
My cache or yours? Making storage more exclusive

Theodore M. Wong John Wilkes1

June 2002
CMU-CS-02-186

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also appears in the Proceedings of the USENIX Annual Techincal Conference, 10–15 June 2002, Monterey, CA
Supercedes CMU-CS-00-157

Abstract

Modern high-end disk arrays often have several gigabytes of cacheRAM. Unfortunately, most array caches use
management policies which duplicate the same data blocks at both the client and array levels of the cache hierarchy:
they areinclusive. Thus, the aggregate cache behaves as if it was only as big as the larger of the client and array
caches, instead of as large as the sum of the two. Inclusiveness is wasteful: cacheRAM is expensive.

We explore the benefits of a simple scheme to achieveexclusive caching, in which a data block is cached at either
a client or the disk array, but not both. Exclusiveness helps to create the effect of a single, large unified cache.
We introduce aDEMOTE operation to transfer data ejected from the client to the array, and explore its effectiveness
with simulation studies. We quantify the benefits and overheads of demotions across both synthetic and real-life
workloads. The results show that we can obtain useful—sometimes substantial—speedups.

During our investigation, we also developed some new cache-insertion algorithms that show promise for multi-client
systems, and report on some of their properties.

1Hewlett-Packard Laboratories, Palo Alto, CA,wilkes@hpl.hp.com
We thank the researchers in the Storage Systems Program at Hewlett-Packard Laboratories for their continued guidance and

support of this project, which began during a summer internship there. We thank the members and companies of the PDL Con-
sortium (including EMC, Hewlett-Packard, Hitachi, IBM, Intel, Network Appliance, Panasas, Seagate, Sun, and Veritas) for their
interest, insights, feedback, and support. We thank IBM and Intel for hardware grants supporting our research efforts.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the respective centers, companies, or universities.

Keywords: hierarchical storage cache, exclusive caching

1 Introduction

Disk arrays use significant amounts of cacheRAM to improve performance by allowing asynchronous read-ahead and
write-behind, and by holding a pool of data that can be re-read quickly by clients. Since the per-gigabyte cost ofRAM

is much higher than of disk, cache can represent a significant portion of the cost of modern arrays. Our goal here is
to see how best to exploit it.

The cache sizes needed to accomplish read-ahead and write-behind are typically tiny compared to the disk capacity of
the array. Read-ahead can be efficiently handled with buffers whose size is only a few times the track size of the disks.
Write-behind can be handled with buffers whose size is large enough to cover the variance (burstiness) in the write
workload [32, 39], since the sustained average transfer rate is bounded by what the disks can support—everything
eventually has to get to stable storage. Overwrites in the write-behind cache can increase the front-end write traffic
supported by the array, but do not intrinsically increase the size of cache needed.

Unfortunately, there is no such simple bound for the size of the re-read cache: in general, the larger the cache, the
greater the benefit, until some point of diminishing returns is reached. The common rule of thumb is to try to cache
about 10% of the active data. Table 1 suggests that this is a luxury out of reach of even the most aggressive cache
configurations if all the stored data were to be active. Fortunately, this is not usually the case: a study of UNIX file
system workloads [31] showed that the mean working set over a 24 hour period was only 3–7% of the total storage
capacity, and the 90th percentile working set was only 6–16%. A study of deployed HP AutoRAID systems [43] found
that the working set rarely exceeded the space available forRAID1 storage (about 10% of the total storage capacity).

Both array and client re-read caches are typically operated using theleast-recently-used(LRU) cache replacement
policy [11, 12, 35]; even though many proprietary tweaks are used in array caches, the underlying algorithm is
basically LRU [4]. Similar approaches are the norm in client-server file system environments [15, 27].

Interactions between the LRU policies at the client and array cause the combined caches to beinclusive: the array
(lower-level) cache duplicates data blocks held in the client (upper-level) cache, so that the array cache is providing
little re-read benefit until it exceeds the effective size of the client caches.

Inclusiveness is wasteful: it renders a chunk of the array cache similar in size to the client caches almost useless.
READ operations that miss in the client are more likely to miss in the array and incur a disk access penalty. For
example, suppose we have a client with 16GB of cache memory connected to a disk array with 16GB of re-read
cache, and suppose the workload has a totalREAD working set size of 32GB. (This single client, single array case
is quite common in high-end computer installations; with multiple clients, the effective client cache size is equal to
the amount of unique data that the clients caches hold, and the same arguments apply.) We might naı̈vely expect the
32 GB of available memory to capture almost all of the re-read traffic, but in practice it would capture only about half
of it, because the array cache will duplicate blocks that are already in the client [15, 27].

To avoid these difficulties, it would be better to arrange for the combined client and array caches to beexclusive, so
that data in one cache is not duplicated in the other.

1.1 Exclusive caching

Achieving exclusive caching requires that the client and array caches be managed as one. Since accesses to the client
cache are essentially free, while accesses to the array cache incur the round-trip network delay, the cost of an I/O
operation at the client, and the controller overheads at the array, we can think of this setup as a cache hierarchy, with
the array cache at the lower level. These costs are not large: modern storage area networks (SANs) provide 1–2 Gbit/s
of bandwidth per link, and I/O overheads of a few hundred microseconds; thus, retrieving a 4KB data block can take
as little as 0.2 ms.

However, it would be impractical to rewrite client O/S and array software to explicitly manage both caches. It would
also be undesirable for the array to keep track of precisely which blocks are in the client, since this metadata is
expensive to maintain. However, we can approximate the desired behavior by arranging that the client (1) tells the
array when it changes what it caches, and (2) returns data ejected from the upper-level cache to the lower-level one,
rather than simply discarding it.

We achieve the desired behavior by introducing aDEMOTE operation, which one can think of as a possible extension
to theSCSI command set.DEMOTE works as follows: when a client is about to eject a clean block from its cache

LRU LRU LRU

Demote
Read

LRU

LRU
NONE

LRU LRU

LRU
DEMOTE DEMOTE

Figure 1: Sample cache management schemes. The top and bottom boxes represent the client and array cache replacement queues
respectively. The arrow in a box points to the end closest to being discarded.

(e.g., to make space for aREAD), it first tries to return the block to the array using aDEMOTE. A DEMOTE operation
is similar to aWRITE operation: the array tries to put the demoted block into its re-read cache, ejecting another block
if necessary to make space. Unlike aWRITE, the array short-circuits the operation (i.e., it does not transfer the data)
if it already has a copy of the block cached, or if it cannot immediately make space for it. In all cases, the client then
discards the block from its own cache.

Clients are trusted to return the same data that they read earlier. This is not a security issue, since they could easily
issue aWRITE to the same block to change its contents. If corruption is considered a problem, the array could keep
a cryptographic hash of the block and compare it with a hash of the demoted block, at the expense of more metadata
management and execution time.

SANs are fast and disks are slow, so though aDEMOTE may incur a SAN block transfer, performance gains are
still possible: even small reductions in the array cache miss rate can achieve dramatic reductions in the meanREAD

latency. Our goal is to evaluate how close we can get to this desirable state of affairs and the benefits we obtain from
it.

1.2 Exclusive caching schemes

The addition of aDEMOTE operation does not in itself yield exclusive caching: we also need to decide what the
array cache does with blocks that have just been demoted or read from disk. This is primarily a choice of cache
replacement policy. We consider three combinations of demotions with different replacement policy at the array,
illustrated in figure 1; all use the LRU policy at the client:

• NONE-LRU (the baseline scheme): clients do no demotions; the array uses the LRU replacement policy for both
demoted and recently read blocks.

• DEMOTE-LRU: clients do demotions; the array uses the traditional LRU cache management for both demoted
and recently read blocks.

• DEMOTE: clients do demotions; the array puts blocks it has sent to a client at the head (closest to being discarded
end) of its LRU queue, and puts demoted blocks at the tail. This scheme most closely approximates the effect
of a single unified LRU cache.

High-end arrays
System Cache Disk space

EMC 8830 64 GiB 70 TB

IBM ESS 32 GiB 27 TB

HP XP512 32 GiB 92 TB

High-end servers
System Memory Type (CPUs)

IBM z900 64 GiB High-end (1–16)
Sun E10000 64 GiB High-end (4–64)
HP Superdome128GiB High-end (8–64)
HP rp8400 64 GiB Mid-range (2–16)
HP rp7400 32 GiB Mid-range (2–8)

Table 1: Some representative maximum-supported sizes for disk arrays and servers from early 2002. 1GiB = 230 bytes.

We observe that theDEMOTE scheme is more exclusive than theDEMOTE-LRU scheme, and so should result in lower
mean latencies. Consider what happens when a clientREAD misses in the client and array caches, and thus provokes
a back-end disk read. WithDEMOTE-LRU, the client and array will double-cache the block until enough subsequent
READs miss and push it out of one of the caches (which will take at least as manyREADs as the smaller of the client
and array queue lengths). WithDEMOTE, the double-caching will only last only until the nextREAD that misses in
the array cache. We thus expectDEMOTE to be more exclusive thanDEMOTE-LRU, and so to result in lower mean
READ latencies.

1.3 Objectives

To evaluate the performance of our exclusive caching approach, we aim to answer the following questions:

1. Do demotions increase array cache hit rates in single-client systems?

2. If so, what is the overall effect of demotions on mean latency? In particular, do the costs exceed the benefits?
Costs include extra SAN transfers, as well as delays incurred byREADs that wait forDEMOTEs to finish before
proceeding.

3. How sensitive are the results to variations in SAN bandwidth?

4. How sensitive are the results to the relative sizes of the client and array caches?

5. Do demotions help when an array has multiple clients?

The remainder of the paper is structured as follows. We begin with a demonstration of the potential benefits of
exclusive caching using some simple examples. We then explore how well it fares on more realistic workloads
captured from real systems, and show thatDEMOTE does indeed achieve the hoped-for benefits.

Multi-client exclusive caching represents a more challenging target, and we devote the remainder of the paper to
an exploration of how this can be achieved—including a new way of thinking about cache insertion policies. After
surveying related work, we end with our observations and conclusions.

2 Why exclusive caching?

In this section, we explore thepotentialbenefits of exclusive caching in single-client systems, using a simple ana-
lytical performance model. We show that exclusive caching has the potential to double the effective cache size with
client and array caches of equal size, and that the potential speedups merit further investigation.

We begin with a simple performance model for estimating the costs and benefits of caching. We predict the mean
latency seen by a client application as

Tmean= Tchc +(Ta +Tc)ha +
(
Ta +Tc +Td

)
miss (1)

whereTc andTa are costs of a hit in the client and disk array caches respectively,Td is the cost of reading a block
from disk (since such a block is first read into the cache, and then accessed from there, it also incursTa + Tc), hc

andha are the client and array cache hit rates respectively (expressed as fractions of the total clientREADs), and
miss= 1− (hc +ha) is the miss rate (the fraction of allREADs that must access the disk). SinceTc≈ 0,

Tmean≈ Taha +
(
Ta +Td

)
miss (2)

In practice,Ta is much less thanTd: Ta≈ 0.2 ms andTd ≈ 4–10 ms for non-sequential 4KB reads.

We must also account for the cost of demotions. Large demotions will be dominated by data transfer times, small
ones by array controller and host overheads. If we assume that aDEMOTE costs the same as aREAD that hits in the

0 50 100

Effective cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. effective cache size - ZIPF

Inclusive
Exclusive

Figure 2: Cumulative hit ratevs.effective cache size for a Zipf-like workload, with client and array caches of 64MB each and a
working set size of 128MB. The marker shows the additional array hit rate achieved with exclusive caching.

array, and that clients demote a block for everyREAD, then we can approximate the cost of demotions by doubling the
latency of array hits. This is an upper bound, since demotions transfer no data if they abort, e.g., if the array already
has the data cached. With the inclusion of demotion costs,

Tmean≈ 2Taha +
(
2Ta +Td

)
miss. (3)

We now use our model to explore some simple examples, settingTa = 0.2 ms andTd = 10 ms throughout this section.

2.1 Random workloads

Consider first a workload with a spatially uniform distribution of requests across some working set (also known as
random). We expect that a client large enough to hold half of the working set would achievehc = 50%. An array with
inclusive caching duplicates the client contents, and would achieve no additional hits, while an array with exclusive
caching should achieveha = 50%.

Equations 2 and 3 predict that the change from inclusive to exclusive caching would reduce the mean latency from
0.5(Ta +Td) to Ta, i.e., from 5.1 ms to 0.2 ms.

2.2 Zipf workloads

Even workloads that achieve high client hit rates may benefit from exclusive caching. An example of such a work-
load is one with a Zipf-like distribution [49], which approximates many common access patterns: a few blocks are
frequently accessed, others much less often. This is formalized as setting the probability of aREAD for the ith block
proportional to 1/iα , whereα is a scaling constant commonly set to 1.

Consider the cumulative hit ratevs.effective cache size graph shown in figure 2 for the Zipf workload with a 128MB

working set. A client with a 64MB cache will achievehc = 91%. No additional hits would occur in the array with
a 64MB cache and traditional, fully inclusive caching. Exclusive caching would allow the same array to achieve an
incrementalha = 9%; becauseTd >> Ta, even small decreases in the miss rate can yield large speedups. Equations 2
and 3 predict meanREAD latencies of 0.918 ms and 0.036 ms for inclusive and exclusive caching respectively—an
impressive 25.5× speedup.

3 Single-client synthetic workloads

In this section, we explore the effects of exclusive caching using simulation experiments with synthetic workloads.
Our goal is to confirm the intuitive arguments presented in section 2, as well as to conduct sensitivity analyses for how
our demotion scheme responds to variations in the client-array SAN bandwidth and relative client and array cache
sizes. Sections 4 and 5 present our results for real-life workloads.

a
T

c
T

d
T

Client cache

Array cache

= 0.2 ms

= 0 ms

= O(10 ms)

Figure 3: System simulated for the single-client workloads, with aRAID5 array and a 1 Gbit/s FibreChannel SAN.

Workload Client NONE-LRU DEMOTE-LRU DEMOTE

RANDOM 50% 8% 21% 46%
SEQ 0% 0% 0% 100%
ZIPF 86% 2% 4% 9%

Table 2: Client and array cache hit rates for single-client synthetic workloads. The client hit rates are the same for all the demotion
variants, and can be added to the array hit rates to get the total cache hit rates.

Workload NONE-LRU DEMOTE-LRU DEMOTE

RANDOM 4.77 ms 3.43 ms (1.39×) 0.64 ms (7.5×)
SEQ 1.67 ms 1.91 ms (0.87×) 0.48 ms (3.5×)
ZIPF 1.41 ms 1.19 ms (1.18×) 0.85 ms (1.7×)

Table 3: MeanREAD latencies and speedups overNONE-LRU for single-client synthetic workloads.

3.1 Evaluation environment: Pantheon

To evaluate our cache management schemes, we began by using the Pantheon simulator [44], which includes cal-
ibrated disk models [33]. Although the Pantheon array models have not been explicitly calibrated, Pantheon has
been used successfully in design studies of the HP AutoRAID disk array [45], so we have confidence in its predictive
powers.

We configured Pantheon to model aRAID5 disk array connected to a single client over a 1 Gbit/s FibreChannel link,
as shown in figure 3. For these experiments, we used a workload with 4KB READs, and setTa = 0.2 ms; the Pantheon
disk models gaveTd ≈ 10 ms.

The Pantheon cache models are extremely detailed, keeping track of I/O operations in 256 byte size units in order
to model contention effects. Unfortunately, this requires large amounts of memory, and restricted us to experiments
with only 64MB caches. With a 4KB cache block size, this means that the client and array caches were restricted to
Nc = Na = 16384 blocks in size.

To eliminate resource-contention effects for our synthetic workload results, we finished eachREAD before starting
the next. In each experiment, we first “warmed up” the caches with a working-set size set ofREADs; the performance
of theseREADs is not included in the results. Latency variances were all below 1%.

Our chief metric for evaluating the exclusive caching schemes is the mean latency of aREAD at the client; we also
report on the array cache hit rate. For each result, we present both absolute latencies and aspeedupratio, which is the
baseline (NONE-LRU) mean latency divided by the mean latency for the current experiment. Although the difficulties
of modeling partially closed-loop application behavior are considerable [16], a purely I/O-bound workload should
see its execution time reduced by the speedup ratio.

Cumul. READ frac. vs. mean latency - RANDOM

0.1 1 10

Mean latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
E

A
D

 fr
ac

tio
n

NONE-LRU
DEMOTE

Cumul. READ frac. vs. mean latency - SEQ

0.1 1 10

Mean latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
E

A
D

 fr
ac

tio
n

NONE-LRU
DEMOTE

Cumul. READ frac. vs. mean latency - ZIPF

0.1 1 10

Mean latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
E

A
D

 fr
ac

tio
n

NONE-LRU
DEMOTE

Figure 4: CumulativeREAD fractionvs.meanREAD latency for theRANDOM, SEQ, andZIPF workloads withNONE-LRU and
DEMOTE.

3.2 TheRANDOM synthetic workload

For this test, the workload consisted of one-blockREADs uniformly selected from a working set ofNrand blocks.
Such random access patterns are common in on-line transaction-processing workloads (e.g., TPC-C, a classicOLTP

benchmark [38]).

We set the working set size to the sum of the client and array cache sizes:Nc = Na = 16384,Nrand = 32768 blocks,
and issuedNrand warm-upREADs, followed by 10×Nrand timedREADs.

We expected that the client would achievehc = 50%. Inclusive caching would result in no cache hits at the array,
while exclusive caching should achieve an additionalha = 50%, yielding a dramatic improvement in mean latency.

The results in table 2 validate our expectations. The client achieved a 50% hit rate for both inclusive and exclusive
caching, and the array withDEMOTE achieved an additional 46% hit rate. 4% ofREADs still missed withDEMOTE,
because the warm-upREADs did completely fill the client cache. Also, sinceNONE-LRU is not fully inclusive (as
previous studies demonstrate [15]), the array withNONE-LRU still achieved an 8% hit rate.

As predicted in section 1.2,DEMOTE-LRU did not perform as well asDEMOTE. DEMOTE-LRU only achieved
ha = 21%, whileDEMOTE achievedha = 46%, which was a 7.5× speedup overNONE-LRU, as seen in table 3.

Figure 4 compares the cumulative latencies achieved withNONE-LRU and DEMOTE. For DEMOTE, the jump at
0.4 ms corresponds to the cost of an array hit plus the cost of a demotion. In contrast,NONE-LRU got fewer array hits
(table 2), and its curve has a significantly smaller jump at 0.2 ms, which is the cost of an array cache hit without a
demotion.

3.3 TheSEQ synthetic workload

Sequential accesses are common in scientific, decision-support and data-mining workloads. To evaluate the benefit of
exclusive caching for such workloads, we simulatedREADs of sequential blocks from a working set ofNseqcontiguous
blocks, chosen so that the working set would fully occupy the combined client and array caches:Nc = Na = 16384,
andNseq= Nc + Na−1 = 32767 blocks (the−1 accounts for double-caching of the most recently read block). We
issuedNseqwarm-upREADs, followed by 10×Nseq timed one-blockREADs.

We expected that at the end of the warm-up period, the client would contain the blocks in the second half of the
sequence, and an array under exclusive caching would contain the blocks in the first half. Thus, withDEMOTE, all
subsequentREADs should hit in the array. On the other hand, withNONE-LRU andDEMOTE-LRU, we expected that
the array would always contain the same blocks as the client; neither the client nor the array would have the next
block in the sequence, and allREADs would miss.

Again, the results in table 2 validate our expectations. Although noREADs ever hit in the client, they all hit in the array
with DEMOTE. The mean latency forDEMOTE-LRU was higher than forNONE-LRU because it pointlessly demoted
blocks that the array discarded before they were reused. Although allREADs missed in both caches withNONE-LRU

andDEMOTE-LRU, the mean latencies of 1.67 ms and 1.91 ms respectively were less than the random-access disk

Mean latency vs. bandwidth - RANDOM

0.01 0.1 1 10

Bandwidth (Gbit/s)

0

5

10

15

M
ea

n
la

te
nc

y
(m

s) NONE-LRU
DEMOTE

Mean latency vs. bandwidth - ZIPF

0.01 0.1 1 10

Bandwidth (Gbit/s)

0

1

2

3

4

5

M
ea

n
la

te
nc

y
(m

s) NONE-LRU
DEMOTE

Figure 5: MeanREAD latencyvs.SAN bandwidth for theRANDOM andZIPF workloads.

latencyTd thanks to read-ahead in the disk drive [33].

The cumulative latency graph in figure 4 further demonstrates the benefit ofDEMOTE over NONE-LRU: all READs
with DEMOTE had a latency of 0.4 ms (the cost of an array hit plus a demotion), while allREADs with NONE-LRU

had latencies between 1.03 ms (the cost of a disk access with read-ahead caching) and 10 ms (the disk latencyTd,
incurred when theREAD sequence wraps around). Overall,DEMOTE achieved a 3.5× speedup overNONE-LRU, as
seen in table 3.

3.4 TheZIPF synthetic workload

Our Zipf workload sentREADs from a set ofNZipf blocks, withNZipf = 1.5(Nc + Na), so for Nc = Na = 16384,
NZipf = 49152. This resulted in three equal size sets ofNZipf/3 blocks:Z0 for the most active third (which received
90% of the accesses),Z1 for the next most active (6% of the accesses), andZ2 for the least active (the remaining 4%
of the accesses). We issuedNZipf warm-upREADs, followed by 10×NZipf timedREADs.

We expected that at the end of the warm-up set, the client cache would be mostly filled with blocks fromZ0 with the
highest request probabilities, and that an array under exclusive caching would be mostly filled with the blocks fromZ1
with the next highest probabilities. With our test workload, exclusive caching schemes should thus achievehc = 90%
andha = 6% in steady state. On the other hand, the more inclusive caching schemes (NONE-LRU andDEMOTE-LRU)
would simply populate the array cache with the most-recently read blocks, which would be mostly fromZ0, and thus
achieve a lower array hit rateha.

The results in table 2 validate our expectations. The client always achievedhc = 86% (slightly lower than the
anticipated 90% due to an incomplete warm-up). But there was a big difference inha: DEMOTE achieved 9%, while
NONE-LRU achieved only 2%.

The cumulative latency graph in figure 4 supports this: as withRANDOM, the curve forDEMOTE has a much larger
jump at 0.4 ms (the cost of an array hit plus a demotion) thanNONE-LRU does at 0.2 ms (the cost of an array hit alone).
Overall,DEMOTE achieved a 1.7× speedup overNONE-LRU, as seen in table 3. This may seem surprising given the
modest increase in array hit rate, but is more readily understandable when viewed as a decrease in the overall miss
rate from 12% to 5%.

3.5 SAN bandwidth sensitivity analysis

Exclusive caching using demotions relies on a low-latency, high-bandwidth SAN to allow the array cache to perform
as a low-latency extension of the client cache. The more this expectation is violated (i.e., as SAN latency increases),
the less benefit we expect to see—possibly to the point where demotions are not worth doing. To explore this effect,
we conducted a sensitivity analysis, using Pantheon to explore the effects of varying the simulated SAN bandwidth
from 10 Gbit/s to 10 Mbit/s on theNONE-LRU andDEMOTE schemes.

Our experiments validated our expectations. Figure 5 shows that at very low effective SAN bandwidths (less than 20–
30 Mbit/s),NONE-LRU outperformedDEMOTE, butDEMOTE won as soon as the bandwidth rose above this threshold.
The results forRANDOM and ZIPF are similar, except that the gap between theNONE-LRU and DEMOTE curves

10 100

Array cache size (MB)

0

2

4

6

M
ea

n
la

te
nc

y
(m

s)

Mean latency vs. array cache size - RANDOM

NONE-LRU
DEMOTE

10 100

Array cache size (MB)

0.0

0.5

1.0

1.5

2.0

M
ea

n
la

te
nc

y
(m

s)

Mean latency vs. array cache size - ZIPF

NONE-LRU
DEMOTE

Figure 6: MeanREAD latencyvs.array cache size for theRANDOM andZIPF workloads. The client cache size was fixed at 64MB.
The 64MB size is marked with a dotted line.

for high-bandwidth networks is smaller forZIPF since the increase in array hit rate (and the resultant speedup) was
smaller.

3.6 Evaluation environment: fscachesim

For subsequent experiments, we required a simulator capable of modeling multi-gigabyte caches, which was beyond
the abilities of Pantheon. To this end, we developed a simulator calledfscachesim that only tracks the client and
array cache contents, omitting detailed disk and SAN latency measurements.fscachesim is simpler than Pantheon,
but its predictive effects for our study are similar: we repeated the experiments described in sections 3.2 and 3.4 with
identical workloads, and confirmed that the client and array hit rates matched exactly. We usedfscachesim for all
the experimental work described in the remainder of this paper.

3.7 Cache size sensitivity analysis

In the results reported so far, we have assumed that the client cache is the same size as the array cache. This section
reports on what happens if we relax this assumption, using a 64MB client cache andRANDOM andZIPF.

We expected that an array with theNONE-LRU inclusive scheme would provide no reduction in mean latency until
its cache size exceeds that of the client, while one with theDEMOTE exclusive scheme would provide reductions in
mean latency for any cache size until the working set fits in the aggregate of the client and array caches.

The results in figure 6 confirm our expectations. Maximum benefit occurs when the two caches are of equal size, but
DEMOTE provides benefits over roughly a 10:1 ratio of cache sizes on either side of the equal-size case.

3.8 Summary

The synthetic workload results show thatDEMOTE offers significant potential benefits: 1.7–7.5× speedups are hard to
ignore. Better yet, these benefits are mostly insensitive to variations in SAN bandwidth and only moderately sensitive
to the client:array cache size ratio.

Since our results showed thatDEMOTE-LRU never outperformedDEMOTE, we did not consider it further. We also
investigated schemes with different combinations of LRU andmost-recently-used(MRU) replacement policies at the
client and array in conjunction with demotions, and found that none performed as well asDEMOTE.

4 Single-client real-life workloads

Having demonstrated the benefits of demotion-based exclusive caching for synthetic workloads, we now evaluate its
benefits for real-life workloads, in the form of traces taken from the running systems shown in table 4.

Some of the traces available to us are somewhat old, and cache sizes considered impressive then are small today.
Given this, we set the cache sizes in our experiments commensurate with the time-frame and scale of the system from
which the traces were taken.

Workload Date Capacity Cache Clients Length Warm-up I/Os

CELLO99 1999 300GB 2 GB 1 1 month 1 day 61.9 M
DB2 — 5.2 GB — 8 2.2 hours 30 min 3.7 M
HTTPD 1995 0.5 GB — 7 24 hours 1 hr 1.1 M
OPENMAIL 1999 4260GB 2 GB 6 1 hour 10 min 5.2 M
TPC-H 2000 2100GB 32 GB 1 1 hour 10 min 7.0 M

Table 4: Real-life workload data, with date, storage capacity, array cache size, client count, trace duration, and I/O count. ‘Warm-
up’ is the fraction of the trace used to pre-load the caches in our experiments. ForDB2 andHTTPD, working set size instead of
capacity is shown. ‘—’ are unknown entries.

Workload Client NONE-LRU DEMOTE

CELLO99 54% 1% 2.34 ms 13% 1.83 ms (1.28×)
DB2 4% 0% 5.01 ms 33% 3.57 ms (1.40×)
HTTPD 86% 3% 0.53 ms 10% 0.24 ms (2.20×)

Table 5: Client and array hit rates and mean latencies for single-client real-life workloads. Client hit rates are the same for all
schemes. Latencies are computed using equations 2 and 3 withTa = 0.2 ms andTd = 5 ms. Speedups forDEMOTE overNONE-LRU

are also shown.

We usedfscachesim to simulate a system model similar to the one in figure 3, with cache sizes scaled to reflect the
data in table 4. We used equations 2 and 3 withTa = 0.2 ms,Td = 5 ms to convert cache hit rates into mean latency
predictions. This disk latency is more aggressive than that obtained from Pantheon, to reflect the improvements in
disk performance seen in the more recent systems. We further assumed that there was sufficient SAN bandwidth to
avoid contention, and set the cost of an aborted demotion to 0.16 ms (the cost of SAN controller overheads without
an actual data transfer).

As before, our chief metric of evaluation is the improvement in the mean latency of aREAD achieved by demotion-
based exclusive caching schemes.

4.1 TheCELLO 99 real-life workload

The CELLO99 workload comprises a trace of every disk I/O access for the month of April 1999 from an HP 9000
K570 server with 4CPUs, about 2GB of main memory, two HP AutoRAID arrays and 18 directly connected disk
drives. The system ran a general time-sharing load under HP-UX 10.20; it is the successor to theCELLO system
Ruemmler and Wilkes describe in their analysis of UNIX disk access patterns [32]. In our experiments, we simulated
2 GB client and array caches.

Figure 7 suggests that that switching from inclusive to exclusive caching, with the consequent doubling of effective
cache size from 2GB to 4 GB, should yield a noticeable increase in array hit rate. The results shown in table 5
demonstrate this: usingDEMOTE achievedha = 13% (compared toha =1% with NONE-LRU), yielding a 1.28×
speedup—solely from changing the way the array cache is managed.

4.2 TheDB2 real-life workload

The DB2 trace-based workload was generated by an eight-node IBM SP2 system running an IBM DB2 database
application that performed join, set and aggregation operations on a 5.2GB data set. Uysalet al. used this trace in
their study of I/O on parallel machines [40].

The eight client nodes accessed disjoint sections of the database; for the single-client workload experiment we com-
bined all these access streams into one.

DB2 exhibits a behavior between the sequential and random workload styles seen in theSEQ andRANDOM synthetic
workloads. The graph forDB2 in figure 7 suggests that a single 4GB cache would achieve about a 37% hit rate, but
that a split cache with 2GB at each of the client and array would achieve almost no hits at all with inclusive caching;
thus,DEMOTE should do much better thanNONE-LRU. The results shown in table 5 bear this out:DEMOTE achieved
a 33% array hit rate, and a 1.40× speedup overNONE-LRU.

0 1000 2000 3000 4000

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - CELLO

0 1000 2000 3000

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - DB2

0 50 100

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - HTTPD

0 20000 40000 60000

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - TPC-H

Figure 7: Cumulative hit ratevs.cache size graphs for single-client real-life workloads.

4.3 TheHTTPD real-life workload

The HTTPD workload was generated by a seven-node IBM SP2 parallel web server [22] serving a 524MB data set.
Uysalet al.also used this trace in their study [40]. Again, we combined the client streams into one.

HTTPD has similar characteristics toZIPF. A single 256MB cache would hold the entire active working set; we
elected to perform the experiment with 128MB of cache split equally between the client and the array in order to
obtain more interesting results. An aggregate cache of this size should achievehc +ha≈ 95% according to the graph
in figure 7, with the client achievinghc≈ 85%, and an array under exclusive caching the remainingha≈ 10%.

Table 5 shows that the expected benefit indeed occurs:DEMOTE achieved a 10% array hit rate, and an impressive
2.2× speedup overNONE-LRU.

4.4 TheTPC-H real-life workload

TheTPC-H workload is a 1-hour portion of a 39-hour trace of a system that performed an audited run [18] of theTPC-
H database benchmark [37]. This system illustrates high-end commercial decision-support systems: it comprised an
8-CPU (550MHz PA-RISC) HP 9000 N4000 server with 32GB of main memory and 2.1TB of storage capacity,
on 124 disks spread across 3 arrays (with 1.6GB of aggregate cache) and 4 non-redundant disk trays. The host
computer was already at its maximum-memory configuration in these tests, so adding additional host memory was
not an option. Given that this was a decision-support system, we expected to find a great deal of sequential traffic,
and relatively little cache reuse. Our expectations are borne out by the results.

In our TPC-H experiments, we used a 16KB block size, a 32GB client cache, and a 2GB array cache as the baseline,
and explored the effects of changing the array cache size up to 32GB. Table 6 shows the results.

The traditional, inclusive caching scheme showed no improvement in latency until the array cache size reached 32GB,
at which point we saw a tiny (1%) improvement.

With a 2 GB array cache,DEMOTE yielded a slight slowdown (0.97× speedup), because it paid the cost of doing
demotions without increasing the array cache hit rate significantly. However,DEMOTE obtained a 1.04× speedup at

Array size Client NONE-LRU DEMOTE

2 GB 23% 0% 4.01 ms 1% 4.13 ms (0.97×)
16 GB 23% 0% 4.01 ms (1.00×) 6% 3.86 ms (1.04×)
32 GB 23% 1% 3.97 ms (1.01×) 13% 3.54 ms (1.13×)

Table 6: Client and array hit rates and mean latencies for single-clientTPC-H for different array caches. Client hit rates and cache
sizes (32GB) are the same for all schemes. Latencies are computed using equations 2 and 3 withTa = 0.2 ms andTd = 5 ms.
Speedups are with respect to a 2GB array cache withNONE-LRU.

16GB, and a 1.13× speedup at 32GB, while the inclusive caching scheme showed no benefits. This data confirms that
cache reuse was not a major factor in this workload, but indicates that the exclusive caching scheme took advantage
of what reuse there was.

4.5 Summary

The results from real-life workloads support our earlier conclusions: apart from theTPC-H baseline, which experi-
enced a small 0.97× slowdown due to the cost of non-beneficial demotions, we achieved up to a 2.20× speedup.

We find these results quite gratifying, given that extensive previous research on cache systems enthusiastically reports
performance improvements of a few percent (e.g., a∼1.12× speedup).

5 Multi-client systems

Multi-client systems introduce a new complication: the sharing of data between clients. Note that we are deliberately
not trying to achieve client-memory sharing, in the style of protocols such as GMS [13, 42]. One benefit is that our
scheme does not need to maintain a directory of which clients are caching which blocks.

Having multiple clients cache the same block does not itself raise problems (we assume that the clients wish to access
the data, or they would not have read it), but exploiting the array cache as a shared resource does: it may no longer be
a good idea to discard a recently read block from the array cache as soon as it has been sent to a client. To help reason
about this, we consider two boundary cases here. Of course, real workloads show behavior between these extremes.

Disjoint workloads: The clients each issueREADs for non-overlapped parts of the aggregate working set. TheREADs
appear to the array as if one client had issued them, from a cache as large as the aggregate of the client caches. To
determine if exclusive caching will help, we use the cumulative hit ratevs.cache size graph to estimate the array hit
rate as if a single client had issued allREADs, as in section 2.

Conjoint workloads: The clients issue exactly the sameREAD requests in the same order at the exact same time. If
we arbitrarily designate the first client to issue an I/O as the leader, and the others as followers, we see thatREADs
that hit in the leader also will hit in the followers. TheREADs appear to the array as if one client had issued them
from a cache as large as an individual client cache.

To determine if the leader will benefit from exclusive caching, we use the cumulative hit ratevs.cache size graph to
estimate the array hit rate as if the leader had issued allREADs, as in section 2.

To determine if the followers will benefit from exclusive caching, we observe that allREADs that miss for the leader
in the array will also cause the followers to stall, waiting for that block to be read into the array cache. As soon as it
arrives there, it will be sent to the leader, and then all the followers, before it is discarded. That is, the followers will
see the same performance as the leader.

In systems that employ demotion, the followers waste time demoting blocks that the leader has already demoted.
Fortunately, these demotions will be relatively cheap because they need not transfer any data.

5.1 Adaptive cache insertion policies

Our initial results using the simple demotion-based exclusive caching scheme described above to multi-client systems
were mixed. At first, we evaluatedNONE-LRU and DEMOTE in a multi-client system similar to the one shown in
figure 3, with the single client shown in that figure simply replaced byN clients, each with 1/N of the cache memory
of the single client. As expected, workloads in which clients shared few or no blocks (disjoint workloads) benefitted
from DEMOTE.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	

�
�

�
�

�����
�����
�����
�����

�
�

�
�

�����
����������
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Read block

Tail Tail

Head

Head

Demoted block

R
ea

d

D
em

o
te

d

CacheGhosts

Figure 8: Operation of read and demoted ghost caches in conjunction with the array cache. The array inserts the metadata of
incoming read (demoted) blocks into the corresponding ghost, and the data into the cache. The cache is divided into segments
of either uniform or exponentially-growing size. The array selects the segment into which to insert the incoming read (demoted)
block based on the hit count in the corresponding ghost.

Unfortunately, workloads in which clients shared blocks performed worse withDEMOTE than withNONE-LRU, be-
cause shared workloads are not conjoint in practice: clients do not typicallyREAD the same blocks in the same order
at the same time. Instead, aREAD for block X by one client may be followed by severalREADs for other blocks
before a secondREAD for X by another client. Recall that withDEMOTE the array puts blocks read from disk at the
head of the LRU queue, i.e., in MRU order. Thus, the array is likely to ejectX before theREAD from the later client.

We made an early design decision to avoid the complexities of schemes that require the array to track which clients
had which blocks and request copies back from them—we wanted to keep the client-to-array interaction as simple,
and as close to standardSCSI, as possible.

Our first insight was that the array should reserve a portion of its cache to keep blocks recently read from disk “for a
while”, in case another client requests them. To achieve this, we experimented with a segmented LRU (SLRU) array
cache [21]—one withprobationaryandprotectedsegments, each managed in LRU fashion. The array puts newly
inserted blocks (read and demoted) at the tail of the probationary segment, and moves them to the tail of the protected
segment if a subsequentREAD hits them. The array moves blocks from the head of the protected segment to the tail
of the probationary one, and ejects blocks from the head of the probationary segment.

SLRU improved performance somewhat, but the optimal size of the protected segment varied greatly with the work-
load: the best size was either very small (less than 8% of the total), or quite large (over 50%). These results were less
robust than we desired.

Our second insight is that the array can treat the LRU queue as a continuum, rather than as a pair of segments:
inserting a block near the head causes that block to have a shorter expected lifetime in the queue than inserting it near
the tail. We can then use different insertion points for demoted blocks and disk-read blocks. (PureDEMOTE is an
extreme instance that only uses the ends of the LRU queue, and SLRU is an instance where the insertion point is a
fixed distance down the LRU queue.)

Our experience with SLRU suggested that the array should select the insertion pointsadaptivelyin response to
workload characteristics instead of selecting them statically. For example, the array should insert demoted blocks
closer to the tail of its LRU queue than disk-read blocks if subsequentREADs hit demoted blocks more often. To
support this, we implementedghost cachesat the array for demoted and disk-read blocks.

A ghost cache behaves like a real cache except that it only keeps cache metadata, enabling it to simulate the behavior
of a real cache using much less memory. We used a pair of ghost caches to simulate the performance of hypothetical
array caches that only inserted blocks from a particular source—either demotions or disk reads. Just like the real
cache, each ghost cache was updated onREADs to track hits and execute its LRU policy.

We used the ghost caches to provide information about which insertion sources are the more likely to insert blocks
that are productive to cache, and hence where in the real cache future insertions from this source should go, as shown
in figure 8.) This was done by calculating the insertion point in the real cache from the relative hit counts of the

0 200 400 600 800 1000

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - DB2 clients

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8

Figure 9: Cumulative hit ratevs.cache size forDB2 clients.

Client 1 2 3 4 5 6 7 8

NONE-LRU

Mean lat. 5.20 4.00 4.62 4.66 4.66 4.68 4.66 4.66

DEMOTE (mean speedup 1.50×)
Mean lat. 1.30 4.12 3.44 3.41 3.39 3.38 3.40 3.38
Speedup 4.00× 0.97× 1.34× 1.37× 1.38× 1.39× 1.37× 1.38×

DEMOTE-ADAPT-UNI (mean speedup 1.27×)
Mean lat. 2.15 4.12 3.57 3.53 4.09 4.07 4.07 4.05
Speedup 2.42× 0.97× 1.29× 1.32× 1.14× 1.15× 1.15× 1.15×

DEMOTE-ADAPT-EXP (mean speedup 1.32×)
Mean lat. 1.79 4.12 3.55 3.51 3.94 4.05 3.92 3.99
Speedup 2.91× 0.97× 1.30× 1.33× 1.18× 1.16× 1.19× 1.17×

Table 7: Per-client mean latencies (in ms) for multi-clientDB2. Latencies are computed using equations 2 and 3 withTa = 0.2 ms
andTd = 5 ms. Speedups overNONE-LRU, and the geometric mean of all client speedups, are also shown.

ghost caches. To do so, we assigned the value 0 to represent the head of the real array LRU queue, and the value 1
to the tail; the insertion points for demoted and disk-read blocks were given by the ratio of the hit rates seen by their
respective ghost caches to the total hit rate across all ghost caches.

To make insertion at an arbitrary point more computationally tractable, we approximated this by dividing the real
array LRU queue into a fixed number of segmentsNsegs(10 in our experiments), multiplying the calculated insertion
point byNsegs, and inserting the block at the tail of that segment.

We experimented with uniform segments, and with exponential segments (each segment was twice the size of the
preceding one, the smallest being at the head of the array LRU queue). The same segment-index calculation was
used for both schemes, causing the scheme with segments of exponential size to give significantly shorter lifetimes to
blocks predicted to be less popular.

We designated the combination of demotions with ghost caches and uniform segments at the array asDEMOTE-
-ADAPT-UNI, and that of demotions with ghost caches and exponential segments asDEMOTE-ADAPT-EXP. We then
re-ran the experiments for which we had data for multiple clients, but separated out the individual clients.

5.2 The multi-client DB2 workload

We used the sameDB2 workload described in section 4.2, but with the eight clients kept separate. Each client had a
256MB cache, so the aggregate of client caches remained at 2GB. The array had 2GB of cache.

EachDB2 client accesses disjoint parts of the database. Given our qualitative analysis of disjoint workloads, and
the speedup forDB2 in a single-client system withDEMOTE, we expected to obtain speedups in this multi-client
system. If we assume that each client uses one eighth (256MB) of the array cache, then each client has an aggregate
of 512 MB to hold its part of the database, and we expected from figure 9 that exclusive caching would obtain a
significant increase in array hit rates, with a corresponding reduction in mean latency.

Our results shown in table 7 agree:DEMOTE achieved an impressive 1.50× speedup overNONE-LRU. DEMOTE-
-ADAPT-UNI and DEMOTE-ADAPT-EXP achieved only 1.27–1.32× speedups, since they were more likely to keep

0 50 100 150 200 250

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - HTTPD clients

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7

Figure 10: Cumulative hit ratevs.cache size forHTTPD clients.

No. clients 1 2 3 4 5 6 7

No. blocks 13173 8282 5371 5570 6934 24251 5280
% of total 19% 12% 8% 8% 10% 35% 8%

Table 8: Histogram showing the number of blocks shared byx HTTPD clients, wherex ranges from 1 to 7 clients.

Client 1 2 3 4 5 6 7

NONE-LRU

Mean lat. 0.90 0.83 0.82 0.89 0.79 0.76 0.19

DEMOTE (mean slowdown 0.55×)
Mean lat. 1.50 1.41 1.44 1.48 1.43 1.33 0.46
Speedup 0.60× 0.59× 0.57× 0.60× 0.55× 0.57× 0.41×

DEMOTE-ADAPT-UNI (mean slowdown 0.91×)
Mean lat. 0.99 0.92 0.91 0.98 0.87 0.86 0.20
Speedup 0.91× 0.90× 0.90× 0.91× 0.90× 0.89× 0.94×

DEMOTE-ADAPT-EXP (mean speedup 1.18×)
Mean lat. 0.81 0.73 0.74 0.79 0.68 0.67 0.12
Speedup 1.12× 1.13× 1.10× 1.13× 1.16× 1.13× 1.52×

Table 9: Per-client mean latencies (in ms) for multi-clientHTTPD. Latencies are computed using equations 2 and 3 with
Ta = 0.2 ms andTd = 5 ms. Speedups overNONE-LRU, and the geometric mean of all client speedups, are also shown.

disk-read blocks in the cache, reducing the cache available for demoted blocks, and thus making the cache less
effective for this workload.

5.3 The multi-client HTTPD workload

We returned to the originalHTTPD workload, and separated the original clients. We gave 8MB to each client cache,
and kept the 64MB array cache as before.

Figure 10 indicates that the per-client workloads are somewhat similar to theZIPF synthetic workload. As shown in
section 3.4, disk-read blocks for such workloads will in general have low probabilities of being reused, while demoted
blocks will have higher probabilities. On the other hand, as shown by the histogram in table 8, clients share a high
proportion of blocks, and tend to exhibit conjoint workload behavior. Thus, while the array should discard disk-read
blocks more quickly than demoted blocks, it should not discard them immediately.

Given this analysis, we expectedDEMOTE to post less impressive results than adaptive schemes, and indeed it did,
as shown in table 9: a 0.55× slowdown in mean latency overNONE-LRU. On the other hand,DEMOTE-ADAPT-EXP

achieved a 1.18× speedup.DEMOTE-ADAPT-UNI achieved a 0.91× slowdown, which we attribute to demoted blocks
being much more valuable than disk-read ones, but the cache with uniform segments devoting too little of its space to
them compared to the one with exponential segments.

5.4 TheOPENMAIL workload

TheOPENMAIL workload comes from a trace of a production e-mail system running the HP OpenMail application
for 25,700 users, 9,800 of whom were active during the hour-long trace. The system consisted of six HP 9000 K580

0 1000 2000 3000 4000

Cache size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
. h

it
ra

te

Cumul. hit rate vs. cache size - OPENMAIL clients

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6

Figure 11: Cumulative hit ratevs.cache size forOPENMAIL.

Client 1 2 3 4 5 6

NONE-LRU

Mean lat. 2.96 4.52 4.54 4.47 1.79 1.78

DEMOTE (mean speedup 1.15×)
Mean lat. 2.32 4.08 4.27 4.35 1.27 1.67
Speedup 1.28× 1.11× 1.06× 1.03× 1.41× 1.07×

DEMOTE-ADAPT-UNI (mean speedup 1.07×)
Mean lat. 2.66 4.34 4.42 4.46 1.44 1.79
Speedup 1.11× 1.04× 1.03× 1.00× 1.24× 0.99×

DEMOTE-ADAPT-EXP (mean slowdown 0.88×)
Mean lat. 3.03 4.60 4.60 4.54 2.53 2.47
Speedup 0.97× 0.98× 0.99× 0.98× 0.71× 0.72×

Table 10: Per-client mean latencies (in ms) forOPENMAIL. Latencies are computed using equations 2 and 3 withTa = 0.2 ms
andTd = 5 ms. Speedups overNONE-LRU, and the geometric mean of all client speedups, are also shown.

servers running HP-UX 10.20, each with 6CPUs, 2 GB of memory, and 7SCSI interface cards. The servers were
attached to four EMC Symmetrix 3700 disk arrays. At the time of the trace, the servers were experiencing some load
imbalances, and one was I/O bound.

Figure 11 suggests that 2GB client caches would hold the entire working set for all but two clients. To obtain more
interesting results, we simulated six clients with 1GB caches connected to an array with a 6GB cache.

OPENMAIL is a disjoint workload, and thus should obtain speedups from exclusive caching. If we assume that each
client uses a sixth (1GB) of the array cache, then each client has an aggregate of 2GB to hold its workload, and we
see from figure 11 that an array under exclusive caching array should obtain a significant increase in array cache hit
rate, and a corresponding reduction in mean latency.

As with DB2, our results (table 10) bear out our expectations:DEMOTE, which aggressively discards read blocks and
holds demoted blocks in the array, obtained a 1.15× speedup overNONE-LRU. DEMOTE-ADAPT-UNI andDEMOTE-
ADAPT-EXP fared less well, yielding a 1.07× speedup and 0.88× slowdown respectively.

5.5 Summary

The clear benefits from single-client workloads are not so easily repeated in the multi-client case. For largely disjoint
workloads, such asDB2 andOPENMAIL, the simpleDEMOTE scheme does well, but it falls down when there is a
large amount of data sharing. On the other hand, the adaptive demotion schemes do well when simpleDEMOTE fails,
which suggests that a mechanism to switch between the two may be helpful.

Overall, our results suggests that even when demotion-based schemes seem not to be ideal, it is usually possible to
find a setting where performance is improved. In the enterprise environments we target, such tuning is an expected
part of bringing a system into production.

6 Related work

The literature on caching in storage systems is large and rich, so we only cite a few representative samples. Much
of it focuses on predicting the performance of an existing cache hierarchy [6, 24, 35, 34], describing existing I/O
systems [17, 25, 39], and determining when to flush write-back data to disk [21, 26, 41]. Real workloads continue
to demonstrate that read caching has considerable value in arrays, and that a small amount of non-volatile memory
greatly improves write performance [32, 39].

We are not the first to have observed the drawbacks of inclusive caching. Muntzet al.[27, 28] show that intermediate-
layer caches for file servers perform poorly, and much of the work on cache replacement algorithms is motivated by
this observation [21, 24, 30, 48]. OurDEMOTE scheme, with alternative array cache replacement policies, is another
such remedy.

Choosing the correct cache replacement policy in an array can improve its performance [19, 21, 30, 35, 48]. Some
studies suggest using least-frequently-used [15, 46] or frequency-based [30] replacement policies instead of LRU in
file servers. MRU [23] or next-block prediction [29] policies have been shown to provide better performance for
sequential loads. LRU or clocking policies [10] can yield acceptable results for database loads; for example, the IBM
DB2 database system [36] implements an augmented LRU-style policy.

Our DEMOTE operation can be viewed as a very simple form of a client-controlled caching policy [7], which could be
implemented using the “write to cache” operation available on some arrays (e.g., those from IBM [3]). The difference
is that we provide no way for the client to control which blocks the array should replace, and we trust the client to be
well-behaved.

Recent studies of cooperative World Wide Web caching protocols [1, 20, 47] look at policies beyond LRU and MRU.
Previously, analyses of web request traces [2, 5, 8] showed the file popularity distributions to be Zipf-like [49]. It
is possible that schemes tuned for these workloads will perform as well for the sequential or random access patterns
found in file system workloads, but a comprehensive evaluation of them is outside the scope of this paper. In addition,
web caching, with its potentially millions of clients, is targeted at a very different environment than our work.

Peer-to-peer cooperative caching studies are relevant to our multi-client case. In the “direct client cooperation” model
[9], active clients offload excess blocks onto idle peers. No inter-client sharing occurs—cooperation is simply a way
to exploit otherwise unused memory. The GMS global memory management project considers finding the nodes with
idle memory [13, 42]. Cooperating nodes use approximate knowledge of the global memory state to make caching
and ejection decisions that benefit a page-faulting client and the whole cluster.

Perhaps the closest work to ours in spirit is a global memory management protocol developed for database manage-
ment systems [14]. Here, the database server keeps a directory of pages in the aggregate cache. This directory allows
the server to forward a page request from one client to another that has the data, request that a client demote rather
than discard the last in-memory copy of a page, and preferentially discard pages that have already been sent to a
client. We take a simpler approach: we do not track which client has what block, and thus cannot support inter-client
transfers—but we need neither a directory nor major changes to theSCSIprotocol. We rely on a high-speed network
to performDEMOTE eagerly (rather than first check to see if it is worthwhile) and we do not require a (potentially
large) data structure at the array to keep track of what blocks are where. Lower complexity has a price: we are less
able to exploit block sharing between clients.

7 Conclusion

We began our study with a simple idea: that aDEMOTE operation might make array caches more exclusive and thus
achieve better hit rates. Experiments with simple synthetic workloads support this hypothesis; moreover, the benefits
are reasonably resistant to reductions in SAN bandwidth and variations in array cache size. Our hypothesis is further
supported by 1.04–2.20× speedups for most single-client real-life workloads we studied—and these are significantly
larger than several results for other cache improvement algorithms.

The TPC-H system parameters show why making array caches more exclusive is important in large systems: cache
memory for the client and arrays represented 32% of the total system cost of $1.55 million [18]. The ability to take
full advantage of such large investments is a significant benefit; reducing their size is another.

Using multiple clients complicates the story, and our results are less clear-cut in such systems. Although we saw up to
a 1.5× speedup with our exclusive caching schemes, we incurred a slowdown with the simpleDEMOTE scheme when
clients shared significant parts of the working set. Combining adaptive cache-insertion algorithms with demotions
yielded improvements for these shared workloads, but penalized disjoint workloads. However, we believe that it
would not be hard to develop an automatic technique to switch between these simple and adaptive modes.

In conclusion, we suggest that theDEMOTE scheme is worth consideration by system designers and I/O architects,
given our generally positive results. Better yet, as SAN bandwidth and cache sizes increase, its benefits will likely
increase, and not be wiped out by a few months of processor, disk, or memory technology progress.

8 Acknowledgments

We would like to thank Greg Ganger, Garth Gibson, Richard Golding, and several of our colleagues for their feedback
and support, as well as all the authors of Pantheon. We would also like to thank Liddy Shriver, our USENIX shepherd,
for her feedback and help.

References
[1] M. F. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Evaluating content management techniques for

web proxy caches.Performance Evaluation Review, 27(4):3–11, Mar. 2000.

[2] M. F. Arlitt and C. L. Williamson. Web server workload characterization: The search for invariants. InProc. of
SIGMETRICS 1996, pages 126–137. July 1996.

[3] E. Bachmat, EMC. Private communication, Apr. 2002.

[4] D. Black, EMC. Private communication, Feb. 2002.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: Evidence and
implications. InProc. of the 18th Ann. Joint Conf. of the IEEE Computer and Communications Soc., volume
1–3. Mar. 1999.

[6] D. Buck and M. Singha. An analytic study of caching in computer-systems.Journal of Parallel and Distributed
Computing, 32(2):205–214, Feb. 1996. Erratum published in 34(2):233, May 1996.

[7] P. Cao, E. W. Felten, and K. Li. Application-controlled file caching policies. InProc. of the USENIX Assoc.
Summer Conf., pages 171–182. June 1994.

[8] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic evidence and possible causes. In
Proc. of SIGMETRICS 1996, pages 160–169. July 1996.

[9] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Using remote client
memory to improve file system performance. InProc. of the 1st Symp. on Operating Systems Design and
Implementation, pages 267–280. Nov. 1994.

[10] W. Effelsberg and T. Haerder. Principles of database buffer management.ACM Trans. on Database Systems,
9(4):560–595, Dec. 1984.

[11] EMC Corporation. Symmetrix 3000 and 5000 enterprise storage systems product description guide.http:
//www.emc.com/products/product pdfs/pdg/symm 3 5 pdg.pdf, Feb. 1999.

[12] EMC Corporation. Symmetrix 8000 enterprise storage systems product description guide, Mar. 2001.

[13] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, and H. M. Levy. Implementing global memory man-
agement in a workstation cluster. InProc. of the 15th Symp. on Operating Systems Principles, pages 201–212.
Dec. 1995.

[14] M. J. Franklin, M. J. Carey, and M. Livny. Global memory management in client-server DBMS architectures.
In Proc. of the 18th Very Large Database Conf., pages 596–609. Aug. 1992.

http://www.emc.com/products/product_pdfs/pdg/symm_3_5_pdg.pdf
http://www.emc.com/products/product_pdfs/pdg/symm_3_5_pdg.pdf

[15] K. Froese and R. B. Bunt. The effect of client caching on file server workloads. InProc. of the 29th Hawaii
International Conference on System Sciences, pages 150–159, Jan. 1996.

[16] G. R. Ganger and Y. N. Patt. Using system-level models to evaluate I/O subsystem designs.IEEE Trans. on
Computers, 47(6):667–678, June 1998.

[17] C. P. Grossman. Evolution of the DASD storage control.IBM Systems Journal, 28(2):196–226, 1989.

[18] Hewlett-Packard Company. HP 9000 N4000 Enterprise Server using HP-UX 11.00 64-bit and Informix Ex-
tended Parallel Server 8.30FC2: TPC-H full disclosure report, May 2000.

[19] S. Jiang and X. Zhuang. LIRS: An efficient low inter-reference recency set replacement policy to improve buffer
cache performance. InProc. of SIGMETRICS 2002. June 2002.

[20] S. Jin and A. Bestavros. Popularity-aware greedy-dual-size web proxy caching algorithms. InProc. of the 20th
Intl. Conf. on Distributed Computing Systems, pages 254–261. Apr. 2000.

[21] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to improve disk performance.IEEE Computer,
27(3):38–46, Mar. 1994.

[22] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP server: The NCSA prototype.Computer Networks
and ISDN Systems, 27(2):155–164, Nov. 1994.

[23] K. Korner. Intelligent caching for remote file service. InProc. of the 10th Intl. Conf. on Distributed Computing
Systems, pages 220–226. May 1990.

[24] B. McNutt. I/O subsystem configurations for ESA: New roles for processor storage.IBM Systems Journal,
32(2):252–264, 1993.

[25] J. Menon and M. Hartung. The IBM 3990 disk cache. InProc. of COMPCON 1988, the 33rd IEEE Intl.
Computer Conf., pages 146–151, June 1988.

[26] D. W. Miller and D. T. Harper. Performance analysis of disk cache write policies.Microprocessors and Mi-
crosystems, 19(3):121–130, Apr. 1995.

[27] D. Muntz and P. Honeyman. Multi-level caching in distributed file systems — or — your cache ain’t nuthin’
but trash. InProc. of the USENIX Assoc. Winter Conf.Jan. 1992.

[28] D. Muntz, P. Honeyman, and C. J. Antonelli. Evaluating delayed write in a multilevel caching file system. In
Proc. of IFIP/IEEE Intl. Conf. on Distributed Platforms, pages 415–429. Feb.–Mar. 1996.

[29] E. Rahm and D. F. Ferguson. Cache management algorithms for sequential data access. Research Report
RC15486, IBM T.J. Watson Research Laboratories, Yorktown Heights, NY, 1993.

[30] J. T. Robinson and M. V. Devarakonda. Data cache management using frequency-based replacement. InProc.
of SIGMETRICS 1990, pages 132–142. May 1990.

[31] C. Ruemmler and J. Wilkes. A trace-driven analysis of disk working set sizes. Tech. Rep. HPL-OSR-93-23, HP
Laboratories, Palo Alto, CA, Apr. 1993.

[32] C. Ruemmler and J. Wilkes. UNIX disk access patterns. InProc. of the USENIX Assoc. Winter Conf., pages
405–420. Jan. 1993.

[33] C. Ruemmler and J. Wilkes. An introduction to disk drive modelling.IEEE Computer, 27(3):17–28, Mar. 1994.

[34] A. J. Smith. Bibliography on file and I/O system optimization and related topics.Operating Systems Review,
15(4):39–54, Oct. 1981.

[35] A. J. Smith. Disk cache-miss ratio analysis and design considerations.ACM Trans. on Computer Systems,
3(3):161–203, Aug. 1985.

[36] J. Z. Teng and R. A. Gumaer. Managing IBM Database 2 buffers to maximize performance.IBM Systems
Journal, 23(2):211–218, 1984.

[37] Transaction Processing Performance Council. TPC benchmark H, Standard Specification Revision 1.3.0.http:
//www.tpc.org/tpch/spec/h130.pdf, June 1999.

[38] Transaction Processing Performance Council. TPC benchmark C, Standard Specification Version 5.http:
//www.tpc.org/tpcc/spec/tpcc current.pdf, Feb. 2001.

[39] K. Treiber and J. Menon. Simulation study of cached RAID5 designs. InProc. of the 1st Conf. on High-
Performance Computer Architecture, pages 186–197. Jan. 1995.

[40] M. Uysal, A. Acharya, and J. Saltz. Requirements of I/O systems for parallel machines: An application-driven
study. Tech. Rep. CS-TR-3802, Dept. of Computer Science, University of Maryland, College Park, MD, May
1997.

[41] A. Varma and Q. Jacobson. Destage algorithms for disk arrays with nonvolatile caches. InProc. of the 22nd
Ann. Intl. Symp. on Computer Architecture, pages 83–95. June 1995.

[42] G. M. Voelker, E. J. Anderson, T. Kimbrel, M. J. Feeley, J. S. Chase, and A. R. Karlin. Implementing cooperative
prefetching and caching in a globally managed memory system. InProc. of SIGMETRICS 1998, pages 33–43.
June 1998.

[43] D. Voigt. HP AutoRAID field performance. HP World talk 3354,http://www.hpl.hp.com/SSP/papers/, Aug.
1998.

[44] J. Wilkes. The Pantheon storage-system simulator. Tech. Rep. HPL-SSP-95-14 rev. 1, HP Laboratories, Palo
Alto, CA, May 1996.

[45] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierarchical storage system.ACM Trans.
on Computer Systems, 14(1):108–136, Feb. 1996.

[46] D. L. Willick, D. L. Eager, and R. B. Bunt. Disk cache replacement policies for network fileservers. InProc. of
the 13th Intl. Conf. on Distributed Computing Systems, pages 2–11. May 1993.

[47] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy. The scale and performance of
cooperative web proxy caching. InProc. of the 17th Symp. on Operating Systems Principles, pages 16–31. Dec.
1999.

[48] Y. Zhou and J. F. Philbin. The Multi-Queue replacement algorithm for second level buffer caches. InProc. of
the USENIX Ann. Technical Conf., pages 91–104. June 2001.

[49] G. K. Zipf. Human Behavior and Principle of Least Effort. Addison-Wesley Press, Cambridge, MA, 1949.

http://www.tpc.org/tpch/spec/h130.pdf
http://www.tpc.org/tpch/spec/h130.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.hpl.hp.com/SSP/papers/

	Introduction
	Exclusive caching
	Exclusive caching schemes
	Objectives

	Why exclusive caching?
	Random workloads
	Zipf workloads

	Single-client synthetic workloads
	Evaluation environment: Pantheon
	The random synthetic workload
	The seq synthetic workload
	The zipf synthetic workload
	SAN bandwidth sensitivity analysis
	Evaluation environment: fscachesim
	Cache size sensitivity analysis
	Summary

	Single-client real-life workloads
	The cello99 real-life workload
	The db2 real-life workload
	The httpd real-life workload
	The tpc-h real-life workload
	Summary

	Multi-client systems
	Adaptive cache insertion policies
	The multi-client db2 workload
	The multi-client httpd workload
	The OpenMail workload
	Summary

	Related work
	Conclusion
	Acknowledgments

