
Toward Compositional Analysis of Security Protocols

Using Theorem Proving

Oleg Sheyner Jeannette Wing

January 2000

CMU-CS-00-106

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A shorter version of this paper has been submitted to the Thirteenth IEEE Computer Security Founda-

tions Workshop, July 3-5, 2000

Abstract

Complex security protocols require a formal approach to ensure their correctness. The protocols are fre-
quently composed of several smaller, simpler components. We would like to take advantage of the com-
positional nature of such protocols to split the large veri�cation task into separate and more manageable
pieces.
Various formalisms have been used successfully for reasoning about large protocol compositions by hand.
However, hand proofs are prone to error. Automated proof systems can help make the proofs more rig-
orous. The goal of our work is to develop an automated proof environment for compositional reasoning
about systems. This environment would combine the power of compositional reasoning with the rigor of
mechanically-checked proofs. The hope is that the resulting system would be useful in veri�cation of secu-
rity protocols of real-life size and complexity.
Toward this goal, we present results of a case study in compositional veri�cation of a private communication
protocol with the aid of automated proof tool Isabelle/IOA.

This research is sponsored in part by the the National Science Foundation under Grant No. CCR-9523972

and the National Security Agency under Award Number MDA904-99-C-5020. The U.S. Government is authorized

to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily

representing the o�cial policies or endorsements, either expressed or implied of the U.S. Government.

Keywords: speci�cation, veri�cation, security protocols, theorem proving, IO automata, Isabelle

1 Introduction

Today's security protocols require a formal approach to ensure that they satisfy important correctness
properties. Traditional ways of verifying correctness by hand are prone to error and require a large investment
of human e�ort and patience. Furthermore, these problems tend to grow worse as the size and complexity
of the system being veri�ed both increase. Automated proof tools can help make the proofs more rigorous.
Such tools also need a lot of human guidance, and the automation they do provide typically does not scale
well with the size of the problem.

The protocols we are interested in are frequently composed of several smaller, simpler protocols. We
would like to take advantage of the compositional nature of such protocols to split the large veri�cation task
into separate, more manageable pieces. Existing proof systems do not provide a structured environment
for compositional reasoning about systems. The goal of our work is to develop such an environment. This
environment would combine the power of compositional reasoning with the rigor of mechanically-checked
proofs. We would like the resulting system to be useful in veri�cation of security protocols of real-life
size and complexity. Toward that goal we have conducted a case study in compositional veri�cation of a
private communication protocol with the aid of the automated proof tool Isabelle. This paper describes our
experiences with the case study.

I/O automata [Lyn96, LT89] have been successfully employed in hand veri�cation of large reactive sys-
tems. I/O automata express reactive distributed systems concisely as compositions of several smaller sub-
systems. Meta-theorems about compositional properties of I/O automata help prove correctness theorems
about the systems they describe.

Nancy Lynch has applied the I/O automata formalism to verifying a private communication proto-
col [Lyn99]. In this paper we take a version of the same protocol and verify its properties using the theorem
prover Isabelle and I/O automata meta-theory developed by Olaf M�uller [M�ul98]. The protocol is decom-
posed into two components whose properties are proven separately. The top-level proofs then combine
correctness theorems about the components and obtain a correctness proof about the composite protocol.
The resulting formal description could be further combined with other security protocol components, and
such compositions can be veri�ed in Isabelle using the same compositional reasoning techniques.

The rest of this paper is organized as follows. Section 2 gives an introduction to I/O automata and
the meta-theorems used in the Isabelle proofs. Section 3 describes two recent e�orts to incorporate I/O
automata into mechanical theorem provers PVS and Isabelle. Sections 4 and 5 discuss our experiences with
verifying a private communication protocol of I/O using the Isabelle theorem prover. In section 6 we discuss
our results.

2 An Introduction to I/O Automata

The Input/Output Automaton (I/O Automaton) model [Lyn96, LT89] is a general model used for formal
descriptions of distributed reactive systems. An I/O Automaton A is a state machine in which the state
transitions are associated with named actions. The actions are classi�ed as either input, output, or internal.
The input and output actions are called external actions. We let ext(A) designate the set of external actions
of automaton A. External actions are used for communication with the automaton's environment, while the
internal actions are visible only to the automaton itself.

I/O Automata state machines are typically given in a precondition-e�ect style. For each action, the code
speci�es the preconditions under which the action is permitted to occur, as a predicate on the automaton
state, and the e�ects of the action on the automaton state. The e�ects may be given as a series of imperative
statements, in which case it is understood that all of the e�ects occur in one atomic step.

The composition operator jj allows an automaton representing a complex system to be constructed by
composing automata representing individual system components. The composition identi�es actions with
the same name in di�erent component automata. When any component automaton performs a step involving
an action �, so do all component automata that include �. The state of the composition is the product of
the states of its components.

1

When we compose a collection of automata, output actions of the components become output actions of
the composition, internal actions of the components become internal actions of the composition, and actions
that are inputs to some components but outputs of none become input actions of the composition.

A triple (s; �; s0) is a step of an I/O automaton A if A has a transition from state s to state s0 via action
�. An execution fragment of A is a �nite or in�nite sequence s0�0s1�1 : : : of alternating states and actions
of A, where each subseqence si�isi+1 is a step of A. An execution of A is an execution fragment whose
�rst state is a start state of A. The trace of an execution � is the subsequence
 of � consisting of external
actions of A. The set of all traces of A is designated traces(A).

Let
 be a �nite (possibly empty) sequence of external actions of automaton A, and let s and t be states

of A. The triple (s;
; t) is a move of A (written s

)A t) if there exists a �nite execution fragment � of A

starting in s and ending in t such that trace(�) =
. Thus, a move s

)A t is a series of state transitions

with the externally-visible behavior
.

For reasoning about correctness properties of I/O automata, we use the notion of implementation relation,
also called trace inclusion.

De�nition 2.1. Given two I/O automata A and C with sets of identical external actions, we say that C

implements A (denoted C � A) i� traces(C) � traces(A).

Implementation relations are used to show that a concrete system C safely implements an abstract system
A. Typically, A is a speci�cation of safety properties we would like the concrete system to exhibit. Proving
the relation C � A guarantees that C exhibits only the external behaviors allowed by the speci�cation A.

Implementation relations can be established by exhibiting simulation relations between the concrete and
abstract automata.

De�nition 2.2. Let C and A be I/O automata with identical external actions. A forward simulation from

C to A is a relation R over states(C)� states(A) that satis�es the following conditions:

� If s is a start state of C, then there is a start state s0 of A such that (s; s0) 2 R.

� If state s is reachable in C, state s0 2 R[s] is reachable in A, a 2 ext(C), and (s; a; t) is a step of C,

then there is a move s0
a
)A t0 in A, where t0 2 R[t].

Intuitively, every externally visible step (s; a; t) of automaton C is simulated by a move s0
a
)A t0 of

automaton A. The move must include exactly one external action a, but may include any �nite number of
internal actions.

We write C �F A when there is a forward simulation from C to A. The utility of forward simulations is
established by the following theorem.

Theorem 2.1. Let C and A be I/O automata with identical external actions. If C �F A, then C � A.

In this paper we make use of two weaker forms of forward simulations: re�nement mappings and weak

re�nement mappings. A re�nement mapping is a restricted form of forward simulations that allows each
state of the concrete automaton C to be related to exactly one state of the abstract automaton A. Weak
re�nement mappings are further restricted. They allow the abstract automaton A to simulate a step of the
concrete automaton C by at most one step.

De�nition 2.3. Let C and A be I/O automata with identical external actions. A re�nement mapping from
C to A is a function M from states(C) to states(A) that satis�es the following conditions:

� If s 2 start(C) then M (s) 2 start(A).

� If state s is reachable in C, a 2 ext(C), and (s; a; t) is a step of C, then state M (s) is reachable in A

and there is a move M (s)
a
)A M (t) in A.

2

De�nition 2.4. Let C and A be I/O automata with identical external actions. A weak re�nement mapping
from C to A is a function M from states(C) to states(A) that satis�es the following conditions:

� If s 2 start(C) then M (s) 2 start(A).

� If state s is reachable in C, a 2 ext(C), and (s; a; t) is a step of C, then state M (s) is reachable in A

and (M (s); a;M (t)) is a step of A.

It is trivial to show that weak re�nement mappings are re�nement mappings, and that re�nement mappings
are forward simulations.

To prove trace inclusion C � A by hand, one usually performs the following steps:

� Find a simulation relation R (or a re�nement mappingM) over the states of C and A.

� Roughly speaking, to prove that the relation R is a simulation, for each transition (s; a; t) of C that
begins with a reachable state s, and for each state s0 2 R[s] reachable in A, we must exhibit a transition
(s0; a; t0) of A, where t0 2 R[t].

The proof usually proceeds by induction on the length of the execution leading up to the state s. For
the base case, we verify that each start state of C has an R-related start state of A. For the inductive
step, we consider each transition (s; a; t) of C that starts in a reachable state s. For each s0 2 R[s] we
exhibit a transition (s0; a; t0) of A and prove that (t; t0) 2 R.

� During the proof of the inductive step, showing (t; t0) 2 R sometimes requires us to place constraints on
the possible values of t and t0. Here it is often helpful to prove invariant properties about the reachable
states of C and A. These invariant properties provide us with the necessary constraints on t and t0.

The following theorem de�nes compositional properties of I/O automata and enables us to reason about
individual components of complex systems.

Theorem 2.2. Let C = C1jj : : : jjCn and A = A1jj : : : jjAn be parallel compositions of I/O automata, where

ext(Ai) = ext(Ci) and Ci � Ai for every i. Then ext(A) = ext(C) and C � A.

Hence, if we can decompose complex systems C and A into simpler components, we can prove trace inclusion
between C and A by proving trace inclusion between individual components and then applying Theorem 2.2.

3 I/O Automata and Mechanical Theorem Proving

When a trace inclusion proof is attempted using a typical generic theorem prover, many issues crop up.
The �rst question is how I/O automata should be represented in the speci�cation language of the theorem
prover. The language may lack expressive power or convenient features because the language is tailored for
the theorem prover, rather than the user's needs.

Once the representation has been designed, it is necessary to verify that the representation satis�es the
meta-theorems about I/O automata, in particular Theorems 2.1 and 2.2. These essential theorems may be
di�cult to prove for the chosen representation of I/O automata. One possible solution is to supply these
and other theorems to the theorem prover in the form of axioms. This approach defeats some of the value
of mechanical veri�cation, since we could not be sure that our representation of I/O automata is sound.

If we are verifying a complex composition of multiple smaller automata, each individual automaton has
to be hand-translated to the input language of the theorem prover{a laborious process that is prone to error.
In our experience, subsequent attempts to prove properties of the system reveal many more errors resulting
from faulty translations than errors inherent in the original I/O automata speci�cation.

The process of proving theorems about automata in a theorem prover can be tedious. Prover commands
are typically very di�erent from the reasoning steps that humans usually make. Even if the user knows how

3

auto = IOA + Action + ..1.. +
types

auto state = ..2..

consts
auto asig :: action signature
auto trans :: (action, auto state) transition set
auto ioa :: (action, auto state) ioa

defs
auto asig def \auto asig == (f..3..g, f..4..g, f..5..g)"
auto trans def \auto trans ==

f tr. let s = fst(tr);
t = snd(snd(tr));
� = fst(snd(tr))

in
case � of

..6..) ..7.. j

.

8

.

g"
auto ioa def \auto ioa == (auto asig, f..9..g, auto trans, f..10..g, f..11..g)"

end

Figure 1: Template for specifying I/O automata in Isabelle

the high-level proof should go, translating this knowledge into a complete proof in a mechanical prover can
be a frustrating experience.

Recent work has addressed these complications and attempted to make automated veri�cation of I/O au-
tomata systems more closely resemble hand veri�cation. Myla Archer et al. recently developed TAME [AHS98],
a high-level interface to the higher-order logic theorem prover PVS for specifying and proving invariant
properties of I/O automata models. The TAME interface provides a template for translating I/O automata
speci�cations into the PVS input language. A set of high-level commands lets the user prove invariant prop-
erties with the same type of steps that are commonly taken in hand proofs. However, TAME has signi�cant
shortcomings as well. There is no natural way to de�ne an I/O automaton type and formalize I/O meta-
theory, including the composition operator and theorems about simulations and compositional reasoning.
This is due to restrictions in the polymorphic features of the PVS speci�cation language. Hence, TAME is
suitable primarily for verifying invariant properties of relatively small systems.

Olaf M�uller formalized a large part of the basic I/O automata meta-theory using the theorem prover
Isabelle [M�ul98]. Isabelle speci�cation language has rich polymorphic mechanisms, making it suitable for
consise speci�cations of I/O automata and associated operators. M�uller's meta-theory includes a de�nition
of the composition operator and proofs of Theorems 2.1 and 2.2. We used M�uller's Isabelle/IOA system for
our case study.

4 Trace Inclusion Proofs in Isabelle/IOA

The �rst step in the veri�cation process is converting I/O automata speci�cation and implementation (written
in the traditional precondition-e�ect style) into the Isabelle input language. This task is reasonably easy
because Isabelle/IOA contains the composition operator, an operator for hiding external actions (which
helps make automata compatible for composition), and other standard operators from I/O automata theory.
It is therefore not necessary to compose automata by hand, or otherwise modify them before doing the
translation.

A template for formalizing automata in Isabelle's language is shown in Figure 1. The template assumes
that the actions of the automaton have been de�ned as a datatype action in a separate theory named
Action. To create a speci�c automaton out of the template, the user must �ll in items 1 through 11 (marked
in bold numbers in the �gure), as follows.

4

The de�nition auto trans def speci�es the transition relation on the state of the automaton using set
comprehension notation. The relation is a set of triples tr = (s; �; t) satisfying the boolean case expression
on the action name �. The user �lls out items 6 through 8 to set up the transition relation for a speci�c
instantiation of the template. Items 6 and 7 pair an action name with a boolean expression constraining the
set of transitions labeled by the action name. All other actions of the automaton follow in item 8, using the
same syntax.

Finally, the de�nition auto ioa def de�nes the entire I/O automaton as a 5-tuple consisting of the
action signature, the set of initial states (item 9), the transition relation, and two types of fairness conditions
(items 10 and 11). In this paper we will consider only safety properties, so the fairness conditions will always
be empty sets. Section 5.1.1 contains an example translation of an I/O automaton into Isabelle using the
template.

Once the I/O automata have been encoded in Isabelle, the next step is stating and proving invariant
properties that will be used later in the implementation proof. A typical hand invariant proof proceeds by
induction. For the base case, we show that the invariant holds in all initial states. For the inductive step,
we check that each action preserves the invariant property. A similar strategy works in our Isabelle proofs
of invariant properties. We have developed an Isabelle tactic (called simplify inv goal tac) that takes
the invariant goal, applies induction (thereby breaking the goal into subgoals for the base case and for each
action) and automatically proves the \trivial" cases. In particular, the cases that do not modify the parts
of the state involved in the invariant are proven automatically. After this tactic is applied, the user is left
with the task of proving the remaining cases. In each case, the necessary reasoning is localized to the e�ects
of one action, eliminating the need to reason about the entire automaton. Appendix A.7 shows an Isabelle
proof of one of the invariants as an example.

The �nal step in the implementation proof is exhibiting a simulation relation or a re�nement mapping
from the states of the implementation to the states of the speci�cation. The proof that a function is a
re�nement mapping is structurally similar to the proofs of invariant properties. Once again, we apply
induction on the length of the execution to the goal and automatically discharge the \trivial" cases among
the resulting subgoals. The rest of the subgoals are proven in the manner similar to the hand proof. Each
subgoal corresponds to one step of the implementation automaton; the user must exhibit a corresponding
move of the speci�cation automaton and prove that the end states of the implementation step and the
speci�cation move are related by the re�nement mapping.

When we want to generate a trace inclusion proof between two compositions of automataC = C1jj : : : jjCn

and A = A1jj : : : jjAn, we can take advantage of Theorem 2.2. Once we have obtained separate trace inclusion
proofs for each pair of component automata Ci and Ai separately, we can apply the compositionality theorem
to get trace inclusion between C and A. This step is easy, and requires only a side proof that the automata
being composed are compatible with each other. We are developing Isabelle tactics that discharge most of
this proof automatically.

5 Case Study: Veri�cation of a Private Communication Protocol

We have taken a modi�ed version of a private communication service protocol speci�ed as I/O automata
in [Lyn99] and used M�uller's Isabelle/IOA to verify secrecy properties of the service. The main point of
this exercise is to investigate the feasibility of using the theoretical machinery provided by I/O automata to
perform compositional analysis of complex systems in an automated proof environment. A full description of
the system together with the proofs appears in the Appendices. In the rest of the paper we give a high-level
description of the system and discuss our experiences with Isabelle/IOA.

The private communication service is speci�ed as an I/O automatonPC . The service lets clients exchange
messages with each other using an insecure transmission channel. The speci�cation guarantees that messages
are delivered at most once, and their content remains secret from the adversary.

The service is implemented using a shared-key cryptosystem and contains a number of automata. Before
going out on the insecure communication channel, each message passes through an encoder automaton and
gets encrypted with a key that the encoder shares with a corresponding decoder automaton on the receiving
side. The decoder decrypts the messages and passes them on to the client. The implementation model

5

Insecure
Channel

Eavesdropper

Encoder

Decoder

Environment

PC

KD

PCImpl 1

Figure 2: Composition PCImpl1 implements speci�cation PC

also includes a passive eavesdropper automaton. The eavesdropper can intercept messages appearing in
the insecure channel and also compute new messages (via encryption and decryption functions) from the
available information. Using a technique similar to assume-guarantee proofs, the environment automaton
records our assumptions about the environment in which the service can operate correctly. In particular,
the environment must not give away secrets to the eavesdropper.

The shared keys are generated by a key distribution service. The full implementation employs a version of
the Di�e-Hellman protocol to generate and distribute shared keys. Since the analysis of key distribution is
fairly involved, we decompose the implementation into two parts that can be veri�ed independently. Figure 2
shows the structure of an I/O automata composition PCImpl1 = IC jjEvejjKDjjEncjjDecjjEnv implementing
speci�cation PC .

In PCImpl1 , KD is a high-level speci�cation, leaving out the details of key distribution and thus simplify-
ing the structure of PCImpl1 . The Di�e-Hellman key distribution protocol can now be veri�ed independently
of the rest of the private communication protocol. The protocol consists of Di�e-Hellman nodes (one per
client) and an insecure channel. Di�e-Hellman nodes exchange several messages over the channel in order to
establish a shared key for a pair of clients. Just as in the private communication implementation, there is a
passive eavesdropper and and an environment. Figure 3 shows the structure of an I/O automata composition
KDImpl = DH1 jjDH2 jjIC jjEvejjEnv implementing speci�cation KD .

For simplicity, we assume (unrealistically) that the key distribution protocol and the private communica-
tion protocol have separate insecure channels and eavesdroppers, and the eavesdroppers do not communicate
with each other. See [Lyn99] for a more realistic treatment combining the insecure channels and the eaves-
droppers.

Breaking up the implementation in this manner lets us take advantage of the compositionality theorem
about I/O automata (Theorem 2.2). We prove trace inclusion for compositions shown in Figures 2 and 3
in Isabelle. Theorem 2.2 then lets us substitute the Di�e-Hellman implementation KDImpl in place of the
speci�cation KD while preserving trace inclusion between PCImpl1 and PC . The resulting implementation
PCImpl2 is shown in Figure 4.

Below we give a more detailed description of the PC and KD service speci�cations. Appendices A and B
describe the compositions PCImpl1 and KDImpl and give high-level descriptions of Isabelle trace inclusion
proofs for Figures 2 and 3. Appendix C shows how the compositionality theorem is applied to obtain the

6

Environment

Eavesdropper

KD

Insecure Channel

KDImpl
DH Node 2

DH Node 1

Figure 3: Composition KDImpl implements speci�cation KD

Insecure
Channel

Eavesdropper

Encoder

Decoder

EnvironmentEve

Env

2PCImpl

PC

IC

KDImpl

DH1

DH2

Figure 4: Composition PCImpl2 implements speci�cation KD

7

implementation relation for Figure 4.

5.1 The Services

In this section, we describe the two services that are implemented by the protocols and veri�ed in this paper.
The use of input and output actions provides convenient ways of composing these automata with others, and
of describing what is preserved by implementation relationships. These speci�cations describe only safety
properties, although the same methods can be used to handle liveness properties, formulated as live I/O

Automata [GSSL93].

5.1.1 Private Communication

This section contains a speci�cation of the problem of achieving private communication among the members
of a �nite collection P of clients. The speci�cation expresses three properties: (1) only messages that are
sent are delivered, (2) messages are delivered at most once, and (3) none of the messages are revealed by an
\adversary." We describe the problem using a high-level I/O automaton speci�cation PC (U;P;M;A), where
U is a universal set of data values, P is an arbitrary �nite set of client ports, M � U is a set of messages,
and A is an arbitrary �nite set of adversary ports. This speci�cation makes no mention of distribution or
keys; these aspects will appear in implementations of this speci�cation, but not in the speci�cation itself.
The speci�cation simply describes the desired properties, as an abstract machine. As usual for automaton
speci�cations, the properties, listed separately above, are intermingled in one description.

PC (U;P;M;A):
Signature:

Input:

PC-send(m)p;q, m 2M , p; q 2 P , p 6= q

Output:

PC-receive (u)p;q, u 2 U , p; q 2 P , p 6= q

reveal (u)a, u 2 U , a 2 A

States:

for every pair p; q 2 P , p 6= q:
bu�er(p; q), a multiset of M

Transitions:

PC-send(m)p;q
E�ect:

add m to bu�er (p; q)

PC-receive(u)p;q
Precondition:

u 2 bu�er (p; q)
E�ect:

remove one copy of u from bu�er(p; q)

reveal (u)a
Precondition:

u =2M

E�ect:
none

The �rst two properties listed above, which amount to at-most-once delivery of messages that were actually
sent, are ensured by the transition de�nitions for PC-send and PC-receive. The third property, privacy, is
expressed by the constraint for reveal .

The following �gure demonstrates the private communication speci�cation translated into Isabelle/IOA.
The translation �lls in speci�c information about the speci�cation into the template shown in section 4.

PC = IOA + Action + InfMultiset +
types

PC state = \P � P) U tmultiset"
consts

PC asig :: action signature
PC trans :: (action, PC state) transition set

PC ioa :: (action, PC state) ioa

8

defs
PC asig def \PC asig ==

((UN m p q. fPC send m p qg),
(UN u msg p q. fPC receive u msg p qg) [(UN u a. freveal u ag),
fg)"

PC trans def \PC trans ==
f tr. let s = fst(tr);

t = snd(snd(tr));
� = fst(snd(tr))

in
case � of

reveal u a) u 62 M set j
PC send m p q)

(m 2 M set) &
(t = (� (p', q').

if (p = p') & (q = q') then
s (p', q') + fmg

else
s (p', q'))) j

PC receive u msg p q)
(u 2 s (p, q)) &
(t = (� (p', q').

if (p = p') & (q = q') then
s (p', q') - fug

else
s (p', q')))

g"

PC ioa def \PC ioa == (PC asig, f� (p, q). ;g, PC trans, fg, fg)"
end

The state of PC is represented as a function from a pair of clients of type P to a multiset of messages of
type U . The de�nition of the transition relation gives a boolean expression for every triple (s; �; t), where s
and t are states and � is an action of PC . The boolean expression includes the precondition of � and relates
t to s via the e�ects of �. Thus, the expression is true if and only if (s; �; t) is a step of PC .

5.1.2 Key Distribution

This is a drastically simpli�ed key distribution service, which distributes a single key to several participants.
We do not model requests for the keys, but assume that the service generates the key spontaneously. The
simpli�ed key distribution problem is speci�ed by the automaton KD(U;P;K;A), where U is a universal set
of data values, P is an arbitrary �nite set of client ports, K � U is a set of keys, and A is a �nite set of
adversary ports.

KD(U;P;K;A):
Signature:

Input:
none

Output:
grant(u)p, u 2 U , p 2 P

reveal (u)a, u 2 U , a 2 A

Internal:

choose-key

States:

chosen-key , an element of K [f?g, initially ?
noti�ed � P , initially ;

Transitions:

9

choose-key

Precondition:
chosen-key = ?

E�ect:
chosen-key := choose k where k 2K

grant(u)p
Precondition:

chosen-key 6= ?

u = chosen-key

p =2 noti�ed

E�ect:
noti�ed := noti�ed [fpg

reveal (u)a
Precondition:

u =2 K

E�ect:
none

6 Discussion

The bene�ts of decomposing large systems into smaller parts for veri�cation are twofold. From the software
engineering perspective, formalizing and reasoning about large monolithic systems quickly becomes unman-
ageable. The number of potential interactions between state components typically increases exponentially
with the size of the state and the size of the transition relation. When the system has more than a few state
components, just formulating the necessary invariants can prove to be a daunting task. Compositional rea-
soning lets us take a modular approach to veri�cation. We can focus on proving properties of self-contained
systems of reasonable size and build up a component library for constructing larger systems. Composition-
ality results let us combine proven properties of components and obtain new results about the larger system
without going through the veri�cation process from scratch. One can imagine that somewhat more realistic
versions of the PC and KD services and their implementations could be a part of a library of formalized
security and cryptography components.

Decomposition also helps avoid the state explosion problems common to all automated veri�cation tools.
Isabelle's simpli�er was valuable in reducing the human e�ort in our veri�cation exercise, but in our ex-
perience its running time greatly depends on the size of automata being veri�ed. The table below shows
the running time on a set of theorems proven automatically by an identical invocation of the simpli�er.
Each theorem describes how a transition of an n-automata composition is projected onto the individual
components. The table gives the timings for n 2 f3; 4; 5; 6g.

n 3 4 5 6

time 5:5 sec 27:9 sec 3:8 min 40:1 min

We did not prove the theorems for higher values of n because for n � 7 the simpli�er requires more than
the 256MB of RAM available on the test machine. But the data in the table suggest that even without
the space restriction, the automatic proof tools in Isabelle would not be able to handle larger systems in
a reasonable amount of time, and without them the veri�cation e�ort is prohibitively expensive. In the
small example veri�ed in this paper, we split the task of verifying trace inclusion for a nine-component
system PCImpl2 into two separate tasks, one of which deals with a six-component system PCImpl1 and
the other with a �ve-component system KDImpl . Notably, we could not prove the projection theorems for
the nine-component case, but could do so for the smaller component cases. This modest division resulted
in substantial savings primarily because complexity, running time, and space requirements appear to be
exponentially related to problem size. In the context of real-world systems that can have dozens of such
components, abstraction and decomposition become essential.

6.1 Observations on Bene�ts of Formal Veri�cation

Re�nement proofs turned out to be a more e�ective way of
eshing out speci�cation problems than invariant
proofs. Invariant proofs may touch only speci�c parts of the protocol state and leave untouched more abstract

10

questions about what the protocol is doing. The re�nement proof makes explicit all the assumptions about
why the implementation does what the speci�cation intended.

In particular, during the re�nement proof for the implementation PCImpl1 we were forced to go back
and prove several auxiliary invariants whose utility were not obvious a priori. This in turn led us to typos
and errors in our formalization of the cryptosystems and component automata. Although the bugs caught
during the process of proving invariant lemmas and trace inclusion were mostly errors in our formalization,
we caught one error in the original description of PCImpl1 protocol (some uninitialized variables led to failed
proofs of the base case) and a typo in an invariant statement in [Lyn99] (see remark about invariant B.1 in
Appendix B.3).

6.2 E�ciency Issues

The human e�ort spent on the project included (1) twelve weeks for formalizing and verifyingPCImpl1 � PC ,
(2) three weeks for verifying KDImpl � KD , and (3) three days for verifying PCImpl2 � PC . A substantial
fraction of the time in stage 1 was spent learning Isabelle/IOA and setting up the procedure for formalizing
I/O automata, stating and proving invariants, and proving trace inclusion. This accounts for most of the
di�erence in e�ort between stages 1 and 2. Stage 3 was much shorter due to our use of the compositionality
theorem.

We believe that additional automation can reduce the human e�ort substantially in all phases of the
veri�cation process. At the level of the prover, additional tactics can automate tasks that commonly show
up in reasoning about I/O automata. These tactics fall into two categories. One set of tactics would
simulate the high-level proof steps used in human-style I/O automata proofs. These would be similar to the
proof strategies o�ered by Archer's TAME environment for PVS. Another set of tactics would help the user
deal with proof obligations speci�c to Isabelle and the Isabelle formalization of I/O automata meta-theory.
For example, applying the compositionality theorem requires proofs for side conditions that the Isabelle
type checker does not guarantee. It must be shown that the I/O automata de�nitions are well formed -
the sets of input, output, and internal actions are disjoint, and the transition relation is de�ned only for
the actions in the automaton signature de�nition. Furthermore, the user must show that the automata
being composed are compatible with each other. These proofs have common structure and can therefore be
e�ectively encapsulated in a higher-level Isabelle tactic. The tactic would be used with every application of
the compositionality theorem.

There are also ways to improve e�ciency at the user interface level. A compiler can take care of translating
I/O automata (expressed in a suitable way) into an Isabelle formalization. It is also possible to generate a
general framework for invariant de�nitions and trace inclusion proofs automatically, letting the user �ll in
de�nitions and proof script details speci�c to the problem.

One of the biggest obstacles to formal reasoning with theorem provers remains their cumbersome nature
and the level of attention to low-level details required of the user. Isabelle is not an exception. Interacting
with the bare-bones prover throughout the veri�cation cycle can be a frustrating experience, which is why
we emphasize the need to automate as much of the process as possible. With the enchancements discussed
above, the task of formalizing the speci�cation and setting up proof goals and induction can be substan-
tially automated. Most user interaction with the prover would take place when reasoning about individual
automata actions. The actions typically have a small and localized e�ect on the automaton state, which
makes the proofs more manageable.

6.3 Technical Issues

In M�uller's formalization of I/O automata meta-theory the binary automata composition operator has the
following type, given in Isabelle's ML-like notation:

jj :: (�; �) ioa! (�; �) ioa! (�; � � �) ioa

where � is the action type, � and � are state types of the automata being composed, and � � � is the
state type of the composition. The composition operator requires that both automata be de�ned over the

11

same action space �. If we apply the operator multiple times to compose several automata, every action of
every component must be a member of the same action space. Mechanized induction on the action datatype
generates a subcase for each action in the action space, including those that do not belong to the component
being veri�ed. This means that inductive proofs do not scale well for large compositions of automata. This
is a serious problem, as it undermines the primary bene�t of compositional reasoning: scalability. It takes
over an hour for Isabelle (ver. 99) to execute in interactive mode the invariant and re�nement proof scripts
developed in this project. The simpli�er spends the majority of that time reducing inductive subcases for
actions, considering many more cases than necessary.

Fixing the problem without completely revising the meta-theory requires a richer type system than
supported by Isabelle/HOL. For example, in a polymorphic language with subtyping and union types [Pie91],
the composition operator could be given the following type:

jj :: (�; �) ioa! (�; �) ioa! (� _ �; � � �) ioa

The action type of the composition � _ � is the union type derived from the action types � and � of
the components. Assuming that the usual binary operators on sets (union, intersection, di�erence) have the
type � set ! � set ! (�_ �) set, the existing de�nition of the composition operator would still make sense
in this setting.

7 Conclusions

Existing compositional proof methods, including implementation relations between I/O Automata, are ade-
quate for handling large classes of veri�cation problems. Numerous case studies have used these techniques
by hand to prove global properties of non-trivial systems. Until recently, automated veri�cation tools have
not included compositional techniques in their repertoire. Yet, the strengths of compositional reasoning and
automated reasoning have the potential to complement each other.

Automation demands that compositional proofs be made strictly rigorous. It does not tolerate typos
or imprecise wording, which can lead to subtle errors in hand proofs. Forced to develop proofs according
to these exacting standards, the user gains deeper understanding of the subtleties of the system and more
con�dence in the �nal product. Although time consuming to use, automated proof tools make proof re-
checking much easier, which can result in substantial time savings in the iterative development/veri�cation
cycle. Conversely, compositional techniques o�er the best hope of dealing with state explosion and complexity
problems associated with automated veri�cation of non-trivial systems.

Our experience with the Isabelle/IOA veri�cation environment leads us to conclude that there is a
lot of work yet to be done before the potential bene�ts of automated compositional reasoning are fully
realized. Using Isabelle/IOA is a labor-intensive undertaking, and the environment does not appear to be
su�ciently scalable. These issues can be resolved with additional e�ort, and we believe that the bene�ts of
the compositional approach make the e�ort worthwhile.

Acknowledgments

The authors wish to thank Nancy Lynch for her support and encouragement for our project and her feedback
to an earlier draft of this paper.

References

[AHS98] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to simplify proofs for automata
models. UITP '98, July 1998.

[GSSL93] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, and N. Lynch. Liveness in timed and untimed sys-
tems. Technical Report MIT/LCS/TR-587, MIT, Laboratory for Computer Science, Cambridge,
MA., December 1993.

12

[LT89] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI-Quarterly, 2(3):219{
246, September 1989.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, March 1996.

[Lyn99] N. Lynch. I/O automaton models and proofs for shared-key communication systems. 12th IEEE

Computer Security Foundations Workshop (CSFW12), pages 14{29, June 1999.

[M�ul98] O. M�uller. A Veri�cation Environment for I/O Automata Based on Formalized Meta-Theory.
PhD thesis, Technische Universit�aat M�unchen, 1998.

[Pie91] B.C. Pierce. Programming with intersection types, union types, and polymorphism. Technical
Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

13

A Private Communication Implementation

In this appendix, we describe the protocol that implements the private communication speci�cation from
Section 5.1.1. The protocol uses a shared-key cryptosystem C to encrypt messages before sending them over
an insecure communication channel. The protocol keeps the messages secure against passive eavesdroppers.

We give automaton models for some system components that appear in many security-related settings:
environments for security services, insecure channels, and eavesdroppers. They are presented in a parame-
terized fashion so that they can be used in di�erent contexts. We then put these components together in
the private communication protocol.

A.1 Cryptosystems

A cryptosystem signature S consists of:

� TNS , a set of type names.

� FN S , a set of function names.

� domainS , a mapping from FN S to (TNS)
�.

� rangeS , a mapping from FN S to TN S .

� EN S � FNS , a set of easy function names.

A constant name is a function name f such that domainS(f) = �. Let CN S � FNS denote the set of
constant names of C. We omit the subscript S where no confusion seems likely. A cryptosystem C consists
of:

� A cryptosystem signature sigC. We write TN C as shorthand for TN sig
C
, etc.

� setC, a mapping from TN C to disjoint sets.

� funC , a mapping fromFN C to functions; We require that if domainC(f) = (t1; : : : ; tk) and rangeC(f) = t

then funC(f) : setC(t1) � � � � � setC(tk)! setC(t).

We write setC for
S
t2TN C

setC(t). We omit the subscript C where no confusion seems likely. IfX[fyg � setC,
we say that y is easily reachable from X in C provided that y is obtainable starting from elements of X, by
applying only functions denoted by function names in EN C.

A.1.1 Term Cryptosystems

If S is a cryptosystem signature, then the terms of S, and their types, are de�ned recursively, as follows:

1. If c 2 CNS and rangeS(c) = t, then c is a term and typeS (c) = t.

2. If f 2 FN S , domainS (f) = t1; t2; : : : ; tk, where k � 1, rangeS(f) = t, and e1; : : : ; ek are terms of types
t1; : : : ; tk, respectively, then the expression e = f(e1; : : : ; ek) is a term, and typeS(e) = t.

Let TermsS(t) denote the set of terms of S of type t. Let TermsS denote the set of all terms of S.

Some of the cryptosystems we consider are best understood as term algebras derived from cryptosystem
signatures. In these cases, the values of the various types are, formally, equivalence classes of terms: An
equivalence relation R on TermsS is said to be a congruence provided that the following hold.

1. If eRe0 then typeS (e) = typeS(e
0).

2. Suppose that f 2 FNS , domainS (f) = t1; t2; : : : ; tk, where k � 1, rangeS (f) = t, e1; : : : ; ek are
terms of types t1; : : : ; tk, respectively, e

0
1; : : : ; e

0
k are terms of types t1; : : : ; tk, respectively, and for all

i, 1 � i � k, eiRe
0
i. Then f(e1; : : : ; ek)Rf(e1; : : : ; ek).

14

Let S be a cryptosystem signature and R a congruence on TermsS . Then the term cryptosystem C for S
and R is the unique cryptosystem satisfying:

� sigC = S.

� If t 2 TN C , then setC(t) is the set of all R-equivalence classes of terms of type t in TermsC .

� If f 2 FN C, domainC(f) = (t1; : : : ; tk) and rangeC(f) = t then funC(f) is the function from setC(t1)�
� � � � setC(tk) to setC(t) de�ned as follows. Suppose that ei 2 setC(ti) for all i, 1 � i � k. Then
funC(f)([e1]R; : : : ; [ek]R) is de�ned to be [f(e1; : : : ; ek)]R. (Since R is a congruence, this is well-de�ned.)

We use the notation RC for the congruence relation R of C. If e 2 TermsC, then we write [e]C for the
equivalence class of e with respect to RC. Also, if E � TermsC then we write [E]C for the set of equivalence
classes [e]C for e 2 E.

In the rest of this section we describe two speci�c cryptosystems. The �rst kind of cryptosystem, a shared-
key cryptosystem, is used in shared key communication. The second kind, a base-exponent cryptosystem, is
used in the Di�e-Hellman key distribution protocol.

A.1.2 Shared-key cryptosystems

A shared-key cryptosystem C is a term cryptosystem. The signature S = sigC is de�ned as follows. TNS

consists of two type names: \M" for messages and \K" for keys. FN S consists of:

� enc, with domain(enc) = (\M"; \K") and range(enc) = \M".

� dec, with domain(dec) = (\M"; \K") and range(dec) = \M".

� MConstS , a set of message constant names, with range(m) = \M" for all m 2 MConstS .

� KConstS , a set of key constant names, with range(k) = \K" for all k 2 KConstS .

EN S = fenc; decg. We write the congruence relation on terms of a shared-key cryptosystem as =s. The
relation =s is de�ned by means of all equations of the form:

� dec(enc(m; k); k) = m, where m; k 2 TermsS , type(m) = \M", type(k) = \K".

Speci�cally, we want the smallest congruence relation on TermsS that equates all terms that are related by
the given equations. In Isabelle we de�ne this relation inductively as follows:

1. m
i
=s m for all terms m

2. if m1

i
=s m2 and k1

i
=s k2, then enc(m1; k1)

i
=s enc(m2; k2)

3. if m1

i
=s m2 and k1

i
=s k2, then dec(m1; k1)

i
=s dec(m2; k2)

4. if enc(m; k)
i
=s e, then dec(e; k)

i
=s m

5. If m1

i
=s m2, then m2

i
=s m1

6. If m1

i
=s m2 and m2

i
=s m3, then m1

i
=s m3

Lemma A.1. The de�nitions of =s and
i
=s are equivalent.

Proof. Suppose that terms t1 and t2 are related by
i
=s. We prove that t1 =s t2 by induction on the derivation

of t1
i
=s t2.

Consider the last rule in the derivation. There are six possibilities:

15

1. t1 = t2 = m. By re
exivity of =s, t1 =s t2.

2. t1 = enc(m1; k1) and t2 = enc(m2; k2). By the inductive hypothesis, we have m1 =s m2 and k1 =s k2.
The result follows because =s is a congruence.

3. Similar to case 2.

4. t1 = dec(e; k) and t2 = m. By the inductive hypothesis, we have enc(m; k) =s e. Using the fact the
=s is a congruence, we obtain dec(enc(m; k); k) =s dec(e; k). From the equations de�ning =s and
transitivity it follows that m =s dec(e; k).

5. Result follows from symmetry of =s.

6. Result follows from transitivity of =s.

Now suppose that terms t1 and t2 are related by =s. If t1 and t2 are related by the equations de�ning

=s, then assume that t1 = dec(enc(m; k); k) and t2 = m for some m and k. We get t1
i
=s t2 by applying

rule 4 from the inductive de�nition of
i
=s with e = enc(m; k).

We must also show that
i
=s is a congruence.

i
=s is re
exive by rule 1, symmetric by rule 5, transitive by

rule 6, and a congruence by rules 2 and 3.

Lemma A.2. Suppose that ei is a term of type \M", i 2 f1; 2g, and enci and deci are the number of enc

function names and dec functions names in ei, respectively, and e1
i
=s e2. Then enc1 � dec1 = enc2 � dec2.

Proof. By induction on the structure of the derivation of e1
i
=s e2.

A.1.3 Base-exponent cryptosystems

A base-exponent cryptosystem C is a term cryptosystem in which, letting S = sigC:
TNS consists of two type names, \B" for bases and \X" for exponents.
FN S consists of:

� exp, with domain(exp) = (\B"; \X") and range(exp) = \B".

� BConstS , a set of base constant names, with range(b) = \B" for all b 2 BConstS .

� XConst1S and XConst2S , two disjoint sets of exponent constant names, with domain(x) = � and
range(x) = \X" for all x 2 XConst1S [XConst2S .

EN S = fexpg [BConstS . We write the congruence relation on terms of a base-exponent cryptosystem as
=b. The relation =b is de�ned by means of all equations of the form:

� exp(exp(b; x); y) = exp(exp(b; y); x), where b; x; y 2 TermsS , type(b) = \B", type(x) = type(y) = \X".

In the Isabelle formalization of base-exponent cryptosystems, we de�ne the relation
i
=b inductively as

follows:

1. m
i
=b m for all terms m

2. if m1

i
=b m2 and x1

i
=b x2, then exp(m1; x1)

i
=b exp(m2; x2)

3. exp(exp(m;x1); x2)
i
=b exp(exp(m;x2); x1)

4. If m1

i
=b m2, then m2

i
=b m1

16

5. If m1

i
=b m2 and m2

i
=b m3, then m1

i
=b m3

Lemma A.3. The de�nitions of =b and
i
=b are equivalent.

Proof. Suppose that terms t1 and t2 are related by
i
=b. We prove that t1 =b t2 by induction on the derivation

of t1
i
=b t2. Consider the last rule in the derivation. There are �ve possibilities:

1. t1 = t2 = m. By re
exivity of =b, t1 =b t2.

2. t1 = exp(m1; x1) and t2 = exp(m2; x2). By the inductive hypothesis, we have m1 =b m2 and x1 =b x2.
The result follows because =b is a congruence.

3. t1 = exp(exp(m;x1); x2) and t2 = exp(exp(m;x2); x1). From the equations de�ning =b it follows
immediately that t1 =b t2.

4. Result follows from symmetry of =b.

5. Result follows from transitivity of =b.

Now suppose that terms t1 and t2 are related by =b. If t1 and t2 are related by the equations de�ning

=b, then assume that t1 = exp(exp(b; x); y) and t2 = exp(exp(b; y); x) for some b, x, and y. We get t1
i
=b t2

by applying rule 3 from the inductive de�nition of
i
=b with m = b, x1 = x, and x2 = y.

We must also show that
i
=b is a congruence.

i
=b is re
exive by rule 1, symmetric by rule 4, transitive by

rule 5, and a congruence by rule 2.

De�ne B2S to be the set of all terms of the form exp(exp(b; x); y), where b 2 BConstS , x 2 XConst1S

and y 2 XConst2S . An augmented base-exponent cryptosystem is a base-exponent cryptosystem together
with a distinguished element b0S of BConstS .

Lemma A.4. Suppose that ei is a term of type \B", i 2 f1; 2g, and expi is the number of exp function

names in ei, and e1
i
=s e2. Then exp1 = exp2.

Proof. By induction on the structure of the derivation of e1
i
=b e2.

A.2 Environment Automata

Here we assume that U is a universal set of data values, A is an arbitrary �nite set of adversary ports,
that is, locations where information can be communicated to the adversary, and N � U . The environment
automaton Env (U;A;N) models any entities other than the channels from which an eavesdropper may learn
information. It says that the environment is capable of communicating elements of U at any adversary port
a 2 A, but in fact does not communicate any elements of N .

Env (U;A;N) :
Signature:

Input:

None

Output:

learn(u)a, u 2 U , a 2 A

States:

No variables

Transitions:

learn(u)a
Precondition:

u =2 N

E�ect:

none

17

A.3 Insecure Channel Automata

Here we assume that U is a universal set of data values, P is an arbitrary �nite set of client ports, and A

is an arbitrary �nite set of adversary ports. The insecure channel admits send and receive actions for all
elements of U and also has eavesdrop output actions, by which information in transit passes to an outsider.
The insecure channel allows any message in transit to be communicated to an outsider via the eavesdrop

actions.

IC (U;P;A):
Signature:

Input:
IC-send(u)p;q , u 2 U , p; q 2 P , p 6= q

Output:
IC-receive(u)p;q , u 2 U , p; q 2 P , p 6= q

eavesdrop(u)p;q;a , u 2 U , p; q 2 P , p 6= q, a 2 A

States:

for every p; q 2 P , p 6= q:
bu�er(p; q), a multiset of U , initially empty

Transitions:

IC-send(u)p;q
E�ect:

add u to bu�er(p; q)

IC-receive(u)p;q
Precondition:

u 2 bu�er (p; q)

E�ect:
remove one copy of u from bu�er(p; q)

eavesdrop(u)p;q;a
Precondition:

u 2 bu�er(p; q)

E�ect:
none

A.4 Eavesdropper Automata

Here we assume that C is a cryptosystem, P is an arbitrary �nite set of client ports, and A is an arbitrary
�nite set of adversary ports. We de�ne a model for an eavesdropper, as a nondeterministic automaton
Eve(C; P;A). Eve simply remembers everything it learns and hears, and can reveal anything it has, at any
time. It does this by maintaining a variable has , initially ;. The value of has may change only in restricted
ways: Namely, when eavesdrop(u)p;q;a or learn(u)a occurs, u gets added to has . When an internal compute
action occurs, the value resulting from applying an easy function (one in EN C) to values in has may be
added to has . We restrict the reveal(u) output so that u 2 has , that is, Eve can only report a value that it
has. Similar treatments of known information appear elsewhere in the literature.

Eve(C; P;A):
Signature:

Input:
eavesdrop(u)p;q;a, u 2 setC, p; q 2 P , p 6= q, a 2 A

learn(u)a, u 2 setC, a 2 A

Output:
reveal (u)a, u 2 setC, a 2 A

Internal:
compute(u; f)a, f 2 EN C, a 2 A

States:

has � setC , initially ;

Transitions:

18

eavesdrop(u)p;q;a
E�ect:

has := has [fug

learn(u)a
E�ect:

has := has [fug

reveal (u)a
Precondition:

u 2 has

E�ect:
none

compute(u; f)a
Precondition:

fu1; : : : ; ukg � s:has

u = f(u1; : : : ; uk)
E�ect:

has := has [fug

The rest of this appendix describes a straightforward shared-key communication protocol. The proto-
col simply uses a shared key, obtained from a key distribution service, to encode and decode messages.
Throughout the section, we assume that C is a shared-key cryptosystem, P is a set (of clients) with at least
2 elements, and A is a nonempty �nite set (of adversaries).

A.5 The Encoder and Decoder

We de�ne parameterized encoder and decoder automata, parameterized by the shared-key cryptosystem C,
the set P of clients, and elements p; q 2 P , p 6= q. Note that, in the code for IC-send(u), we are using the
abbreviation enc for funC(enc) { that is, we are suppressing mention of the particular cryptosystem C.

Enc(C; P)p;q, where p; q 2 P , p 6= q :
Signature:

Input:

PC-send(m)p;q, m 2 [MConstC]
grant(u)p, u 2 setC

Output:

IC-send(u)p;q, u 2 setC

States:

bu�er , a multiset of elements of [MConstC], initially empty

shared-key 2 [KConstC] [f?g, initially ?

Transitions:

PC-send(m)p;q
E�ect:

add m to bu�er

IC-send(u)p;q
Precondition:

m is in bu�er

shared-key 6= ?

u = enc(m; shared-key)
E�ect:

remove one copy of m from bu�er

grant(u)p
E�ect:

if u 2 [KConstC] then
shared-key := u

More-or-less symmetrically, we have:

Dec(C; P)p;q, where p; q 2 P , p 6= q :
Signature:

Input:

IC-receive(u)p;q, u 2 setC
grant(u)q , u 2 setC

Output:

PC-receive(u)p;q , u 2 setC

States:

19

bu�er , a multiset of elements of setC(\M"), initially empty
shared-key 2 [KConstC] [f?g, initially ?

Transitions:

IC-receive(u)p;q
E�ect:

if u 2 setC(\M") then
add u to bu�er

PC-receive(u)p;q
Precondition:

m is in bu�er

shared-key 6= ?

u = dec(m; shared-key)
E�ect:

remove one copy of m from bu�er

grant(u)q
E�ect:

if u 2 [KConstC] then
shared-key := u

A.6 The Complete Implementation

In the rest of this section, we assume: U = setC; M = [MConstC]; K = [KConstC]; N = M [K; U 0 is an
arbitrary set with K � U 0; A0 is an arbitrary set, disjoint from A.

The implementation consists of encoder and decoder components, an insecure channel, eavesdropper and
environment, plus a key distribution service. More precisely, the implementation, PCImpl1 (C; P;A; U

0; A0),
is obtained by composing the following automata and then hiding certain actions.

� Enc(C; P)p;q, Dec(C; P)p;q, p; q 2 P , p 6= q.

� IC (U;P;A), Eve(C; P;A), Env (U;A;N).

� KD(U 0; P;K;A0), a key distribution service.

In this system, the eavesdropper Eve does not acquire any information directly from the KD component.

To get PCImpl1 (C; P;A; U
0; A0), we hide the following actions in the composition just de�ned: eavesdropp;q;a,

p; q 2 P , a 2 A; IC-sendp;q, IC-receivep;q , p; q 2 P ; grantp, p 2 P ; learna, a 2 A; reveala, a 2 A0.

A.7 Correctness of the Private Communication Implementation

To prove correctness of PCImpl1 , we demonstrate an implementation relationship between PCImpl1 and
PC . The invariant and implementation proofs presented here are similar to [Lyn99]. The proofs have been

modi�ed to mirror the Isabelle proofs. In particular, instead of a simulation relation we use a weak re�nement
mapping between the states of PCImpl1 and PC .

A.7.1 Invariants

Invariant A.5. In all reachable states of PCImpl1 , the following are true:

1. If Encp;q :shared-key 6= ? then Encp;q:shared-key = KD.chosen-key.

2. If Decp;q .shared-key 6= ? then Decp;q .shared-key = KD.chosen-key.

Proof. We prove this by induction on the length of an execution.

Basis: Both claims are true in the initial state because Encp;q :shared-key and Decp;q :shared-key are both
?.

Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invariant.

20

1. � = choose-key

By the precondition on � and the inductive hypothesis, KD :chosen-key = Encp;q :shared-key = Decp;q :shared-key =
? in s. Therefore, Encp;q :shared-key = Decp;q :shared-key = ? in s0.

2. � = grant(u)p By the precondition on �, KD :chosen-key = Encp;q :shared-key =
Decp;q :shared-key = u in s0.

In other cases, the invariant is trivially preserved.

Invariant A.6. In all reachable states of PCImpl1 , the following are true:

1. If Encp;q .shared-key = ? then IC.bu�er(p, q) is empty.

2. If Encp;q .shared-key = ? then Decp;q .bu�er is empty.

Proof. By induction. For the base case, both parts of the claim are true in the initial state, channel and
decoder bu�ers are empty.

For the inductive step, consider a step (s; �; s0) of PCImpl1 , where s satis�es the invariant. There are
two non-trivial cases that add elements to channel or decoder bu�ers:

1. � = IC-send(u)p;q

The precondition of this action ensures that Encp;q :shared-key 6= ?, so this step cannot violate part 1
of the invariant. Part 2 is trivially preserved.

2. � = IC-receive(u)p;q

If Encp;q :shared-key = ?, then by the inductive hypothesis IC :bu�er(p; q) is empty, so this step cannot
be enabled, and therefore cannot violate part 2 of the invariant. Part 1 is trivially preserved.

Invariant A.7. In all reachable states of PCImpl1 the following holds: for all p, q 2 P, and all u 2 N , u

62 IC.bu�er(p, q).

Proof. By induction. For the base case, the claim is trivially true in the initial state, since IC :bu�er(p; q) is
empty.

For the inductive step, consider a step (s; �; s0) of PCImpl1 , where s satis�es the invariant. The only
non-trivial case is � = IC-send(u)p;q , where u = enc(m; k).

The precondition and type considerations imply that m 2 [MConstC] and k 2 [KConstC]. So m \

MConstC 6= ;; let m0 be any element in m \MConstC. Similarly, k \KConstC 6= ;; let k0 be any element in
k \KConstC. Then enc(m0; k0) 2 u.

Suppose that u 2 [MConstC]. Then u \MConstC 6= ; so let u0 be any element in u \MConstC. Then
[enc(m0; k0)] = u = [u0]. But Lemma A.2 implies that enc(m0; k0) and u0 are not equivalent terms, because
the di�erence between the number of enc and dec operators in the �rst of these is 1 and the di�erence in the
second of these is 0. It follows that u =2 [MConstC], which implies that this event does not add an element
of M = [MConstC] to the channel IC .

By an identical argument, u =2 [KConstC].

Invariant A.8. In all reachable states of PCImpl1 , if u 2 N then u 62 Eve:has.

Proof. By induction. For the base case, the claim is trivially true in the initial state, since Eve:has is empty.

For the inductive step, consider a step (s; �; s0) of PCImpl1 , where s satis�es the invariant. There are
three non-trivial cases:

21

1. � = eavesdrop(u)p;q;a

This action cannot add an element of N to Eve:has , because by invariant A.7 there are no elements of
N in IC :bu�er(p; q) in state s.

2. � = learn(u)a

The precondition of this action ensures that u 62 N .

3. � = compute(u; f)a

By the inductive hypothesis, there are no elements of N in s:Eve:has . In particular, there are no keys
(of type K) in s:Eve:has . So this action cannot be enabled in s.

We present the Isabelle proof of invariant A.8.

Goal "invariant PCImpl_ioa lemmaA_6";

(* Apply simplification tactic to reduce the goal to (non-trivial) subgoals

corresponding to automata actions

*)

by (simplify_inv_goal_tac lemmaA_6_def 1);

(* There are three cases still left to show: eavesdrop, learn, and compute. *)

(* eavesdrop *)

(* Strip outer quantifiers and implications, flatten conjunctions

in hypotheses *)

by (REPEAT (rtac allI 1 ORELSE rtac impI 1 ORELSE etac conjE 1));

by (rename_tac "s t u p q" 1);

(* Apply invariant lemma A.5 *)

by (apply_inv_tac lemmaA_5 lemmaA_5_def 1);

(* The rest is definition expansion, quantifier instantiation,

and simplification *)

sf [Ball_def] 1;

by (strip_tac 1);

by (thin_tac "ALL x. x : N_set --> x ~: eve s" 1);

by (eres_inst_tac [("x", "p")] allE 1);

by (eres_inst_tac [("x", "q")] allE 1);

by (eres_inst_tac [("x", "x")] allE 1);

by (case_tac "x = u" 1);

sf [] 1;

ba 1;

(* learn *)

(* Solved automatically by Isabelle *)

by (Blast_tac 1);

(* compute *)

22

(* Solved automatically by Isabelle after expanding some definitions *)

by (asm_full_simp_tac (simpset() addsimps [N_set_def]) 1);

by (Blast_tac 1);

(* done *)

qed "lemmaA_6";

High-level tactic simplify inv goal tac takes care of breaking down the invariant de�nition, applying
the Isabelle induction tactic, and simplifying the resulting cases. In the example invariant proof shown here,
the user is left with the same three non-trivial cases that were considered in the hand proof. The tactic
apply inv tac is another instance where a high-level step in the hand proof can be simulated e�ectively by
a high-level Isabelle tactic. In the example proof for the case � = eavesdrop(u)p;q;a, apply inv tac applies
the invariant A.7 to state s and adds the result to the list of assumptions in the current goal, to be used
later in the proof.

A.7.2 Implementation Proof

We show that PCImpl1 implements PC by exhibiting a weak re�nement mapping F from the states of
PCImpl1 to the states of PC . F (s) is the multiset union of three multisets, A1, A2, and A3, where:

1. A1 = s.Encp;q .bu�er.

2. A2 = dec(s.IC.bu�er(p, q), s.KD.chosen-key) if s.KD.chosen-key 6= ? else ;.

3. A3 = dec(s.Decp;q .bu�er, s.KD.chosen-key) if s.KD.chosen-key 6= ? else ;.

Thus, the multiset of messages in transit at the speci�cation level is obtained by combining the multisets of
messages at the encoder and the decoder and the multiset of messages in the insecure channel. The messages
in the insecure channel and decoder bu�ers must be decoded with the shared key to get the correspondence.

Theorem A.9. F is a weak re�nement mapping.

Proof. The proof proceeds by induction.
Base: Easy { in the start states of PC and PCImpl1 all the multisets are empty.
Inductive step: Consider (s; �; s0) in the implementation, where s is a reachable state. The interesting cases
are:

1. � = IC-send (u)p;q, where u = enc(m; k)

This corresponds to the trivial one-state execution fragment F (s) of PC (U;P;M;A). We must argue
that F (s0) = F (s). It follows from invariant A.5 and the precondition that this action is enabled only
if s:KD :chosen-key 6= ?. So this event removes m from Encp;q:bu�er (and from A1). The encoded
version u of m is added to the insecure channel, and from the equations relating enc and dec functions
it follows that m is added to A2. So the multiset F (s0) is the same as F (s).

2. � = IC-receive(u)p;q

The argument is similar to the case � = IC-send(u)p;q . The key point is that u is accepted by dec,
because it is of type \M". This follows from the precondition in the insecure channel and uses an
invariant saying that all the elements of IC :bu�erp;q are always of type \M". (This invariant was
omitted in the description above, but has been proven in Isabelle).

3. � = PC-receive(u)p;q

This corresponds to the same action in PC . In this step, u = dec(m; s:KD :chosen-key) for some
m 2 s:Decp;q:bu�er by invariant A.5. Thus, u 2 F (s):bu�er(p; q), which means that � is enabled in
the speci�cation automaton, in state F (s).

23

It remains to show that after executing � in state F (s), PC must be in state F (s0). One copy of m
is removed from s:Decp;q:bu�er (and therefore from A3) while a copy of u is removed from the ab-
stract channel F (s):bu�er(p; q). Since u = dec(m; s:KD :chosen-key), this preserves the correspondence
between the multisets.

4. � = reveal(u)a

This corresponds to reveal(u)a in the speci�cation PC . We must show that u =2M . The precondition
for reveal(u)a (in Eve) implies that u 2 s:Eve :has. Invariant A.8 implies that u =2 N , which implies
that u =2M .

5. � = choose-key

This corresponds to the trivial one-state execution fragment F (s) of PC (U;P;M;A). From the pre-
condition, we have s:KD :chosen-key = ?. It follows from invariants A.5 and A.6 that the insecure
channel and decoder bu�ers are empty in s. Therefore, this action has no e�ect on the multisets of the
mapping F .

Theorem A.10. PCImpl1 (C; P;A; U
0; A0) � PC (U;P;M;A).

Proof. Follows from Theorems A.9 and 2.1.

B Di�e-Hellman Key Distribution Implementation

This section describes the Di�e-Hellman key distribution protocol. Throughout the section, we assume C is
an augmented base-exponent cryptosystem, P = fp1; p2g, and A is a nonempty set.

B.1 The Endpoint Automata

We de�ne two symmetric automata, for the two elements of P .

DH (C; P)p1:
Signature:

Input:

IC-receive(b)p2;p1, b 2 setC(\B")
Output:

IC-send(b)p1;p2, b 2 setC(\B")
grant(b)p1, b 2 setC(\B")

Internal:

choose-expp1

States:

chosen-exp 2 [XConst1C] [f?g, initially ?
base-sent, a Boolean, initially false

rcvd-base 2 setC(\B") [f?g, initially ?

granted , a Boolean, initially false

Derived variables:

chosen-base 2 setC(\B") [f?g, given by:
if chosen-exp 6= ? then exp([b0C]; chosen-exp) else ?

Transitions:

24

choose-expp1
Precondition:

chosen-exp = ?

E�ect:
chosen-exp := choose x
where x 2 [XConst1C]

IC-send(b)p1;p2
Precondition:

chosen-exp 6= ?

b = chosen-base

base-sent = false

E�ect:
base-sent := true

IC-receive(b)p2;p1
E�ect:

rcvd-base := b

grant(b)p1
Precondition:

chosen-exp 6= ?

rcvd-base 6= ?

b = exp(rcvd-base ; chosen-exp)
granted = false

E�ect:
granted := true

The automaton for p2 is the same, but interchanges uses of p1 and p2, and likewise of XConst1 and
XConst2 .

DH (C; P)p2:
Signature:

Input:
IC-receive(b)p1;p2, b 2 setC(\B")

Output:

IC-send(b)p2;p1, b 2 setC(\B")
grant(b)p2, b 2 setC(\B")

Internal:
choose-expp2

States:

chosen-exp 2 [XConst2C] [f?g, initially ?
base-sent, a Boolean, initially false

rcvd-base 2 setC(\B") [f?g, initially ?

granted , a Boolean, initially false

Derived variables:

chosen-base 2 setC(\B") [f?g, given by:

if chosen-exp 6= ? then exp([b0C]; chosen-exp) else ?

Transitions:

choose-expp2
Precondition:

chosen-exp = ?

E�ect:
chosen-exp := choose x

where x 2 [XConst2C]

IC-send(b)p2;p1
Precondition:

chosen-exp 6= ?

b = chosen-base

base-sent = false

E�ect:
base-sent := true

IC-receive(b)p1;p2
E�ect:

rcvd-base := b

grant(b)p2
Precondition:

chosen-exp 6= ?

rcvd-base 6= ?

b = exp(rcvd-base ; chosen-exp)
granted = false

E�ect:
granted := true

B.2 The Complete Implementation

In the rest of this section, we assume: U 0 = setC ; K
0 = [B2C]; X

0 = [XConst1C][[XConst2C]; N
0 = K0[X0.

The implementation consists of two endpoint automata, an insecure channel, an eavesdropper and an
environment. Speci�cally, implementation KDImpl(C; P;A) is the composition of the following automata,
with certain actions hidden:

25

� DH (C; P)p, p 2 P , endpoint automata.

� IC (U 0; P;A), Eve(C; P;A), Env (U 0; A;N 0).

To get KDImpl(C; P;A), we hide: eavesdropp;q;a, p; q 2 P , p 6= q, a 2 A; IC-sendp;q, IC-receivep;q, p; q 2 P ,
p 6= q; learna, a 2 A.

B.3 Invariants

In the system KDImpl , we use DH (p) for p 2 P , IC , and Eve as handles to help in naming state variables
in the composed state. The �rst invariant says that messages that have been received or are in transit are
correct:

Invariant B.1. In all reachable states of KDImpl, the following are true:

1. If DH (p):rcvd-base 6= ? and q 6= p then DH (q):chosen-exp 6= ?, and DH (p):rcvd-base = DH (q):chosen-base.

2. If u 2 IC :bu�er(p; q), then DH (p):chosen-exp 6= ?, and u = DH (p):chosen-base.

Remark: There was a typo in part 1 of invariant B.1 as stated in [Lyn99]. Client names p and q were
reversed in the conclusion, which read DH (q):rcvd-base = DH (p):chosen-base instead of DH (p):rcvd-base =
DH (q):chosen-base .

The next two invariants say that no N 0 elements ever appear in Eve:has or in the insecure channel.

Invariant B.2. In all reachable states of KDImpl, for all p; q 2 P , p 6= q, and all u 2 N 0
, u =2 IC :bu�er (p; q).

Proof. Analogous to the proof of invariant A.7. Base: The claim is true initially, because the channels are
empty.
Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invariant. The interesting
case is:

1. IC-send(b)p;q

b is an equivalence class of a singly-exponentiated base b0, and thus cannot be a member of X0 (a set of
non-exponentiated constants) or a member of K0 (a set of doubly-exponentiated bases) by Lemma A.4.
Thus, this action cannot add a member of N 0 to IC :bu�er(p; q).

Invariant B.3. In all reachable states of KDImpl, if u 2 N 0
then u =2 Eve:has.

Proof. Analogous to the proof of invariant A.8. Base: The claim is true initially, because Eve :has is empty.
Inductive step: Consider a step (s; �; s0) of the implementation, where s satis�es the invariant. The interesting
cases are:

1. eavesdrop(u)p;q;a

Applying invariant B.2 to state s, it follows that u cannot be a member of N 0.

2. learn(u)a

We use the precondition in Env .

3. compute(u; f)a.

The only function in the cryptosystem is exp. This can't produce any elements of [XConst1] or
[XConst2] because of type considerations. Moreover, in order to produce an element of [B2], an
element of [XConst1][[XConst2] is needed.

26

B.4 Implementation Proof

We show that KDImpl(C; P;A) implements KD(U;P;K;A) using a re�nement mapping. The mapping F is
de�ned as follows:

1. If s:DH (p):chosen-exp 6= ? for all p 2 P , then F (s):chosen-key =
exp(s:DH (p1):chosen-base ; s:DH (p2):chosen-exp), and otherwise F (s):chosen-key = ?.

2. F (s):noti�ed = fp 2 P : s:DH (p):grantedg.

Theorem B.4. F is a re�nement mapping.

Proof. By induction.
Base: Easy.
Inductive step: Consider (s; �; s0) and t and consider cases. The most interesting cases are:

1. � = choose-expp.

If s:DH (q):chosen-exp = ?, where q 6= p then this maps to the trivial one-state execution fragment
F (s). The correspondence is trivially preserved. Otherwise, this corresponds to a one-action move
choose-key , with a chosen value of
exp(s0:DH (q):chosen-base ; s0:DH (p):chosen-exp).
Enabling is straightforward, as is the preservation of the re�nement.

2. � = IC-send (b)p;q.

This corresponds to the trivial one-state execution fragment F (s). It is easy to see that F (s0) = F (s).

3. � = IC-receive(b)p;q

This corresponds to the trivial one-state execution fragment F (s). It is easy to see that F (s0) = F (s).

4. � = grant(b)p

This corresponds to a one-action move grant(b)p in KD . The interesting fact to show here is the
enabling, speci�cally, that the value b = exp(s:DH (p):rcvd-base; s:DH (p):chosen-exp) is equal to
F (s):chosen-key . Invariant B.1 implies that
b = exp(s:DH (q):chosen-base ; s:DH (p):chosen-exp).
and equations in the cryptosystem imply that this is equal to
exp(exp([b0]; s:DH (p1):chosen-exp); s:DH (p2):chosen-exp). The de�nition of F says that this is equal
to F (s):chosen-key , as needed.

5. � = eavesdrop

Corresponds to trivial fragment. Easy to see correspondence preserved.

6. � = compute

Corresponds to trivial fragment. Easy to see correspondence preserved.

7. � = learn(u)a

Corresponds to trivial fragment. Easy to see correspondence preserved.

8. � = reveal(u)a

This corresponds to a one-action move reveal(u)a in KD . We must show that u =2 K0. The precondition
for reveal(u)a (in Eve) implies that u 2 s:Eve :has. Invariant B.3 implies that u =2 N 0, which implies
that u =2 K0.

Theorem B.5. KDImpl(C; P;A) � KD(U;P;K;A).

Proof. By Theorems B.4 and 2.1.

27

C Combining Di�e-Hellman Key Distribution with Private Com-

munication

Now we are ready to combine the Di�e-Hellman key distribution implementation with the rest of the private
communication protocol. The new private communication protocol is identical to PCImpl1 , with one change:
the key distribution speci�cation KD is replaced by Di�e-Hellman key distribution. As we said earlier, we
assume that the key distribution protocol and the private communication protocol have separate insecure
channels and eavesdroppers, and the eavesdroppers do not communicate with each other.

Let C be a shared-key cryptosystem and E a base-exponent cryptosystem. In this section, we assume: U =
setC; M = [MConst]C; K = [[B2]E]C; N = M [K; U 0 = setE ; K

0 = [B2E]; X
0 = [XConst1]E [[XConst2]E;

N 0 = K0 [X0; P = fp1; p2g; A is a nonempty set; A0 is an arbitrary set, disjoint from A. Note that the key
set K of cryptosystem C consists of doubly-exponentiated bases of cryptosystem E .

As before, the implementation consists of encoder and decoder components, an insecure channel, eaves-
dropper and environment, plus a key distributionmodule. More precisely, the implementation,PCImpl2 (C; E ; P;A;A

0),
is obtained by composing the following automata and then hiding certain actions:

� Enc(C; P)p;q, Dec(C; P)p;q, p; q 2 P , p 6= q.

� IC (U;P;A), Eve(C; P;A), Env (U;A;N).

� KDImpl(E ; P;A0), the key distribution module.

In this system, the eavesdropper Eve does not acquire any information directly from the KDImpl component,
and conversely, the eavesdropper inside KDImpl cannot receive information from outside KDImpl .

To get PCImpl2 (C; E ; P;A;A
0), we hide the following actions in the composition just de�ned: eavesdropp;q;a,

p; q 2 P , a 2 A; IC-sendp;q, IC-receivep;q , p; q 2 P ; grantp, p 2 P ; learna, a 2 A; reveala, a 2 A0.

Theorem C.1. PCImpl2 (C; E ; P;A;A
0) � PC (U;P;M;A).

Proof. From theorem B.5 we have KDImpl(E ; P;A0) � KD(U 0; P;K;A0). The only di�erence between
PCImpl2 and PCImpl1 is that we have substituted KDImpl(E ; P;A0) for KD(U 0; P;K;A0). So by the com-
positionality theorem 2.2, PCImpl2 (C; E ; P;A;A

0) � PCImpl1 (C; P;A; U
0; A0). The result then follows by

theorem A.10 and transitivity of �.

28

