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Abstract

In this paper, we give evidence that the posterior distribution of Naive Bayes goes to zero or one exponen-

tially with document length. While exponential change may be expected as new bits of information are

added, adding new words does not always correspond to new information. Essentially as a result of its inde-

pendence assumption, the estimates grow too quickly. We investigate one parametric family that attempts

to downweight the growth rate. The parameters of this family are estimated using a maximum likelihood

scheme, and the results are evaluated.
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1 Introduction

The Naive Bayes classi�er has shown itself to be a top competitor in some text domains. In other cases,

it is used because its simplicity and its computational e�ciency make it an attractive choice. However,

researchers have often found when used for learning the actual posterior distribution, performance has been

poor or average. Many people have speci�cally noted the fact that Naive Bayes tends to generate a bimodal

posterior with scores clustered either arbitrarily close to 0 or arbitrarily close to 1. Of course, these estimates

would be �ne if the Naive Bayes classi�er were always correct, but as it is not, it tends to produce uncalibrated

probability estimates.

We give a theoretical justi�cation of why this bimodal distribution is extremely likely to occur when

using the Naive Bayes classi�er, and given this justi�cation, show why this suggests learning a posterior

distribution based on the log odds produced by Naive Bayes may be one way to compensate for the overly

con�dent predictions of the classi�er.

Finally, we evaluate a sigmoid family that seems to be a likely candidate for obtaining better posterior

estimates. The evaluation of this family indicates that while it often reduces the mean squared error of the

estimates, it often does not lead to improved classi�cation performance. Further investigation shows that

this family may not be appropriate for Naive Bayes and indicates directions for future research to pursue.

2 Related Work

DeGroot and Fienberg (1983) discuss comparing the probability estimates of two classi�ers in terms of

calibration and re�nement. A classi�er is said to be well-calibrated if as the number of predictions goes to

in�nity the predicted probability goes to the empirical probability. For example, if we look at all of the

times a weatherperson predicts a 40% chance of rain and the relative frequency of rain for those days is

40%, then the prediction is calibrated. If all probability predictions are calibrated, then the weatherperson

is well-calibrated.

It is often easiest to depict the calibration of a classi�er in a reliability diagram [Murphy and Winkler, 1977].

A reliability diagram plots the predicted probabilities versus the empirical probabilities. Thus, if all points

fall on the x = y line then the classi�er is well-calibrated.

Re�nement is essentially a measure of how close the probability estimates are to zero or one. Within

well-calibrated classi�ers, it is preferable to have a more re�ned classi�er. However, it must be emphasized

that the primary concern is calibration then re�nement.

Platt (1999) discusses the use of a sigmoid family to �t the posterior distribution given the scores output

by a SVM classi�er. A maximum likelihood approach is used to determine the values of the parameter. It

is essentially this technique that we follow here.

3 Data and Basic Tools

The data set for evaluating these ideas will be the Reuters 21578 data set [Lewis, 1997]. The train/test

split used (which we refer to as ModApte-90) was obtained by re�ning the ModApte split as described in

[Yang and Liu, 1999]. This data set has a standard train/test split of 7769/3019 documents. There are 90

classes; each of which has at least one document in the training and testing split. Each document can have

multiple classes. The average is 1.234 classes/doc. Throughout the remainder of this paper we will focus

on the class Earn (37.03% training data) and Corn (2.33% training data). We choose these two classes so

we can form an idea of the behavior for very little training data and with a large amount of data. There

are classes rarer than Corn, but it is di�cult to examine trends with less data. It should be noted that the

conclusions presented are consistent with results over all classes.
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The Naive Bayes results presented throughout result from applying the unigram model of Naive Bayes

[McCallum and Nigam, 1998] as implemented in the Rainbow classi�cation system [McCallum, 1996]. Stem-

ming and stop word removal were performed, and all words occurring less than 3 times in the training data

were removed. No other feature processing or optimizations were done. All other parameters used (i.e.

smoothing) were the defaults of the Rainbow system. The classi�cation was done as a collection of binary

classi�ers (i.e. a two-class classi�er is built for each of the 90 classes).

4 The Behavior of the Naive Bayes Posterior

4.1 Characterization of Behavior

First, we note that the Naive Bayes unigram Model is:

P (ci j d) =
P (ci)

Qjdj
t=1 P (wt j ci)

�(d)
; (1)

where ci is a class, d is a document, wt is the t
th word of a document, and �(d) is a normalization term that

depends only on the document d.

Histograms for the posterior estimates for classes Earn and Corn are shown in �gure 1. It should be noted
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Figure 1: Conditional Distribution of Naive Bayes Posterior Estimates for Earn and Corn Binary Classi�ers

that the classi�er almost always outputs a class posterior of 1 or 0. Most of the examples in both cases are

being classi�ed correctly, but those that are being classi�ed incorrectly have estimates that are completely

wrong. We can show that this behavior can be expected in general as the length of the input feature vector

grows. For text this means that we can expect to see this behavior as document length increases. Since longer

feature vectors roughly correspond to higher dimensional spaces, we expect to see this behavior commonly

in high-dimensional spaces and less frequently in low-dimensional spaces.

Note that we need only concentrate on the likelihood ratios

Rd(ci; cj)
:
=

P (ci j d)

P (cj j d)
(2)

Since, if for some class �, we have Rd(ci; c�) (for all i), then we use P (ci j d) = P (c� j d)Rd(ci; c�) to �nd
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P (ci j d). To obtain P (c� j d), we solve the equation

P (c� j d)
X

i

Rd(ci; c�) = 1: (3)

This is convenient since the likelihood ratio allows us to ignore the normalization term. For the two classi�er

case, this means we are concentrating on, P (c� j d) + P (c� j d)Rd(c:�; c�) = 1. Speci�cally, how do the

likelihood ratios change with documents?

We can de�ne this problem formally by asking what happens to the posteriors when we add one single

word to document d to form d0.

Problem

Let d
:
= w1 : : :wn�1 and d0

:
= w1 : : :wn = dwn. How do we quantify the following relationship?

Rd(c�; c�) ? Rd0(c�; c�) (4)

We will show with a straightforward derivation that the relationship is:

P (wn j c�)

P (wn j c�)
Rd(c�; c�) = Rd0(c�; c�) (5)

For any document, di, we have:

Rdi
(c�; c�) =

P (c� j di)

P (c� j di)
; by de�nition:

Substituting by defn: and cancelling the term �(di)

=
P (c�)

Qjdj
t=1 P (wt j c�)

P (c�)
Qjdj

t=1 P (wt j c�)
: (6)

So,

Rd0(c�; c�) =
P (c�)

Qjd0j
t=1 P (wt j c�)

P (c�)
Qjd0j

t=1 P (wt j c�)
by eq: 6

Since d0 = dwn;

=
P (wn j c�)P (c�)

Qjdj
t=1 P (wt j c�)

P (wn j c�)P (c�)
Qjdj

t=1P (wt j c�)

Substituting by eq: 6 again;

=
P (wn j c�)

P (wn j c�)
Rd(c�; c�): (7)

This yields the relationship we desired to show in eq. 5

We can consider the expected value of
P (wijc�)
P (wijc�)

over all words. Then as we add words, the ratio will grow

exponentially on average with the average conditional word ratio. When viewed in terms of equation 3 , we

can see that this will quickly push P (c� j d) to zero or one as the document length increases. It should be

noted that feature selection methods that work well with Naive Bayes tend to maximize these conditional

word ratios [Mladenic, 1998], and thus, they make the growth occur even more quickly.

Essentially this may be viewed as a direct byproduct of the independence assumption. We expect to

see the posteriors quickly going to zero or one as new information is added (i.e. new evidence is additive

logarithmically), but adding a word does not correspond to as much new evidence as the Naive Bayes method

believes since the word occurrences are not truly independent.
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4.2 Possible Corrective Methods

The above evidence and derivation indicates that we may want to consider some method that is essentially

like slowing the growth rate according to the actual information being learned incrementally. Given this

view point it is a natural development to examine the distribution of the log odds, log
P (cjd)
P (:cjd) , predicted by

the Naive Bayes classi�er to gain a sense of the growth rate of information for any given class.

Figure 2 shows the histogram based approximation of the class conditional log odds distribution for the

Naive Bayes classi�er for classes Earn and Corn obtained by hold-one-out testing. We could consider a
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Figure 2: Conditional Distribution of Log Odds Scores for Earn and Corn Binary Classi�ers

method of directly modeling these conditional score distributions and then use Bayes rule to invert the dis-

tributions [Hastie and Tibshirani, 1996]. Another alternative is to directly model the posterior distribution,

P (c j Log Odds Score = x). Learning the posterior distribution based simply on the log odds can be viewed

as using the log odds as a su�cient statistic for Naive Bayes.

Since classi�ers are trained to linearly separate the data, there is strong reason to suspect beforehand

that the posterior distribution will be sigmoidal (assuming the classi�er is performing reasonably well)

[Platt, 1999]. Therefore, we may want to try a parametric sigmoid �t to validation data. In addition, if

we assume that the conditional score distributions are Gaussian with a tied variance (although Platt, 1999,

makes claims to the contrary { see alternative interpretation below), then Bayes rule applied to two such

distributions gives the form:

P (c j Log Odds Score = x) =
1

1 + expfAx+Bg
; (8)

where A = �
:c��c
�2

, B = �
�
2

:c��
2

c

2�2
+log

1�P (c)
P (c)

, and c indicates the \positive" class. Clearly, the distributions

in �gure 2 are not Gaussian, but it might be a reasonable �rst case approximation. In addition, the same

sigmoid family results from applying Bayes rule to two exponentials with a di�erent interpretation of the

parameters [Platt, 1999]. Future methods may consider di�erent assumptions; for example, the curves on

the outside slopes are clearly very near exponential, but the interior part of the curves show a much steeper

curve than standard exponentials. Finally, using the model given in equation 8 is equivalent to assuming that

the output of the classi�er is proportional (e�ect of parameter A) to the log of a biased (e�ect of parameter

B) likelihood ratio. In other words, we can view it as a corrective slope to the growth rate.

The above reasons give good theoretical reasons for investigating a sigmoidal �t, but we can also justify

these empirically by inverting the class conditional distributions given in �gure 2. The results of this are
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Figure 3: Posterior Distribution given Log Odds Scores for Earn and Corn Binary Classi�ers

given in �gure 3. These posterior distributions do seem primarily sigmoidal with several exceptional notable

features. The plot for Earn shows a clear non-monotonic behavior around x = �200. Given the amount

of data for Earn it seems unreasonable to assume this is simply noise. Therefore, any sigmoid �t will pay

a penalty between balancing between this aberration and the primary upward curve of the sigmoid around

x = 0. For Corn, there appears to be a decent amount of deviation from the sigmoid in the transitional area,

however, as the class is rare, assuming this is noise is more reasonable here. The curve for Corn also seems

to indicate an asymmetric sigmoid might be a better choice. If we were to actually choose an asymmetric

sigmoid, this would likely show better performance for class Earn as well since the lower aberration would

not as strongly e�ect the �t of the upper portion of the curve. This is a promising direction for future

research. Finally, it should be noted that we could use a nonparametric method such as we did for creating

these graphs. However, such methods are not easily applicable to rare classes, and we would like to apply

these methods for rare classes as well.

5 Experiments

5.1 Methodology

Using the method described in Platt (1999), we use a maximumlikelihoodmethod to estimate the parameters

of a sigmoid of the form given in equation 8. The data used for the �t is obtained from doing hold-one-out

testing for each binary classi�er. This raises another reason why it may be advantageous to use Naive Bayes.

Since Naive Bayes is so e�cient, we can perform hold-one-out testing with little training time penalty. This

is not the case for many other methods including SVMs [Platt, 1999]. This means we are more likely to get

a better approximation of the �nal classi�er's behavior. Finally, the only notable bias that arises in this

approach is that hold-one-out testing for a class with only one positive example will underestimate the log

odds for positive examples.

In order to evaluate our method, we examine the mean squared error of the estimates as well as classi�er

performance via the F1 scores [Yang, 1997].

5.2 Results

The learned parameters for classes Earn and Corn �t the validation data they were trained on as shown in

�gure 4. The �t of the sigmoid to class Earn is subject to the 
aws discussed above. However, it should be
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Figure 4: Data Distribution with Fitted Sigmoid

noted that it perfectly separates the data with respect to the threshold for the 0-1 Loss function (i.e. 0.5).

The sigmoid for class Corn seems suspicious at �rst, but after inspection it understandably (since Corn is

rare) shifts the curve far enough to the right that the only points with more than a non-zero probability are

those completely correct. This is an indication that this method may not be appropriate for rare classes.

The calibration for classes Earn and Corn for the two methods can be seen in the reliability diagrams

given in �gures 5 and 6, respectively. The labels on the points are the number of examples the point
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Figure 5: Reliability Diagrams for Class \Earn"

represents. The mean squared error (MSE) and root mean squared error (RMSE) are given in the title. The

reliability diagram for Earn is consistent with the sigmoidal �t. Initially the sigmoid overestimates the true

posterior, then gets it approximately correct in the middle region, and in the upper region underestimates

it. The reliability diagram for Corn clearly shows that the sigmoid method improves the MSE because of

the rarity of class Corn, i.e. it never predicts a non-zero probability except when it's absolutely certain.

For 83 of the 90 classes, the sigmoid method reduced the MSE of the estimates. Five of these classes

were extremely rare classes (< 0.3% of the training data). The two notable exceptions were classes Earn

and Acq which are the two most common classes. The �rst of these can be explained by the aberrational

behavior discussed above. However, since it was able to �nd an optimal threshold, the F1 score increased
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Figure 6: Reliability Diagrams for Class \Corn"

signi�cantly (0.906 vs. 0.956). For Acq, the posterior distribution shows aberrational behavior as well, but

on the positive curve in the sigmoid (i.e. there is a signi�cant dip in the posterior). Therefore, the method

was unable to �nd either a good �t or an optimal threshold. As a result, F1 decreased signi�cantly (0.923

vs. 0.405). This at least calls into question using a symmetric sigmoid and possibly �tting the posterior

directly with a parametric family.

On average, the sigmoid method signi�cantly depressed the F1 scores (both micro and macro). This

resulted primarily from the method's inability to handle rare classes very well. Thus the number of correct

positives were severely decreased, and the number of correct positives is the most important component of

F1.

5.3 Discussion

Overall, the sigmoid method here would indicate that the family of equation 8 cannot capture the behavior

of Naive Bayes. As discussed, an asymmetric sigmoid seems to be a more appropriate choice.

In general, this method does not seem to work well for rare classes. This is especially true if the data are

extremely non-separable based on the log odds score.

In addition, the aberrations (from a sigmoid) in the two most common classes indicate that directly

�tting the posterior may not be possible at all. More investigation is needed on this issue, but feature

selection methods may lead to a more consistent sigmoid form as they increase linear separation (since they

are increasing performance).

The behavior of the conditional log odds score distributions seemed stable enough that modeling them

and then using Bayes rule to invert the distributions seems more promising.

6 Future Work

Clearly, future work will want to explore use of other sigmoid families in approximating the posterior distri-

bution given the Naive Bayes log odds approximation. Speci�cally asymmetric families seem promising as

discussed above.

In addition using parametric families to �t the conditional score distributions P (Log Odds Score =

xjclass) and Bayes Rule to \invert" them seems to be another promising avenue.
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Evaluation over other data sets is also necessary to determine the extent to which Naive Bayes' behavior is

consistent across domains. Finally, investigating the e�ects of feature selection on the shape of the posterior

curve given the log odds score would be interesting as feature selection may give a more sigmoidal curve (i.e.

since it increases performance, it's better at separating the data).

7 Conclusion

In the above, we have explained the conditions and theoretical reasons that give rise to the nearly binary

posterior estimates of Naive Bayes. Using this explanation, we justi�ed modeling the posterior given the log

odds scores of Naive Bayes.

Finally, we considered and evaluated an initially promising candidate sigmoid family for this approach.

After evaluation, the results indicate other methods that may overcome the Naive Bayes nearly binary

estimates without being subject to the shortcomings of the particular sigmoid family investigated here.
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