Cρ + λ

∫∞
0 tF (t + C)dt

1− ρ
>

C

1− ρ

where the last inequality follows since the service distribution is required to be non-deterministic.
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3.2 Preemptive, size based policies

In this section we analyze size based policies (i.e. policies where a job receives a priority based on its original

size), where higher priority jobs always preempt lower priority jobs. Note one such policy, Preemptive-

Shortest-Job-First (PSJF), improves overall time in system with respect toPSby biasing towards jobs with

small sizes. It is important to understand the unfairness properties caused by this bias. Further, every policy

in this class will bias against a particular job size, so it is important to understand if unfairness results from

this bias.

Theorem 3.2 Any preemptive, size based policy is Always Unfair.

The remainder of this section will prove this result. We will break the analysis into two cases: (1) when

there exists a finite sized job that has the lowest priority and (2) when there is no finite sized job with the

lowest priority. Case (2) will be broken into two subcases: (2.1) when priorities decrease monotonically (i.e.,

thePSJF policy), and (2.2) when priorities are non-monotonic, but have no finite sized job that receives the

lowest priority. This method of proof will be used again in Section 3.4 and Section 4.3.

It will be helpful in the proofs below if we first analyze the Longest-Remaining-Processing-Time (LRPT)

policy. At any given point, theLRPT policy shares the processor evenly among all the jobs in the system

with the longest remaining processing time.LRPThas the following expected slowdown [7]:

E[S(x)]LRPT =
1

1− ρ
+

λE[X2]
2x(1− ρ)2

=
E[B(x)]

x
+

E[B(V )]
x

whereV is the work in the system seen by an arrival andB(x) is the length of a busy period started by a job

of sizex. Recall thatE[V ] = λE[X2]
2(1−ρ) under all work conserving policies.

Lemma 3.2 Under LRPT, for all finite job sizesy, E[S(y)]LRPT > 1/(1 − ρ) under any bounded or

unbounded service distribution, for allρ. Further, E[S(y)]LRPT is monotonically decreasing withy to

1/(1− ρ).

We are now ready to prove case (1).

Lemma 3.3 Any preemptive, size based policyP that gives some finite job sizey the lowest possible priority

is Always Unfair.

Proof : We will derive the time a job of sizey spends in the system. LetT (y) = W (y)+R(y) whereW (y)
is the time untily first receives service (waiting time) andR(y) is the time from wheny first receives service

until it completes (residence time). Notice thaty must wait behind all jobs that are already in the system.

So, its waiting time isW (y) = B(V ). Further, since an arriving job will preempt the job w.p.1, we know

that the residence timeR(y) = B(y).
Thus, for jobs of the lowest priorityE[S(y)]P = E[S(y)]LRPT . BecauseLRPT has a monotonically

decreasing expected slowdown curve that converges to1/(1− ρ), we can conclude that no matter what job
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size has the lowest priority, the expected slowdown of that job size will be strictly greater than1/(1 − ρ).

We now move to case (2.1).

Lemma 3.4 Under PSJF there is some job sizey such that for allx > y and for all ρ, E[S(x)]PSJF >

1/(1− ρ) under any unbounded service distribution.

Proof : It is well known that [8]:

E[T (x)]PSJF =
λ

∫ x
0 t2f(t)dt

2(1− ρ(x))2
+

x

1− ρ(x)
whereρ(x) def= λ

∫ x

0
tf(t)dt.

Thus,limx→∞E[S(x)]PSJF = 1/(1 − ρ) since the service distribution is assumed to have finite vari-

ance. To prove the lemma it is sufficient to show thatd
dxE[S(x)] converges to zero from below asx →∞.

By observing that

d

dx
E[S(x)]PSJF =

d

dx

E[T (x)]PSJF

x
=

x d
dxE[T (x)]PSJF − E[T (x)]PSJF

x2

our goal reduces to showing that asx →∞

x
d

dx
E[T (x)]PSJF − E[T (x)]PSJF < 0 (1)

Let us begin by calculating

x
d

dx
E[T (x)]PSJF =

λ2x2f(x)
∫ x
0 t2f(t)dt

2(1− ρ(x))3
+

3λx3f(x)
2(1− ρ(x))2

+
x

1− ρ(x)

which gives us

x
d

dx
E[T (x)]PSJF − E[T (x)]PSJF =

λ2x2f(x)
∫ x
0 t2f(t)dt

2(1− ρ(x))3
+

(
3λx3f(x)

2(1− ρ(x))2
− λ

∫ x
0 t2f(t)dt

2(1− ρ(x))2

)

Observe that distributions with finite second moments must havef(x) = o(x−3), whereg(x) def=
o(h(x)) if limx→∞

g(x)
h(x) = 0. Using this observation, we see that

lim
x→∞x

d

dx
E[T (x)]PSJF − E[T (x)]PSJF = 0 +

(
0− λE[X2]

2(1− ρ)2

)
< 0

Recalling Equation 1, we can conclude thatE[S(x)] → 1/(1− ρ) from above asx →∞.

We are now left with only case (2.2).

Lemma 3.5 Any preemptive, size based policyP where there is no finite job size that receives the smallest

priority is Always Unfair.
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Proof : Note that Lemma 3.4 leaves only the case where for every job sizex there is a job sizey > x such

that the priority ofy is less than the priority ofx, but the priorities are not decreasing monotonically.

We will complete the proof by taking advantage of our knowledge ofPSJF. Choose some job sizey

such thatPSJF treats all job sizes larger thany unfairly. We know that for some sizez greater thany, z

has a lower priority than all jobs of smaller size. Thus,z is treated, with respect to these smaller jobs, as if

it were inPSJF. Further, if jobs larger thanz have higher priority thanz, they will simply raiseE[S(z)]P .

Thus,z is treated at least as badly as it would have been underPSJF. Since any suchz is treated unfairly

underPSJF (by Lemma 3.3), this completes the proof.

Notice that under the policies in this section, the job sizes that are treated unfairly depend on how

priorities are assigned. When there is a finite job sizey that receives the lowest priority, theny is treated

unfairly. However, in the case when no job size was given the lowest priority, we see that it is not the

largest job that is treated the most unfairly. This follows from the fact thatd
dxE[S(x)]PSJF is decreasing

asx → ∞. Thus, some other class of large, but not the largest, jobs is receiving the most unfair treatment.

This observation is discussed in more detail in Section 3.3.2.

3.3 FB

We now turn to a specific policy, Feedback (FB) scheduling. UnderFB, the job with the least attained service

gets the processor to itself. If several jobs all have the least attained service, they time-share the processor

via PS. This is a practical policy, since a job’s age is always known, although its size may not be known.

This policy improves uponPS with respect to mean response time and mean slowdown when the job size

distribution has decreasing failure rate [19]. We have [8]:

E[T (x)]FB =
λ

∫ x
0 tF (t)dt

(1− ρx)2
+

x

1− ρx
whereρx

def= λ

∫ x

0
F (t)dt.

Given the bias thatFB provides for small jobs (they are always young), it is natural to ask about the

performance of the large jobs. Thus, understanding the growth of slowdown as a function of the job sizex

is important. The following Lemma will be useful in evaluatingFB’s performance.

Lemma 3.6 For all x andρ, E[T (x)]PSJF ≤ E[T (x)]FB.

Proof : The proof is simply algebraic.

E[T (x)]PSJF =
λ

∫ x
0 t2f(t)dt

2(1− ρ(x))2
+

x

1− ρ(x)

≤ λE[X2
x]

2(1− ρ(x))2
+

x

1− ρ(x)

≤
1
2λE[Xx

2] + x(1− ρx)
(1− ρx)2

= E[T (x)]FB
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Theorem 3.3 Under FB scheduling there is some job sizey such that for allx > y, E[S(x)]FB > 1/(1−ρ)
under any service distribution, for allρ. Furthermore,E[S(x)]FB is not monotonic inx.

Proof : The first part of the theorem follows immediately from combining Lemma 3.4 and Lemma 3.6.

For the second part, we show thatE[S(x)]FB is monotonically increasing for smallx, but decreasing as

x →∞. We start by differentiating response time:

x
d

dx
E[T (x)]FB =

2λ2F (x)x
∫ x
0 tF (t)dt

(1− ρx)3
+

2λx2F (x)
(1− ρx)2

+
x

1− ρx

which gives us

x
d

dx
E[T (x)]FB − E[T (x)]FB =

(
2λ2F (x)x

∫ x

0
tF (t)dt

(1− ρx)3

)
+

(
2λx2F (x)
(1− ρx)2

− λ
∫ x

0
tF (t)dt

(1− ρx)2

)
(2)

Recall from Equation 1 that the above gives us the sign ofd
dxE[S(x)]FB.

There are two terms in Equation 2. The first term is clearly positive. Notice that forx such thatF (x) ≥ 1
4

we have:

x
d

dx
E[T (x)]FB − E[T (x)]FB ≥ λ

(1− ρx)2

(
2x2F (x)− 1

2
x2

)
≥ 0 (3)

which shows thatE[S(x)]FB is monotonically increasing forx such thatF (x) ≤ 3
4 .

We now prove that the expected slowdown converges to1/(1 − ρ) from above asx → ∞. First, we

know thatlimx→∞E[S(x)]FB = 1/(1 − ρ) [7]. Next, Equation 2 gives us the sign ofddxE[S(x)]FB. As

in the proof of Lemma 3.4, for any distribution with finite second moment, we know thatF (x) = o(x−2).
Using this observation,

lim
x→∞x

d

dx
E[T (x)]FB − E[T (x)]FB = − λE[X2]

2(1− ρ)2
< 0

Thus, there exists some job sizex0 such that for allx > x0, E[S(x)]FB is monotonically decreasing inx.

The proof of this theorem shows us that all job sizes greater than a certain size are have higher mean

response time underFB than underPS. Counter-intuitively however, the job that performs the worst is not

the largest job. Thus, the intuition that by helping the small jobsFB must hurt the biggest jobs is not entirely

true.

Interestingly, this theorem is counter to the common portrayal ofFB in the literature. When investigating

E[S(x)]FB, previous literature has used percentile plots such as Figure 3(b), which hide the behavior of the

largest one percent of the jobs [11]. When we look at the same plots as a function of job size, such as Figure

3(a), the presence of a hump becomes evident. In fact, even under bounded distributions, this hump exists,

seemingly regardless of the bound placed onx.
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Figure 3:Plots (a) and (b) show the growth ofE[S(x)]FB for ρ = .9. In both cases the service distribution
is taken to be Exponential with mean 1. The horizontal line shows fair performance, thus whenE[S(x)]FB

is above this line FB is treating a job size unfairly.

3.3.1 Who is treated unfairly?

Having shown that some job sizes are treated unfairly underFB scheduling, it is next interesting to under-

stand exactly which job sizes are seeing poor performance. The following theorem places a lower bound on

the size of jobs that can be treated unfairly.

Theorem 3.4 For x such thatρx ≤ 1−√1− ρ, E[T (x)]FB ≤ 1/(1− ρ).

Proof : The proof will proceed by simply manipulatingE[T (x)]FB.

E[T (x)]FB =
λ

∫ x
0 tF (t)dt

(1− ρx)2
+

x

1− ρx
≤ λx

∫ x
0 F (t)dt

(1− ρx)2
+

x

1− ρx

=
ρxx

(1− ρx)2
+

x(1− ρx)
(1− ρx)2

=
x

(1− ρx)2

Lettingρx ≤ 1−√1− ρ we complete the proof of the theorem.

It is important to notice that asρ increases, so does the lower bound1 − √1− ρ on ρx. In fact, this

bound converges to 1 asρ → 1, which signifies that the size of the smallest job that might be treated unfairly

is increasing unboundedly asρ increases. Interestingly, this work also provides bounds on the job sizes that

might be treated unfairly underPSJF due to Lemma 3.6.

3.3.2 Intuition for non-monotonicity

The fact thatFB andPSJF have non-monotonic slowdown is somewhat surprising. Below we provide an

intuitive explanation for this phenomenon.

For small jobs, it is clear thatFB andPSJF provide preferential treatment. Thus it is believable that the

slowdown should increase monotonically as job size increases.

Next consider a somewhat large jobx, of sizex, where this job is large enough that with high probability

it is the largest job in any busy period in which it appears. UnderFB andPSJF, job x will complete only

at the end of the busy period, since it is the largest job in the busy period. Observe that jobx will also only

10



Figure 4: Plot (a) showsE[S(x)]LRPT (above) andE[S(x)]FB (below). Plot (b) showsE[S(x)]LRPT

(above) andE[S(x)]PSJF (below). In both casesρ = .9 and the service distribution is taken to be Expo-
nential with mean 1. Notice that the expected slowdown for a job of sizex under both FB and PSJF quickly
converges to the expected slowdown ofx under LRPT.

complete at the end of its busy period underLRPT, since all jobs complete at the end of the busy period under

LRPT. Thus the performance of jobx underFB andPSJF may be approximated by the performance of job

x underLRPT. Next recall from Lemma 3.2, that the expected slowdown of jobx underLRPT converges

monotonically from above to1/(1 − ρ) asx → ∞. Thus it is plausible that the expected slowdown of job

x underFB andPSJF also converges monotonically from above to1/(1− ρ) asx →∞.

Figure 4(a) shows thatFB does in fact converge in performance toLRPTfor large job sizes. Figure 4(b)

shows the same forPSJF.

3.4 Age based policies

FB scheduling is one example of an age based policy (i.e. policies where a job’s priority is some function

of its current age). Age based policies are interesting because they include many hybrid policies where, in

order to minimize mean response time and curb the unfairness seen by large jobs, both sufficiently old jobs

and very young jobs receive preferential treatment.

Note that, as inFB, we will choose to break ties among jobs in the system with the same priority

according toFCFS. Thus, when multiple jobs have the same age, and priority is increasing with age, the

job that arrived first will be worked on alone for some period of time; however when multiple jobs have the

same priority and priority is decreasing with age, this leads toPSamong the jobs with the same priority.

Theorem 3.5 Age based policies are Always Unfair.

The remainder of this section will prove this theorem using a method similar to the method used in

Section 3.2. We break the analysis into two cases: (1) the case when there exists a finite sized job that has

the lowest priority and (2) when there is no finite sized job with the lowest priority. We begin with case (1).

Lemma 3.7 Any age based policyP where there is a finite ageC that receives the lowest priority is Always

Unfair.

11



Proof : We will show thatP must be unfair to a job of sizeC+, whereC+ is infinitesimally larger thanC.

First notice that when a job of sizeC+ arrives, all the work in the system can be guaranteed to be

completed beforeC+ leaves. Further, all arriving jobs of sizex will have min{x,C} work completed on

them beforeC+ leaves the system. Thus:

E[T (C+)]P =
λE[X2]
2(1−ρ) + C+

1− ρC
=

λE[X2]
2(1− ρ)(1− ρC)

+
C+

1− ρC

Now, notice thatE[T (C+)]P > C+/(1− ρ) when

λ

2
E[X2] > C+ (ρ− ρC)

or equivalently

(1− ρ) +
λE[X2]

2C+
> 1− ρC

Since(1− ρ) ≥ (1− ρ(C)), the above condition is met for all finiteC.

We now move to case (2).

Lemma 3.8 Any age based policy where no finite job size has the lowest priority is Always Unfair.

The proof of this final lemma follows from Theorem 3.3 and an argument symmetric to the proof of Lemma

3.5.

4 Sometimes Unfair

We now move to the class of Sometimes Unfair policies – policies that for someρ treat all job sizes fairly, but

for otherρ treat some job size unfairly. In Section 4.1 we return to non-preemptive policies and illustrate that

when the service distribution sets a non-zero lower bound on the smallest job size, non-preemptive policies

can avoid being Always Unfair, but cannot attain Never Unfair. In Section 4.2 we show that under the

Shortest-Remaining-Processing-Time (SRPT) policy for ρ ≤ 1
2 , E[S(x)]SRPT is monotonically increasing

in x for all x and is always≤ 1/(1− ρ). However, forρ > ρcrit, E[S(x)]SRPT is monotonically increasing

in x for all x such thatρ(x) ≤ 1
2 and is monotonically decreasing inx for all x greater than somex0. We

also contrast the behavior ofSRPTunder bounded versus unbounded service distributions. More generally,

in Section 4.3 we show that any remaining size based policy is either Sometimes Unfair or Always Unfair.

4.1 Non-preemptive, size-Based Policies

This section completes the analysis of non-preemptive policies begun in Section 3.1. It is based on the

observation that if there is a lower bound on the smallest job size in the service distribution, then it is

possible for a non-preemptive policy to avoid being Always Unfair.
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Theorem 4.1 Any non-preemptive, size-based policyP is either Sometimes Unfair or Always Unfair.

Proof : Recall thatlimx→∞E[S(x)]Q = 1 for all non-preemptive policiesQ, by Theorem 4 from [7]. Thus,

we can apply Lemma 2.1 to conclude that a non-preemptive policyQ cannot attain Never Unfair. Thus,P

(being a non-preemptive policy) must be either Always Unfair or Sometimes Unfair.

Observe there are examples of size based, non-preemptive policies in each of the two classes. For in-

stance, it can easily be shown that the Longest-Job-First (LJF ) policy is Always Unfair. However, Shortest-

Job-First (SJF) is only Sometimes Unfair – that is, there exist service distributions and loads such that

E[S(x)]SJF ≤ 1/(1− ρ) for all x. One example of such a distribution and load is(X − 2) ∼ Exp(1) with

ρ = 0.2.

4.2 SRPT

Under theSRPTpolicy, at every moment of time, the server is processing the job with the shortest remaining

processing time. TheSRPTpolicy is well-known to be optimal for minimizing mean response time [14].

The mean response time for a job of sizex is as follows [13]:

E[T (x)]SRPT =
λ
2

∫ x
0 t2f(t)dt + λ

2x2F (x)
(1− ρ(x))2

+
∫ x

0

dt

1− ρ(t)

=
λ

∫ x
0 tF (t)dt

(1− ρ(x))2
+

∫ x

0

dt

1− ρ(t)

whereρ(x) def= λ
∫ x
0 tf(t)dt.

Theorem 4.2 For x such thatρ(x) ≤ 1
2 , E[S(x)]SRPT is monotonically increasing inx.

Proof : Begin by defining

m2(x) def=
∫ x

0
t2f(t) = 2

∫ x

0
tF (t)dt− 2x2F (x)

Then we can derive

x · d

dx
E[T (x)]SRPT =

2λ2f(x)x2
∫ x
0 tF (t)dt

(1− ρ(x))3
+

λx2F (x)
(1− ρ(x))2

+
x

1− ρ(x)

which gives us

x · d

dx
E[T (x)]SRPT − E[T (x)]SRPT =

(
2λ2f(x)x2

∫ x

0
tF (t)dt

(1− ρ(x))3

)
+

(
λx2F (x)

(1− ρ(x))2
− λ

∫ x

0
tF (t)dt

(1− ρ(x))2

)

+
(

x

1− ρ(x)
−

∫ x

0

dt

1− ρ(t)

)

=

(
2λ2f(x)x2

∫ x

0
tF (t)dt

(1− ρ(x))3

)
−

(
λm2(x)

2(1− ρ(x))2

)
+

(
x

1− ρ(x)
−

∫ x

0

dt

1− ρ(t)

)
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Recall that this expression provides us with the sign of the derivative of slowdown. There are 3 terms

in the above expression. The first of these terms is clearly positive. The third of these terms is also clearly

positive. We will complete the proof by showing that the third term is of larger magnitude than the second

term.

To obtain a bound on the third term, we can quickly show that

x

1− ρ(x)
−

∫ x

0

dt

1− ρ(t)
=

∫ x

0

(1− ρ(t))− (1− ρ(x))
(1− ρ(t))(1− ρ(x))

dt

≥ 1
1− ρ(x)

∫ x

0
ρ(x)− ρ(t)dt (4)

To further specify this bound we can compute
∫ x

0
ρ(t)dt = λ

∫ x

0

∫ t

0
sf(s)dsdt = λ

∫ x

0

∫ x

s
sf(s)dtds

= λ

∫ x

0
sf(s)(x− s)ds = ρ(x)x− λm2(x) (5)

Finally, putting all three terms back together we see that whenρ(x) ≤ 1
2 ,

x · d

dx
E[T (x)]SRPT − E[T (x)]SRPT =

(
2λ2f(x)x2

∫ x

0
tF (t)dt

(1− ρ(x))3

)
−

(
λm2(x)

2(1− ρ(x))2

)
+

(
x

1− ρ(x)
−

∫ x

0

dt

1− ρ(t)

)

≥ −
(

λm2(x)
2(1− ρ(x))2

)
+

(
λm2(x)
1− ρ(x)

)
≥ 0

Corollary 4.1 If ρ ≤ 1
2 , E[S(x)]SRPT is monotonically increasing for allx. FurthermoreE[S(x)]SRPT ≤

1/(1− ρ) for all x.

Proof : This follows immediately from the above theorem and by recalling the following result: for any

work conserving scheduling policyP , limx→∞E[S(x)]P ≤ 1/(1− ρ) [7].

The observation above thatE[S(x)]SRPT ≤ 1/(1− ρ) for all x whenρ < 1
2 was proven in [2] using a

different technique that did not describe the behavior ofE[S(x)]SRPT as a function of increasingx.

The previous theorem showed monotonically increasing slowdown for SRPT under low load. We now

show that if load is sufficiently high, the opposite behavior occurs.

Theorem 4.3 There exists aρcrit < 1 such that for allρ > ρcrit, E[S(x)]SRPT has monotonically decreas-

ing slowdown forx ≥ xo, for somexo. Further, forρ > ρcrit, for all x > xo, E[S(x)]SRPT > 1/(1 − ρ)
under any unbounded service distribution.

Earlier work (see Theorem 8 of [2]) showed that for abounded job size distribution, the largest job size

p has the property thatE[S(p)]SRPT > 1/(1 − ρ). The above theorem extends this result to unbounded
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job size distributions by utilizing monotonicity. The monotonicity result above is somewhat surprising. One

might assume that the largest jobs are the ones receiving the most unfair treatment underSRPT. This is in

fact the case forboundedjob size distributions, however it is not true forunboundedjob size distributions.

Proof :

The proof for the unbounded case is somewhat technical, but will follow a similar method to the previous

proof. We will show that asx →∞ the derivative of expected slowdown approaches zero from below.

As in Equation 1, the main section of the proof will again look atx · d
dxE[T (x)]SRPT −E[T (x)]SRPT .

To evaluate the above expression, we need to evaluate Equation 4. Because evaluating the integral in this

expression is difficult, we apply the Mean Value Theorem, which tells us that there exists acx ∈ [0, x] such

that

1
1− ρ(x)

∫ x

0

ρ(x)− ρ(t)
1− ρ(t)

dt =
1

(1− ρ(x))(1− ρ(cx))

∫ x

0
ρ(x)− ρ(t)dt

=
λm2(x)

(1− ρ(x))(1− ρ(cx))
.

Thus we have:

x · d

dx
E[T (x)]SRPT − E[T (x)]SRPT =

(
2λ2f(x)x2

∫ x

0
tF (t)dt

(1− ρ(x))3

)
−

(
λ
2 m2(x)

(1− ρ(x))2

)
+

(
x

1− ρ(x)
−

∫ x

0

dt

1− ρ(t)

)

→ −
λ
2 E[X2]
(1− ρ)2

+
λE[X2]

(1− ρ)(1− ρ(c∞))
asx →∞

So, the derivative of slowdown converges from below when this is less than zero, which occurs when

1− ρ(c∞) > 2− 2ρ

or equivalently,ρ >
1 + ρ(c∞)

2

To complete the proof, we need to boundρ(c∞). By showing thatρ(c∞) < 1 we illustrate aρcrit such that

whenρ > ρcrit, E[S(x)]SRPT will not be monotonic inx.

To understand whatρ(cx) is we letx > 0 and notice
∫ x

0
ρ(x)− ρ(t)dt ≤

∫ x

0

ρ(x)− ρ(t)
1− ρ(t)

dt ≤ 1
1− ρ(x)

∫ x

0
ρ(x)− ρ(t)dt

1 ≤
∫ x
0

ρ(x)−ρ(t)
1−ρ(t) dt∫ x

0 ρ(x)− ρ(t)dt
≤ 1

1− ρ(x)

So,cx is such that

1
1− ρ(cx)

=

∫ x
0

ρ(x)−ρ(t)
1−ρ(t) dt∫ x

0 ρ(x)− ρ(t)dt

ρ(cx) = 1−
∫ x
0 ρ(x)− ρ(t)dt
∫ x
0

ρ(x)−ρ(t)
1−ρ(t) dt
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Figure 5: Plots (a) and (c) show the growth ofE[S(x)]SRPT for ρ = .9, while (b) and (d) show
E[S(x)]SRPT whenρ = .5. In both cases the service distribution is taken to be Exponential with mean
1. The horizontal line shows fair performance, thus whenE[S(x)]SRPT is above this line SRPT is treating
a job size unfairly.

Thus there exists aρcrit < 1 when the second term is bounded away from 1. The remainder of the proof

bounds this value away from 1. Because the remainder of the proof is algebraic, we leave it in Appendix A.

The existence of thisx0 size beyond whichE[S(x)]SRPT is monotonically decreasing has gone unno-

ticed by previous research. The reason is that percentile plots are typically used when viewing expected

slowdown. As seen in Figure 5, because the hump occurs around the 99th percentile it is hidden when

looking at the percentile plots. Viewing those same plots as a function of job size, such as in Figure 5 (a)

and (b), reveals the existence of a hump under high load. Note that the peak of the hump occurs far from the

largest job size.

4.2.1 Who is treated unfairly?

Having seen thatSRPTis Sometimes Unfair, it is interesting to consider which job sizes are being treated

fairly/unfairly. The following theorem shows that asρ increases, the number of jobs being treated fairly also

increases.

Theorem 4.4 For x such thatρ(x) ≤ max{1−√1− ρ, 1
2}, E[T (x)]SRPT ≤ 1/(1− ρ).

The proof of Theorem 4.4 follows immediately from Theorem 3.4, Theorem 4.2, and the following

lemma, which allows us to bound the performance ofSRPTby that underFB.
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Lemma 4.1 For all x andρ, E[T (x)]SRPT ≤ E[T (x)]FB.

Proof : The proof is simply algebraic

E[T (x)]FB =
x(1− ρx) + 1

2λE[Xx
2]

(1− ρx)2

=
x

1− ρx
+

1
2λ

(∫ x
0 y2f(y)dy + x2F (x)

)

(1− ρx)2

≥ x

1− ρ(x)
+

1
2λ

(∫ x
0 y2f(y)dy + x2F (x)

)

(1− ρ(x))2

=
x

1− ρ(x)
+

1
2λ

∫ x
0 y2f(y)dy + 1

2λx2F (x)
(1− ρ(x))2

≥ E[T (x)]SRPT

4.2.2 Intuition for dependence on load

Similarly to FB, notice thatSRPTexhibits non-monotonicity under high load. Intuitively, this can be ex-

plained in the same way as it was forFB andPSJF in Section 3.3.2. Under high load, the large jobs in an

SRPTsystem do not have the opportunity to increase their priority by reducing their remaining size. Thus,

the largest job to arrive in a busy period will likely be the last to leave. This leads to unfairness.

However,SRPTdoes not always treat large jobs unfairly because during low load, the large job is often

alone in its busy period, which provides it the opportunity to increase its priority as it receives service.

Consequently, the large job will sometimes not be the last job to finish in the busy period.

4.3 Remaining size based policies

SRPTis one example of a remaining size based policy. In this section we will examine the entire class of

remaining size based policies (i.e. policies where a job’s priority is some function of its remaining size).

The class of remaining size based policies includes many hybrid policies where, in order to minimize mean

response time and curb the unfairness seen by large jobs, both jobs with very small and sufficiently large

response times are given preferential treatment.

Note that, as inSRPT, we will choose to break ties among jobs in the system with the same priority

according toFCFS. Thus, when multiple jobs have the same remaining size, and priority is inversely related

to remaining size, then the job that has been in the system the longest will be worked on alone; however

when multiple jobs have the same remaining size, and priority is directly correlated with remaining size,

then the server willPSamong the jobs.

AlthoughSRPTis in this class and is Sometimes Unfair, not all such policies are Sometimes Unfair. For

instance, theLRPTpolicy is Always Unfair as shown in Lemma 3.2.
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Theorem 4.5 All remaining size based policies are either Sometimes Unfair or Always Unfair.

The remainder of this section will prove this theorem using the same method that was used in Section

3.4 and Section 3.2. We break the analysis into two cases: (1) the case when there exists a finite sized job

that has the lowest priority and (2) when there is no finite sized job with the lowest priority.

Lemma 4.2 Any remaining size based policyP with a finite remaining sizeC having the lowest priority is

either Always Unfair or Sometimes Unfair.

Proof : We will begin by deriving the expected performance seen by a job of original sizeC, entering the

system underP . Notice that all work initially in the system will be completed beforeC begins to be worked

on. In addition, all arrivals during this time that have size less thanC will be completed beforeC leaves

the system. However, onceC starts being worked on and has remaining sizet, the only arrivals that are

guaranteed to finish beforeC leaves the system are those arrivals of size less thant. Thus,

E[T (C)]P ≥ λE[X2]
2(1− ρ)(1− ρ(C))

+
∫ C

0

dt

1− ρ(t)

We will now show thatC will be treated unfairly under high enough load. Using a similar derivation to

that shown in Equations 4 and 5, we can see thatE[T (C)]P > 1/(1− ρ) when

λE[X2]
2(1− ρ)(1− ρ(C))

>
C(ρ− ρ(C)) + λm2(x)

1− ρ

or, equivalently,
λE[X2]

2(1− ρ(C))
− λm2(C) > C(ρ− ρ(C))

or, equivalently,

(1− ρ) +
(

λE[X2]
2C(1− ρ(C))

− λm2(C)
C

)
> (1− ρ(C)) .

Since(1 − ρ) ≥ (1 − ρ(C)), we immediately see thatP cannot be fair ifρ(C) > 1
2 . However, when

C is the upper bound of a bounded distribution andρ = 1
2 , the bound does not hold. In this case, we need

to look at the system under a higher load. We can raiseλ so thatρ = ρ(C) > 1
2 , in which case the bound

holds.

Whenρ(C) < 1
2 we need to do a more detailed analysis. Sinceρ(C) < 1

2 we can raiseλ so that

ρ = 2ρ(C). Notice that if this is not possible, it means that by raisingλ we madeρ(C) ≥ 1
2 , which we have

already dealt with.

Whenρ = 2ρ(C), E[X] = 2m1(C) def= 2
∫ C
0 tf(t)dt. Further, this tells us thatE[X] − m1(C) =

m1(C), but alsoE[X] −m1(C) =
∫∞
C tf(t)dt. Thus,

∫ C
0 tf(t)dt =

∫∞
C tf(t)dt. Using this fact, we can

notice that

E[X2] =
∫ ∞

0
t2f(t)dt =

∫ C

0
t2f(t)dt +

∫ ∞

C
t2f(t)dt

≥ m2(C) + Cm1(C) ≥ 2m2(C)
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Figure 6:Classification of unfairness proven in this paper.

Thus, we can see that

(1− ρ) +
(

λE[X2]
2C(1− ρ(C))

− λm2(C)
C

)
≥ (1− ρ) +

(
λm2(C)

C(1− ρ(C))
− λm2(C)

C

)
> (1− ρ(C))

holds for all finiteC.

Lemma 4.3 Any remaining size based policyP where an infinitely sized job has the lowest priority is either

Sometimes Unfair or Always Unfair.

The proof of this final lemma follows from Theorem 4.3 and an argument symmetric to the proof of Lemma

3.5.

5 Conclusion

The goal of this paper is to classify scheduling policies in an M/GI/1 in terms of their unfairness. Very little

analytical prior work exists on understanding the unfairness of scheduling policies, and what does exist is

isolated to a couple particular policies. This paper is the first to approach the question of unfairness across all

scheduling policies. Our aim in providing this taxonomy is, first, to allow researchers to judge the unfairness

of existing policies and, second, to provide heuristics for the design of new scheduling policies.

In our attempt to understand unfairness, we find many surprises. Perhaps the biggest surprise is that

for quite a few common policies, unfairness is a function of load. That is, at moderate or low loads, these

policies are fair to all jobs. Yet at higher loads, these policies become unfair. This leads us to create

threeclassifications of scheduling policies: Always Unfair, Sometimes Unfair, and Never Unfair (shown in

Figure 1, repeated here for reference). Rather than classifying individual policies, we group policies into

different types: size based, age based, remaining size based, and others. We prove that all size based and

age based policies are Always Unfair, but that remaining size based policies and non-preemptive policies

are divided between two classifications. The result that all size based policies are Always Unfair may seem
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surprising in light of the fact that one could choose to assign high priority to both small jobs and sufficiently

large jobs in an attempt to curb unfairness.

With respect to designing scheduling policies, we find that under high load, almost all scheduling poli-

cies are unfair. However under low load one has the opportunity to make a policy fair by sometimes in-

creasing the priority of large jobs. For example,PSJF andSRPThave very similar behavior and delay

characteristics, but result in completely different unfairness classifications becauseSRPTallows large jobs

to increase their priority, whereasPSJF does not.

A variety of techniques are used in order to classify policies with respect to fairness. For classifying

individual policies it is useful to try to prove monotonicity properties for the policy over an interval of job

sizes. It then suffices to consider the performance of the policy on just one endpoint of the interval. In

classifying a group of policies, it helps to decompose the group into two cases: the case where the lowest

priority job has a finite size/age, and the case where the lowest priority job has infinite size/age. In the latter

case, we find that the fairness properties for the entire group of policies reduces to looking at one individual

policy.

Since so many policies are Always Unfair, and so many others are Sometimes Unfair, it is interesting to

askwho is being treated unfairly. Initially it seems that unfairness is an increasing function of job size, with

the largest job being treated the most unfairly. This is in fact the case for bounded job size distributions.

However, for unbounded job size distributions, we find this usually not to be the case. Instead, unfairness is

monotonically increasing with job size up to a particular job size; and later is monotonically decreasing with

job size. Thus the job being treated most unfairly (“top of the hump”) is far from the largest. Interestingly,

this “hump” changes as a function of load.

The above findings show that we are just beginning to understand unfairness in scheduling policies. This

is a fertile area with many more properties yet to be uncovered.
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A SRPT is Sometimes Unfair

We now complete the proof of Theorem 4.3.
Proof : To complete the proof, we need to boundρ(c∞). By showing thatρ(c∞) < 1 we illustrate aρcrit

such that whenρ ≥ ρcrit SRPTwill lack slowdown monotonicity.
To understand whatρ(cx) is, we letx > 0 and notice

∫ x

0
ρ(x)− ρ(t)dt ≤

∫ x

0

ρ(x)− ρ(t)
1− ρ(t)

dt ≤ 1
1− ρ(x)

∫ x

0
ρ(x)− ρ(t)dt

1 ≤
∫ x
0

ρ(x)−ρ(t)
1−ρ(t) dt∫ x

0 ρ(x)− ρ(t)dt
≤ 1

1− ρ(x)

So,cx is such that

1
1− ρ(cx)

=

∫ x
0

ρ(x)−ρ(t)
1−ρ(t) dt∫ x

0 ρ(x)− ρ(t)dt

ρ(cx) = 1−
∫ x
0 ρ(x)− ρ(t)dt
∫ x
0

ρ(x)−ρ(t)
1−ρ(t) dt
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Thus there exists aρcrit < 1 when the second term is bounded away from 1. The remainder of the proof
bounds this value away from 1.

We continue by separating the integral in the denominator into three parts usingr and s such that
ρ(r) = fρ(x) andρ(s) = gρ(x) for f < g ∈ (0, 1). Note that this is possible for somex under any
non-constant service distribution.

∫ x

0

ρ(x)− ρ(t)
1− ρ(t)

dt =
∫ r

0

ρ(x)− ρ(t)
1− ρ(t)

dt +
∫ s

r

ρ(x)− ρ(t)
1− ρ(t)

dt +
∫ x

s

ρ(x)− ρ(t)
1− ρ(t)

dt

≤ 1
1− ρ(r)

∫ r

0
ρ(x)− ρ(t)dt +

1
1− ρ(s)

∫ s

r
ρ(x)− ρ(t)dt

+
1

1− ρ(x)

∫ x

s
ρ(x)− ρ(t)dt

def=
1

1− ρ(r)
A +

1
1− ρ(s)

B +
1

1− ρ(x)
C

Working with each of the pieces, we can derive

A =
∫ r

0
ρ(x)− ρ(t)dt = rρ(x)− rρ(s) + λm2(r)

= r(1− f)ρ(x) + λm2(r)
→ r(1− f)ρ + λm2(r) asx →∞

B =
∫ s

r
ρ(x)− ρ(t)dt = (s− r)ρ(x)− [sρ(s)− λm2(s)− rρ(r) + λm2(r)]

= s(1− g)ρ(x)− r(1− f)ρ(x) + λm2(s)− λm2(r)
→ s(1− g)ρ− r(1− f)ρ + λm2(s)− λm2(r) asx →∞

C =
∫ x

s
ρ(x)− ρ(t)dt = (x− s)ρ(x)− xρ(x) + λm2(x) + sρ(s)− λm2(s)

= −s(1− g)ρ(x) + λm2(x)− λm2(s)
→ −s(1− g)ρ + λE[X2]− λm2(s) asx →∞

Further, we can notice that

λm2(s) = λ

∫ r

0
t2f(t)dt + λ

∫ s

r
t2f(t)dt

≥ λm2(s) + r(ρ(s)− ρ(r))
= λm2(s) + r(g − f)ρ(x)
= λm2(s) + r(1− f)ρ(x)− r(1− g)ρ(x)
→ λm2(s) + r(1− f)ρ− r(1− g)ρ asx →∞

Using this calculation in the formula forB, we see that asx →∞

B ≥ (s− r)(1− g)ρ(x)

→ (s− r)(1− g)ρ def= ε
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and

B ≤ s(1− g)ρ(x) + λm2(s)

→ s(1− g)ρ + λm2(s)
def= γ

Thus, forNx(A) ≥ A
ε andNx(C) ≥ C

ε

Nx(A)B ≥ A

Nx(C)B ≥ C

CalculatingN∞(A) we see

N∞(A) ≥ r(1− f)ρ + λm2(r)
(s− r)(1− g)ρ

=
r(1− f)

(s− r)(1− g)
+

λm2(r)
(s− r)(1− g)ρ

and similarly forN∞(C) we obtain

N∞(C) ≥ −s(1− g)ρ + λE[X2]− λm2(s)
(s− r)(1− g)ρ

So, it is sufficient to have

N∞(A) ≥ r(1− f)
(s− r)(1− g)

+
λE[X2]

(s− r)(1− g)ρ

N∞(C) ≥ λE[X2]
(s− r)(1− g)ρ

− s

s− r

We now have bounds on the pieces of the integral. So, putting everything together we see that

ρ(c∞) = 1−
∫∞
0 ρ− ρ(t)dt
∫∞
0

ρ−ρ(t)
1−ρ(t)dt

≤ 1− A + B + C
1

1−ρ(r)A + 1
1−ρ(s)B + 1

1−ρC

≤ 1− A + B + C
1

1−ρ(r)N∞(A)B + 1
1−ρ(s)B + 1

1−ρN∞(C)B

≤ 1− B
1

1−ρ(r)N∞(A)B + 1
1−ρ(s)B + 1

1−ρN∞(C)B

= 1− 1
1

1−fρN∞(A) + 1
1−gρ + 1

1−ρN∞(C)

def= 1− 1
l

which tells us that asx →∞, d
dxE[S(x)]SRPT → 0 from below when

ρ ≥ 1− 1
2l
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The quantityl is bounded away from infinity as long ass 6= r, so there exists someρcrit = 1− 1
2l where,

for any service distribution, ifρ ≥ ρcrit SRPTdoes not have slowdown monotonicity.
To better understand this proof it is interesting to look at the special case whereX ∼ Exp(1). In this

case,f = 1
3 , g = 2

3 , E[X2] = 2, s ≈ 2
3 , andr ≈ 1

3 (s andr are very approximate). So, we can calculate

N∞(A) ≥ 2r

(s− r)
+

6λE[X2]
(s− r)

≈ 38

N∞(C) ≥ 6λE[X2]
(s− r)

− s

s− r

≈ 35

and

l ≥ 6
5
N∞(A) +

3
2

+ 2N∞(C)

≈ 117.1

Which gives us that forρ > .99573, SRPTwill not have slowdown monotonicity under anExp(1)
service distribution. Further, for theseρ, SRPTis guaranteed to treat some job size unfairly. It is important
to point out the looseness of this bound. By plotting the actual equation for expected time in system under
anExp(1) distribution we find that the true critical value forρ in this case is just under .7, much lower than
the value obtained using the method in the previous proof.
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