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Abstract

We focus on the problem of efficient learning of dependency trees. It is well-known that given the pairwise
mutual information coefficients, a minimum-weight spanning tree algorithm solves this problem exactly and in
polynomial time. However, for large data-sets it is the construction of the correlation matrix that dominates the
running time. We have developed a new spanning-tree algorithm which is capable of exploiting partial knowledge
about edge weights. The partial knowledge we maintain is a probabilistic confidence interval on the coefficients,
which we derive by examining just a small sample of the data. The algorithm is able to flag the need to shrink
an interval, which translates to inspection of more data for the particular attribute pair. Experimental results
show significant improvement in running time, without loss in accuracy of the generated trees. Interestingly,
our spanning-tree algorithm is based solely on Tarjan’s red-edge rule, which is generally considered a guaranteed
recipe for bad performance.
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1. Introduction

Bayes’ nets are widely used for data modeling. How-
ever, the problem of constructing Bayes’ nets from
data remains a hard one, requiring search in a super-
exponential space of possible graph structures. De-
spite recent advances (Friedman et al., 1999), learning
network structure from big data sets demands huge
computational resources. We therefore turn to a sim-
pler model, which is easier to compute while still be-
ing expressive enough to be useful. Namely, we look
at dependency trees, which are belief networks that
satisfy the additional constraint that each node has
at most one parent. In this simple case it has been
shown (Chow & Liu, 1968) that finding the tree that
maximizes the data likelihood is equivalent to finding a
minimum-weight spanning tree in the attribute graph,
where edge weights are derived from the mutual infor-
mation of the corresponding attribute pairs.

It is our intent to eventually apply the technology in-
troduced in this paper to the full problem of Bayes Net
structure search.

Once the weight matrix is constructed, executing a
minimum spanning tree (MST) algorithm is fast. The
time-consuming part is the population of the weight
matrix, which takes time linear in the number of
records in the given dataset and quadratic in the
number of attributes. This becomes expensive when
considering datasets with hundreds of thousands of
records and hundreds of attributes.

To overcome this problem, we propose a new way of
interleaving the spanning tree construction with the
operations needed to compute the mutual information
coefficients.  We develop a new spanning-tree algo-
rithm, based solely on Tarjan’s (1983) red-edge rule.
This algorithm is capable of using partial knowledge
about edge weights and of signaling the need for more
accurate information regarding a particular edge. The
partial information we maintain is in the form of prob-
abilistic confidence intervals on the edge weights; an
interval is derived by looking at a sub-sample of the
data for a particular attribute pair. Whenever the al-
gorithm signals that a currently-known interval is too
wide, we inspect more data records in order to shrink
it. Once the interval is small enough, we may be able
to prove that the corresponding edge is not a part of
the tree. Whenever such an edge can be eliminated
without looking at the full data-set, the work associ-
ated with the remainder of the data is saved. This is
where performance is potentially gained.

We have implemented the algorithm for numeric and
categorical data and tested it on real and synthetic

data-sets containing hundreds of attributes and mil-
lions of records. We show experimental results of up
to thirty-fold speed improvements over the traditional
algorithm. In many cases the resulting tree is identical
to the one produced by the naive algorithm. When it
is not, they are of near-identical quality.

Use of probabilistic bounds to direct structure-search
appears in (Maron & Moore, 1994) for classification
and in (Moore & Lee, 1994) for model selection. In
a sequence of papers, Domingos et al. have demon-
strated the usefulness of this technique for decision
trees (Domingos & Hulten, 2000), K-means cluster-
ing (Domingos & Hulten, 2001a), and mixtures-of-
Gaussians EM (Domingos & Hulten, 2001b). In the
context of dependency trees, Meila (1999a) discusses
the discrete case that frequently comes up in text-
mining applications, where the attributes are sparse
in the sense that only a small fraction of them is true
for any record. In this case it is possible to exploit the
sparseness and accelerate the Chow-Liu algorithm.

Throughout the paper we use the following notation.
The number of data records is R, the number of at-
tributes n. When z is an attribute, z; is the value it
takes for the ¢-th record. We denote by p., the corre-
lation coefficient between attributes # and y, and omit
the subscript when it is clear from the context. H is
the entropy of an attribute or an attribute set z.

2. A Slow Minimum-Spanning Tree
Algorithm

We begin by describing our MST algorithm?!. Al-
though in its given form it can be applied to any graph,
it is asymptotically slower than established algorithms
(as predicted in Tarjan (1983) for all algorithms in its
class). We then proceed to describe its use in the case
where some edge weights are known not exactly, but
rather only to lie within a given interval. In Section 4
we will show how this property of the algorithm inter-
acts with the data-scanning step to produce an efficient
dependency-tree algorithm.

In the following discussion we assume we are given a
complete graph with n nodes, and the task is to find
a tree connecting all of its nodes such that the total
tree weight (defined to be the sum of the weights of its
edges) is minimized. This problem has been extremely
well studied and numerous efficient algorithms for it
exist.

'To be precise, we will use it as a mazimum spanning
tree algorithm. The two are interchangeable, requiring just
a reversal of the edge weight comparison operator.



We start with a rule to eliminate edges from consider-
ation for the output tree. Following Tarjan (1983), we
state the so-called “red-edge” rule:

Theorem 1: The heaviest edge in any cycle in the
graph is not part of the minimum spanning tree.

Traditionally, MST algorithms use this rule in con-
Jjunction with a greedy “blue-edge” rule, which chooses
edges for inclusion in the tree. In contrast, we will
repeatedly use the red-edge rule until all but n — 1
edges have been eliminated. The proof this results in
a minimum-spanning tree follows from Tarjan (1983).

Let E be the original set of edges. Denote by L the
set of edges that have already been eliminated, and let
L = E\ L. As a way to guide our search for edges to
eliminate we maintain the following invariant:

Invariant 2: At any point there is a spanning tree
T, which is composed of edges in L.

In each step, we arbitrarily choose some edge € in L\T'
and try to eliminate it using the red-edge rule. Let P
be the path in T" between e’s endpoints. The cycle we
will apply the red-edge rule to will be composed of e
and P. It is clear we only need to compare e with the
heaviest edge in P. If e is heavier, we can eliminate
it by the red-edge rule. However, if it is lighter, then
we can eliminate the tree edge by the same rule. We
do so and add e to the tree to preserve Invariant 2.
The algorithm, which we call Minimum Incremental
Spanning Tree (MIST), is listed in Figure 1.

The MIST algorithm can be applied directly to a graph
where the edge weights are known exactly. And like
many other MST algorithmes, it can also be used in the
case where just the relative order of the edge weights
is given. Now imagine a different setup, where edge
weights are not given, and instead an oracle exists,
who knows the exact values of the edge weights. When
asked about the relative order of two edges, it may
either respond with the correct answer, or it may give
an inconclusive answer. Furthermore, a constant fee
is charged for each query. In this setup, MIST is still
suited for finding a spanning tree while minimizing the
number of queries issued. In step 2, we go to the oracle
to determine the order. If the answer is conclusive, the
algorithm proceeds as described. Otherwise, it just
ignores the “if” clause altogether and iterates (possibly
with a different edge ¢).

For the moment, this setup may seem contrived, but
in Section 4, we go back to the MIST algorithm and
put it in a context very similar to the one described
here.

2

1. T ¢ an arbitrary spanning set of n — 1
edges.

L + empty set.
2. While |[L| > n — 1 do:

Pick an arbitrary edge e € L\ T

Let €’ be the heaviest edge on the
path in 7" between the endpoints
of e.

If e is heavier than e’
L« LuU{e}
otherwise:
T+ Tu{e}\{e}
L+ Lu{e}

3. Output T.

Figure 1. The MIST algorithm. At each step of the itera-
tion, 7' contains the current “draft” tree. L contains the set
of edges that have been proven to not be in the MST and
so L contains the set of edges that still have some chance
of being in the MST. 7" never contains an edge in L.

3. Probabilistic Bounds on Mutual
Information

We now concentrate once again on the specific problem
of determining the mutual information between a pair
of attributes. We show how to compute it given the
complete data, and how to derive probabilistic confi-
dence intervals for it, given just a sample of the data.

As shown in Reza (1994), the mutual information for
numeric attributes X and Y is:

I(X;Y) = —%111(1 —p?)

where the correlation coefficient p = pxy =

iz (i = 9)(w: —v)

with z, y, 0% and 6% being the sample means and vari-
ances for attributes X and Y.

Since the log function is monotonic, I(X;Y) must be
monotonic in |p|. This is a sufficient condition for the
use of |p| as the edge weight in a MST algorithm.
Consequently, the sample correlation can be used in
a straightforward manner when the complete data is
available. Now consider the case where just a sample
of the data has been observed.

Let z and y be two data attributes. We are trying to
. R . . ”
estimate ) ;" | x; - y; given the partial sum ), _, z; -y



for some r < R. To derive a confidence interval, we use
the Central Limit Theorem 2. It states that given sam-
ples of the random variable Z (where for our purposes
Zi = x; - y;), the sum ), Z; can be approximated by
a Normal distribution with mean and variance closely
related to the distribution mean and variance. Fur-
thermore, for large samples, the sample mean and vari-
ance can be substituted for the unknown distribution
parameters. Note in particular that the central limit
theorem does not require us to make any assumption
about the Gaussianity of Z. We thus can derive a two-
sided confidence interval for ", Z; = >, «; - y; with
probability 1 — d for some user-specified J ,typically
1%. Given this interval, computing an interval for p is
straightforward.

In the case of categorical data, we follow Meila (1999b)
and write:

I(X;Y) = Hx+Hy —Hxy

% [—zlogz(Nx) — zlogz(N — Nx)
zlogz(Ny ) — zlogz(N — Ny)
zlogz(Nxy) + zlogz(Nx — Nxvy)
zlogz(Ny — Nxvy)

zlogz(R— Nx — Ny + Nxvy)
zlogz(R)]

+ + + +

where zlogz(z) is shorthand for zlogz and N, denotes
the number of times an attribute or a set of attributes
are observed all true. As before, Nxy is the quantity
we are deriving a probabilistic estimate for, which we
do from the counts in a sample and application of the
CLT. We then evaluate I(X;Y) at the endpoints. We
also evaluate the function’s minimum, if it happens to
fall within the interval, and determine minimum and
maximum values for I(X;Y).

4. The Full Algorithm

As we argued, the MIST algorithm is capable of us-
ing partial information about edge weights. We have
also shown how to derive confidence intervals on edge
weights. We now combine the two and give an efficient
dependency-tree algorithm.

We largely follow the MIST algorithm as listed in Fig-
ure 1. We initialize the tree 7" in the following heuristic
way: first we take a small sub-sample of the data, and
derive point estimates for the edge weights from it.

20ne can use the weaker Hoeffding bound instead, and
our implementation supports it as well, although Hoeffding
is generally much less powerful.
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Then we feed the point estimates to a MST algorithm
and obtain a tree T'. For each edge in T', we compute
the exact correlation coefficient from the full data.

Throughout the algorithm we maintain the following
modification of Invariant 2:

Invariant 3: At any point there is a spanning tree
T, which is composed of edges in L, and the tree edges
have correlation coefficients computed from the full
data.

This way, finding the heaviest edge on the tree path P
is straightforward. When the time comes to compare
a non-tree edge e and a tree edge €/, we have the exact
value for ¢/, and a confidence interval for e. If the value
for ¢’ lies outside of the interval for e, we can make a
decision immediately. The amount of work we save
is related to how much data was used in computing
the confidence interval — the rest of the data for this
attribute-pair can be ignored. Now, if the weight of €’
lies within the interval, we have a situation similar to
the inconclusive oracle answers in Section 2. The price
we need to pay here is looking at more data to shrink
the confidence interval. Currently we double the sam-
ple size used to compute the sufficient statistics. After
doing so we try to compare e and e’ again (since we
can do this at no additional cost). If we fail to elim-
inate one of the edges we iterate, possibly choosing a
different edge this time.

Therefore, the sooner we can eliminate an edge, the
more work we save. Also, since tree edges always have
their weights computed exactly, we get no savings for
edges that go into the tree (either at the initial step,
or later as they eliminate tree edges), only to be elimi-
nated by a better edge in a subsequent step. The the-
oretical best we can hope for is to choose the right tree
edges from the sample, and to eliminate all other edges
based on intervals supported by this sample. In this
case the total amount of work we do is proportional to
R(n —1) (we assume R is sufficiently larger than n to
neglect the work related to finding tree paths and so
on). Compare this to O(Rn?) required by algorithms
that need the full weight matrix in advance. The fol-
lowing section presents experimental results and com-
pares how close we get to this theoretical limit.

Another heuristic we employ goes as follows. Con-
sider the comparison of the path-heaviest edge to an
estimate of a candidate edge. The candidate edge’s
confidence interval may be very small, and yet still in-
clude the point that is the heavy edge’s weight. We
may be able to reduce the amount of work by pre-
tending the interval is narrower than it really is. We
therefore trim the interval by a constant, parameter-
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Figure 2. The data-generation algorithm

ized by the user as e. On further inspection it turns
out we only need to trim the upper boundary of the
interval. If we trim the lower boundary, and it then
turns out the point estimate is below it, the candidate
edge becomes a tree edge. To maintain Invariant 3
we would then need to scan the full data for this new
edge. Therefore any decision leading to this outcome
is better delayed until it is absolutely necessary (or else
proven redundant).

This use of  and ¢ is analogous to their use in “Prob-
ably Approximately Correct” analysis: on each deci-
sion, with high probability (1 — d) we will make at
worst a small mistake (e).

5. Experimental Results

In the following description of experiments, we vary
different parameters for the data and the algorithm.
Unless otherwise specified, these are the default val-
ues for the parameters. We set § to 1% and € to
0. The initial sample size is 5000 records. There are
100,000 records and 100 attributes. The data is nu-
meric. The data-generation process for the synthetic
sets is as in Figure 2. The correct dependency-tree for
this process is described in Figure 3. In the categorical
case, the network is identical, but parent-child rela-
tionships are as follows. The root is true with proba-
bility 0.5. For the other nodes, the probability of them
being true given that their parent is true is 0.5+ ¢ for
some constant ¢, and the probability of them being
true given that their parent is false is 0.5 — ¢. By
setting the “coupling” parameter ¢ to 0 we get a com-
pletely random data, while a value of 0.5 generates a
highly-structured, noiseless data-set.

In nearly all of the 615 synthetic experiments in which
both ¢ and § were set to their default values, the out-
put tree was identical to the one generated by the naive
algorithm which first computes the full correlation ma-
trix. Only in 16 experiments did this not happen. In
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X (9)

Figure 3. Structure of the generated data for 14 attributes.

all of these runs the weight of the output tree was at
least 99.99% the weight of the “naive” tree, and the
log-likelihood was nearly identical. Table 1 and Fig-
ures 8 and 10 present the quality of the output trees
in the remaining experiments.

To construct the correlation matrix from the full data,
each of the R records needs to be considered for each of
the (g) attribute pairs. We evaluate the performance
of our algorithm by adding the number of records that
were scanned for all the attribute-pairs, and dividing
the total by R(g) We call this number the “edge us-
age” of our algorithm. The closer it is to zero, the more
efficient our sampling is, while a value of one means the

same amount of work as for the naive algorithm.

We first demonstrate the speed of our algorithm as
compared with the full O(Rn?) scan. As expected,
both algorithms scale linearly with the number of
points (data not shown). Figure 4 suggests that for
medium-sized datasets the speedup may not be that
large (a little under four), but as the number of records
grows the scale factor flattens out at about 0.04, mean-
ing a 25-fold speed-up. As expected, the plot for the
edge usage versus the number of points looks the same
as the one that shows the relative running time (data
not shown).

The speed-up improves with the number of attributes
as well. See Figure 5. Note how the rate of improve-
ment slows down as the number of attributes grows.
This agrees with the theoretical analysis, which pre-
dicts that MIST takes O(1/n) as much time as the
original algorithm.

Our next experiment examines the sensitivity of our
algorithm to noisy data. Data was generated in the
usual way, except that some fraction of the records had
completely random values in all attributes. As shown
in Figure 6, when ¢ is 0, data-usage is kept below 15%
of maximum, similar to the performance with noiseless
data, as long as the noise level is below 30%. With ¢
set to 0.01, this is true for all noise levels up to 80%.

Recall that the § parameter controls how loose the
confidence intervals are. The bigger it is, the higher
the chance that a wrong decision about a tree-edge
inclusion or exclusion will be made. Figure 7 shows
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138 runs reported here, twelve did not produce the same
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Table 1. Number of runs, out of 30, that ended in a tree
different than the full tree for ¢ = 0.

) NUMBER OF RUNS

1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
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the effect of § on the running time. When € is 0, it
appears that higher values of § do not improve the
running time significantly, while increasing the chance
of deviation from the output of the full algorithm (see
Table 1 for the number of runs that ended in trees
that are different than reported by the full algorithm).
However, when ¢ was set to 0.05, an improvement in
running-time can be traded for some decrease in the
quality of the output (Figure 8). For this case none
of the 30 runs in any of the 10 values for § resulted in
the same identical tree as with the full algorithm.

We continue to examine the effect the € parameter has
on performance. Recall that it controls a heuristic
that may decrease the edge usage, but may also lead
to the wrong edges being included in the tree. See Fig-
ure 9 for the effect on running time (or, equivalently,
on the the number of data-cells scanned). We see that
changes in ¢ can dramatically improve performance,
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Figure 9. Edge-usage as a function of e. The data is cate-
gorical, with the “coupling” parameter ¢ set to 0.04.

down from 70% to about 10% on this data-set, with a
sharp drop in the 0.002 — 0.004 range. The interesting
question is, how badly is the output quality affected
by this heuristic. To answer this we have plotted the
data from the same experiments, but now with the
X-axis being the relative log-likelihood of the output
(Figure 10). The worst log-likelihood ratio is about
0.05, and it seems that with careful selection of € it is
possible to enjoy most of the time savings while sacri-
ficing very little accuracy. For this particular data-set
this “sweet-spot” is approximately at ¢ = 0.0028.

To test our algorithm on real-life data, we analyzed
data derived from astronomical observations taken in
the Sloan Digital Sky Survey. The 21 numeric at-
tributes are the results of various computations on an
image of a sky object. Overall, there are about 2.4 mil-
lion records. The naive algorithm runs in 143 seconds
on a 667-MHz Compaq Alpha. See Table 2 for the rel-
ative run-times for the fast algorithm. It runs in about
half the time, with virtually the same output: in the
one case where the generated tree was different, the
difference was in two edges, with no significant change
in log-likelihood or total tree weight. Extrapolating
from the results for synthetic data to data sets of this
size, we expect the speedup to increase as we add more
attributes.

We then turned this data into a second-order dataset
to provide an example of a dataset with many at-
tributes and many records. We first discretized all
of the attributes. Then we added all pairwise con-
junctions of these attributes. There were 23 original
attributes X ...Xs3 to which were added (223) addi-
tional attribute A; ; where A; ; = X; A X,
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Table 2. Run-times, relative to the naive algorithm, on real
data.

€ 1) RUN-TIME SAME RESULT?Y
001 0 55% V4
0.01 0.05 45% \/
0.01 0.1 43% X
0.05 0.05 45% \/

After doing that for all attributes and removing at-
tributes which take on constant values we were left
with 148 attributes and the original 2.4 million records.
The naive algorithm constructs a tree for this set in 6.6
hours, while the fast algorithm (with default settings)
takes about 21 minutes, meaning a speedup of 19. The
tree generated by the fast algorithm weights 99.89% of
the naive tree, and the difference in log-likelihoods is
1.26 x 10®, or about 0.05 per record.

6. Conclusion and Future Work

We have presented an algorithm that implements
approach to
dependency-tree construction for numeric and categor-

a “probably approximately correct”

ical data. Experiments in sets with millions of records
and hundreds of attributes show it is capable of pro-
cessing massive data-sets up to thirty times faster than
the naive algorithm, with no appreciable loss in the
quality of the output.

Currently, the running time grows linearly with the
number of attributes and records. While this is a
significant improvement over the naive algorithm, we
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would like to reduce the data-usage even further. For
this we need to be able to use probabilistic bounds for
the tree edges as well. We plan on modifying the algo-
rithm to accommodate these intervals when a non-tree
edge is compared to a tree edge.

Another issue we would like to tackle is disk access.
One advantage the naive algorithm has is that it is eas-
ily executed with a single sequential scan of the data
file. We will explore the ways in which this behaviour
can be attained or approximated by our algorithm.

While we have presented formulas for both numeric
and categorical data, we do not allow both types of
attributes to be present in a single network. To the
best of our knowledge, there is no theoretical frame-
work in which such mutual-information coefficients can

be defined.
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