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Abstract

Searching for anomalies in multidimensional data with a temporal component
is a difficult task especially when the exact features of the anomalies are
unknown. A standard but simplistic algorithm would be to obtain counts
of certain events over a time interval such as a day and mark that interval
to contain anomalies if this count exceeds a threshold. This naive approach
misses anomalies that aggregate in feature space but do not occur frequently
enough to skew the count of monitored events over the time interval. A
desired solution should find these anomalous patterns rather than individual
anomalies. In order to approach this problem, we propose using a rule-based
anomaly detection algorithm that characterizes each anomalous pattern with
a rule. The significance of each rule is carefully evaluated using Fisher’s
Exact Test and a randomization test. The performance of our algorithm
is compared against the standard algorithm by measuring the number of
false positives and the timeliness of detection. Simulated data is used in the
evaluation phase. This data was produced by a simulator that simulates the
effects of a disease outbreak on a city. The results indicate that our algorithm
has significantly better detection times for common significance thresholds
while having a slightly higher false positive rate.



1 Introduction

Multidimensional data with a temporal component is available from numer-
ous disciplines such as medicine, engineering, and astrophysics. This data is
commonly used for monitoring purposes by a detection system. These sys-
tems inspect the data for unusual perturbations and raise an appropriate alert
upon discovery of any deviations from the norm. For example, in the case of
an intrusion detection system, an anomaly would indicate a possible breach of
security [Lane and Brodley, 1999, Eskin, 2000, Maxion and Tan, 2001]. For
a disease outbreak detector, irregularities in data related to health care
could signal a potential epidemic or bioterrorist attack [Wagner et al., 2001,
Goldenberg, 2001].

The majority of detectors only focus on one attribute of the data, usually a
count of certain events over some time interval, as a warning signal. Typically
these detectors first determine the mean and variance of this warning signal
over a training set which is assumed to display the normal behaviour of the
system. Alerts are then raised if the test set signal exceeds some threshold,
where the standard threshold is defined as three standard deviations above
or below the mean. An anomaly is considered to have occurred within the
time interval that the alert was raised.

While this approach is successful if the appropriate feature is chosen,
many potential anomalies are overlooked if the full space of attributes is not
evaluated. Consider the following scenario in a disease outbreak detection
system which operates on a database of Emergency Room (ER) cases. A
traditional monitoring system would use the daily counts of ER cases ex-
hibiting a specific symptom as an indication of the presence of an epidemic.
Now suppose a disease is present in a neighbourhood and it mainly affects
elderly males living in that area. This insidious disease does not cause the
number of monitored ER cases to exceed the alert threshold yet if one were
to examine the number of male senior citizens from the infected area, one
would notice an abnormally high number for that day.

This example illustrates a need for anomaly pattern detection rather than
traditional anomaly detection. Quite often, an isolated irregularity will seem
insignificant to the detection system. However, if many similar anomalies are
present in the data, then there is sufficient reason to raise an alert. Most de-
tectors are also interested in characterizing anomalies so that an appropriate
response can be formulated. Anomaly pattern detection allows the system
to classify the anomalies based on the traits of the anomalous group.



Our approach to this problem is to use a rule-based anomaly pattern de-
tector. One of the key advantages to a rule-based system is that the results
are a set of rules that can be easily understood by a non-statistician. Each
anomalous pattern is summarized by a rule, which in our current implemen-
tation consists of one or two components. Each component takes the form
X; =V, where X; is the ith feature and Vz-j is the jth value of that feature.
Multiple components are joined together by a logical AND. A two component
rule, as an example, would be something like Gender = Male and Age_Decile
= 4.

However, we need to be wary of the pitfalls of rule-based anomaly pattern
detection. Asthe number of attributes in the data increases, so does the space
of possible irregularities. In addition, as more components are added to a
rule, overfitting becomes a serious concern. As a result, a careful evaluation
of significance is needed. Furthermore, temporal data, especially health care
data used for disease outbreak detection, is frequently subject to “seasonal”
variations. As an illustration, consider a database of visits to physicians
which is used to detect if a flu epidemic exists in the current population.
Typically, the number of flu cases is higher during the winter than during the
summer. Additionally, frequencies of physician visits vary between weekends
and weekdays. The definition of what is normal will vary depending on the
timing of the events, thereby affecting the discovery of irregular patterns.

2 Rule-based Anomaly Pattern Detection

The basic question asked by all detection systems is whether anything strange
has occurred in recent events. This question requires defining two concepts —
what it means to be recent and what it means to be an anomaly. Our algo-
rithm will consider all records falling on the current day under evaluation to
be recent events. Note that this definition of recent is not restrictive — it can
be redefined to include all events within some other time period. In order
to define an anomaly, we need to establish the concept of something being
normal. Our algorithm is intended to be applied to a database of ER cases
and we need to account for environmental factors such as weekend versus
weekday differences in the number of cases. Consequently, normal behaviour
is assumed to be captured by the events occurring on the days that are ex-
actly five, six, seven, and eight weeks prior to the day under consideration.
For another domain, the environmental factors will be different. The defini-



tion of what is normal can be easily modified without major changes to our
algorithm. We will refer to the events that fit a certain rule for the current
day as Ciogay- Similarly, the number of cases matching some criteria from
five to eight weeks ago will be called Cyper-

From this point on, we will refer to our algorithm as WSARE, which is
an abbreviation for “What’s strange about recent events”. WSARE operates
on discrete data sets with the aim of finding rules that characterize signif-
icant patterns of anomalies. Due to computational issues, the number of
components for these rules is two or less. The description of the rule-finding
algorithm will begin with an overview followed by a more detailed example.

2.1 Overview of WSARE

The best rule for a day is found by considering all possible one and two
component rules over events occurring on that day and returning the one
with the best “score”. The score is determined by comparing the events
on the current day against events in the past. Following the score calcu-
lation, the best rule for that day has its p-value estimated by a random-
ization test. The p-value for a rule is the likelihood of finding a rule with
as good a score under the hypothesis that the case features and date are
independent. Finally, if we were running the algorithm on a day-by-day ba-
sis we would end at this step. However, if we were looking at a history of
days, we would need the additional step of using the False Discovery Rate
(FDR) method [Benjamini and Hochberg, 1995, Miller et al., 2001] to deter-
mine which of the p-values are significant. The days with significant p-values
are returned as the anomalies.

2.2 One component rules

In order to illustrate this algorithm, suppose we have a large database of
1,000,000 ER records over a two-year span. This database contains roughly
1000 records a day, thereby yielding approximately 5000 records if we consider
the cases for today plus those from five to eight weeks ago. We will refer
to this record subset as DB;, which corresponds to the recent event data
set for day 7. The algorithm proceeds as follows. For each day 7, retrieve
the records belonging to DB;. We first consider all possible one-component
rules. For every possible feature-value combination, obtain the counts Ciygqy
and Cyper from the data set DB;. As an example, suppose the feature



under consideration is the Age_Decile for the ER case. There are 9 possible
Age_Decile values, ranging from 0 to 8. We start with the rule Age_Decile = 3
and count the number of cases for the current day 7 that have Age Decile = 3
and those that have Age Decile # 3. The cases from five to eight weeks ago
are subsequently examined to obtain the counts for the cases matching the
rule and those not matching the rule. The four values form a two-by-two
contingency table such as the one shown in Table 1.

2.3 Scoring each one component rule

The next step is to evaluate the “score” of the rule using a hypothesis test
in which the null hypothesis is the independence of the row and column
attributes of the two-by-two contingency table. In effect, the hypothesis
test measures how different the distribution for Ci,q,, is compared to that
of Cyther- This test will generate a p-value that determines the significance
of the anomalies found by the rule. We will refer to this p-value as the
score in order to differentiate this p-value from the p-value that is obtained
later on from the randomization test. Since the counts for the entries in the
contingency table involve relatively small numbers, we use Fisher’s Exact
Test [Good, 2000] to find the score for each rule. If the expected values for
all of these counts is above five, we will use the Chi Squared test instead of
Fisher’s Exact Test. Running Fisher’s Exact Test on Table 1 yields a score
of 0.00005058, which indicates that the count Cjo4qy for cases matching the
rule Age_Decile = 3 are significantly different from the count Cjpe,.

Table 1: A sample 2x2 Contingency Table

Ctoday Cother
Age_Decile =3 | 48 45

Age_Decile # 3 | 86 220

2.4 'Two component rules

At this point, the best one component rule for a particular day has been
found. We will refer to the best one component rule for day 7 as BR;. The
algorithm then attempts to find the best two component rule for the day by
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adding on one extra component to BR;. This extra component is determined
by supplementing BR; with all possible feature-value pairs, except for the
one already present in BR}, and selecting the resulting two component rule
with the best score. Scoring is performed in the exact same manner as before,
except this time, the counts Ciogey and Copper are calculated by counting the
records that match the two component rule. The best two component rule
for day 7 is subsequently found and we will refer to it as BR?

BR?, however, may not be an improvement over BR}. We need to per-
form further hypothesis tests to determine if the presence of either component
has a significant effect. This can be accomplished by determining the scores
of having each component through Fisher’s Exact Test. If we label BR?’s
components as Cy and C, then the two two-by-two contingency tables for
Fisher’s Exact Tests are as follows:

Table 2: 2x2 Contingency Table 1 for a two component rule

Records from To- | Records from
day matching Cj | Other matching Cy
and C and C,

Records from To- | Records from

day matching C)
and differing on Cj

Other matching C}
and differing on Cj

Table 3: 2x2 Contingency Table 2 for a two component rule
Records from To- | Records from
day matching Cj | Other matching Cy
and C and C,
Records from To- | Records from

Once we have the scores for both tables, we need to determine if they are
significant or not. We used the standard « value of 0.05 and considered a

day matching Cj
and differing on Cy

Other matching Cj
and differing on Cy




score to be significant if it was less than or equal to «. If the scores for the
two tables were both significant, then the presence of both components had
an effect. As a result, the best rule overall for day 7 is BR?. On the other
hand, if any one of the scores was not significant, then the best rule overall
for day i is BR;.

2.5 Finding the p-value for a rule

The algorithm above for determining scores is extremely prone to overfitting.
Even if data were generated randomly, most single rules would have insignif-
icant p-values but the best rule would be significant if we had searched over
1000 possible rules. In order to illustrate this point, suppose we perform the
standard practice of rejecting the null hypothesis when the p-value is < a,
where o = 0.05. In the case of a single hypothesis test, the probability of
making a false discovery under the null hypothesis would be «, which equals
0.05. On the other hand, if we perform 1000 hypothesis tests, one for each
possible rule under consideration, then the probability of making a false dis-
covery could be as bad as 1 — (1 — 0.05)'%° ~ 1, which is much greater than
0.05 [Miller et al., 2001]. Thus, if our algorithm returns a significant p-value,
we cannot accept it at face value without adding an adjustment for the mul-
tiple hypothesis tests we performed. This problem can be addressed using a
Bonferroni correction [Bonferroni, 1936] but this approach would be unnec-
essarily conservative. Instead, we turn to a randomization test in which the
date and each ER case features are assumed to be independent. In this test,
the case features in the data set DB; remain the same for each record but
the date field is shuffled between records from the current day and records
from five to eight weeks ago. The randomization test goes through several
iterations until it can accurately determine a p-value for the rule. This p-
value indicates how likely it would be to find a rule with as good a score
under the hypothesis that the case features are independent of the date. In
order to calculate this p-value, the score of the best rule is calculated on the
data subset DB;, which has the dates randomized on each iteration. The
algorithm keeps track of how many times the new score was better than the
original score. The p-value that is reported is simply the number of better
scores over the number of iterations.



2.6 Using FDR to determine which p-values are sig-
nificant

This algorithm can be used on a day-to-day basis similar to an online algo-
rithm or it can operate over a history of several days to report all significantly
anomalous patterns. When using our algorithm on a day-to-day basis, the
p-value obtained for the current day through the randomization tests can be
interpreted at face value. However, when analyzing historical data, we need
to compare the p-values for each day in the history. Comparison of mul-
tiple p-values results in a second overfitting opportunity analogous to that
caused by performing multiple hypothesis tests to determine the best rule
for a particular day. As an illustration, suppose we took 500 days of ran-
domly generated data. Then, approximately 5 days would have a p-value less
than 0.01 and these days would naively be interpreted as being significant.
Two approaches can be used to correct this problem. Again, the Bonfer-
roni method [Bonferroni, 1936] aims to reduce the probability of making at
least one false positive to be no greater than «. However, this tight control
over the number of false positives causes many real discoveries to be missed
[Miller et al., 2001]. The other alternative is the False Discover Rate (FDR)
method [Benjamini and Hochberg, 1995, Miller et al., 2001], which guaran-
tees that the fraction of the number of false positives over the number of tests
in which the null hypothesis was rejected will be no greater than a. The FDR
method is more desirable as it has a higher power than the Bonferroni method
but still has reasonable control over the number of false positives. We incor-
porate the FDR method into our rule-learning algorithm by first providing
an « value and then using FDR to find the cutoff threshold for determining
which p-values are significant.

3 The Simulator

Validation of our algorithm becomes a difficult task due to the type of data
required. Data consisting of ER cases during a disease outbreak is extremely
limited and there are no available databases of ER cases during a bioagent
release. To make matters more difficult, evaluation of our anomaly pattern
detector requires a large amount of data that has records that are labeled as
either anomalies or normal events. In most cases, this task requires a human
to perform the labelling by hand, resulting in insufficient amounts of data.



As a result of these limitations, we resort to evaluating our algorithm using
data from a simulator.

The simulator is intended to simulate the effects of an epidemic on a
population. The world in this simulator consists of a grid in which there are
three types of objects — places, people, and diseases. These three objects
interact with each other in a daily routine for a fixed number of days. Each
of these objects will be described in detail below.

3.1 Places

The three types of places in the simulator include homes, businesses, and
restaurants. Their roles are evident from what they represent in real life.
People reside in homes, work in businesses and eat in restaurants.

3.2 People

Each person in the simulation has a specified gender and age. Genders for
the population are distributed uniformly between male and female while
ages follow a normal distribution with mean 40 and standard deviation of
15. People have a home location, a work location, a list of restaurants that
they eat at and a list of homes of friends that they like to visit. The locations
of work, restaurants, and friends’ homes are chosen to be in close proximity
to a person’s home. On each day, a schedule is generated for a person. In
this schedule, people sleep at home until it is time to go to work. They go
to work, stop for a lunch break at a restaurant, and then return to work.
After work, they spend some time at home before going to a restaurant for
dinner. Following dinner, they visit a random selection of friends at their
houses. Finally they return home to sleep.

3.3 Diseases

Diseases are the most complex objects in the simulator as they are designed
to allow the creation of a large variety of disease models. People, places and
grid cells can all serve as infection agents since they can all carry a disease.
With infected places, we can create diseases that spread by a contaminated
food supply while with infected grid cells, we can model airborne infections.
Associated with each disease is a spontaneous generation probability which
corresponds to how likely the disease is to appear in the population at each



timestep. Typically, this probability is extremely small. Each disease also
progresses through several stages at different rates. On each stage, the in-
fected person can exhibit a variety of symptoms. The current simulation
chooses randomly from a list of symptoms at each stage of the disease. At
the final stage, an infected agent can either recover or die. The deceased are
removed from the simulation.

The entire infection process revolves around the infection probability,
which controls how easily an infected person can pass the disease on to an-
other on each timestep. A radius parameter determines how close a person
needs to be to catch the disease. The simulator only allows a person to have
one disease at a time. Should more than one disease infect a person, the
priority of an epidemic arbitrates which disease is assigned to the person.
Diseases can be designed to spread from one particular type of agent to an-
other for example place to person, person to person, or grid cell to person.
Additionally, each disease has a specific demographic group that it infects.
Whenever it has an opportunity to spread to a person outside of this demo-
graphic group, the infection probability is reduced to a small percentage of
its original value.

We do not have hospitals in the simulation. Instead, when people exhibit
a certain symptom, we create an emergency room case by adding an entry
to a log file. This entry contains information such as the person id, the day,
the time, the current location of the person, the home location of the person,
and any demographic information about the individual. Most importantly,
we add to each entry the actual disease carried by that person.

4 Results

4.1 Simulation Settings

Our results were obtained by running the simulator on a 50 by 50 grid world
with 1000 people, 350 homes, 200 businesses, and 100 restaurants. The simu-
lation ran for 180 simulated days with the epidemic being introduced into the
environment on the 90th day. There are 9 background diseases that sponta-
neously appeared at random points in the simulation. At certain stages, these
background diseases caused infected people to display the monitored symp-
tom. These background diseases had low infection probabilities as they were
intended to provide a baseline for the number of ER cases. The epidemic,



on the other hand, had a higher priority than the background diseases and
it had a relatively high infection probability, making it spread easily through
its target demographic group.

The epidemic that we added to the system will be referred to as Epi-
demic0. This disease had a target demographic group of males in their 50s.
Additionally, the disease is permitted to contaminate places. Epidemic0 had
4 stages with each stage lasting for 2 days. The disease was contagious during
all 4 stages. At the final stage, we allowed the person to recover instead of
dying in order to keep the total number of people in the simulation constant.
Epidemic0 also exhibited the monitored symptom with probability 0.33 on
the 3rd stage, probability 1.0 on the final stage, and probability 0 on all
other stages. This disease was designed to produce a subtle increase in the
number of daily ER counts rather than causing extreme perturbations that
could easily be picked up by the naive algorithm.

4.2 Evaluation of performance

We treated our algorithm as if it ran on a day-by-day basis. Thus, for each
day in the simulation, WSARE was asked to determine if the events on
the current day were anomalous. We evaluated the performance of WSARE
against a standard anomaly detection algorithm that treated a day as anoma-
lous when the daily count of ER cases for the monitor symptom exceeded a
threshold. The standard detector was allowed to train on the ER case data
from day 30 to day 89 in the simulation to obtain the mean p and variance
o%. The threshold was calculated by the formula below, in which ®~! is the
inverse to the cumulative distribution function of a standard normal.
p-value
5 )

In order to illustrate the standard algorithm, suppose we trained on the
data from day 30 to 89. The mean and variance of the daily counts of the
monitored symptom on this training set were deteremined to be 20 and 8
respectively. Given a p-value of 0.05, we calculate the threshold as 20 +
1.96 * 8 = 35.68. After training, the standard algorithm is run over all the
days of data from day 0 to day 179. Any day in which the daily count of the
particular symptom exceeds 35.68 is considered to contain anomalous events.

Both the standard algorithm and WSARE were tested using five levels of
p-values (0.1, 0.05, 0.01, 0.005, and 0.001). In order to evaluate the perfor-
mance of the algorithms, we measured the number of false positives and the

threshold = p + o * ®7'(1
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number of days until the epidemic was detected. Note that there were two
files used in this evaluation step. The first file is the database of ER cases
produced by the simulator, which we will refer to as DBgg. The second file
is the list of anomalous days reported by the algorithm, which we will refer
to as DB anom. We will call the subset of anomalies having a p-value below
the ith p-value level as DBY,,,,...

1. Counting the number of false positives

The number of false positives for the ith p-value level was determined by
checking each day in DBY, . against DBgg. If a case of the epidemic
was not reported in DBgpg for that day, then the false positive count
was incremented. However, since WSARE relies on data from five to
eight weeks prior to the current day, detection does not begin until Day
56. In order to be fair, any false positives found before Day 56 in the
standard algorithm were not included.

2. Calculating time until detection
The detection time for the ith p-value level was calculated by searching
for the first day in DBY,,,, in which an epidemic case appeared in
DBpgpg. If no such days are found, the detection time was set to be 90
days ie. the maximum length between the introduction of the epidemic
until the end of the simulation.

Figure 1 plots the detection time in days versus the number of false posi-
tives for five different p-value thresholds used in both the standard algorithm
and WSARE. These values were generated by taking the average over 30 runs
of the simulation. Included in this plot are errorbars in both dimensions.

4.3 Results from Simulated Data

These results indicate that for p-value thresholds above 0.005, the detection
time for WSARE is significantly smaller than that of the standard algorithm.
On the other hand, as the p-value threshold decreases, the detection time for
WSARE is somewhat worse than that of the standard algorithm. However,
choosing an extremely low threshold would be unprofitable since all anomalies
except those at an unusually high significance level would be ignored. For
example, using a threshold of 0.005 corresponds to a 99.5% significance level.

The results also demonstrate that WSARE signals more false positives
for higher p-value thresholds. While this behaviour is not desirable, it is
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tolerable since the number of false positives produced by WSARE differs by
a small amount from the count generated by the standard algorithm. In
this particular graph, there are at most 2 more false positives identified by
WSARE that were not identified by the standard algorithm.
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Figure 1: Detection Time vs False Positives

We would also like to show some of the rules learned by WSARE. The
rules below were obtained from one of the result generating simulations.
##+# Rule 1: Sat Day97 (daynum 97, dayindex 97)

SCORE = -0.00000011 PVALUE = 0.00249875

33.33% (1 16/ 48) of today’s cases have Age Decile = 5 and Gender = Male
3.85% ( 7/182) of other cases have Age Decile = 5 and Gender = Male

#7## Rule 2: Tue Dayl00 (daynum 100, dayindex 100)

SCORE = -0.00001093 PVALUE = 0.02698651

30.19% ( 16/ 53) of today’s cases have Age Decile = 5 and Col2 less than 25
6.19% ( 12/194) of other cases have Age Decile = 5 and Col2 less than 25

In rule 1, WSARE demonstrates that it is capable of finding the target
demographic group that Epidemic0 infects. This rule proves to be significant
above the 99% level. On the other hand, Rule 2 discovers something that
was not deliberately hardcoded into EpidemicO. Rule 2 states that on Day
100, there is an unusually large number of cases involving people in their
fifties that were all in the left half of the grid. Since we had designed the
people in the simulation to interact with places that are in close geographic
proximity to their homes, we suspected that the locality of interaction of
infected individuals would form some spatial clusters of ER cases. Upon
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further inspection of the log files, we discovered that 12 of the 16 cases from
the current day that satisfied this rule were in fact caused by Epidemic0. This
example illustrates the capability of WSARE to detect significant anomalous
patterns that are completely unexpected.

4.4 Results from Real ER data

We also ran WSARE on an actual ER data collected from hospitals in a major
US city. This database contained approximately 70000 records collected over
a period of 505 days. Since we are looking at historical data, we need to
use FDR to determine which of the p-values are significant. The results are
shown below with « for FDR equal to 0.1.

### Rule 1: Tue 05-16-2000 (daynum 36661, dayindex 18)

SCORE = -0.00000000 PVALUE = 0.00000000

32.84% ( 44/134) of today’s cases have Time Of Day4 after 6:00 pm
90.00% ( 27/ 30) of other cases have Time Of Day4 after 6:00 pm

##+# Rule 2: Fri 06-30-2000 (daynum 36706, dayindex 63)

SCORE = -0.00000000 PVALUE = 0.00000000

19.40% ( 26/134) of today’s cases have Place2 = NE and Lat4 = d
5.71% ( 16/280) of other cases have Place2 = NE and Lat4 = d

##+4 Rule 3: Wed 09-06-2000 (daynum 36774, dayindex 131)
SCORE = -0.00000000 PVALUE = 0.00000000

17.16% ( 23/134) of today’s cases have Prodrome = Respiratory
and age2 less than 40

4.53% ( 12/265) of other cases have Prodrome = Respiratory
and age2 less than 40

#7+# Rule 4: Fri 12-01-2000 (daynum 36860, dayindex 217)
SCORE = -0.00000000 PVALUE = 0.00000000

22.88% ( 27/118) of today’s cases have Time Of Day4
after 6:00 pm and Lat2 = s

8.10% ( 20/247) of other cases have Time Of Day4
after 6:00 pm and Lat2 = s

##+# Rule 5: Sat 12-23-2000 (daynum 36882, dayindex 239)
SCORE = -0.00000000 PVALUE = 0.00000000

18.25% ( 25/137) of today’s cases have ICD9 = shortness of breath
and Time Of Day2 before 3:00 pm

5.12% ( 15/293) of other cases have ICD9 = shortness of breath
and Time Of Day2 before 3:00 pm

### Rule 6: Fri 09-14-2001 (daynum 37147, dayindex 504)

SCORE = -0.00000000 PVALUE = 0.00000000

66.67% ( 30/ 45) of today’s cases have Time Of Day4 before 10:00 am
18.42% ( 42/228) of other cases have Time Of Day4 before 10:00 am
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Rule 1 notices that there are fewer cases after 6:00 pm quite possibly due
a lack of reporting by some hospitals. Rule 6 correctly identifies a smaller
volume of data being collected before 10:00 am on Day 504. Since Day
504 was the last day of this database, this irregularity was the result of the
database being given to us in the morning.

We are currently beginning the process of using input from public health
officials of the city concerned to help us validate and measure WSARE’s
performance.

5 Conclusion

WSARE has been demonstrated to be successful at identifying anomalous
patterns in the data. From our simulation results, WSARE has significantly
lower detection times than a standard detection algorithm provided the p-
value threshold is not at at extremely low level. This condition should not
be a problem since most anomalies are reported at a significance level of
95% or 99%, corresponding respectively to p-value thresholds of 0.05 and
0.01. WSARE also has a slightly higher false positive rate than the standard
algorithm. However, this difference was shown to be about 2 more false
positives in the worst case for our particular simulation. Future research
involves making this computationally intensive algorithm more efficient.
We believe the three main innovations in this paper are:

1. Turning the problem of ”detect the emergence of new patterns in recent
data” into the question ”is it possible to learn a propositional rule that
can significantly distinguish whether records are most likely to have
come from the recent past or longer past?”

2. Incorporating several levels of significance tests into rule learning in
order to avoid several levels of overfitting caused by intensive multiple
testing

3. Examining the interesting domain of early outbreak detection by means
of machine learning tools
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