
Sound and Complete Elimination of Singleton Kinds

Karl Crary

January 2000

CMU-CS-00-104

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Singleton kinds provide an elegant device for expressing type equality information resulting from modern
module languages, but they can severely complicate the metatheory of languages in which they appear. I
present a translation from a language with singleton kinds to one without, and prove that translation to
be sound and complete. This translation is useful for type-preserving compilers generating typed target
languages. The proof of soundness and completeness is done by normalizing type equivalence derivations
using Stone and Harper's type equivalence decision procedure.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title \The Fox Project:

Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract No.

F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should not be

interpreted as representing o�cial policies, either expressed or implied, of the Defense Advanced Research Projects

Agency or the U.S. Government.

Keywords: ML, singleton kinds, translucent types, typed compilation.

1 Introduction

Type-preserving compilation, compilation using statically typed intermediate languages, o�ers many com-
pelling advantages over conventional untyped compilation. A typed compiler can utilize type information
to enable optimizations that would otherwise be prohibitively di�cult or impossible. Internal type check-
ing can be used to help debug a compiler by catching errors introduced into programs in optimization or
transformation stages. Finally, if preserved through the compiler to its ultimate output, types can be used
to certify that executables are safe, that is, free of certain fatal errors or malicious behavior [10].

One major challenge that has arisen in extending type-preserving compilation to full-strength languages with
modern module systems, such as Standard ML [8], is accounting for the propagation of type information.
For example, consider the following SML signature:

signature SIG1 =

sig

type t = int

val x : t

val f : t -> t

end

If S is a structure having signature SIG1, the compiler must remember that S.t is interchangeable with
int throughout the remaining compilation process. However, it is unacceptable simply to treat t as a
straight abbreviation and delete it from the signature, because SML's type system requires that SIG1 be a
subsignature (i.e., subtype) of the signature SIG2 obtained by removing the equality part of the speci�cation:1

signature SIG2 =

sig

type t

val x : t

val f : t -> t

end

The TILT compiler in development at Carnegie Mellon University (the successor to the TIL compiler [16])
addresses this problem using singleton kinds, a very elegant and uniform type-theoretic mechanism for
ensuring the propagation of type information. Kinds are used in type theories containing higher-order type

constructors to classify type constructors just as types classify ordinary terms. Using singleton kinds, S.t is
given the kind S(int), the kind containing only the type int (and types equal to it). Propagation of type
information is then obtained by augmenting the typechecker with the rule that if � has kind S(� 0), then
� = � 0. The necessary subsignature relationship is obtained by observing that S(int) is a subkind of the
kind T of all types. The management of type information for modules using formalisms similar to singleton
kinds are explored in detail by Harper and Lillibridge [4] and Leroy [7].

Despite providing a very elegant solution to the type propagation problem, singleton kinds can substantially
complicate type checking, for reasons discussed in Section 2. Stone and Harper [15] have recently shown
that, despite these complications, type checking is decidable in the presence of singleton kinds, and indeed
is decidable by a practical algorithm. However, the correctness proof for their algorithm is somewhat
complicated.

As discussed above, a principal advantage of type-preserving compilation is the possibility of producing
executables certi�ed for safety by preserving types all the way through the compiler to its ultimate executable

1This is not an arbitrary requirement in the design of SML. It is necessary to support a very common and useful idiom for

code reuse: that of writing generic code predicated on an abstract signature, and constraining that abstract signature with the

desired concrete types where the generic code is to be used.

1

kinds K ::= T j S(c) j��:K1:K2 j��:K1:K2

constructors c ::= � j b j ��:K:c j c1c2 j hc1; c2i j �1c j �2c
assignments � ::= � j �; �:K

Figure 1: Syntax

output. This work was motivated by the desire to compile Standard ML (with its module language) to Typed
Assembly Language (TAL) [10] for safety certi�cation. However, the latter phases of a type-preserving
compiler may involve complicated type systems including not only TAL, but also row polymorphism for
stacks [9], inductive kinds for intentional type analysis [2], and types for tracking aliasing [14]. It is not clear
whether Stone and Harper's algorithm extends to these type systems augmented with singleton kinds, and if
so, how easily its correctness can be proven. Moreover, there already exist a variety of tools for manipulating
low-level typed languages that do not support singleton kinds.

I propose an alternative architecture for a type-preserving compiler for Standard ML that employs singleton
kinds in the compiler's front end, which performs ML-speci�c optimizations and transformations, but not in
the back end, which may use complicated type systems for code generation and low-level transformations.
This allows the back end to use singleton-free languages and tools, while still providing the full bene�t of
singleton kinds to the front end. However, for this to be possible, we require a way to eliminate singleton
kinds without changing the meaning of the programs in which they appear.

In this paper I present such a strategy for singleton kind elimination. The singleton elimination process
works by substituting de�nitions for free variables wherever singleton kinds give such de�nitions. This is
intuitively a very attractive strategy, but it is complicated by some subtle issues arising from higher-order
type constructors and its correctness is not trivial to prove.

The elimination strategy is correct (that is, sound and complete) in the following sense: if J is a judgement
in the singleton kind calculus and J 0 is its corresponding judgement in the singleton free system (provided
by the singleton elimination process), then J is derivable if and only if J 0 is derivable. This means that
the elimination process does not cause any programs to cease to typecheck, nor does it allow any programs
to typecheck that would not have before. The proof of this fact is the central technical contribution of the
paper.

This paper is organized as follows: In Section 2, I formalize the singleton kind calculus and discuss some
of its subtleties that make it complicated to work with. In Section 3, I present the singleton elimination

strategy and state its correctness theorem. Section 4 is dedicated to the proof of the correctness theorem,
and concluding remarks appear in Section 5.

This paper assumes familiarity with type systems with higher-order type constructors and dependent types.
The correctness proof draws from the work of Stone and Harper [15] showing decidability of type equivalence
in the presence of singleton kinds, but we will use their results almost entirely \o� the shelf," so familiarity
with their paper is not required.

2 A Singleton Kind Calculus

We begin by formalizing the singleton calculus that is the subject of this paper. The syntax of the singleton
calculus is given in Figure 1. It consists of a class of type constructors (usually referred to as \constructors"
for brevity) and a class of kinds, which classify constructors. The class of constructors contains variables
(ranged over by �), a collection of base types (ranged over by b), and the usual introduction and elimination
forms for functions and pairs over constructors. We could also add a collection of primitive type operators

2

signature SIG3 = funsig FSIG (S : sig

sig type s

type s ... value fields ...

type t = int end) =

type u = s * t sig

... value fields ... type t

end type u = S.s * t

... value fields ...

end

Figure 2: Sample Signatures

(such as list or ->) without di�culty, but have not done so in the interest of simplicity.

The kind structure is the novelty of the singleton calculus. The base kinds include T , the kind of all
types, and S(c), the kind of all types de�nitionally equal to c. Thus, S(c) represents a singleton set, up
to de�nitional equality. The constructor c in S(c) is permitted to be open, and consequently kinds may
contain free constructor variables, which makes it useful to have dependent kinds. The kind ��:K1:K2

contains functions from K1 to K2, where � refers to the function's argument and may appear free in K2.
Analogously, the kind ��:K1:K2 contains pairs of constructors from K1 and K2, where � refers to the left-
hand member and may appear free in K2. As usual, when � does not appear free in K2, we write ��:K1:K2

as K1 ! K2 and ��:K1:K2 as K1 �K2.

In addition, the syntax provides a class of assignments, which assign kinds to free constructor variables,
for use in the calculus's static semantics. In a practical application, the language would be extended with
an additional class of terms, but for our purposes (which deal with constructor equality) we need not be
concerned with terms, so they are omitted.

As usual, alpha-equivalent expressions (written E � E0) are taken to be identical. The capture-avoiding
substitution of c for � in E (where E is a kind, constructor or assignment) is written Efc=�g. We also will
often desire to de�ne substitutions independent of a particular place of use, so when � is a substitution, we
denote the application of � to the expression E by Ef�g. Separately de�ned substitutions will usually be
written in the form fc1=�1g � � � fcn=�ng, denoting a sequential substitution with the leftmost substitution
taking place �rst.

As discussed in the introduction, the principal intended use of singleton kinds is in conjunction with module
systems. For example, the type portion of signature SIG3 in Figure 2 is translated to the kind:

��:T:��:S(int): S(�*�)

Note the essential use of dependent sums in this kind. Dependent products arise from the phase splitting [5]
of functors. For example, after phase-splitting, the type portion of the functor signature FSIG in Figure 2
(given in the syntax of Standard ML of New Jersey version 110) is translated to the kind:

��:T: (��:T: S(�*�))

2.1 Judgements

The inference rules de�ning the static semantics of the singleton calculus are given in Appendix A. A
summary of the judgements that these rules de�ne, and their interpretations, are given in Figure 3. For the
most part, these are the usual rules for a dependently typed lambda calculus with products and sums (but
lifted to the constructor level). Again, the novelty lies with the singleton kinds. Singleton kinds have two

3

Judgement Interpretation

� ` ok � is a valid assignment
` �1 = �2 �1 and �2 are equivalent assignments
� ` K K is a valid kind
� ` K1 � K2 K1 is a subkind of K2

� ` K1 = K2 K1 and K2 are equivalent kinds
� ` c : K c is a valid constructor with kind K
� ` c1 = c2 : K c1 and c2 are equivalent as members of kind K

Figure 3: Judgement Forms

introduction rules (one for kind assignment and one for equivalence),

� ` c : T
� ` c : S(c)

� ` c = c0 : T
� ` c = c0 : S(c)

and one elimination rule:
� ` c : S(c0)

� ` c = c0 : T

These rules capture the intuition of singleton kinds: The �rst says that any type belongs to its own singleton
kind. The second says that equivalent types are also considered equivalent as members of their singleton
kind. The third says that if one type belongs to another's singleton kind, then those types are equivalent.

The complexity of the singleton calculus arises from the above rules in conjunction with the subkinding
relation generated by the following two rules:

� ` c : T
� ` S(c) � T

� ` c1 = c2 : T

� ` S(c1) � S(c2)

These rules are essential for singleton kinds to serve their intended purpose in a modern module system. The
�rst allows a signature to match a supersignature obtained by remove equality speci�cations, as discussed in
the introduction. The second allows a signature to match another signature obtained by replacing equality
speci�cations with di�erent but equivalent ones.

The presence of subkinding makes the usual context-insensitive methods of dealing with equivalence impos-
sible. Consider the identity function, ��:T:�, and the constant int function, ��:T:int. These functions are
clearly inequivalent as members of T ! T ; that is, the judgement ` ��:T:� = ��:T:int : T ! T is not
derivable. However, since T ! T is a subkind of S(int)! T , these two functions can also be compared as
members of S(int) ! T and in that kind they are equivalent. This is because the bodies � and int are
compared under the assignment �:S(int), under which � and int are equivalent by the singleton elimination
rule. This example makes it clear that to deal with constructor equivalence in the singleton calculus, one
must take into account the contexts in which the constructors appear.

The determination of equivalence is further complicated by the fact that the classifying kind may be given
implicitly. For example, the classifying kind may be imposed by a function on its argument. Consider the
constructors �(��:T:�) and �(��:T:int). These are well-formed under an assignment giving � the kind
(T ! T) ! T and also under one giving � the kind (S(int) ! T) ! T . However, for the same reason as
above, the two constructors are equivalent under the second assignment but not the �rst. The classifying
kind can then be made even further remote by making � a function's formal argument instead of a free
variable, and so on.

4

T �
def
= T

S(c)
� def

= T

(��:K1:K2)
� def

= K1

� ! K2

�

(��:K1:K2)
� def

= K1
� �K2

�

Figure 4: Singleton Erasure

2.2 A Singleton-Free System

To formalize our results, we also require a singleton-free target language into which to translate expressions
from the singleton calculus. We will de�ne the singleton-free system in terms of its di�erences from the
singleton calculus:

We will say that a constructor c (not necessarily well-formed) syntactically belongs to the singleton-free
calculus provided that c contains no singleton kinds. Note that as a consequence of containing no singleton
kinds, all product and sum kinds may be written in non-dependent form. Also, all kinds in the singleton-free
calculus are well-formed.

The inference rules for the singleton-free system are obtained by removing from the singleton calculus all
the rules dealing with subkinding (Rules 9{13, 28 and 45) and all the rules dealing with singleton kinds
(Rules 6, 15, 25, 34 and 35). Note that derivable judgements into the singleton-free system must be built
using only expressions syntactically belonging to the singleton-free calculus. When a judgement is derivable
in the singleton-free system, we will note this fact by marking the turnstile s̀f .

3 Elimination of Singleton Kinds

The critical rule in the static semantics of the singleton calculus is the singleton elimination rule (Rule 34).
The main aim of the singleton kind elimination process is to rewrite constructors so that any equivalences
that hold for those constructors may be derived without using that rule. If this aim is achieved, any
singleton kinds remaining within the constructors are not used (in any essential way) and can simply be
erased, resulting in valid constructors and derivations in the singleton-free system.

This erasure process is made precise in Figure 4, which de�nes a mapping (�)
�

from singleton calculus kinds
to singleton-free kinds that replaces all singleton kinds by T . The erasure mapping is lifted to constructors
and assignments in the obvious manner. If � ` c1 = c2 : K is derivable without using singleton elimination,
then ��

s̀f c1
� = c2

� : K� is derivable in the singleton-free system. A slightly stronger version of this fact
is formalized as Lemma 25 in Section 4.4.

Thus, our goal is to rewrite constructor in such a manner that the singleton elimination rule is not necessary.
As discussed in the introduction, this rewriting is done by substituting de�nitions for variables whenever
singleton kinds provide such de�nitions. This works out quite simply in �rst-order cases, but higher-order
cases raise some subtle issues. We will explore these issues by considering a number of examples before
de�ning the fully general elimination process.

Example 1 Suppose we are working under the assignment �:S(int); �:S(bool). Naturally, we replace all
free appearances of � in the constructor in question by int, and replace all free appearances of � by bool.
This is done simply by performing the substitution fbool=�gfint=�g on the constructor in question.

5

In this example, we refer to int as the expansion of �, and likewise bool is the expansion of �. In general,
the elimination process will have the same gross structure as in this example. For an assignment � =
�1:K1; : : : ; �n:Kn we will de�ne a substitution R(�) of the form fcn=�ng � � � fc1=�1g where each ci is the
expansion of �i.

Example 2 Suppose we are working under the assignment � = �:S(int); �:S(�). In this case, analogously
to the previous example, R(�) is f�=�gfint=�g. Note that since this is a sequential substitution, it is
equivalent to the substitution fint=�gfint=�g, as one would expect.

Example 3 Suppose � is assigned the kind S(int) � S(bool). In this case, �1� is equal to int and
�2� is equal to bool. We can write these equalities into a constructor by substituting for � with the pair
hint; booli.

Example 4 In the previous examples, the expansion of a variable � did not contain �, but this is not true
in general. Suppose � is assigned the kind T � S(int). In this case, �2� is equal to int, but �1� is not
given a de�nition and should not be changed. We handle this by substituting for � with the pair h�1�; inti.

As this example illustrates, a good way to understand expansions is to view them as eta-long forms of
constructors. This interpretation is precisely correct, provided we view the replacement of a constructor by
its singleton de�nition as an eta-expansion. In fact, the ultimate de�nition of expansions will eta-expand
constructors uniformly, so, for example, if � has kind T �T , its expansion will be h�1�; �2�i (instead of just
�). This uniformity will make the correctness proof simpler, but a practical implementation would probably
optimize such cases.

Example 5 Suppose � is assigned the kind ��:T:S(�). Then �2� is known to be equal to �1� (although
its precise value is unknown). In this case the expansion of � is h�1�; �1�i.

Example 6 Suppose � is assigned the kind ��:S(int):S(�). In this case �1� and �2� are equal to int

and the expansion is hint; inti.

Generally, if � has the kind ��:K1:K2, the expansion of � will be the pair hc1; c2i where c1 is the expansion
of �1�, and c2 is the expansion of �2� with the additional information that � refers to �1� and has kind K1.
We may generalize all the examples so far with the following de�nition, where R(c;K) is the expansion of c
assuming c is known to have kind K:

R(c; T)
def
= c

R(c; S(c0))
def
= c0

R(c;��:K1:K2)
def
= hR(�1c;K1); R(�2c;K2fR(�1c;K1)=�gi

Example 7 Suppose � is assigned the kind ��:T:S(list�) (where list : T ! T). Then for any argument
c, the application � c is equal to list c. Thus, the appropriate expansion of � is ��:T:list�. Note that
this is the eta-long form of list.

Example 8 Suppose � is assigned the kind ��:T: (T � S(�)). In this case, for any argument c, �2(� c) is
known to be equal to c, but no de�nition is given for �1(� c). Thus, the expansion of � is ��:T:h�1(��); �i.

6

These last two examples suggest the following generalization for product kinds:

R(c;��:K1:K2) = ��:K1: R(c�;K2) (wrong)

This is close to the right generalization, but, as we will see in the next section, it is not quite satisfactory
due to the need to account for internally bound variables. Nevertheless, it provides good intuition on the
process of expansion over product kinds.

3.1 Internally Bound Variables

Thus far we have exclusively considered rewriting constructors to account for the kinds of their free variables.
To be sure that no uses of the singleton elimination rule are necessary, we must also consider internally
bound variables. For example, it would seem as though the constructor ��:S(int):� should be rewritten to
something like ��:S(int):int.

A naive approach would be traverse the constructor in question and replace every bound variable with
its expansion resulting from the kind in its binding occurrence. For example, in ��:S(int):�, the binding
occurrence of � gives it kind S(int), so the � in the abstraction's body would be replaced by R(�; S(int)) �
int. However this traversal is not su�cient to account for all internally bound variables, nor in fact is it
even necessary.

To see why a traversal is insu�cient, suppose � has kind (S(int)! T)! T and consider the constructors
�(��:T:�) and �(��:T:int). (Recall Section 2.1.) In the former constructor, the binding occurrence of �
gives it kind T , and consequently the hypothetical traversal would not replace it. However, as we saw in
Section 2.1, the two constructors should be equal, and for this to happen without the singleton elimination
rule, � must be replaced by int in the former constructor. What this illustrates is that when a abstraction
appears in an argument position, the abstraction's domain kind can be strengthened (in this case from T to
S(int)). This means that the kind given in a variable's binding occurrence cannot be relied upon.

One possibility for dealing with this would be to perform a much more complicated traversal that attempts
to determine the \true" kind for every bound variable. Fortunately, we may deal with this in a much simpler
way by shifting the responsibility for expanding a bound variable from the abstraction where that variable
is bound to all constructors that might consume that abstraction.

In the above example, � changes the e�ective domain of its arguments to S(int); in other words, it promises
only to call them with int. The expansion process for product kinds makes this explicit. In this case, the
expansion of � is �
:(S(int)! T): �(��:S(int):
 int). After substituting this expansion for �, each of the
constructors above normalize to �(��:S(int):int). In general, the expansion that achieves this is:

R(c;��:K1:K2)
def
= ��:K1: R(c�;K2)fR(�;K1)=�g

Making this expansion part of the substitution for free variables accounts for all cases in which the kind of
an abstraction (and therefore its domain kind) is given by some other constructor to which the abstraction
is passed as an argument. The only other way a kind may be imposed on an abstraction is at the top level.
Again recall Section 2.1 and consider the constructors ��:T:� and ��:T:int. These constructors should be
considered equivalent when compared as members of kind S(int) ! T , but not as members of T ! T .
Thus, the elimination process must be a�ected by the kinds in which a constructor is considered to lie.

This is neatly dealt with by (in addition to substituting expansions for free variables) expanding the entire
constructor using the kind to which it belongs. Thus, when considered as members of S(int)! T , the two
constructors above become ��:S(int):((��:T:�)int) and ��:S(int):((��:T:int)int); each of which normal-
ize to ��:S(int):int. However, when considered as members of T ! T , the two become ��:T:((��:T:�)�)
and ��:T:((��:T:int)�); each of which normalizes to its original form.

7

R(c; T)
def
= c

R(c; S(c0))
def
= c0

R(c;��:K1:K2)
def
= ��:K1: R(cR(�;K1);K2fR(�;K1)=�g)

(where � is not free in c or K1)

R(c;��:K1:K2)
def
= hR(�1c;K1); R(�2c;K2fR(�1c;K1)=�gi

R(�1:K1; : : : ; �n:Kn)
def
= fR(�n;Kn)=�ng � � � fR(�1;K1)=�1g

Figure 5: Expansions

3.2 The Elimination Process

The full de�nition of the expansion constructors and substitutions is given in Figure 5. Using expansion, the
singleton kind elimination proceeds in three steps: Given a constructor c considered to have kind K under
assignment �, we �rst expand c, resulting in R(c;K). Second, we substitute expansions for all free variables,
resulting in R(c;K)fR(�)g. Third, we erase any remaining singleton kinds, resulting in (R(c;K)fR(�)g)

�

.

We may state the following correctness theorem for the elimination process, which states that rewritten
constructors will be equivalent if and only if the original constructors were equivalent:

Theorem 1 Suppose � ` c1 : K and � ` c2 : K. Then � ` c1 = c2 : K if and only if ��

s̀f

(R(c1;K)fR(�)g)
�

= (R(c2;K)fR(�)g)
�

: K�.

The proof of the correctness theorem is the subject of the next section.

4 Correctness Proof

The previous section's informal discussion motivates why we might expect the elimination process to be
correct. Unfortunately, Theorem 1 de�es direct proof, because there are too many ways that a judgement
might be derived, and those derivations have no particular structure in common. We may see a reason
why the proof is di�cult by considering the theorem's implications. Since it is easy to determine equality
of constructors in the singleton-free system, the theorem provides a simple test for equality: translate
constructors into the singleton-free system and check that they are equal there. The theorem states that
such a test is sound and complete. However, this also indicates that proving the theorem is at least as
di�cult as proving decidability of constructor equality in the full system.

The decidability of constructor equality has recently been shown by Stone and Harper [15]. They provide an
algorithm for deciding constructor equality and prove that algorithm sound and complete using a Kripke-
style logical relation. In addition to settling the decidability question, they provide a tool with which we
may prove Theorem 1. One approach would be to follow Stone and Harper and prove the theorem directly
using a logical relation. This approach is not attractive, due to the substantial complexity of the arguments
involved. However, we may still take advantage of their result.

The proof works essentially by using Stone and Harper's algorithm to normalize the derivations of equality
judgements. Given an derivable equality judgement, we use completeness of the algorithm to deduce the
existence of a derivation in the algorithmic system. That derivation can have only one form, making it much
easier to reason about.

8

The only-if portion of the proof (the di�cult part) is structured as follows:

1. Suppose � ` c1 = c2 : K.

2. Prove that constructors are equal to their expansions; that is, � ` c1 = R(c1;K)fR(�)g : K and
� ` c2 = R(c2;K)fR(�)g : K. By symmetry and transitivity it follows that the expansions are equal:
� ` R(c1;K)fR(�)g = R(c2;K)fR(�)g : K.

3. By algorithmic completeness, deduce that there exists a derivation of the algorithmic judgement � `

R(c1;K)fR(�)g : K , � ` R(c2;K)fR(�)g : K.

4. Prove that singleton reduction (the algorithmic counterpart of the singleton elimination rule) is not
used in the algorithmic derivation. This step is the heart of the proof.

5. By algorithmic soundness, deduce that there exists a derivation of � ` R(c1;K)fR(�)g =
R(c2;K)fR(�)g : K in which the singleton elimination rule (Rule 34) is not used (except within
subderivations for kinding or subkinding judgements).

6. Prove that therefore there exists a derivation of ��

s̀f (R(c1;K)fR(�)g)
�

= (R(c2;K)fR(�)g)
�

: K�.

Once the only-if portion is proved, the converse is easily established. Its proof is discussed in Section 4.4.

4.1 Equality of expansions

We begin by establishing that well-formed constructors are equal to their expansions. We �rst state three
propositions giving some properties of the inference system (these are proven in Stone and Harper [15]), and
then prove equality of expansions by a series of three lemmas.

Proposition 2 (Regularity)

1. If � ` J then � ` ok.

2. If � ` c : K then � ` K kind.

3. If � ` c1 = c2 : K then � ` c1 : K and � ` c2 : K.

Proposition 3

1. (Weakening) If �1;�3 ` J and �1;�2;�3 ` ok then �1;�2;�3 ` J .

2. (Re
exivity) If � ` c : K then � ` c = c : K.

3. (Kind re
exivity) If � ` K kind then � ` K = K.

4. (Subkinding re
exivity) If � ` K1 = K2 then � ` K1 � K2.

5. (Assignment re
exivity) If � ` ok then ` � = �.

Proposition 4 (Substitution) Suppose � ` c1 = c2 : K. Then:

1. If �; �:K;�0 ` K1 = K2 then �; (�0fc1=�g) ` K1fc1=�g = K2fc2=�g.

2. If �; �:K;�0 ` c0
1
= c0

2
: K 0 then �; (�0fc1=�g) ` c0

1
fc1=�g = c0

2
fc2=�g : K

0fc1=�g.

9

Lemma 5 R(c;K)fc0=�g � R(cfc0=�g;Kfc0=�g)

Proof

By induction on K.

Lemma 6 If � ` c : K then � ` c = R(c;K) : K.

Proof

By induction on K.

Case 1: Suppose K � T . Then R(c;K) � c and by re
exivity, � ` c = c : K.

Case 2: Suppose K � S(c0). Then R(c;K) � c0. By assumption, � ` c : S(c0), so by singleton
elimination (Rule 34), � ` c = c0 : T . Then by symmetry and Rule 35, � ` c = c0 : S(c0).

Case 3: Suppose K � ��:K1:K2. Choose � so that it does not appear in the domain of � or
free in c. Then R(c;K) � ��:K1: R(cR(�;K1);K2fR(�;K1)=�g). Invoking Lemma 5, R(c;K) �

��:K1: R(c�;K2)fR(�;K1)=�g.

By regularity and inversion, � ` K1 kind, so by weakening, �; �:K1 ` c : ��:K1:K2. Thus �; �:K1 `

c� : K2. By induction, �; �:K1 ` c� = R(c�;K2) : K2. Also by induction, �; �:K1 ` � = R(�;K1) :
K1. Then, by weakening and substitution, �; �:K1 ` c� = R(c�;K2)fR(�;K1)=�g : K2. By product
introduction (Rule 40), � ` ��:K1:c� = R(c;K) : ��:K1:K2.

It remains to show that � ` c = ��:K1:c� : ��:K1:K2. This may be shown using functionality (Rule
30) and beta reduction (Rule 29).

Case 4: Suppose K � ��:K1:K2. Choose � so that it does not appear in the domain of � or free
in c. Then R(c;K) � hR(�1c;K1); R(�2c;K2fR(�1c;K1)=�gi. Note that by regularity and inversion,
�; �:K1 ` K2 kind.

By sum elimination (Rule 22), � ` �1c : K1, so by induction, � ` �1c = R(�1c;K1) : K1.
Also by sum elimination (Rule 23), � ` �2c : K2f�1c=�g. By re
exivity and substitution, � `

K2f�1c=�g = K2fR(�1c;K1)=�g, and thus � ` �2c : K2fR(�1c;K1)=�g. Then, by induction,
� ` �2c = R(�2c;K2fR(�1c;K1)=�g) : K2fR(�1c;K1)=�g. By sum introduction (Rule 44) and sym-
metry, � ` h�1c; �2ci = R(c;K) : ��:K1:K2.

It remains to show that � ` c = h�1c; �2ci : ��:K1:K2. This may be shown using functionality (Rule 31)
and beta reduction (Rules 32 and 33).

Lemma 7 If � ` c : K then � ` c = R(c;K)fR(�)g : K.

Proof

The proof is by induction on �0 that if �;�0 ` c : K then �;�0 ` c = R(c;K)fR(�0)g : K. For empty
�0, use Lemma 6. In the inductive case, suppose �0 � �:K 0;�00. Then R(�0) � R(�00)fR(�;K 0)=�g.
By induction, �; �:K 0;�00 ` c = R(c;K)fR(�00)g : K. Since �; � : K 0;�00 ` � : K 0, by Lemma 6 it
follows that �; �:K 0;�00 ` � = R(�;K 0) : K 0. By weakening and substitution, �; �:K 0;�00 ` cf�=�g =
R(c;K)fR(�00)gfR(�;K 0)=�g : K. That is, �;�0 ` c = R(c;K)fR(�0)g : K.

Corollary 8 If � ` c1 = c2 : K then � ` R(c1;K)fR(�)g = R(c2;K)fR(�)g : K

Proof

By regularity, Lemma 7, symmetry and transitivity.

10

4.2 The Decision Algorithm

Stone and Harper's decision algorithm for constructor equivalence is given in Figure 6. This algorithm is
unusual in that it is a six place algorithm; it maintains two assignments and two kinds. This allows the two
halves of the algorithm to operate independently, which is critical to Stone and Harper's proof and to this
one.2 In common usage, the two assignments and the two kinds are equivalent (but often not identical). The
critical singleton reduction rule appears as the ninth clause.

The algorithm works as follows:

1. The algorithm is presented with a query of the form � ` c : K , �0 ` c0 : K 0. When ` � = �0 and
� ` K = K 0, this determines whether � ` c = c0 : K is derivable.

2. The constructor equivalence rules add appropriate elimination forms (applications or projections) to
the constructors being compared in order to drive them down to kind T or a singleton kind. Then
those constructors are reduced to weak head normal form.

3. Elimination contexts (E) are de�ned in the usual manner, as shown below. A constructor of the form
E[�] is referred to as a path, and � is called the head of the path. We will often use the metavariable
p to range over paths.

E ::= [] j Ec j �1E j �2E

A constructor is reduced to weak head normal form by alternating beta reductions and singleton
reductions. Beta reduction of a constructor c is performed by placing it in the form E[c] where c is
a beta redex, and reducing to E[c0] where c0 is the corresponding contractum. Repetition of this will
ultimately result in a path (if the constructor is well-formed, which is assumed).

4. Singleton reduction of a path p is performed by determining its natural kind , and replacing p with c
whenever p's natural kind is some singleton kind S(c). (Formally, the algorithm adds an evaluation
context, reducing E[p] to E[c] when p has natural kind c, but E will be empty when E[p] is well-formed.)

Note that the natural kind of a path is not a principal kind. For example, if �(�) = T then the natural
kind of � is T , but � has principal kind S(�).

5. When no more beta or singleton reductions apply, the algorithm compares the two paths, checking
that they have the same head variable and the same series of eliminations. When checking that two
applications are the same, the main algorithm is reinvoked to determine whether the arguments are
equal.

We may state the following correctness theorem for the algorithm:

Theorem 9 (Stone-Harper)

1. (Completeness) If � ` c1 = c2 : K then � ` c1 : K , � ` c2 : K.

2. (Soundness) Suppose ` � = �0, � ` K = K 0, � ` c1 : K and �0 ` c2 : K
0. Then if � ` c1 : K , �0 `

c2 : K
0 then � ` c1 = c2 : K.

Corollary 10 If � ` c1 = c2 : K then � ` R(c1;K)fR(�)g : K , � ` R(c2;K)fR(�)g : K.

There is one minor di�erence between this algorithm and the one presented in Stone and Harper. When
checking constructor equivalence at a singleton kind, Stone and Harper's algorithm immediately succeeds,

2Stone and Harper also prove their six-place algorithm equivalent to a conventional four-place algorithm, which is preferable

in practice.

11

Natural kind extraction

� ` � " �(�)

� ` b " T
� ` �1p " K1 if � ` p " ��:K1:K2

� ` �2p " K2f�1p=�g if � ` p " ��:K1:K2

� ` p c " K2fc=�g if � ` p " ��:K1:K2

Weak head reduction

� ` E[(��:K:c)c0] �! E[cfc0=�g]
� ` E[�1hc1; c2i] �! E[c1]

� ` E[�2hc1; c2i] �! E[c2]

� ` E[p] �! E[c] if � ` p " S(c) (singleton reduction)

Weak head normalization

� ` c + c0 if � ` c �! c00 and � ` c00 + c0

� ` c + c otherwise

Algorithmic constructor equivalence

�1 ` c1 : T , �2 ` c2 : T if �1 ` c1 + p1 and �2 ` c2 + p2
and �1 ` p1 " T $ �2 ` p2 " T

�1 ` c1 : S(c
0

1), �2 ` c2 : S(c
0

2) if �1 ` c1 + p1 and �2 ` c2 + p2
and �1 ` p1 " T $ �2 ` p2 " T

�1 ` c1 : ��:K1:K
0

1 , �2 ` c2 : ��:K2:K
0

2 if �1; �:K1 ` c1� : K0

1 , �2; �:K2 ` c2� : K0

2

�1 ` c1 : ��:K1:K
0

1 , �2 ` c2 : ��:K2:K
0

2 �1 ` �1c1 : K1 , �2 ` �1c2 : K2

and �1 ` �2c1 : K
0

1f�1c1=�g , �2 ` �2c2 : K
0

2f�2c2=�g

Algorithmic path equivalence

�1 ` � " �1(�)$ �2 ` � " �2(�)

�1 ` b1 " T $ �2 ` b2 " T if b1 � b2
�1 ` p1c1 " K

0

1fc1=�g $ �2 ` p2c2 " K
0

2fc2=�g if �1 ` p1 " ��:K1:K
0

1 $ �2 ` p2 " ��:K2:K
0

2

and �1 ` c1 : K1 , �2 ` c2 : K2

�1 ` �1p1 " K1 $ �2 ` �1p2 " K2 if �1 ` p1 " ��:K1:K
0

1 $ �2 ` p2 " ��:K2:K
0

2

�1 ` �2p1 " K
0

1f�1p1=�g $

�2 ` �2p2 " K
0

2f�1p2=�g if �1 ` p1 " ��:K1:K
0

1 $ �2 ` p2 " ��:K2:K
0

2

Figure 6: Constructor Equivalence Algorithm

while the algorithm here behaves the same as when comparing at kind T . However, Stone and Harper's proof
goes through in almost exactly the same way, with only a change to one subcase of their \Main Lemma."
Their algorithm is more e�cient, since it terminates early in some cases, but for our purposes we are not
concerned with e�ciency. The advantage of this version of the algorithm is that we may obtain the stronger
version of soundness given in Theorem 12:

De�nition 11 A derivation is mostly free of singleton elimination if every use of singleton elimination

(Rule 34) in that derivation lies within a subderivation whose root is a constructor formation or subkinding

judgement.

Theorem 12 (Singleton-free soundness) Suppose ` � = �0, � ` K = K 0, � ` c1 : K and �0 ` c2 : K
0.

Then if � ` c1 : K , �0 ` c2 : K 0 without using singleton reduction then there exists a derivation of

� ` c1 = c2 : K that is mostly free of singleton elimination.

Proof

By inspection of Harper and Stone's proof.

12

Theorem 12 fails with the more e�cient version of the algorithm because when �1 ` c1 : S(c
0

1
) , �2 ` c2 :

S(c0
2
), the soundness proof must use singleton elimination to show that c1 and c0

1
are equal and that c2 and

c0
2
are equal, in the course of showing that c1 and c2 are equal.

In the next section we will show that the algorithmic derivation shown to exist by Corollary 10 is free of
singleton reduction. Then Theorem 12 will permit us to conclude that the corresponding derivation in the
declarative system is mostly free of singleton elimination. A derivation mostly free of singleton elimination
uses singleton elimination in no signi�cant manner; any residual uses (within constructor formation or
subkinding) will be removed be singleton erasure in Section 4.4.

4.3 Absence of singleton reduction

The heart of the proof is to show that singleton reduction will not be used in a derivation of algorithmic
equivalence of expanded constructors. It is here that we really show that expansion works to eliminate
singleton kinds: if the algorithm is able to deduce that the two expanded terms are equal without using
singleton reduction, then we have obviated the need for singleton kinds.

The proof works by de�ning a condition, called protectedness, that is satis�ed by expanded constructors,
that rules out any need for singleton reduction, and that is preserved by the algorithm. First we make some
preliminary de�nitions:

De�nition 13

� Two kinds K and K 0 are similar (written K � K 0) if they are the same modulo the contents of singleton

kinds. That is, similarity is the least congruence such that S(c) � S(c0) for any constructors c and c0.

� Two assignments � and �0 are similar (written � � �0) if they bind the same variables in the same

order, and if �(�) � �0(�) for all � 2 Dom(�).

Note that a well-formed kind can be similar to an ill-formed kind, and likewise for assignments. When two
kinds or two assignments are similar, they are said to have the same shape. For the proof of the absence of
singleton reductions, we will be able to disregard the actual kinds and assignments being used and consider
only their shapes; this will simplify the proof considerably. This works because the contents of singleton
kinds are only pertinent to singleton reduction, which we are showing never takes place.

We also de�ne contexts (C) as shown below. Note that contexts are de�ned to have exactly one hole, and
note also that evaluation contexts are a subclass of contexts. As we are not concerned with the contents
of singleton kinds, there is no need for contexts to account for constructors appearing within the domain
kind of a lambda abstraction. Instantiation of a context is de�ned in the usual manner; in particular, it is
permissible for instantiation to capture free variables.

C ::= [] j ��:K:C j C c j cC j hC; ci j hc; Ci j �1C j �2C

Finally, we de�ne weak head reduction without a context in the usual manner (that is, E[(��:K:c)c0] �!
E[cfc0=�g] and E[�ihc1; c2i] �! E[ci]). Note that if c1 �! c2 then � ` c1 �! c2 (recall algorithmic weak
head reduction).

We are now ready to de�ne the protectedness property. The intuition is that a constructor is protected if every
variable in that constructor appears in an evaluation context that drives it down to kind T . Consequently no
path will have a singleton natural kind and singleton reduction will not take place. In order to ensure that
protectedness is preserved by the algorithm, we strengthen the condition so that the evaluation context that
drives a variable to kind T must be appropriate. An evaluation context is appropriate if, for every application
appearing in that context, the argument constructor is protected (and, moreover, is still protected when
driven to kind T and weak head normalized).

13

De�nition 14 Suppose � is an assignment and K is a kind. The unary relations �-protected, K-�-
appropriate, and K-�-protected are the least relations such that:

1. Protectedness

� A constructor c is �-protected if whenever c � C[�] (where � 2 Dom(�) and C does not capture

�), there exist C 0 and E such that C[] � C 0[E[]], and E[�] is T -�-appropriate.

2. Appropriateness

� A path � is K-�-appropriate if �(�) � K.

� A path p c is K2-�-appropriate if p is (��:K1:K2)-�-appropriate and c is K1-�-protected.

� A path �1p is K1-�-appropriate if p is (��:K1:K2)-�-appropriate.

� A path �2p is K2-�-appropriate if p is (��:K1:K2)-�-appropriate.

3. Protectedness relative to a kind

� A constructor c is T -�-protected if c is �-protected.

� A constructor c is S(c00)-�-protected if c is �-protected.

� A lambda abstraction ��:K 0

1
:c is (��:K1:K2)-�-protected if c is K2-(�; �:K1)-protected.

� A pair hc1; c2i is (��:K1:K2)-�-protected if c1 is K1-�-protected and c2 is K2-�-protected.

Note that the relations being de�ned appear only positively above, so De�nition 14 is a valid inductive
de�nition. Also, note that these de�nitions are concerned with kinds only up to similarity, and for this
reason the de�nition can safely ignore the presence of free variables in kinds and assignments. We may
immediately observe a number of easy structural facts about these de�nitions:

Lemma 15

1. Suppose � � �0 and K � K 0, then

� c is �-protected if and only if c is �0-protected,

� c is K-�-protected if and only if c is K 0-�0-protected, and

� p is K-�-appropriate if and only if p is K 0-�0-appropriate.

2. If c is �-protected then ��:K:c, �1c, and �2c are �-protected.

3. If c1 and c2 are �-protected then c1c2 and hc1; c2i are �-protected.

4. If E[��:K:c] is �-protected then c is �-protected.

5. If E[c1c2] is �-protected then c2 is �-protected.

6. If E[hc1; c2i] is �-protected, then c1 and c2 are �-protected.

7. Any constructor is �-protected.

8. If c is (� n �)-protected and � is not free in c, then c is �-protected.

9. If c is �-protected then c is (� n �)-protected.

10. If c is K-�-protected then c is �-protected.

14

Proof

Parts 1{3 and 7{10 are by inspection. For part 4 observe that any path with its head in c lies entirely
within c. Likewise for part 5 observe that any path with its head in c2 lies entirely within c2, and similarly
for part 6.

In order to show that protectedness is preserved by the algorithm, we need to show that it is preserved by
weak head reduction. To show this we must �rst establish a substitution lemma. To do so, we will have
need of the fact that any subexpression of a substitution results from one or the other participant in the
substitution:

Lemma 16 If C[c] = c1fc2=�g and C does not capture � then either

� there exist contexts C1 and C2 such that c1 � C1[�], c2 � C2[c] and C[] � (C1fc2=�g)[C2[]] (that is,
c results from c2), or

� there exists a context C1 and a constructor c0 such that c1 � C1[c
0], c � c0fc2=�g, and C[] �

(C1fc2=�g)[] (that is, c results from some c0 in c1).

Proof

By induction on c1. If C is empty then the second case is satis�ed by C1[] � [] and c0 � c1. Therefore
assume C is nonempty.

Case 1: Suppose c1 � �. Then the �rst case is satis�ed by C1[] � [] and C2[] � C[].

Case 2: Suppose c1 � � where � 6� �. Then C[c] � �, which is impossible since C is nonempty.

Case 3: Suppose c1 � ��:K:c0
1
. Then C[] � ��:(Kfc2=�g):(C

0[]). Since C does not capture �, it
follows that � 6� �. Note that C 0[c] � c0

1
fc2=�g. We proceed by case analysis using the induction

hypothesis on C 0[c]:

Subcase 3.1: Suppose there exist contexts C 0

1
and C2 such that c0

1
� C 0

1
[�], c2 � C2[c] and C 0[] �

(C 0

1
fc2=�g)[C2[]]. Then the �rst case is satis�ed by C1[] � ��:K:(C 0

1
[]).

Subcase 3.2: Suppose there exists a context C 0

1
and a constructor c0 such that c0

1
� C 0

1
[c0], c � c0fc2=�g,

and C 0[] � (C 0

1
fc2=�g)[]. Then the second case is satis�ed by C1[] � ��:K:(C 0

1
[]).

Case 4: Suppose c1 � c0
1
c00
1
. The remaining cases are similar. Then C[] is either (C 0[])(c00

1
fc2=�g) or

(c0
1
fc2=�g)(C

0[]). Suppose the former; the latter is similar. Note that C 0[c] � c0
1
fc2=�g. We proceed by

case analysis using the induction hypothesis on C 0[c]:

Subcase 4.1: Suppose there exist contexts C 0

1
and C2 such that c0

1
� C 0

1
[�], c2 � C2[c] and C 0[] �

(C 0

1
fc2=�g)[C2[]]. Then the �rst case is satis�ed by C1[] � (C 0

1
[])c00

1
.

Subcase 4.2: Suppose there exists a context C 0

1
and a constructor c0 such that c0

1
� C 0

1
[c0], c � c0fc2=�g,

and C 0[] � (C 0

1
fc2=�g)[]. Then the second case is satis�ed by C1[] � (C 0

1
[])c00

1
.

Lemma 17 (Substitution)

1. If c1 is �-protected and c2 is �-protected, then c1fc2=�g is �-protected.

2. If p is K-�-appropriate, c2 is �-protected and � is not the head of p, then pfc2=�g is K-�-appropriate.

3. If c1 is K-�-protected and c2 is �-protected, then c1fc2=�g is K-�-protected.

Proof

The proof is by induction on the derivation of the �rst assumption (i.e., c1 being �-protected, p being
K-�-appropriate, or c1 being K-�-protected, respectively.) We show part 1; the other two parts are easy
using an inner induction on K.

15

We may assume, without loss of generality, that � 62 Dom(�), if necessary by replacing � with a fresh
variable and re-establishing protectedness of c1 using Lemma 15 (parts 8 and 9). Suppose C[�] �
c1fc2=�g, � 2 Dom(�), and C does not capture �. By assumption, � 6� �, so we may alpha-vary C[�] as
necessary to ensure that C does not capture �. We proceed by case analysis using Lemma 16:

Case 1: Suppose c1 � C1[�], c2 � C2[�] and C[] � (C1fc2=�g)[C2[]]. Since c2 is �-protected, there
exists C 0

2
and E such that C2[] � C 0

2
[E[]] and E[�] is T -�-appropriate. Then C[] � C 0[E[]] where C 0[]

is (C1fc2=�g)[C
0

2
[]].

Case 2: Suppose c1 � C1[c
0], � � c0fc2=�g, C[] � (C1fc2=�g)[]. The constructor c0 must be either

� or �. In the former case, c2 � �, and since c2 is �-protected, it follows that protection is satis�ed by
setting C 0 to C and E to empty. Therefore, assume c0 � �.

Then c1 is of the form C1[�] where C1 does not capture � (since C does not). Since c1 is �-protected, there
must exist C 0

1
and E such that C1[] � C 0

1
[E[]] and E[�] is T -�-appropriate. By induction, E[�]fc2=�g

is T -�-appropriate. Then C[] � C 0[E0[]] where C 0[] is (C 0

1
fc2=�g)[] and E0 is (Efc2=�g)[].

Corollary 18 If c1 is �-protected and c1 �! c2 then c2 is �-protected.

Proof

We prove that if Eout[c1] is �-protected and c1 �! c2 then c2 is �-protected. The result follows by setting
Eout � []. Let c1 be E[c

0

1
] and c2 be E[c

0

2
], where c0

1
is a redex and c0

2
is its contractum. The proof is by

induction on E.

Case 1: Suppose E � [] and c0
1
� (��:K:c)c0. By Lemma 15 (parts 4 and 5), c and c0 are �-protected.

By Lemma 17, cfc0=�g is �-protected.

Case 2: Suppose E � [] and c0
1
� �ihc1; c2i. By Lemma 15 (part 6), ci is �-protected.

Case 3: Suppose E � E0c. Then E0[c0
1
] �! E0[c0

2
] so, by induction, E0[c0

2
] is �-protected. By Lemma

15 (part 5), c is �-protected, so E0[c0
2
] c is �-protected.

Case 4: Suppose E � �iE
0. Then E0[c0

1
] �! E0[c0

2
] so, by induction, E0[c0

2
] is �-protected. Thus

�iE
0[c0

2
] is �-protected.

We will also need a technical lemma regarding natural kind extraction:

Lemma 19

1. If p is K-�-appropriate and � ` p " K 0 then K � K 0.

2. If �1 ` p1 " K1 $ �2 ` p2 " K2 then �1 ` p1 " K1 and �2 ` p2 " K2.

Proof

Part 1 is by induction on K. Part 2 is by induction on the derivation.

We are now ready to prove the main lemma:

Lemma 20 (Main Lemma)

1. If �1 ` c1 : K1 , �2 ` c2 : K2 is derivable, c1 �!
� c0

1
, c2 �!

� c0
2
, c0

1
is K1-�1-protected, and c0

2
is

K2-�2-protected, then the derivation does not use singleton reduction.

2. If �1 ` p1 " K1 $ �2 ` p2 " K2 is derivable, c1 is K1-�1-appropriate, and c2 is K2-�2-appropriate,

then the derivation does not use singleton reduction.

16

Proof

By induction on the algorithmic derivation.

Case 1: Suppose the derivation's root is �1 ` c1 : T , �2 ` c2 : T . Then �1 ` c1 + p1, �2 ` c2 + p2,
and �1 ` p1 " T $ �2 ` p2 " T . By the de�nitions of weak head normalization and reduction, it follows
either that c1 �!

� p1 or that c1 �!
� E[p0

1
], �1 ` p0

1
" S(c00

1
), and �1 ` E[c00

1
] + p1. In either case c1

beta weak head reduces to a path, so let c1 �!
� p. Since weak head reduction is deterministic and p

is in (beta) weak head normal form, it follows that c0
1
�!� p. By assumption c0

1
is �1-protected, so by

Corollary 18, p is �1-protected.

Suppose p singleton reduces and let p be E[�]. Then there exist E1 and E2 such that E[] � E1[E2[]]
and �1 ` E2[�] " S(c). Since p is �1-protected, there also exist E0

1
and E0

2
such that E[] � E0

1
[E0

2
[]]

and E0

2
[�] is T -�1-appropriate. One of E2[�] and E0

2
[�] must be a subpath of the other and both cases

lead to a contradiction. If E0

2
[�] is a subpath of E2[�] then �1 ` E0

2
[�] " K for some K, but K � T by

Lemma 19 so it cannot be the case that �1 ` E2[�] " S(c). If E2[�] is a subpath of E0

2
[�] then E2[�]

is K-�1-appropriate for some K, but K � S(c) by Lemma 19 so it cannot be the case that E0

2
[�] is

T -�-appropriate.

Hence p does not singleton reduce, and consequently c1 �!
� p1 and p1 is �1-protected. Again let p1

be E[�]. Since p1 is �1-protected, there exist E1 and E2 such that E[] � E1[E2[]] and E2[�] is T -�1-
appropriate. Since �1 ` E1[E2[�]] " T $ �2 ` p2 " T , by Lemma 19 (part 1) �1 ` E1[E2[�]] " T , and
therefore that �1 ` E2[�] " K for some K. By Lemma 19 (part 2), K � T , which means that E1 must be
empty. Therefore, p1 is T -�1-appropriate. Similarly c2 �!

� p2 and p2 is T -�2-appropriate. The result
follows by induction.

Case 2: Suppose the derivation's root is �1 ` c1 : S(c0
1
) , �2 ` c2 : S(c0

2
). This case is identical to

the previous case.

Case 3: Suppose the derivation's root is �1 ` c1 : ��:K11:K12 , �2 ` c2 : ��:K21:K22. By assump-
tion, c1 �!

� c0
1
and c0

1
is of the form ��:K 0

11
:c00
1
where c00

1
isK12-(�1; �:K11)-protected. Then c1� �!

� c00
1
.

Similarly, c2� �!
� c00

2
for some K22-(�2; �:K21)-protected c00

2
. The result follows by induction.

Case 4: Suppose the derivation's root is �1 ` c1 : ��:K11:K12 , �2 ` c2 : ��:K21:K22. By assump-
tion, c1 �!

� c0
1
and c0

1
is of the form hc11; c12i where c11 is K11-�1-protected and c12 is K12-�1-protected.

Then �1c1 �!
� c11 and �2c1 �!

� c12. Since K12 � K12f�1c1=�g, it follows that c12 is (K12f�1c1=�g)-
�1-protected. Similarly, �1c2 �!� c21 and �2c2 �!� c22 for some K21-�2-protected c21 and some
(K22f�1c2=�g)-�2-protected c22. The result follows by induction.

Case 5: Suppose the derivation's root is �1 ` � " �1(�)$ �2 ` � " �2(�). The result follows trivially.

Case 6: Suppose the derivation's root is �1 ` b " T $ �2 ` b " T . The result follows trivially.

Case 7: Suppose the derivation's root is �1 ` p1c1 " K12fc1=�g $ �2 ` p2c2 " K22fc2=�g. Then
�1 ` p1 " ��:K11:K12 $ �2 ` p2 " ��:K21:K22 and �1 ` c1 : K11 , �2 ` c2 : K21. Since (invoking
Lemma 15 (part 1)) p1c1 is K12-�1-appropriate, it follows that p1 is (��:K 0

11
:K12)-�1-appropriate and

c1 is K 0

11
-�1-protected, for some K

0

11
. However, by Lemma 19 it follows that K11 � K 0

11
. Thus, p1 is

(��:K11:K12)-�1-appropriate and c1 is K11-�1-protected. Similarly, p2 is (��:K21:K22)-�2-appropriate
and c2 is K21-�2-protected. The result follows by induction.

Case 8: Suppose the derivation's root is �1 ` �1p1 " K11 $ �2 ` �1p2 " K21. Then �1 `

p1 " ��:K11:K12 $ �2 ` p2 " ��:K21:K22. Since �1p1 is K11-�1-appropriate, it follows that p1
is (��:K11:K

0

12
)-�1-appropriate. However, by Lemma 19 it follows that K12 � K 0

12
. Thus, p1 is

(��:K11:K12)-�1-appropriate. Similarly, p2 is (��:K21:K22)-�2-appropriate. The result follows by in-
duction.

Case 9: Suppose the derivation's root is �1 ` �2p1 " K12f�1p1=�g $ �2 ` �2p2 " K22f�1p2=�g. Then
�1 ` p1 " ��:K11:K12 $ �2 ` p2 " ��:K21:K22. Since (invoking Lemma 15 (part 1)) �2p1 is K12-�1-
appropriate, it follows that p1 is (��:K 0

11
:K12)-�1-appropriate. However, by Lemma 19 it follows that

K11 � K 0

11
. Thus, p1 is (��:K11:K12)-�1-appropriate. Similarly, p2 is (��:K21:K22)-�2-appropriate.

The result follows by induction.

It remains to show that expanded constructors are protected.

17

De�nition 21

� The kind T is �-protected.

� The kind S(c) is �-protected if c is.

� The kinds ��:K1:K2 and ��:K1:K2 are �-protected if both K1 and K2 are.

Lemma 22

1. If p is K-�-appropriate and K is �-protected then R(p;K) is �-protected.

2. If c and K are �-protected then R(c;K) is K-�-protected.

Proof

By induction on K.

Case 1: Suppose K � T . Part 2 is trivial. For part 1, we wish to show that p is �-protected. Let p be
E[�] and suppose p � C[�]. If C � E then the result is immediate. Otherwise C chooses � from within
one of the argument positions in the path. That is, E[] � E1[(E2[])(C

0[�])] and C[] � E1[(E2[�])(C
0[])].

Since p is T -�-appropriate, C 0[�] is K 0-�-protected (for some K 0), and thus is C 0[�] is �-protected. Hence
there exist C 00 and E0 such that C 0[] � C 00[E0[]] and E0[�] is T -�-appropriate. The result follows choosing
E1[(E2[�])(C

00[])] for the outer context and E0 for the inner.

Case 2: Suppose K � S(c0). Both parts are trivial, since c0 is �-protected.

Case 3: Suppose K � ��:K1:K2. Assume, without loss of generality, that � 62 Dom(�) and �
is not free in c. Then � is trivially K1-(�; �:K1)-appropriate. Therefore, by induction, R(�;K1) is
(�; �:K1)-protected. By Lemma 17 (and an easy induction over K2), it follows that K2fR(�;K1)=�g is
(�; �:K1)-protected. Using Lemma 15, K2fR(�;K1)=�g is also �-protected.

1. Since � 62 Dom(�), � is �-protected. By induction, R(�;K1) is K1-�-protected. Thus pR(�;K1)
is K2-�-appropriate. By induction, R(pR(�;K1);K2fR(�;K1)=�g) is �-protected. By Lemma 15,
R(p;K) � ��:K1:R(pR(�;K1);K2fR(�;K1)=�g) is �-protected.

2. Since � is not free in c, by Lemma 15 c is (�; �:K1)-protected. Thus cR(�;K1) is (�; �:K1)-
protected. By induction R(cR(�;K1);K2fR(�;K1)=�g) is K2-(�; �:K1)-protected. Hence R(c;K)
is K-�-protected.

Case 4: Suppose K � ��:K1:K2.

1. By de�nition, �1p is K1-�-appropriate and �2p is K2-�-appropriate. By induc-
tion, R(�1p;K1) is �-protected. By Lemma 17, K2fR(�1p;K1)=�g is �-protected, so
by induction, R(�2p;K2fR(�1p;K1)=�g) is �-protected. By Lemma 15, R(p;K) �

hR(�1p;K1); R(�2p;K2fR(�1p;K1)=�g)i is �-protected.

2. By Lemma 15, �1c and �2c are �-protected. By induction, R(�1c;K1) is K1-�-protected. Therefore
R(�1c;K1) is also �-protected, so by Lemma 17, K2fR(�1c;K1)=�g is �-protected. By induction
R(�2c;K2fR(�1c;K1)=�g) is K2-�-protected. Hence R(c;K) is K-�-protected.

Lemma 23 If � ` ok then R(c;K)fR(�)g is K-�-protected.

Proof

Observe �rst that since � ` ok, whenever � � �1; �:K
0;�2, neither � nor any variable in Dom(�2) can

appear free in K 0. We claim that for any c0, c0fR(�)g is �-protected. By Lemma 5, R(c;K)fR(�)g �
R(cfR(�)g;KfR(�)g). It follows from the claim that cfR(�)g and KfR(�)g are �-protected, and there-
fore, by Lemma 22, R(cfR(�)g;KfR(�)g) is (KfR(�)g)-�-protected. Then R(cfR(�)g;KfR(�)g) is
K-�-protected as well, since K � KfR(�)g.

18

We prove the claim by induction on �. The base case is trivial. Suppose then � � �:K 0;�0. By induction,
c0fR(�0)g is �0-protected. By the initial observation, neither � nor any variable in Dom(�0) is free in
K 0. Therefore K 0 is �-protected. Also �(�) � K 0 so � is K 0-�-appropriate. By Lemma 22, R(�;K 0) is
�-protected. We cannot immediately claim by Lemma 17 that c0fR(�)g is �-protected, since c0fR(�0)g
may contain free occurrences of � and thus might not be �-protected. However, any such occurrences are
nonessential, since they will only be substituted away. We make this explicit with a change of variables.
Let � be fresh. Then by changing variables we obtain:

c0fR(�)g � c0fR(�0)gfR(�;K 0)=�g
� c0fR(�0)gf�=�gfR(�;K 0)=�g

Then c0fR(�0)gf�=�g is �-protected, since it does not contain � free. Therefore, by Lemma 17, c0fR(�)g
is �-protected.

Corollary 24 If � ` c1 = c2 : K then there exists a derivation of � ` R(c1;K)fR(�)g = R(c2;K)fR(�)g :
K that is mostly free of singleton elimination.

Proof

Suppose � ` c1 = c2 : K. By regularity, � ` ok. By Corollary 10, � ` R(c1;K)fR(�)g : K , � `

R(c2;K)fR(�)g : K. By Lemma 23, both R(c1;K)fR(�)g and R(c2;K)fR(�)g are K-�-protected, and
each weak head reduces to itself, so by Lemma 20 the algorithmic derivation is free of singleton reduction.
Therefore the desired derivation exists by Theorem 12.

4.4 Wrapping up

To complete the �rst half of the proof, we need only the fact that singleton erasure preserves derivability of
judgements with mostly singleton free derivations.

Lemma 25

1. If � ` c1 = c2 : K has a derivation mostly free of singleton elimination, then ��

s̀f c1
� = c2

� : K�.

2. If � ` c : K then ��

s̀f c
� : K�.

3. If � ` K1 � K2 then K1
� � K2

�.

4. If � ` ok then ��

s̀f ok.

Proof

By a straightforward induction on derivations.

Corollary 26 If � ` c1 = c2 : K then ��

s̀f (R(c1;K)fR(�)g)
�

= (R(c2;K)fR(�)g)
�

: K�.

For the converse, we already have most of the facts we need at our disposal. We require two more lemmas.
One states that the algorithm is symmetric and transitive. It is here that the use of a six-place algorithm is
critical. For the six-place algorithm it is easy to show that symmetry and transitivity hold. For a four-place
algorithm, on the other hand, it is a deep fact depending on soundness and completeness that symmetry
and transitivity hold for well-formed instances, and for ill-formed instances it is not known to hold at all.

Lemma 27

1. If �1 ` c1 : K1 , �2 ` c2 : K2 then �2 ` c2 : K2 , �1 ` c1 : K1.

19

2. If �1 ` c1 : K1 , �2 ` c2 : K2 and �2 ` c2 : K2 , �3 ` c3 : K3 then �1 ` c1 : K1 , �3 ` c3 : K3.

Proof

By inspection.

The other lemma states that if singleton reduction is not employed in the algorithm, then whatever singleton
kinds appear are not relevant and may be erased. Moreover, since the two halves of the algorithm operate
independently (here again the six-place algorithm is critical), we may erase them from either half of the
algorithm.

Lemma 28

1. If �1 ` c1 : K1 , �2 ` c2 : K2 without using singleton reduction, then �1 ` c1 : K1 , �2

� ` c2
� : K2

�

2. If �1 ` p1 " K1 $ �2 ` p2 " K2 without using singleton reduction, then �1 ` p1 " K1 $ �2

� ` p2
� "

K2
�.

Proof

By induction on the algorithmic derivation.

It is worth noting that the algorithmic judgement in Lemma 28 is quite peculiar, in that � is ordinarily not
equal to �� and K is ordinarily not equal to K�. Although there is a valid derivation of this algorithmic
judgement, the soundness theorem does not apply, so it does not correspond to any derivation in the declar-
ative system. When we apply this lemma below we will use transitivity to bring the assignments and kinds
back into agreement before invoking soundness.

Lemma 29 If � ` c1 : K, � ` c2 : K, and ��

s̀f (R(c1;K)fR(�)g)
�

= (R(c2;K)fR(�)g)
�

: K� then

� ` c1 = c2 : K.

Proof

By Lemma 7, � ` c1 = R(c1;K)fR(�)g : K. By algorithmic completeness, � ` c1 : K , � `

R(c1;K)fR(�)g : K. By symmetry and transitivity of the algorithm, � ` R(c1;K)fR(�)g : K ,

� ` R(c1;K)fR(�)g : K. Then, by Lemmas 23, 20, and 28, � ` R(c1;K)fR(�)g : K , �� `

(R(c1;K)fR(�)g)
�

: K�. By transitivity, � ` c1 : K , �� ` (R(c1;K)fR(�)g)
�

: K�. Similarly,
� ` c2 : K , �� ` (R(c2;K)fR(�)g)

�

: K�.

Since the singleton-free system is a subsystem of the full system, we have by algorithmic completeness that
�� ` (R(c1;K)fR(�)g)

�

: K� , �� ` (R(c2;K)fR(�)g)
�

: K�. Hence, by symmetry and transitivity,
� ` c1 : K , � ` c2 : K. (Note that by applying transitivity, we have swept away the peculiarity noted
above.) Therefore � ` c1 = c2 : K by algorithmic soundness.

This completes the proof.

5 Related Work and Conclusions

The primary purpose of this work is to allow the rei�cation of type equality information in a type-preserving
compiler for a language like Standard ML, thereby eliminating the need to complicate the latter phases
of the compiler with singleton kinds. Within this architecture, equality (or \sharing") information would
initially be expressed using singleton kinds, but at some point singleton kind elimination would be exploited
to eliminate them.

20

An alternative approach for dealing with type equality is proposed by Shao and used in the FLINT com-
piler [12]. Shao's approach is formulated as a direct translation from a source-level module calculus to a
singleton-free calculus without any use of singleton kinds. However, for purposes of comparison, Shao's
approach may be seen as follows [11]: Equality speci�cations are taken as straight abbreviations and deleted
from signatures. Then, in order to ensure that the desired subsignature relationships hold (recall the intro-
duction), when a structure matching a signature with a deleted �eld is used in a context where that deleted
�eld is required, the translation coerces the structure to reinsert the deleted �eld. Thus, Shao interprets the
subsignature relation by coercion, whereas this paper's approach interprets it by inclusion, which may be
more e�cient. Shao's work also di�ers in that, since the meaning of Shao's modules are de�ned in terms of
their translation, it has no analogue of the correctness theorem.

Aspinall [1] studies in detail a related type system with singleton types. The di�erence between singleton
kinds and his singleton types is entirely cosmetic (this work could just as easily be presented as singleton
type elimination), but various other technical di�erences between his system and this one make it unclear
whether the same elimination process would apply to his system as well. Stone and Harper [15] compare
this system to Aspinall's in greater detail.

An implementation of this paper's singleton kind elimination procedure in the context of the TILT compiler
is planned, but has not yet been done. The main challenge we anticipate in this implementation, is that
singleton kinds, in addition to expressing type equality information from the module language, are also very
useful for expressing type information compactly. The elimination of singleton kinds could thus substantially
increase the space taken up by type information. This issue could arise two ways; �rst, type information could
take up more space in the compiler, resulting in slower compilation, and, second, if types are constructed
and passed at run time [6], ine�cient type representation could result in poor performance at run time. Shao
et al. [13] discuss a number of ways to deal with the former issue, such as hashconsing and using explicit
substitutions. The latter issue can be addressed by making the construction and passing of type information
explicit [3] and doing so before performing singleton elimination; then singleton elimination will have no
e�ect on the run-time version of type information.

References

[1] David Aspinall. Subtyping with singleton types. In Eighth International Workshop on Computer Science

Logic, volume 933 of Lecture Notes in Computer Science, pages 1{15, Kazimierz, Poland, September
1994. Springer-Verlag.

[2] Karl Crary and Stephanie Weirich. Flexible type analysis. In 1999 ACM International Conference on

Functional Programming, pages 233{248, Paris, September 1999.

[3] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-erasure seman-
tics. In 1998 ACM International Conference on Functional Programming, pages 301{312, Baltimore,
September 1998. Extended version published as Cornell University technical report TR98-1721.

[4] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing.
In Twenty-First ACM Symposium on Principles of Programming Languages, pages 123{137, Portland,
Oregon, January 1994.

[5] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase distinc-
tion. In Seventeenth ACM Symposium on Principles of Programming Languages, pages 341{354, San
Francisco, January 1990.

[6] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis. In Twenty-
Second ACM Symposium on Principles of Programming Languages, pages 130{141, San Francisco, Jan-
uary 1995.

21

[7] Xavier Leroy. Manifest types, modules and separate compilation. In Twenty-First ACM Symposium on

Principles of Programming Languages, pages 109{122, Portland, Oregon, January 1994.

[8] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The De�nition of Standard ML

(Revised). The MIT Press, Cambridge, Massachusetts, 1997.

[9] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly language. In
Second Workshop on Types in Compilation, volume 1473 of Lecture Notes in Computer Science, pages
28{52. Springer-Verlag, March 1998. Extended version published as CMU technical report CMU-CS-
98-178.

[10] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly language.
ACM Transactions on Programming Languages and Systems, 21(3):527{568, May 1999. An earlier
version appeared in the 1998 Symposium on Principles of Programming Languages.

[11] Zhong Shao, 1998. Personal communication.

[12] Zhong Shao. Typed cross-module compilation. In 1998 ACM International Conference on Functional

Programming, pages 141{152, Baltimore, Maryland, September 1998.

[13] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed intermediate languages. In
1998 ACM International Conference on Functional Programming, pages 313{323, Baltimore, Maryland,
September 1998.

[14] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium on Program-

ming, Berlin, Germany, March 2000. To appear.

[15] Christopher A. Stone and Robert Harper. Deciding type equivalence in a language with singleton kinds.
In Twenty-Seventh ACM Symposium on Principles of Programming Languages, Boston, January 2000.
To appear. Extended version published as CMU technical report CMU-CS-99-155.

[16] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing
compiler for ML. In 1996 SIGPLAN Conference on Programming Language Design and Implementation,
pages 181{192, May 1996.

22

A Inference Rules

Well-Formed Context � ` ok

� ` ok
(1)

� ` K � 62 Dom(�)

�; �:K ` ok
(2)

Context Equivalence ` �1 = �2

` � = �
(3)

` �1 = �2 �1 ` K1 = K2 � 62 Dom(�1)

` �1; �:K1 = �2; �:K2

(4)

Well-Formed Kind � ` K

� ` ok

� ` T
(5)

� ` c : T

� ` S(c)
(6)

�; �:K0 ` K00

� ` ��:K0:K00
(7)

�; �:K0 ` K00

� ` ��:K0:K00
(8)

Subkinding � ` K � K
0

� ` c : T

� ` S(c) � T
(9)

� ` ok

� ` T � T
(10)

� ` c1 = c2 : T

� ` S(c1) � S(c2)
(11)

� ` ��:K0

1:K
00

1

� ` K0

2 � K0

1 �; �:K0

2 ` K00

1 � K00

2

� ` ��:K0

1:K
00

1 � ��:K0

2:K
00

2

(12)

� ` ��:K0

2:K
00

2

� ` K0

1 � K0

2 �; �:K0

1 ` K00

1 � K00

2

� ` ��:K0

1:K
00

1 � ��:K0

2:K
00

2

(13)

Kind Equivalence � ` K1 = K2

� ` ok

� ` T = T
(14)

� ` c1 = c2 : T

� ` S(c1) = S(c2)
(15)

� ` K0

2 = K0

1 �; �:K0

1 ` K00

1 = K00

2

� ` ��:K0

1:K
00

1 = ��:K0

2:K
00

2

(16)

� ` K0

1 = K0

2 �; �:K0

1 ` K00

1 = K00

2

� ` ��:K0

1:K
00

1 = ��:K0

2:K
00

2

(17)

Well-Formed Constructor � ` c : K

� ` ok

� ` b : T
(18)

� ` ok

� ` � : �(�)
(19)

�; �:K0 ` c : K00

� ` ��:K0:c : ��:K0:K00
(20)

� ` c : ��:K0:K00 � ` c0 : K0

� ` cc0 : K00fc0=�g
(21)

� ` c : ��:K0:K00

� ` �1c : K
0

(22)

� ` c : ��:K0:K00

� ` �2c : K
00f�1c=�g

(23)

� ` ��:K0:K00

� ` c1 : K
0

� ` c2 : K
00fc1=�g

� ` hc1; c2i : ��:K
0:K00

(24)

23

� ` c : T

� ` c : S(c)
(25)

� ` ��:K0:K00

� ` �1c : K
0

� ` �2c : K
00f�1c=�g

� ` c : ��:K0:K00
(26)

� ` c : ��:K0:K00

1

�; �:K0 ` c� : K00

� ` c : ��:K0:K00
(27)

� ` c : K1 � ` K1 � K2

� ` c : K2

(28)

Constructor Equivalence � ` c = c
0
: K

�; �:K0 ` c1 = c2 : K
00 � ` c0

1 = c0

2 : K
0

� ` (��:K0:c1)c
0

1 = c2fc
0

2=�g : K
00fc0

1=�g
(29)

� ` c1 : ��:K
0:K00

1

� ` c2 : ��:K
0:K00

2

�; �:K0 ` c1� = c2� : K00

� ` c1 = c2 : ��:K
0:K00

(30)

� ` ��:K0:K00

� ` �1c1 = �1c2 : K
0

� ` �2c1 = �2c2 : K
00f�1c1=�g

� ` c1 = c2 : ��:K
0:K00

(31)

� ` c1 = c0

1 : K1 � ` c2 : K2

� ` �1hc1; c2i = c0

1 : K1

(32)

� ` c1 : K1 � ` c2 = c0

2 : K2

� ` �2hc1; c2i = c0

2 : K2

(33)

� ` c : S(c0)

� ` c = c0 : T
(34)

� ` c = c0 : T

� ` c = c0 : S(c)
(35)

� ` c0 = c : K

� ` c = c0 : K
(36)

� ` c = c0 : K � ` c0 = c00 : K

� ` c = c00 : K
(37)

� ` ok

� ` b = b : T
(38)

� ` ok

� ` � = � : �(�)
(39)

� ` K0

1 = K0

2 �; �:K0

1 ` c1 = c2 : K
00

� ` ��:K0

1:c1 = ��:K0

2:c2 : ��:K
0:K00

(40)

� ` c = c0 : ��:K1:K2 � ` c1 = c0

1 : K1

� ` cc1 = c0c0

1 : K2fc1=�g
(41)

� ` c1 = c2 : ��:K
0:K00

� ` �1c1 = �1c2 : K
0

(42)

� ` c1 = c2 : ��:K
0:K00

� ` �2c1 = �2c2 : K
00f�1c1=�g

(43)

� ` ��:K0:K00

� ` c0

1 = c0

2 : K
0

� ` c00

1 = c00

2 : K00fc0

1=�g

� ` hc0

1; c
00

1 i = hc0

2; c
00

2 i : ��:K
0:K00

(44)

� ` c1 = c2 : K � ` K � K0

� ` c1 = c2 : K
0

(45)

24

