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Abstract

The Shortest-Remaining-Processing-Time (SRPT) scheduling policy has long been known

to be optimal for minimizing mean response time. Despite this fact, SRPT scheduling

is rarely used in practice. It is believed that the performance improvements of SRPT

over other scheduling policies with respect to mean response time stem from the fact that

SRPT unfairly penalizes the large jobs in order to help the small jobs. This belief has

caused people to instead adopt \fair" scheduling policies such as Processor-Sharing (PS),

which produces the same expected slowdown for jobs of all sizes.

This paper investigates formally via analysis the problem of unfairness in SRPT. The anal-

ysis assumes an M/G/1 model, but emphasizes heavy tailed job size distributions, as are

characteristic of empirical workloads. We end with a trace-driven simulation experiment

which agrees with the analysis, even though arrivals are no longer Poisson.
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1 Introduction

It has been long known that always giving service to the job with the shortest-remaining-

processing-time (SRPT) is the optimal scheduling policy with respect to minimizing the

mean response time. Yet, many existing schedulers time-share the processor equally among

all jobs, giving each job an equal quantum of service. For example, a web-server today

time shares between its many concurrent open connections, giving each an approximately

equal share of processing time. In the limit, as the size of the quantum goes to zero, this

\fair-share" scheduling policy is known as Processor Sharing (PS).

There are reasons why the optimal policy SRPT is not prevalent in practice. In some

cases, it is because the size of a job (its processing requirement) is not known in advance,

so SRPT cannot be applied. However, in several applications this is not the case, and

it is possible to reasonably estimate the size of a job. For example, in the case of static

web requests to a web server, a job's processing requirement is proportional to the �le size

requested, which is known by the server. Likewise in several database applications, the

processing requirement for a query may be estimated in advance.

A second objection to switching to SRPT is that it is not clear whether the perfor-

mance improvements of SRPT over traditional scheduling policies like PS are signi�cant.

Comparing SRPT with other policies is not easy given the complex nature of existing

performance formulas for SRPT.

However, the foremost and very commonly cited objection to using SRPT is the fear

that large jobs may starve under SRPT [1, 25, 26, 23]. It is often stated that the huge

average performance improvements of SRPT over other scheduling policies stem from the

fact that SRPT unfairly penalizes the large jobs in order to help the small jobs. It is

believed that the performance of small jobs cannot be improved without hurting the large

jobs (see Conservation Law, Section 2) and thus \large jobs starve under SRPT".

This paper will investigate the objections cited above. Before we can state our results,

we need to de�ne the performance metrics and the workloads which we use.

The performance metrics we use throughout are response time and slowdown. The re-
sponse time of a job (a.k.a. turnaround time, 
ow time) is the time from when the job �rst

arrives at the system until it departs the system. The slowdown of a job (a.k.a. stretch,

normalized response time) is the ratio of its response time to its size. The slowdown metric

is important because it helps to evaluate unfairness. For example, in an M/G/1 system

with PS scheduling, all jobs (long and short) experience the same expected slowdown

(hence PS is \fair").

It turns out that the job size distribution is important with respect to evaluating SRPT.

We will therefore assume a general job size distribution. We will also concentrate on the

special case of heavy-tailed job size distributions. Heavy-tailed (HT) job size distributions

appear to �t many recent measurements of computing systems, as described in Section 3.
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In this paper we will prove the following results about SRPT, all in the context of an

M/G/1 queue with load � < 1.

On the topic of mean performance improvements:

1. Although it is well-known that SRPT scheduling optimizes mean response time, it is

not known how SRPT compares with PS with respect to mean slowdown. We prove

that SRPT scheduling always results in lower mean slowdown than PS scheduling

(Theorem 1, Section 4).

2. Given that SRPT improves performance over PS both with respect to mean response

time and mean slowdown, we next investigate the magnitude of the improvement.

We �nd that for HT job size distributions the improvement is very signi�cant under

high loads. In fact mean response time improves by a factor of 3-5 under SRPT and

mean slowdown improves by an order of magnitude under SRPT as compared with

PS. In general we prove that for all job size distributions as the load approaches one,

the mean response time under SRPT improves upon the mean response time under

PS by at least a factor of 2 and likewise for mean slowdown. (Corollaries 1 and 2,

Section 4).

On the topic of starvation we �rst show a very counter intuitive result.

1. The performance improvement of SRPT over PS does not usually come at the ex-

pense of the large jobs (Section 5.1, Theorem 2). In fact, we observe that for most

HT job size distributions every single job, including the very largest, prefers SRPT

to PS (unless the load is extremely close to 1).

2. While the above result does not hold at all loads, we show that no matter what

the load, at least 99% of the jobs have a lower expected response time under SRPT

than under PS, for HT job size distributions (Section 5.2, Corollary 3). In fact,

these 99% of the jobs do signi�cantly better. We show that these jobs have an

average slowdown of at most 4, at any load (Section 5.2, Theorem 7), whereas their

performance could be arbitrarily bad under PS as the load approaches 1. Similar,

but weaker results are shown for general distributions (Section 5.2, Theorem 4 and

5).

3. While the previous result is concerned only with 99% of the jobs, we are able to

prove a general upper bound on how much worse any job could fare under SRPT

as opposed to PS for general distributions. (Section 5.2, Theorem 6). Our bounds

show that jobs never do too much worse under SRPT than under PS. For example,

our results show that for all job size distributions, the expected response time under

SRPT for any job is never more than 3 times worse than under PS, when the load

is 0:8, and never more than 5.5 times when the load is 0:9. In fact, if the load is

less than half, then for every job size distribution, each job has a lower expected

response time (hence expected slowdown) under SRPT than under PS (Section 5.2,

Theorem 4).
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4. The above results show an upper bound on how much worse a job could fare under

SRPT as opposed to PS for general job size distributions. We likewise prove lower

bounds on the performance of SRPT as compared with PS for general job size

distributions. (Section 5.2, Theorem 8).

In the previous results we required assuming an M/G/1 system, because having arbi-

trary arrivals makes the adversary so powerful that it is di�cult to come up with good

bounds on the worst case starvation in that case. However, real arrivals do not arrive

according to a Poisson Process [12].

Therefore, we also test our results in a trace-driven simulation of a single server fed

by a web trace. The trace includes arrival times of HTTP requests at a web server, and

the service requirement of each request. We make the following observations:

1. We compare the mean performance (mean response time and mean slowdown) under

SRPT with that under PS. We �nd that the di�erence between PS and SRPT is

surprisingly quite similar to that predicted by our previous results for the M/G/1

model.

2. We �nd \unfairness to big jobs" to be non-existent. In particular, even the biggest

job performs better under SRPT as compared with PS. We �nd that the mean

slowdown as a function of job size is very similar in the trace-driven simulation as

compared with our analytical predictions.

Throughout this paper, for the sake of clarity, we compare SRPT with PS scheduling

only. The reason for this is that PS has the properties that it is (1) \Ultimately" fair (equal

slowdown for all jobs), (2) Insensitive to the variance of the job size distribution, which

implies good performance, and (3) Ubiquitous. Some other alternative policies which we

might consider are �rst-come-�rst-serve (FCFS), and non-preemptive last-come-�rst-serve

(LCFS). These two policies initially appear to be fair in that they don't favor small or

large jobs, however the policies are actually not fair since small jobs have much higher

slowdown than large jobs under these policies. Furthermore, these policies have poor mean

performance because they are sensitive to the second moment of the job size distribution.

2 Previous work

2.1 Mean results

It has long been known that SRPT has the lowest mean response time of any scheduling

policy [20],[24]. This result holds for any arrival sequence of jobs with arbitrary sizes.

Rajaraman et al. showed further that the mean slowdown under SRPT is at most twice

the optimal mean slowdown for any sequence of job arrivals [4].
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Schrage and Miller �rst derived the expressions for the response times in an M/G/1

system using SRPT [21]. This was further generalized by Pechinkin et al. to disciplines

where the remaining times are divided into intervals. The jobs with remaining times in

the smaller interval are served �rst but those within the same interval are served in �rst-

come-�rst server order [15]. The steady-state appearance of the M/G/1/SRPT queue was

obtained by Schassberger [19].

Though the above formulas have been known for a long time, they are di�cult to

evaluate numerically, due to their complex form (many nested integrals). Hence, the

comparison of SRPT to other policies was long neglected. More recently, SRPT has been

compared with other policies by plotting the mean response times for speci�c job size

distributions under speci�c loads [18, 16, 22, 21, 5]. A 7 year long study at University

of Aachen under Schreiber [16, 22] involved extensive evaluation of SRPT for various job

size distributions and loads. The survey paper by Schreiber [22] summarizes the results.

They show that SRPT has signi�cant mean response time improvements compared to

other policies like FCFS, LFCS and PS. The improvements are observed to be especially

signi�cant for workloads with a large coe�cient of variation [22, 18].

The above results comparing various scheduling policies are all plots for speci�c job

size distributions and loads. Hence it is not clear whether the conclusions based on these

plots hold for more general job size distributions and loads.

2.2 Unfairness results

With respect to starvation, it has often been cited that SRPT may lead to starvation

of large jobs [1, 25, 26, 23]. Usually, examples of adversarial arrival sequences where a

particular job starves are given to justify this. However, such worst case examples do not

re
ect the behavior of SRPT in the average case.

The term \starvation" is also used by people to indicate the unfairness of SRPT's
treatment of long jobs. It is believed that since SRPT favors small jobs, long jobs should

have a worse average performance under SRPT than under other policies. Perhaps this

misconception that large jobs su�er unfairly under SRPT is due to the famous Kleinrock

Conservation Law [9], [10, Page 197]. This law implies that if under some scheduling

policy the response time of small jobs is reduced, then the response times for the large

jobs would have to increase considerably. However, a careful examination of the proof

reveals that the conservation law does not apply to policies which make use of size, for

example SRPT.

Not much has been done to evaluate the problem of unfairness analytically. Recently,

Bender et al. consider the metric max slowdown of a job, as indication of unfairness

[1]. They show with an example that SRPT can have an arbitrarily large max slowdown.
However, max slowdown is not an appropriate metric to measure unfairness. A large job

may have an exceptionally long response time in some case, but it might do well most of

the time. A more relevant metric which we use in our paper is the max mean slowdown.
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There has also been work in the area of proposing new SRPT-like policies [2, 14] which

try to reduce the problem of unfairness, while still favoring the short jobs to minimize the

mean response time. These usually take the waiting time of a job so far into account, along

with its remaining size in determining its priority. These policies are usually analytically

intractable and have been evaluated by simulation only. However simulations show that

they are promising.

3 Background on heavy tailed job size distributions

Many application environments show a mixture of job sizes spanning many orders of

magnitude. Much previous work has used the exponential distribution to capture this

variability, However, recent measurements indicate that for many applications the expo-

nential distribution is a poor model and that a heavy-tailed distribution is more accurate.

In general a heavy-tailed distribution is one for which

PrfX > xg � x��;

where 0 < � < 2. The simplest heavy-tailed distribution is the Pareto distribution, with

probability mass function

f(x) = �k�x���1; �; k > 0; x � k;

and cumulative distribution function

F (x) = PrfX � xg = 1� (k=x)�:

The key property of a heavy-tailed distribution is that a tiny fraction (< 1%) of the very

longest jobs comprise over half of the total load. We will refer to this as the heavy-tailed
property throughout this paper.

Heavy-tailed distributions with � � 1 appear to �t many recent measurements of

computing systems [11, 7, 3, 8, 17]. Observe that lower �-values indicate greater variability

in the job size distribution and stronger heavy-tailed properties. In fact � � 2 indicates

in�nite variance. Thus, the above measurements indicate very high variability in job

service requirements and a very heavy tail.

In practice, there is some upper bound on the maximum job size. Throughout this

paper, we therefore model job sizes as being generated i.i.d from a distribution that is

heavy-tailed, but has an upper bound. This truncated distribution is referred to as the

Bounded-Pareto distribution [6]. It is characterized by three parameters: �; the expo-

nent of the power law; k, the shortest possible job; and p, the largest possible job, The

probability density function for the Bounded Pareto B(k; p; �) is de�ned as:

f(x) =
�k�

1� (k=p)�
x���1 k � x � p:
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In this paper, B(�) will denote the distribution B(k; p; �) obtained by keeping the mean

�xed (at 3000) and the maximum value �xed (at p = 1010), which correspond to typical

values taken from [3].

4 Mean analysis of M/G/1/SRPT

This section presents results on the mean response time and slowdown of M/G/1/SRPT.

Throughout this section and the next we assume that the system is a single M/G/1 queue

with arrival rate �. We will assume that the job size distribution is continuous with

probability density function f(t). The cumulative job size distribution will be denoted by

F (t). We will denote 1�F (t) by F (t). X will refer to the service time of a job. The load

(utilization), �, of the server is

� = �E[X ]:

The load made up by the jobs of size less than or equal to x, �(x), is

�(x) = �

Z
x

0
tf(t)dt:

The second moment of job sizes less than or equal to x, m2(x), is

m2(x) =

Z
x

0
t2f(t)dt:

The expected response time for a job of size x under SRPT, E[T (x)]SRPT , can be

decomposed into the expected waiting time of the job, E[W (x)]SRPT , and the expected

residence time of the job E[R(x)]SRPT , where E[W (x)] is the expected time for a job of size

x from when it �rst arrives to when it receives service for the �rst time, and E[R(x)]SRPT
is the expected residence time (the time it takes for a job of size x to complete once it

begins execution). The formulas for these expressions are given by [21]

E[T (x)]SRPT = E[W (x)]SRPT + E[R(x)]SRPT (1)

E[W (x)]SRPT =
�(m2(x) + x2(1� F (x)))

2(1� �(x))2
(2)

E[R(x)]SRPT =

Z
x

0

dt

1� �(t)
(3)

For PS the expected response time for a job of size x, E[T (x)]PS, is given by [27]

E[T (x)]PS =
x

1� �
(4)

For any policy, if E[T (x)] is the expected response time for a job of size x, then the

expected slowdown, E[S(x)], is given by

E[S(x)] =
T (x)

x
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The mean response time and mean slowdown are given by E[T ] =
R
1

0 E[T (x)]f(x)dx and

E[S] =
R
1

0 E[S(x)]f(x)dx respectively.

Observe that for a given load �, all jobs have the same slowdown under PS, since,

E[S(x)]PS =
1

1��
for any x. Thus PS is ultimately \fair".

We now show that the mean performance advantages of SRPT over PS are signi�cant.

In Figure 1, we plot the mean response time of SRPT versus PS as a function of load1.

In this �gure we assume a heavy tailed (HT) workload, as is consistent with empirical

measurements of real workloads (see Section 3). Speci�cally we consider a Bounded Pareto

job size distribution B(� = 1:1) (see Section 3). Figure 1 shows the mean response time

under PS versus SRPT. Observe that the the di�erence between SRPT and PS increases

as the load is increased. At a load of 0.8, the mean response time under PS is 3 times

that under SRPT and 6 times at load of 0.95. We investigate a variety of di�erent job size

distributions (not shown here) and �nd almost identical behavior. Clearly since SRPT
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x 10
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E[
T]

Mean Response time as a function of load
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SRPT

Figure 1: Response Time for Bounded Pareto distribution, B(1.1).

is optimal with respect to mean response time, the mean response time under SRPT is

lower than that under PS for any job size distribution. We will prove that for any job size

distribution, the mean response time under SRPT is less than half that under PS, as the

load approaches 1 (See Corollary 1 below).

We now look at slowdown under SRPT versus PS. Figure 2 shows the mean slowdown

for B(� = 1:1) as a function of load. The improvement is much more dramatic. Even

1Due to the highly nested nature of the E[T ]SRPT formula, these plots were only possible by using a

symbolic math package such as MathematicaTM .
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Figure 2: Slowdown for Bounded Pareto distribution B(1.1).

at a load of 0:95, where the mean slowdown under PS is 20, the mean slowdown under

SRPT is close to 1. In fact, we investigated other job size distributions as in the case

of mean response time. We �nd that slowdown improvement is more sensitive to job

size distribution than the mean response time improvement. However, the plots for mean

slowdown look similar to Figure 2 for a wide range of heavy-tailed distributions (not shown

here). We show in Theorem 7, Section 5.2 that the extreme improvement witnessed in

Figure 2, is a consequence of the heavy tailed property mentioned earlier.

For general job size distributions, we prove that SRPT has better mean slowdown than

PS at any load. Furthermore, the mean slowdown under SRPT is less than half that under

PS as load approaches 1.

Theorem 1 Given a load �, then for any distribution of job sizes, then,

E[T ]SRPT � h(�)E[T ]PS

E[S]SRPT � h(�)E[S]PS

where

h(�) =
�

2
�
(1� �) log (1� �)

�

In particular, for any load �, E[S]SRPT � E[S]PS.

The proof of Theorem 1 will be given in Section 5.2, since it requires analysis not yet

developed.

Observing that h(�)! 1
2 , as �! 1, we get,

8



Corollary 1 For any job size distribution, as the load approaches 1, �! 1, E[T ]SRPT �
1
2
E[T ]PS.

Corollary 2 For any job size distribution, as the load approaches 1, �! 1, E[S]SRPT �
1
2E[S]PS.

It is easy to see that the factor of two improvement in Corollaries 1 and 2 is in fact tight,

given the assumption of general distributions. To see this, observe that for the constant

job size distribution, SRPT is identical to FCFS. As the load approaches 1, it can be seen

that E[T ]SRPT = E[T ]FCFS �
1
2
E[T ]PS.
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Figure 3: This �gure summarizes our results on the improvement of SRPT over PS with
respect to mean slowdown and mean response time for various distributions. The lowest
curve is a lower bound for general job size distributions, which is a graphical representation
of Theorem 1.

Figure 3 depicts pictorially all of the results mentioned in this section. This �gure

shows the percentage improvement of SRPT over PS. Begin by observing the bottom-most

curve (consisting of circles). This curve gives a lower bound on the percentage improve-

ment of SRPT over PS for general job size distributions. The curve shows that when load

is very high, the percentage improvement of SRPT over PS is at least 100%. This im-

provement holds for both mean response time and mean slowdown. However, for most job

size distributions, the improvement is much greater than the lower bound. Consider next

the curve second from the bottom consisting of stars. This curve shows the improvement

in mean response time of SRPT over PS for an exponential job size distribution. For load

0.8, the improvement is already a 100%, and for load 0.9, the improvement is close to
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200%. The dashed curve (third from bottom) shows the improvement in mean response

time of SRPT over PS for the B(1:1) distribution. At a load of 0.8, the improvement is

about 150%, and at a load of 0.9 the improvement is over 300%. The improvement in

mean slowdown is even more exaggerated as shown by the top two curves.

At this point it is tempting to assume that the huge mean slowdown improvements of

SRPT as seen in Figure 2 are due to disproportionately helping the many small jobs and

sacri�cing the fewer big jobs. In the next section we will show that this is in fact not the

case.

5 Unfairness Analysis

It is commonly believed that it is not possible to improve the performance of a job with-

out hurting the performance of some other job. In particular, if one switches to a new

scheduling policy which improves the mean performance of some jobs, then it must do so

at the cost of hurting some other jobs. We �rst dispel this myth.

Section 5.1 motivates our main results. We �rst show with an example that there exist

job size distributions such that every job can do better under SRPT than under PS. We

also give intuition as to why this might be true. We then show the main analytical results

on unfairness in Section 5.2.

5.1 All jobs can do better

We saw in Figures 1 and 2 that for B(� = 1:1) at load 0.9, mean response time and

mean slowdown under SRPT is substantially less than under PS. We now ask whether

this mean improvement comes at the cost of severely penalizing large jobs. Figure 4 below

shows the slowdown as function of job size, at load 0.9. Speci�cally we show the expected

slowdown for a job in each percentile of the job size distribution (where 100 percentile

indicates the very largest job). Observe that, each job has an expected slowdown of 10

under PS, but surprisingly every single job has a smaller slowdown (hence response time)

under SRPT. Even the largest job has a slowdown of 9.54 under SRPT. Thus, even the

largest job spends a lesser amount of time under SRPT than under PS.

We state this important observation as a theorem.

Theorem 2 There exist job size distributions such that every job does better under SRPT
than under PS.

Proof: The proof follows from Figure 4.

10



0 20 40 60 80 100
0

2

4

6

8

10

12

Slowdown of the very largest job

Percentile of Job Size distribution

E[
S(

x)
]

PS

SRPT

Figure 4: Expected slowdown as a function of job size for B(1:1) distribution, at load
� = 0:9. Even the largest job prefers SRPT to PS

Surprisingly, this fact is true for many job size distributions, in particular heavy-tailed

ones. This is important because HT distributions are representative of today's empirical

workloads (Section 3).

For example, if the job size distribution is B(1.1) every job does better under SRPT

as long as the load is below 0.96. In fact for B(1.5) every job does better for loads up to

0.999. In general we observe the following:

Observation: For many heavy-tailed job size distributions E[T (x)]SRPT � E[T (x)]PS,

for all x, unless � is extremely close to 1.

It is clear that under SRPT slowdown should be better for small jobs, since SRPT

helps the small jobs. However, it is not at all clear why this should also be the case for

large jobs. Intuitively, the following explains why this should be true:

Under SRPT, a job is a�ected only by the other jobs in the system which have a smaller

remaining size than itself. Once a job begins execution, its remaining size diminishes with

time. Thus the load seen by the job gets smaller as the job is worked upon. In contrast

under PS, throughout its execution, a job is a�ected by all the other jobs present in the

system. Thus the load that the job sees does not change with time. Thus it makes sense

that, the expected residence time of a job under SRPT is smaller than its expected response

time under PS. This di�erence is especially signi�cant for heavy-tailed distributions where

the large jobs make up most of the load.

The above argument has shown intuitively why the residence time under SRPT is

smaller than the response time under PS. To argue about response time under SRPT,

however, we also need to take into account the waiting time under SRPT. Although the

waiting time under SRPT may be large for big jobs, it turns out that the waiting time

is often not great enough to overturn the above conclusion. In the next section, we will
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provide formal proofs which take all these details into account.

5.2 Unfairness analysis for general job size distributions

Theorem 2 shows the existence of job size distributions for which every job prefers SRPT

to PS under most loads. We now extend this result along many directions. First, we show

a similar but weaker result that holds for all job size distributions.

Theorem 3 For any job size distribution, if the load is not more than half then every job
under SRPT has a lower expected response time than under PS.

The proof of this theorem will follow from Theorem 4. The condition that the load is

lower than half in Theorem 3 is rather restrictive. However, if we relax the restriction

that every job performs better, then we get the following stronger result which holds at

all loads.

Theorem 4 For any job size distribution f and any load � < 1,

E[T (x)]SRPT � E[T (x)]PS

for every job of size x such that �(x) � 1
2 (i.e. jobs of size � x comprise less than half the

load).

Theorem 4 implies Theorem 3, since � � 1
2 directly implies �(x) � 1

2 for all x. The proof

of Theorem 4 will follow from a more general Theorem 5 below.

Theorem 4 becomes especially useful if we relate the load percentiles and the job

percentiles (i.e. �(x) and F (x)). The heavy-tailed property stated in Section 3 implies that

less than 1% of the very largest jobs make up more than half the load. Thus Theorem 4

implies that at least 99% of the jobs have smaller response times under SRPT than under

PS no matter what the load. Thus we have Corollary 3.

Corollary 3 For distributions with the heavy-tailed property, at least 99% of the jobs have
a lower response time under SRPT than under PS at any load.

Observe however that even for the \light-tailed" exponential (c = 1) and hyper-exponential

distributions with c � 3 (where c is the coe�cient of variation), Theorem 4 implies that

more than 81% and 95% respectively of the jobs do better at any load.

We now state and prove a generalization of Theorem 4 which likewise holds for any

job size distribution and load � < 1.

Theorem 5 For any job size distribution f and load �,

E[T (x)]SRPT � E[T (x)]PS
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for all jobs of size x such that

2(1� �(x))2 � (1� �) (5)

Proof: E[T (x)]PS can be written as
R
x

0
dt

1��
. And, E[R(x)]SRPT =

R
x

0
dt

1��(t)
.

Since � � �(t) for any t, the expected residence time for any job under SRPT is smaller

than the expected response time under PS. We will bound this di�erence and obtain

conditions under which the di�erence more than compensates for the waiting time under

SRPT.

E[T (x)]PS � E[R(x)]SRPT =

Z
x

0

dt

1� �
�

Z
x

0

dt

1� �(t)

=

Z
x

0

(�� �(t))dt

(1� �(t))(1� �)

�

Z
x

0

(�� �(t))dt

1� �
[Since (1� �(t)) � 1]

=
x(�� �(x)) + �m2(x)

1� �
[Since �0(t) = �tf(t)] (6)

�
�x2(1� F (x)) + �m2(x)

1� �
(7)

Line (7) follows from Line (6) since:

x(�� �(x)) = �x

Z
1

x

tf(t)dt

� �x2
Z
1

x

f(t)dt

= �x2(1� F (x))

Comparing the expression for E[W (x)]SRPT in equation (2) with (7) it is clear that,

E[T (x)]PS � E[R(x)]SRPT � E[W (x)]SRPT

whenever the condition (5) is met.

Thus, E[T (x)]PS � E[T (x)]SRPT if 2(1� �(x))2 � (1� �).

Proof: (Theorem 4) If �(x) � 1
2 , then 2(1� �(x)) � 1.

Observe that for all x, (1� �(x)) � (1� �) .

Multiplying both the inequalities we get, 2(1��(x))2 � (1��) and the result follows from

Theorem 5.

Theorems 3 and 4 show that for all job size distributions,
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1. If the load is below half, then all jobs have a lower expected response time under

SRPT as compared to PS.

2. Even if the load is above half, a majority of the jobs have better expected response

times under SRPT.

But what about the small fraction of jobs which have a higher slowdown under SRPT

than under PS, how bad can their starvation be? We will show that for a �xed load, no

job can do arbitrarily badly on the average. Theorem 6 establishes an bound on the ratio

of the expected response time of a job of size x under SRPT to that under PS.

Theorem 6 For all job size distributions f , for all loads �, for all x,

E[T (x)]SRPT �
1� �

1� �(x)

�
�

2(1� �(x))
+ 1

�
�E[T (x)]PS (8)

In particular,

E[T (x)]SRPT �

�
�

2(1� �)
+ 1

�
�E[T (x)]PS (9)

Before we can prove this theorem, we need one observation:

Lemma 6.1 Z
x

0
tf(t)dt+ x � F (x) � E[X ]

Proof:

E[X ] =

Z
x

0
tf(t)dt+

Z
1

x

tf(t)dt

�

Z
x

0
tf(t)dt+ xF (x)

Proof: (Theorem 6)

E[T (x)]SRPT =
�
R
x

0 t
2f(t)dt+ �x2F (x)

2(1� �(x))2
+

Z
x

0

dt

1� �(t)

�
�
R
x

0 t
2f(t)dt+ �x2F (x)

2(1� �(x))2
+

x

1� �(x)
[Since (1� �(x)) � (1� �(t)); for t � x]

�
�x

R
x

0 tf(t)dt + �x2F (x)

2(1� �(x))2
+

x

1� �(x)

14



=
x

1� �(x)

"
�
R
x

0 tf(t)dt + �xF (x)

2(1� �(x))
+ 1

#

�
x

1� �(x)

�
�E[X ]

2(1� �(x))
+ 1

�
[By Lemma 6.1]

=
x

1� �

1� �

1� �(x)

�
�

2(1� �(x))
+ 1

�

= E[T (x)]PS
1� �

1� �(x)

�
�

2(1� �(x))
+ 1

�

Thus equation (8) follows.

We observe that the expression 1��
1��(x)

h
�

2(1��(x))
+ 1

i
is maximized when x is the largest

job (i.e. �(x) = �), in which case we get E[T (x)]SRPT � ( �

2(1��)
+ 1)E[T (x)]PS.

Theorem 6 shows that for a given a load �, the expected response time for a job cannot

be arbitrarily worse than that under PS. For example, if � = 0:8, no job has an expected

response time more than 3 times that under PS, and never more than 5.5 times that under

PS when the load is 0:9. In reality however, the factor is much better, since our analysis

is not tight and it holds for all job size distributions. Stronger results can be obtained for

speci�c job size distributions.

Though the bound in (9), �

2(1��) + 1, is somewhat weak, the stronger bound as a

function of x, shown in equation (8), is quite useful. For example, at � = 0:9, equation

(8) implies that E[T (x)]SRPT < 1
3E[T (x)]PS, for all jobs of size x such that �(x) � �

2 .

Coupled with the heavy-tailed property, the consequences are striking. The heavy-tailed

property implies that at at least 99% of the jobs perform at least three times better under

SRPT as compared with PS. So, at most only 1% of the remaining jobs can do worse

under SRPT. Applying equation (8) again we see that these 1% jobs can be at most 5.5

times worse under SRPT than under PS. Thus the improvements in the mean slowdown

would be close to a factor of at least 3, since it is dominated by the improvements for the

small jobs. At higher loads, the results are even more striking. At � = 0:99, the expected

slowdown for jobs such that �(x) � �

2 (99% of the jobs for heavy-tailed distributions)

under SRPT is at least about 25 times better than that under PS for any distribution.

So, the mean slowdown will be signi�cantly better for heavy-tailed distributions at this

load. Theorem 7 below makes this observation precise.

Theorem 7 For any job size distribution and any load � < 1,

E[S(x)]SRPT � 2 + 2�

for all jobs of size x such that �(x) � 1
2 . Hence, for HT job size distributions at least 99%

of the jobs have an expected slowdown of at most 4, irrespective of the system load.
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Proof: Follows directly from equation (8), Theorem 6.

Theorem 7 and Theorem 6 explain why Figure 2 is typical of all heavy-tailed distribu-

tions.

Figure 5 summarizes our results on the performance improvement under SRPT for the

majority of the jobs (i.e. for jobs of size x such that �(x) � �

2
).
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Figure 5: This �gure shows the percentage improvement in the expected slowdown expe-
rienced by the majority of jobs, (i.e., jobs of size x such that �(x) � �

2). The solid line
indicates a lower bound for all distributions.

For general job size distributions, we need not have the huge mean slowdown improve-

ments we observe for HT distributions. We will now use the previous theorem to prove

Theorem 1.

Proof: (Theorem 1) Let g(�(x)) denote the improvement factor in Theorem 6.

g(�(x)) =
1� �

1� �(x)

�
�

2(1� �(x))
+ 1

�

So, E[T (x)]SRPT � g(�(x))E[T (x)]PS.

E[T ]SRPT =

Z
1

0
E[T (x)]SRPT f(x)dx

�

Z
1

0
g(�(x))E[T(x)]PS f(x)dx

=

Z
�

0

1

�

g(�(x))

1� �
d(�(x)) Since; d�(x) = �xf(x)dx

=
1

�
E[T ]PS

Z
�

0
g(�(x))d(�(x))
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Integrating g by parts, we get

Z
�

0
g(�(x))d�(x) =

�2

2
� (1� �) log (1� �) (10)

Thus, it follows that E[T ]SRPT � h(�)E[T ]PS.

For slowdown, we similarly obtain,

E[S]SRPT =

Z
1

0
E[S(x)]SRPT f(x)dx

�

Z
1

0
E[S(x)]PS g(�(x))f(x)dx [Dividing both sides of equation (8) by x]

=

Z
�

0

1

1� �
g(�(x))

1

�x
d(�(x))

Observe that g(�(x)) is increasing in �(x) and 1
x
is decreasing in �(x). We now apply

the Chebyshev Integral Inequality [13], which states that if u(y); v(y) are non-negative

functions which are non-decreasing and non-increasing respectively, then

(b� a)

Z
b

a

u(y)v(y)dy �

Z
b

a

u(y)dy

Z
b

a

v(y)dy (11)

Setting y = �(x); u(�(x)) = g(�(x)); v(�(x)) = 1
x
; a = 0 and b = � we get,

E[S]SRPT �
1

1� �

1

�

Z
�

0
g(�(x))d�(x)

Z
�

0

d�(x)

�x

=
1

�

Z
�

0

1

1� �(x)

�
�

2(1� �(x))
+ 1

�
d�(x)

Z
1

0
f(x)dx

=
h(�)

1� �

Thus, E[S]SRPT � h(�)E[S]PS.

We now show that h(�) � 1 for all � � 1.

d(h(�)

d�
=

1

2
+

1

�
+
log (1� �)

�2

Using the identity,

log (1� x) = �x �
x2

2
�
x3

3
� : : :

we get that
d(h(�))

d�
� 0; 8 0 � � � 1

Thus h(�) is decreasing in �. Observing that h(0) = 1, it follows that h(�) � 1, for all �.
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Thus E[S]SRPT � E[S]PS.

Figure 3 plots the worst case improvement factor of SRPT over PS with respect to

mean slowdown, as a function of �.

So far, we have shown two types of results with respect to starvation. We either show

that all jobs do well for most loads. Or, most jobs do well for all loads. A natural question

to ask at this point is, whether there are job size distributions for which all jobs do well

at all loads.

We show that this is not the case. When load approaches 1, the largest job will perform

worse under SRPT for any job size distribution (which has a well-de�ned largest job).

Theorem 8 For every bounded distribution, 9� < 1 such that

E[T (l)]SRPT > E[T (l)]PS

where l is the size of the largest job.

Proof: We will lower bound E[T (l)]SRPT and show that there exists a � < 1 such that

E[T (l)]SRPT > l

1�� = E[T (l)]PS.

The waiting time of the largest job under SRPT is simply
m2(l)
2(1��)2

. To lower bound

the residence time under SRPT we use the Chebyshev Integral Inequality, (11), with

y = x,u(x) = 1
1��(x) , v(x) = 1 � �(x), a = 0 and b = l. Note that u and v satisfy the

conditions in (11) since �(x) is non-decreasing in x. Thus we get,

1 �

R
l

0(1� �(x))dx
R
l

0
dx

1��(x)

l2

Equivalently,

Residence Time(l) =

Z
l

0

dx

1� �(x)
�

l2

l � l�+ �m2(l)

So,

E[T (l)]SRPT � E[T (l)]PS �
�m2(l)

2(1� �)2
+

l2

l� �l+ �m2(l)
�

l

1� �

=
�m2(l)

1� �

�
1

2(1� �)
�

1

(1� �(1� d))

�
[ where d =

m2(l)

lE[X ]
]

=
�m2(l)

2(1� �)2(1� �(1� d))
(�(1+ d)� 1)

Since both l and E[X ] are �nite, d > 0. Thus for any � < 1, such that �(1 + d) > 1,

E[T (l)]SRPT � E[T (l)]PS > 0.
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Hence, for any job size distribution, there is a load (less than 1) such that, the largest

job has a higher expected response time under SRPT than under PS.

6 Trace-driven simulation comparing SRPT with PS

In Sections 4 and 5 we analyze the mean performance of SRPT (mean response time and

mean slowdown) and the unfairness properties of SRPT under an M/G/1 model. In this

section we investigate whether these results are also consistent with more realistic arrival

processes. We consider a trace-driven simulation experiment of a single server fed by a

trace of static requests to a Web server. The trace contains both the arrival times and

the job sizes, where we assume that the job's size (in seconds) is proportional to the \�le

size" (in bytes) associated with the request. This experiment is described in Section 6.1.

In the above experiment, we ignore the overhead due to cost of preemptions. We are

allowed to do this because the expected number of preemptions is provably higher under

PS than under SRPT, as shown in Section 6.2.

6.1 Trace-driven simulation experiment

The data for our trace-driven simulation experiment is obtained from the Internet Tra�c

Archives2. The data consists of HTTP requests observed on the Home IP modem bank at

UC Berkeley during 4 consecutive hours on Nov 17, 19963. We exclude the requests which

correspond to requests of size less than 128 bytes, since they indicate that the server did

not process the request. This modi�ed trace contains about 75,000 requests.

A quick examination of the trace data shows that it closely �ts a heavy-tailed Pareto

distribution B(� = 1:2; k = 1024; p = 4700000) with mean 8700 and squared coe�cient of

variation C2 = 35.

We simulated a single processor with a single CPU. To create the desired system load,

we scale the service times by the appropriate factor.

Figure 6 is produced by subdividing the 75,000 requests into 25 intervals of 3000

requests each. We then measure the mean slowdown for each interval. The system load is

0:9. Figure 6 shows that the mean slowdown under PS 
uctuates between 5 and 30, with a

mean at about 10. This is consistent with the M/G/1/PS formula (4), although the arrival

process now is not Poisson. The mean slowdown under SRPT is about 1:5, with much less


uctuation. This is again consistent with the results predicted from the M/G/1/SRPT

formula (1) (assuming the distribution to be B(� = 1:2; k = 1024; p = 4700000), which is

2http://ita.ee.lbl.gov/html/traces.html
3UC Berkeley Home IP Web Traces, collected by Steven D. Gribble.
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a good analytic approximation to the workload obtained from the trace).
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Figure 6: The �gure shows simulation results for the mean slowdown during the course

of 75,000 jobs under SRPT and under PS. Jobs have been grouped into 25 intervals, to

show the 
uctuation of mean slowdown with time.
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Figure 7: This �gure shows simulation results of the expected slowdown as a function

of job size under SRPT and under PS. Even jobs in the 100th-percentile of the job size

distribution, have an expected slowdown under SRPT which is signi�cantly below that of

PS.

To investigate unfairness, we now plot the expected slowdown for each job as a function
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of the percentile of job size. Figure 7 shows that jobs of all sizes have a consistent mean

slowdown of 10 under PS, which is in exact agreement with the result for M/G/1/PS.

Under SRPT, the expected slowdown of jobs in the bottom 30 percentile is barely above

1; the expected slowdown of jobs in the 95th percentile is about 2; and the expected

slowdown of jobs in the 100th percentile is about 4, which is still less than half that of PS.

Again, these observed values of expected slowdown under SRPT agree very closely with

the analytically predicted values for SRPT.

6.2 Preemption overhead

While implementing a scheduling policy with preemptions (like SRPT, PS, FB ...) the

overhead associated with preemptions is a cause for concern in real systems. In real

systems, PS is implemented as round robin where each process gets a �nite time quantum.

Observe that the number of preemptions depends on the size of this time quantum.

However, under SRPT, the amortized number of preemptions per job is at most two.

This is true irrespective of the arrival process. To see this, observe that a job may be

preempted under SRPT only when a new job arrives into the system or an existing job

is completed. Since any job arrives and completes exactly once, then total number of

preemptions is never more than twice the number of job arrivals.

Since most jobs require more than two time quantums of service, under any reasonable

implementation of PS the average number of preemptions per job will be more than two.

7 Conclusion

The main contribution of this paper is to show that the long held belief that large jobs

do worse under SRPT as compared to a fair policy like PS is not necessarily true. We

prove that under moderate system load, for any job size distribution, all jobs prefer SRPT
to PS. As the load increases, this statement is only true for job size distributions with

the heavy-tailed property. However the situation is not as bad as one might think for

general distributions. Even under conditions of higher load, for general distributions, we

show that the majority of jobs are insensitive to the higher load. For the remaining jobs,

we prove absolute bounds on how high the expected slowdown under SRPT can be as

compared with PS.

While it was known that SRPT is optimal with respect to mean response time, the

degree of the improvement in mean response time of SRPT over PS was not known for

general job size distributions. Also, no comparison of SRPT over PS existed with respect

to mean slowdown. We obtain bounds on the improvement factor of SRPT over PS under

general job size distributions, as a function of load for both mean response time and mean

slowdown.
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Our analysis highlights the fact that the job size distribution plays a very signi�cant

role in the choice of the scheduling policy. Whereas PS is insensitive to the job size

distribution, the performance of SRPT improves signi�cantly under more heavy-tailed

distributions. Observations were made earlier about the good behavior of SRPT for work-

loads with high variance. We show that this is really a consequence of the heavy-tailed

property.
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