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Abstract

Multiagent learning is a neccessary yet challenging problem as multiagent systems become more prevalent and envi-
ronments become more dynamic. Much of the groundbreaking work in this area draws on notable results from the
game theory community. Nash Equilibria, in particular, is a very important concept to multiagent learning. Learners
that directly learn equilibria obviously rely on their existence. Learners that instead seek to play optimally with re-
spect to the other players also depend upon equilibria since equilibria are, and are the only, learning fixed points. From
another perspective, agents with limitations are real and common, both agents with undesired physical limitations as
well as self-imposed rational limitations. This paper explores the interactions of these two important concepts, exam-
ining whether equilibria continue to exist when agents have limitations. We look at the general effects limitations can
have on agent behavior, and define a natural extention of equilibria that accounts for these limitations. We show that
existence cannot be guaranteed in general, but prove existence under certain classes of domains and agent limitations.
These results have wide applicability as they are not tied to any particular learning algorithm or specific instance of
agent limtations. We then present empirical results from a specific multiagent learner applied to a specific instance
of limited agents. These results demonstrate that learning with limitations is possible, and our theoretical analysis of
equilibria under limitations is relevant.
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1 Introduction

Multiagent domains are becoming more prevalent as more applications and situations require multiple agents. Learn-
ing in these systems is as useful and important as in single-agent domains, possibly more so. The behavior of the other
agents is often not predictable by the agent designer, making learning and adaptation a necessary component of the
agent. This is complicated by the fact that optimal behavior by an agent depends on the behavior of the other agents.
For example, in an automated driving system, passing through an intersection under a green light is only optimal be-
havior if other cross-traffic agents stop at their red light. In robotic soccer, passing may be the optimal behavior only if
the goalie is going to stop the player from shooting and the player’s teammate is ready to receive the pass. In addition,
the behavior of the other agents may be changing as they also learn and adapt.

Game theory provides a framework for reasoning about these strategic interactions. The game theoretic concepts
of stochastic games and Nash equilibria are the foundation for much of the recent research in multiagent learning.
Nash equilibria define a course of action for each agent, such that no agent could benefit by changing their behavior.
So, all agents are playing optimally, given that the other agents are playing optimally and continue to play according
to the equilibrium.

From the agent perspective, completely optimal agents are not really practicable. Agents are faced with all sorts
of limitations. Some limitations may physically prevent certain behavior, e.g., a soccer robot with acceleration con-
straints. Other limitations are self-imposed to help guide an agent’s learning, e.g., using a subproblem solution for
advancing the ball down the field. In short, limitations prevent agents from playing optimally and possibly from
following a Nash equilibrium.

This clash between the concept of equilibria and the reality of limited agents is a topic of critical importance. Do
equilibria exist when agents have limitations? Are there classes of domains or classes of limitations where equilibria
are guaranteed to exist? This paper both introduces these questions and provides concrete answers. Section 2 intro-
duces the stochastic game framework as a model for multiagent learning. We define the game theoretic concept of
equilibria, and examine the dependence of current multiagent learning algorithms on this concept. Section 3 enumer-
ates and classifies some common agent limitations. Section 4 is the major contribution of the paper, presenting both
proofs of existence for certain domains and limitations as well as counterexamples for others. Section 5 gives an ex-
ample of how these results affect and relate to one particular multiagent learning algorithm. We present the first known
results of applying a multiagent learning algorithm in a setting with limited agents. Finally, Section 6 concludes with
implications of this work and future directions.

2 Stochastic Games

A stochastic gameis a tuple(n,S, s0,A1...n, T,R1...n), wheren is the number of agents,S is a set of states withs0 ∈
S being the initial state,Ai is the set of actions available to agenti withA being the joint action spaceA1× . . .×An,
T is a transition functionS × A × S → [0, 1], andRi is a reward function for theith agentS × A → R. This is
very similar to the Markov Decision Process (MDP) framework except we have multiple agents selecting actions and
the next state and rewards depend on the joint action of the agents. Also notice that each agent has its own separate
reward function. The goal for each agent is to select actions in order to maximize its discounted future reward from
states0 with discount factorγ. This is a slight variation on the usual goal in MDPs and stochastic games, which is to
simultaneouslymaximize discounted future reward fromall states. We are specifically using a weaker goal since our
exploration into agent limitations make simultaneous maximization unattainable.

Stochastic games can also be thought of as an extension of matrix games to multiple states. Two common matrix
games are in Figure 1. In these games there are two players; one selects a row and the other selects a column of the
matrix. The entry of the matrix they jointly select determines the payoffs. The games in Figure 1 are zero-sum games,
where the row player receives the payoff in the matrix, and the column player receives the negative of that payoff. In
the general case (general-sum games) each player has a separate matrix that determines its payoff. Stochastic games
can be viewed as having a matrix game associated with each state. The immediate payoffs at a particular state is
determined by the matrix entriesRi(s, a). After playing the matrix game and receiving their payoffs, the players are
transitioned to another state (with an associated matrix game) determined by their joint action. So stochastic games
contain both MDPs (whenn = 1) and matrix games (when|S| = 1) as subsets of the framework.
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R1(s0, ·) =
(

1 −1
−1 1

)
R1(s0, ·) =

 0 −1 1
1 0 −1
−1 1 0


Matching Pennies Rock-Paper-Scissors

Figure 1: Two example matrix games.

2.1 Mixed Policies and Nash Equilibria

Unlike in single-agent settings, deterministic policies in multiagent settings can often be exploited by the other agents.
Consider the matching pennies matrix game as shown in Figure 1. If the column player were to play either action
deterministically, the row player could win a payoff of one every time. This requires us to consider mixed strategies or
policies. A mixed policy for playeri, πi : S → PD(Ai), is a function that maps states to mixed strategies, which are
probability distributions over the player’s actions. We use the notationΠi to be the set of all possible mixed policies
available to playeri, andΠ = Π1 × . . . × Πn is the set of joint policies of all the players. We also use the notation
π−i to refer to a joint policy of all the players except playeri, andΠ−i to refer to their set of joint policies.

Even with the concept of mixed policies, there are still no optimal policies that are independent of the other players’
policies. We can, though, define a notion ofbest-response.

Definition 1 For a game, thebest-response functionfor playeri, BRi(π−i), is the set of all policies that are optimal
given the other player(s) play the joint policyπ−i. In our analysis, a policy is optimal if it maximizes the sum of
discounted future rewards from states0.

The major advancement that has driven much of the development of matrix games, game theory, and even stochastic
games is the notion of a best-response equilibrium, orNash equilibrium[Nash, Jr., 1950].

Definition 2 A Nash equilibriumis a joint policy,πi=1...n, with

πi ∈ BRi(π−i).

Basically, each player is playing a best-response to the other players’ policies. So, no player can do better by changing
policies given that the other players continue to follow the equilibrium policy.

What makes the notion of equilibrium interesting is that all matrix games and stochastic games have such an equilib-
rium, possibly having multiple equilibria. This was proven by Nash[Nash, Jr., 1950] for matrix games, Shapley[Shap-
ley, 1953] for zero-sum stochastic games, and Fink[Fink, 1964] for general-sum stochastic games. In the zero-sum
examples in Figure 1, both games have an equilibrium consisting of each player playing the mixed strategy where all
the actions have equal probability.

2.2 Learning in Stochastic Games

Learning in stochastic games has received much attention in recent years as the natural extension of MDPs to multiple
agents. The Minimax-Q algorithm[Littman, 1994] was developed for zero-sum stochastic games. The essence of the
algorithm was to use Q-learning to learn the values of joint actions. The values of the next state was then computed by
solving for the value of the unique Nash equilibrium of that state’s Q-values. Littman proved that under usual explo-
ration requirements, Minimax-Q would converge to the Nash equilibrium of the game, independent of the opponent’s
play.

Equilibria Learners. Minimax-Q has been extended in many different ways. Nash-Q[Hu and Wellman, 1998],
Friend-or-Foe-Q[Littman, 2001], Correlated-Q[Greenwald and Hall, 2002] are all variations on this same theme with
different restrictions on the applicable class of games or the notion of equilibria learned. All of the algorithms, though,
seek to learn an equilibrium of the game directly, by iteratively computing intermediate equilibria. They are, generally
speaking, guaranteed to converge to their part of an equilibrium solution regardless of the play or convergence of the
other agents. We refer collectively to these algorithms asequilibria learners. What’s important to observe is that these
algorithms depend explicitly on the existence of equilibria. If an agent or agents were limited in such a way so that no
equilibria existed then these algorithms would be, for the most part, ill-defined.
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Best-Response Learners.Another class of algorithms we callbest-response learners. These algorithms do not
explicitly seek to learn equilibria, instead seeking to learn best-responses to the other agents. The simplest example
of one of these algorithms is Q-learning[Watkins, 1989]. Although not an explicitly multiagent algorithm, it was
one of the first algorithms applied to multiagent environments[Tan, 1993; Senet al., 1994]. Another less naive best-
response learning algorithm is WoLF-PHC[Bowling and Veloso, 2002], which varies the learning rate to account
for the other agents learning simultaneously Other best-response learners include Fictitious Play[Robinson, 1951;
Vrieze, 1987], Opponent-Modelling[Uther and Veloso, 1997], Joint Action Learners[Claus and Boutilier, 1998],
and any single-agent learning algorithm that learns optimal policies. Although these algorithms have no explicit
dependence on equilibria, there’s an important implicit dependence. If algorithms that learn best-responses converge
when playing eachother, then it must be to a Nash equilibria[Bowling and Veloso, 2002]. So Nash equilibria are, and
are the only, learning fixed points. In the context of agent limitations, this means that if limitations cause equilibria to
not exist, then best-response learners could not converge.

This is exactly one of the problems faced by Q-learning in stochastic games. Q-learning is limited to deterministic
policies. As we will see in Section 4 (Theorem 1), this deterministic policy limitation can cause no equilibria to exist.
So there are many games for which Q-learning cannot converge when playing with other best-response learners, such
as other Q-learners.

In summary, both equilibria and best-response learners depend on the existence of equilibria. The next section explores
agent limitations that are likely to be faced in realistic learning situations. In Section 4, we present our main result
examining the effect these limitations have on the existence of equilibria, and consequently on both equilibria and
best-response learners.

3 Limitations

The solution concept of Nash equilibria depends on all the agents playing optimally. From the agent development
perspective, agents have limitations that prevent this from being a reality. The working definition of limitation in this
paper is anything that can restrict the agent from learning or playing optimal policies. Broadly speaking, limitations can
be classified into two categories: physical limitations and rational limitations. Physical limitations are those caused
by the interaction of the agent with its environment and are often unavoidable. Rational limitations are limitations
specifically chosen by the agent designer to make the learning problem tractable, either in memory or time.

3.1 Physical Limitations

One obvious physical limitation is that the agent simply is broken. A mobile agent may cease to move or less drastically
may lose the use of one of its actuators preventing certain movements. Similarly, another agent may appear to be
“broken” when in fact the motion is simply outside its capabilities. For example, in a mobile robot environment where
the “rules” allow robots to move up to two meters per second, there may be a robot that isn’t capable of reaching that
speed. An agent that is not broke, may suffer from poor control where its actions aren’t always carried out as desired,
e.g., due to poorly tuned servos, inadequate wheel traction, or high system latency.

Another common physical limitation is hardwired behavior. Most agents in dynamic domains need some amount
hardwiring for fast-response and safety. For example, many mobile robot platforms are programmed to immediately
stop if an obstacle is too close. These hardwired actions prevent certain behavior (often unsafe, but potentially optimal)
by the agent.

Sensing is a huge area of agent limitations. Here we’ll mention just one broad category of sensing problems:
state aliasing. This occurs when an agent cannot distinguish between two different states of the world. An agent may
need to remember past states and actions in order to properly distinguish the states, or may simply execute the same
behavior in both states.

3.2 Rational Limitations

Rational limitations are a requirement for agents to learn in even moderately sized problems. They continue to be pro-
posed and investigated in single-agent learning, and are likely to be even more necessary in multiagent environments
which tend to have larger state spaces.
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In domains with sparse rewards one common technique is reward shaping, e.g.,[Mataric, 1994]. A designer
artificially rewards the agent for actions the designer believes to be progressing towards the sparse rewards. This can
often speed learning by focusing exploration, but also can cause the agent to learn suboptimal policies. For example,
in robotic soccer moving the ball down the field is a good heuristic for goal progression, but at times the optimal
goal-scoring policy is to pass the ball backwards to an open teammate. Subproblem reuse also has a similar effect,
where a subgoal is used in a portion of the state space to speed learning, e.g.,[Hauskrechtet al., 1998; Bowling and
Veloso, 1999]. These subgoals, though, may not be optimal for the global problem and so prevent the agent from
playing optimally.

Parameterized policies are receiving a great deal of attention as a way for reinforcement learning to scale to large
problems, e.g.,[Suttonet al., 2000; Baxter and Bartlett, 2000]. The idea is to give the learner a policy that depends
on far less parameters than the entire policy space actually needs. Learning is then performed in this smaller space of
parameters using gradient techniques. This simplifies and speeds learning at the expense of possibly not being able to
represent the optimal policy in the parameter space.

3.3 Models of Limitations

Our brief enumeration of limitations shows that there is a number and variety of limitations with which agents may be
faced. Since these limitations cannot be avoided, it’s important to understand their impact on equilibria. We explore
this impact by analyzing the effect these limitations have on the behavior of the agents. We introduce two broad
models of how limitations affect agents: implicit games and restricted policy spaces.

Implicit Games. Limitations may cause an agent to play suboptimally in the explicit game but it may be that the
agentis playing optimally in a different game. We call this new game theimplicit game.For example, reward shaping
adds artificial rewards to help guide the agent’s search. Although the agent is no longer learning an optimal policy in
the explicit game, it is learning an optimal policy of some game, specifically the game with these additional rewards.
Another example is due to broken actuators preventing an agent from taking some action. The agent may be suboptimal
in the explicit game, while still being optimal in the implicit game defined by removing these actions from the agent.

Restricted Policy Spaces.The second broad model is that ofrestricted policy spaces, which models limitations that
restrict the agent from playing certain policies. For example, a fixed amount of exploration restricts the player to
policies that select all actions with some minimum probability. Parameterized policy spaces have a restricted policy
space corresponding to the space of policies that can be represented by their parameters.

Formally, we can define a restricted policy space for playeri asΠi ⊆ Πi, i.e. any subset of the set of mixed
policies. For the analysis in this paper it is assumed thatΠi is non-empty and compact, i.e., the limit of any sequence
from the set is also in the set. This is not a particularly limiting assumption and is needed for most of the proofs in the
next section.

The limitations discussed in this section are summarized in Table 1. The table also shows which limitations more
naturally fall into which model.

4 Existence of Equilibria

Since the existence of equilibria is critical to multiagent learning algorithms, and limitations are common and unavoid-
able it remains to examine the effect that limitations have on equilibria. This section does not focus on any specific
limitations but rather examines the two broad models of limitations from Section 3: implicit games, and restricted
policy spaces.

4.1 Implicit Games

The implicit game model is the easiest to analyze. If the limitations can be modelled by an implicit game then the
players’ can be considered playing this implicit game but now without any limitations. Since all stochastic games have
equilibria with unlimited agents then this implicit game must have an equilibrium. So limitations that can be modelled
as implicit games preserve the existence of equilibria. Equilibria learners then can seek to learn an equilibria to this
implicit game, and best-response learners continue to have learning fixed points for convergence.
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Physical Limitations IG RP
Broken Actuators X X
Poor Control X X
Hardwired Behavior X
State Aliasing X
Poor Communication
Rational Limitations IG RP
Reward Shaping or Incentives X
Subproblems X X
Parameterized Policy X
Exploration X
Bounded Memory X

Table 1: Common agent limitations. The column check-marks correspond to whether the limitation can be modelled
straightforwardly using implicit games (IG) or restricted policy (RP) spaces.

4.2 Restricted Policy Spaces

The restricted policy model has neither a trivial analysis nor result. We begin by defining what an equilibrium is under
this model. First we need a notion of best-response that accounts for the players’ limitations.

Definition 3 A restricted best-responsefor playeri, BRi(π−i), is the set of all policies fromΠi that are optimal given
the other player(s) play the joint policyπ−i.

We can now use this to define an equilibrium.

Definition 4 A restricted equilibriumis a joint policy,πi=1...n, where,

πi ∈ BRi(π−i).

So no playercan within their restricted policy spacedo better by changing policies given that the other players continue
to follow their equilibrium policy.

We can now state some results about when equilibria are preserved by restricted policy spaces, and when they are
not. The first three theorems show that this question is not a trivial one.

Theorem 1 Restricted equilibria do not necessarily exist.

Proof. Consider the matching pennies matrix game with players restricted to the space of deterministic policies. There
are a finite number of joint deterministic policies, and it is simple enough to verify that none of these four policies are
equilibria. �

Theorem 2 There exist restricted policy spaces such that restricted equilibria exist. More concretely, ifπ∗ is a Nash
equilibrium andπ∗ ∈ Π, thenπ∗ is a restricted equilibrium.

Proof. For the latter claim, suppose one of theπ∗i was not a restricted best-response to the others. This policy could
not be an unrestricted best-response, since the same alternative policy in the restricted case would also have higher
value in the unrestricted game. So if Nash equilibria aren’t eliminated by the restrictions, restricted equilibria exist.�

On the other hand, the converse is not true; not all restricted equilibria are of this trivial variety.

Theorem 3 There exist restricted equilibria that are not Nash equilibria.

Proof. Consider the Rock-Paper-Scissors matrix game from Figure 1. Suppose the column player is forced, due to
some limitation, to play “Paper” exactly half the time, but is free to choose between “Rock” and “Scissors” otherwise.
This is a restricted policy space that excludes the only Nash equilibrium of the game. We can solve this game using the
implicit game model, by giving the limited player only two actions,s1 = (0.5, 0.5, 0) ands2 = (0, 0.5, 0.5), which
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Restricted Policy Space

Restricted Equilibrium
Nash Equilibrium

R

P S

s1

s2

Explicit Game Implicit Game

Payoffs

 0 −1 1
1 0 −1
−1 1 0


 −

1
2 0
1
2 − 1

2

0 1
2


Nash Equilibrium

〈
1
3 ,

1
3 ,

1
3

〉
,
〈

1
3 ,

1
3 ,

1
3

〉 〈
0, 1

3 ,
2
3

〉
,
〈

2
3 ,

1
3

〉
Restricted Equilibrium

〈
0, 1

3 ,
2
3

〉
,
〈

1
3 ,

1
2 ,

1
6

〉
Figure 2: Example of a restricted equilibrium that is not a Nash equilibrium. Here, the column player in Rock-Paper-
Scissors is restricted to playing only linear combinations of the strategiess1 =

〈
1
2 ,

1
2 , 0
〉

ands2 =
〈
0, 1

2 ,
1
2

〉
.

the player can mix between. This is depicted graphically in Figure 2. We can solve the implicit game and convert the
two actions back to actions of the explicit game to find a restricted equilibrium. Notice this restricted equilibrium is
not a Nash equilibrium. �

Notice that the Theorem 1 counterexample has a non-convex policy space, while the Theorem 3 example has
a convex policy space. This suggests that restricted equilibria may exist as long as the restricted policy space is
convex, i.e., all linear combinations of policies in the set are also in the set. We can prove this for matrix games, but
unfortunately it is not generally true for stochastic games.

Theorem 4 When|S| = 1, i.e. in matrix games, ifΠi is convex, then there exists a restricted equilibrium.

Proof. One might think of proving this by appealing to implicit games as was used in Theorem 3. In fact, ifΠi was
a convex hull of afinite number of strategies, this would be the case. In order to prove it for any convexΠi we apply
Rosen’s theorem about equilibria in concave games[Rosen, 1965]. For some joint policy,π ∈ Π, define,V πi (s) to be
the sum of discounted future rewards starting from states given the players follow joint policyπ. For matrix games,

V πi (s0) =
1

1− γ
∑
a∈A

(π1(s0, a1) . . . πn(s0, an))Ri(s, a). (1)

In order to use this theorem we need to show the following:

1. Πi is non-empty, compact, and convex.

2. V πi (s0) is continuous w.r.tπ ∈ Π.

3. For anyπ ∈ Π the function ofπ′i ∈ Πi defined asV (π′i,π−i)
i (s0) is concave.

Condition 1 is by assumption. Equation 1 shows that the value is a multilinear function with respect to the joint policy
and therefore is continuous. So condition 2 is satisfied. Observe that by fixing the policies for all but one player
equation 1 becomes a linear function over the remaining player’s policy and so is also concave satisfying condition 3.
Therefore Rosen’s theorem applies and this game has a restricted equilibrium. �

Theorem 5 For a stochastic game, even ifΠi is convex, restricted equilibria do not necessarily exist.
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Proof. Consider the stochastic game in Figure 3. This is a zero-sum game where only the payoffs to the row player
are shown. The discount factorγ is 0.5. The actions available to the row player areU andD, and for the column
playerL or R. From the initial state the column player may select eitherL or R which results in no rewards but
deterministically transitions to the specified state (regardless of the row player’s action). In each of those states the
players infinitely repeat the matrix game shown. Now, consider the restricted policy space where players have to play
their actions with the same probability in all states. So,

∀s, s′ ∈ S; a ∈ A πi(s, a) = πi(s′, a).

Notice that this is a convex set of policies.

1 0
0 0


0 0

0 1



RL

0 0
0 0

s0

sRsL

Figure 3: An example stochastic game where convex restricted policy spaces don’t preserve the existence of equilibria.

This game does not have a restricted equilibrium. The four possible joint deterministic policies,(U,L), (U,R),
(D,L), and(D,R), can be quickly verified to not be equilibria. So if there exists an equilibrium it must be mixed.
Consider any mixed strategy for the row player. If this playsU with probability less than12 then the unique best-
response for the column player is to playL; if greater than1

2 then the unique best-response is to playR; if equal then
the unique best-responses are to playL orR deterministically. In all cases all best-responses are deterministic, so this
rules out mixed strategy equilibria, and so no equilibria exists. �

Convexity is not a strong enough property to guarantee the existence of restricted equilibria. Standard equilibrium
proof techniques fail for this example due to the fact that the player’s best-response sets are not convex, even though
their restricted policy spaces are convex. Notice that the best-response to the row player mixing equally between
actions is to play either deterministically. But, linear combinations of these actions (e.g., mixing equally) are not
best-responses.

This intuition is proven in the following lemma.

Lemma 1 For any stochastic game, ifΠi is convex and for allπ−i ∈ Π−i, BRi(π−i) is convex, then there exists a
restricted equilibrium.

Proof. The proof relies on Kakutani’s fixed point theorem. We first need to show some facts about the restricted
best-response function. First, remember thatΠi is non-empty and compact and note that the value to a player at any
state of a joint policy is a continuous function of that joint policy [Filar and Vrieze,1997 – Theorem 4.3.7]. So from
basic analysis [Gaughan,1993 – Theorem 3.5 and Corollary 3.11], the set of maximizing (or optimal) points must be a
non-empty and compact set. SoBRi(π−i) is non-empty and compact.

Define the set-valued function,
F (π ∈ Π) = ×ni=1 BRi(π−i).

We want to showF has a fixed point. To apply Kakutani’s fixed point theorem we must show the following conditions
to be true,

1. Π is a non-empty, compact, and convex subset of a Euclidean space,

2. F (π) is non-empty,

3. F (π) is compact and convex, and

4. F is upper semi-continuous.
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Since the Cartesian product of non-empty, compact, and convex sets is non-empty, compact, and convex we have
condition (1) by the assumptions onΠi. By the facts ofBRi from above and the lemma’s assumptions we similarly
get conditions (2) and (3).

What remains is to show condition (4). Consider two sequencesxj → x ∈ Π and yj → y ∈ Π such that
yj ∈ F (xj). It must be shown thaty ∈ F (x), or justyi ∈ BRi(x). Let v beyi’s value againstx. By contradiction
assume there exists ay′i with higher value,v′ thanyi; let δ = v′ − v. Since the value function is continuous we can
choose anN large enough that the value ofy′i againstxN differs fromv′ by at mostδ/4, and the value ofyi against
xN differs fromv by at mostδ/4, and the value ofyNi againstxN differs fromyi againstxN by at mostδ/4. The
comparison of values of these various joint policies are shown in Figure 4. Putting all of these together, we have a
point in the sequenceyn>Ni whose value againstxn is less than the value ofyi againstxn, and so is not a best-response
creating our contradiction.

(y′i, x) (y′i, x
N) (yNi , x

N) (yi, x
N) (yi, x)

δ/4 δ/4−δ/4
v′ v

Figure 4: A demonstration by contradiction that the best-response functions are upper semi-continuous.

We can now apply Kakutani’s fixed point theorem. So there existsπ ∈ Π such thatπ ∈ F (π). This means
πi ∈ BRi(π−i), and therefore this is a restricted equilibrium. �

The consequence of this lemma is that if we can prove that the set of restricted best-responses are convex then
restricted equilibria exist. As we’ve stated earlier this was not true of the counterexample in Theorem 5. The next four
theorems all further limit either the restricted policy spaces or the stochastic game to situations where the best-response
sets are provably convex.

Our first result for general stochastic games uses a stronger notion of convexity of restricted policy spaces.

Definition 5 A restricted policy spaceΠi is statewise convexif it is the Cartesian product over all states of convex
strategy sets. Equivalently, if for allx1, x2 ∈ Πi and all functionsα : S → [0, 1], the policyx3(s, a) = α(s)x1(s, a)+
(1− α(s))x2(s, a) is also inΠi.

Theorem 6 If Πi is statewise convex, then there exists a restricted equilibrium.

Proof. With statewise convex policy spaces there exists optimal policies in the strong sense as mentioned in Section 2.
Specifically, there exists a policy that can simultaneously maximize the value of all states. Formally, for anyπ−i there
exists aπi ∈ Πi such that,

∀s ∈ S, π′i ∈ Πi V (πi,π−i)(s) ≥ V (π′i,π−i)(s).

Suppose this were not true, i.e. there were two policies each which maximized the value of different states. We can
construct a new policy that in each state that follows the policy whose value is better in that state. This policy will
maximize the value of both states that those policies maximized, and due to statewise convexity is also inΠi. We will
use that fact to redefine optimality to this strong sense for this proof.

We will now make use of Lemma 1. First, notice the lemma’s proof still holds even with this new definition of
optimality. We just showed that under this redefinitionBRi(π−i) is non-empty, and the same argument for compact-
ness ofBRi(π−i) holds. So we can make use of Lemma 1 and what remains is to prove thatBRi(π−i) is convex.
Sinceπ−i is a fixed policy for all the other players this defines an MDP for playeri [Filar and Vrieze,1997 – Corollary
4.2.11]. So we need to show that the set of polices from the player’s restricted set that are optimal for this MDP is a
convex set. Concretely, ifx1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) = αx1(s, a)+(1−α)x2(s, a)
is also optimal for anyα ∈ [0, 1]. Sincex1 andx2 are optimal in the strong sense, i.e., maximizing the value of all
states simultaneously, then they must have the same value in all states.

Here, we will use the notationV x(s) to refer to the value of policyx from states in this fixed MDP. The value
function for any policy satisfies the Bellman equations, specifically,

∀s V x(s) =
∑
a

x(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x(s′)

)
. (2)
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Forx3 then we get the following,

V x3(s) =
∑
a

x3(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)

=
∑
a

(αx1(s, a) + (1− α)x2(s, a))

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)

= α
∑
a

x1(s, a)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
+

(1− α)
∑
a

x2(s, a))

(
R(s, a) + γ

∑
s′

T (s, a, s′)V x3(s′)

)
.

Notice thatV x3(s) = V x1(s) = V x2(s) satisfies these equations. Sox3 has the same values asx1 andx2, and is
therefore also optimal. ThereforeBRi(π−i) is convex, and from Lemma 1 we get the existence of restricted equilibria
under this stricter notion of optimality, which also makes the policies a restricted equilibria under our original notion
of optimality, that is only maximizing the value of the initial state. �

Unfortunately, most rational limitations that allow reinforcement learning to scale are not statewise convex re-
strictions, and usually have some dependence between states. For example, parameterized policies involve far less
parameters than the number of states, which can be intractably large, and so the space of policies cannot select actions
at each state independently. Similarly subproblems force whole portions of the state space to follow the same sub-
problem solution. Therefore these portions of the state space cannot do not select their actions independently . One
way to relax from statewise convexity to eneral convexity is to consider only a subset of stochastic games.

Theorem 7 Consider no-control stochastic games, where all transitions are independent of the players’ actions, i.e.,

∀s, s′ ∈ S; a, b ∈ A T (s, a, s′) = T (s, b, s′).

If Πi is convex, then there exists a restricted equilibrium.

Proof. This proof also makes use of Lemma 1, leaving us only to show thatBRi(π−i) is convex. Just as in the proof
of Theorem 6 we will consider the MDP defined for playeri when the other players follow the fixed policyπ−i.
As before it suffices to show that for this MDP, ifx1, x2 ∈ Π are optimal for this MDP, then the policyx3(s, a) =
αx1(s, a) + (1− α)x2(s, a) is also optimal for anyα ∈ [0, 1].

Again, we will use the notationV to refer to the traditional value of a policy in this fixed MDP. SinceT (s, a, s′) is
independent ofa we can simplify the Bellman equations (equation 2) to,

V x(s) =
∑
a

x(s, a)R(s, a) + γ
∑
s′

∑
a

x(s, a)T (s, a, s′)V x(s′)

=
∑
a

x(s, a)R(s, a) + γ
∑
s′

T (s, ·, s′)V x(s′). (3)

For the policyx3 this gives us,

V x3(s) = α
∑
a

x1(s, a)R(s, a) + (1− α)
∑
a

x2(s, a)R(s, a) + γ
∑
s′

T (s, ·, s′)V x3(s′).

Using equation 3 for bothx1 andx2 we get,

V x3(s) = α(V x1(s)− γ
∑
s′

T (s, ·, s′)V x1(s′)) +

(1− α)(V x2(s)− γ
∑
s′

T (s, ·, s′)V x2(s′)) +

γ
∑
s′

T (s, ·, s′)V x3(s′)

= αV x1(s) + (1− α)V x2(s) +

γ
∑
s′

T (s, ·, s′) (V x3(s′)− αV x1(s′)− (1− α)V x2(s′))
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Notice that a solution to these equations isV x3(s) = αV x1(s) + (1−α)V x2 . ThereforeV x3(s0) is equal toV x1(s0)
andV x2(s0), which are equal since both are optimal. Sox3 is optimal, andBRi(π) is convex. Applying Lemma 1 we
get that restricted equilibria exist. �

We can now merge Theorem 6 and Theorem 7 allowing us to prove existence for a general class of games where
only one of the player’s actions affects the next state.

Theorem 8 Consider single-controller stochastic games[Filar and Vrieze, 1997] , where all transitions depend solely
on player 1’s actions, i.e.,

∀s, s′ ∈ S; a, b ∈ A a1 = b1 ⇒ T (s, a, s′) = T (s, b, s′).

If Π1 is statewise convex andΠi 6=1 is convex, then there exists a restricted equilibrium.

Proof. This proof again makes use of Lemma 1, leaving us to show thatBRi(π−i) is convex. Fori = 1 we use the
argument from the proof of Theorem 6. Fori 6= 1 we use the argument from Theorem 7. �

The previous results have looked at stochastic games whose transition functions have particular properties. Our
final theorem examines stochastic games where the rewards have a particular structure. Specifically we address team
games, where the agents all receive equal payoffs.

Theorem 9 For team games, i.e.,

∀i, j ∈ {1, . . . , n}; s ∈ S; a ∈ A Ri(s, a) = Rj(s, a),

there exist a restricted equilibrium.

Proof. The only constraints on the players’ restricted policy spaces are those stated at the beginning of this section:
non-empty and compact. SinceΠ is compact, being a Cartesian product of compact sets, and player one’s value at
the initial state is a continuous function of the joint policy, then the function attains its maximum [Gaughan,1993,
Corollary 3.11]. Specifically, there existsπ∗ ∈ Π such that,

∀π ∈ Π V π
∗

1 (s0) ≥ V π1 (s0).

SinceVi = V1 we then get that this maximizes all the players’ rewards, and so each is playing a restricted best-response
to the others’ policies. �

In summary, Theorems 4, 8, and 9 give us three general classes of stochastic games and restricted policy spaces where
equilibria are known to exist. In addition, Theorems 1 and 5 provide counterexamples that help to understand the
threat limitations play to equilibria. These results combined with the model of implicit games lay the groundwork for
applying multiagent learning in realistic, limited agent problems.

5 Learning with Limitations

In Section 2 we highlighted the importance of the existence of equilibria to multiagent learning algorithms. In this
Section we show results of applying a particular learning algorithm to a setting of limited agents. The algorithm we use
is the best-response learner, WoLF-PHC[Bowling and Veloso, 2002]. This algorithm has been proven rational, that
is, it is guaranteed to converge to a best-response when the other players converge. In addition, it has been empirically
shown to have a strong tendency toward convergence in self-play, i.e., where both players use WoLF-PHC for learning.
In this paper we apply this algorithm in self-play to matrix games, both with and without player limitations. Since the
algorithm is rational, if the players converge their converged policies must be an equilibrium[Bowling and Veloso,
2002].

The specific limitations we will examine are those of a restricted policy space. One player will be restricted to
playing strategies that are the convex hull of a subset of the available strategies. Notice by Theorem 4 there does exist a
restricted equilibrium with these limitations. For best-response learners, this amounts to a possible convergence point
for the players. For the limited player, the WoLF-PHC algorithm was modified slightly so that the player maintained
Q-values of its available strategies and performed its usual hill-climbing in the mixed space of these strategies. The
unlimited player was unchanged and completely uninformed of the limitation of its opponent.
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5.1 Rock-Paper-Scissors

The first game we examine is Rock-Paper-Scissors. Figure 5 shows the results of learning when neither player is
limited. Each graph shows the mixed policy the player is playing over time. The labels to the right of the graph signify
the probabilities of each action in the game’s unique Nash equilibrium. Observe that the players’ strategies converge
to this learning fixed point.
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Figure 5: Rock-Paper-Scissors. Neither player is limited.

Figure 6 show the results of restricting player 1 to a convex restricted policy space, defined by requiring the player
to play “Paper” exactly half the time. This is the same restriction as was shown graphically in Figure 2. The graphs
again show the players’ strategies over time, and the labels to the right now label the game’s restricted equilibrium,
which accounts for the limitation (See Figure 2.) The player’s strategies now converge to this new learning fixed point.
If we examine the expected rewards to the players, we see that the unrestricted player gets a higher expected reward
in the restricted equilibrium than in the game’s Nash equilibrium (1/6 compared to0.) In summary, both players
learn optimal best-response policies, with the unrestricted learner appropriately taking advantage of the other player’s
limitation.
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Figure 6: Rock-Paper-Scissors. Player one must play “Paper” with probability1
2 .
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5.2 Colonel Blotto

The second game we examined is “Colonel Blotto”[Gintis, 2000], which is also a zero-sum matrix game. In this game
players simultaneously allot regiments to one of two battlefields. If one player allots more armies to a battlefield than
the other, he receives a reward of one plus the number of armies defeated, and the other player loses this amount. If
the players tie, then the reward is zero for both. In the unlimited game, the row player has four regiments to allot, and
the column player has only three. The matrix of payoffs for this game is shown in Figure 7.

R1(s0, a) =


4 2 1 0
1 3 0 −1
−2 2 2 −2
−1 0 3 1

0 1 2 4


Figure 7: Colonel Blotto Game. The row player’s rewards are shown; the column player receives the negative of this
reward.

Experimental results of unlimited players are shown in Figure 8. The labels on the right signify the probabilities as-
sociated with the Nash equilibrium to which the players’ strategies converge. Player one was then given the limitation
that it could only allot two of its armies, the other three would be allotted randomly. This is also a convex restricted
policy space and therefore by Theorem 4 has a restricted equilibrium. The learning results are shown in Figure 8. The
labels to the right correspond to the action probabilities for the restricted equilibrium, which was computed by hand.
As in Rock-Paper-Scissors, the players’ strategies converge to the new learning fixed point. Similarly, the expected
reward for the unrestricted player resulting from the restricted equilibrium is considerably higher than that of the Nash
equilibrium (0 to−14/9), as the player takes advantage of the other’s limitation.
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Figure 8: Colonel Blotto. Neither player is limited.

There is one final observations about these results. In Section 3 the use of rational limitations to speed learning was
discussed. Even in these very small single-state problems, our results demonstrate this fact. Notice that convergence
occurs more quickly in the limited situations where one of the players has less parameters and less freedom in its
policy space. In the case of the Colonel Blotto game this is a dramatic difference (notice the x-axes differ by a factor
of ten!) In games with very large state spaces this will be even more dramatic. Agents will need to make use of
rational limitations to do any learning at all, and similarly the less restricted agents will likely be able to benefit from
this situation.
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Figure 9: Colonel Blotto. Player one is forced to randomly allot two regiments.

6 Conclusion

Nash equilibria is a crucial concept in multiagent learning both for algorithms that directly learn equilibria and al-
gorithms that learn best-responses. Agent limitations, though, are unavoidable and can prevent agents from playing
optimally or playing the equilibrium. In this paper, we introduce and answer two critical questions: Do equilibria exist
when agents have limitations? Not necessarily. Are there classes of domains or classes of limitations where equilibria
are guaranteed to exist? Yes. We’ve proven for some classes of stochastic games and agent limitations equilibria are
guaranteed to exist. We’ve also given counterexamples which help understand the nature of this clash between equi-
libria and limitations. In addition to these theoretical results we demonstrated the implications of these results with
a real learning algorithm. We gave empirical results that learning with limitations is possible, and equilibria under
limitations is relevant.

There are two main future directions for this work. The first is continuing to explore the theoretical existence
of equilibria. Are there other general classes of games and limitations for which equilibria exist? How do specific
limitations map onto the models that are explored in this paper? What is sensible behavior in situations where equilibria
do not exist? The other direction is the practical application of multiagent learning algorithms to real problems when
agents have real limitations. The theoretical results in this paper and the empirical results on simple matrix games,
give encouraging evidence, but undoubtedly new issues will arise. In particular, do equilibria exist under limitations
in practice? What useful rational limitations are most likely to preserve the existence of equilibria? Alternatively, if
equilibria do not exist, what is reasonable behavior to expect of learning agents? This paper lays the groundwork for
exploring these multiagent learning issues in realistic domains.
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