Slim-trees: High Performance Metric Trees
Minimizing Overlap Between Nodes

Caetano Traina Jr.!, Agma Traina?, Bernhard Seeger®, Christos Faloutsos®

October, 1999
CMU-CS-99-170

School of Computer Science
Carnegie Mdlon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

! Department of Computer Science, University of Sdo Paulo at S&o Carlos - Brazil
Caetano@cs.cmu.edu. His research was partially funded by FAPESP (Fundagéo de Amparo a
Pesquisado Estado de S&o Paul o - Brazil, under Grant 98/05556-5). Onleaveat Carnegie Mellon
University.

2 Department of Computer Science, University of S8o Paulo at S8o Carlos - Brazil .
Agma@cs.cmu.edu. Her research was partially funded by FAPESP (Fundagdo de Amparo a
Pesquisa do Estado de S&o Paulo - Brazil, under Grant 98/0559-7). On leave at Carnegie Mellon
University.

3 Fachbereich Mathematik und Informatik, Universitdt Marburg - Germany.
Seeger @mathematik.uni-marburg.de. Hiswork hasbeen supported by Grant No. SE553/2-1 from
DFG (Deutsche Forschungsgemeinschaft).

4 Department of Computer Science, Carnegie Mellon University - USA.

Christos@cs.cmu.edu. This material is based upon work supported by the National Science
Foundation under Grants No. IRI-9625428, DM S-9873442, 11S-9817496, and 11S-9910606, and
by the Defense Advanced Research Projects Agency under Contract No. N66001-97-C-8517.
Additional funding was provided by donations from NEC and Intel. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation, DARPA, or other funding
parties.

Keywords: metric databases, metric access methods, index structures, multimedia databases.

Abstract

In this paper we present the Slim-tree, a dynamic tree for organizing metric datasets in pages
of fixed size. The Slim-tree uses the “fat-factor” which provides a simple way to quantify the
degree of overlap between the nodesinametric tree. 1t iswell-known that the degree of overlap
directly affectsthequery performanceof index structures. Therearemany suggestionsto reduce
overlap in multi-dimensional index structures, but the Slim-tree is the first metric structure
explicitly designed to reduce the degree of overlap.

Moreover, we present new algorithms for inserting objects and splitting nodes. The
new insertion algorithm leads to a tree with high storage utilization and improved query
performance, whereas the new split algorithm runs considerably faster than previous ones,
generally without sacrificing search performance. Results obtained from experiments with real-
world data sets show that the new algorithms of the Slim-tree consistently lead to performance
improvements. For range queries, we observed improvements up to a factor of 35%.

1. Introduction

With theincreasingavailability of multimediadatain variousforms,advancedjueryprocessingechniques
arerequiredn futuredatabasenanagemergystemgDBMS) to copewith largeandcomplexdatabasesOf
utmostimportances the design of new access methods which support queries like similarity queriesin a
multimediadatabaseWhilethere hasbeen alarge number of proposal sfor multidimensional accessmethods
[GG 98], almostall of themarenotapplicableo multimediadatabasesincetheyassuméhatdatabelongto
amultidimensionalvectorspace.However, dataof multimedia databases often are not in vector spaces, but
in metric spaces.

Inthis paper we address the problem of designing efficient metric access methods (MAM). AnMAM should
organize alarge set of aobjectsin a dynamic environment assuming only the availability of a distance function
d which satisfies the three rules of a metric space (symmetry, non-negativity and triangle inequality).
Consequently, an MAM isnot permitted to employ primitive operations like addition, subtraction or any type
of geometric operation. While insertions of new records should be supported efficiently, we are mainly
interested in MAM s supporting range queries and similarity queries (nearest neighbor queries). Efficiency of
an MAM is determined by several factors. First, since the data set is generally too large to be kept in main
memory, one major factor for efficiency is the number of disk accesses required for processing queries and
insertions. We assume herethat an MAM organizes data in pages of fixed size on disk and that disk access
refersto thetimeto read (write) one page fromdisk into main memory. Second, the computational cost of the
distance function can be very high such that the number of distance calculations has a major impact on
efficiency. We expect, however, that there is a strong relationship between the number of disk accesses and
thenumber of distancecalculations. Third, storage utilizationisanother important factor althoughit hasrarely
been consideredinthis context previously. Thereasonweareconcerned about storage utilizationisnot because
of the storage cost, but primarily because of the number of disk accesses required to answer “large’ range
queries. For those queries, the number of accessesis only low when the storage utilization is sufficiently high.
In other words, an MAM can perform less efficiently than a simple sequential scan for such cases.

the Slim-tree, anew dynamic MAM In this paper we present. The Slim-tree shares the basic data structure
with other metric trees like the M-tree [CPZ 97] where data is stored in the leaves and an appropriate cluster
hierarchy isbuilt ontop. The Slim-tree differs from previous MAMs in thefollowing ways. First, anew split
algorithm based on the Minimum Spanning Tree (MST) is presented which performs faster than other split
algorithmswithout sacrificing search performance of theMAM. Second, anew algorithmis presented to guide
an insertion of an object at an internal node to an appropriate subtree. In particular, our new algorithm leads
to considerably higher storage utilization. Third, and probably most important, the Slim-down algorithm is
presented to makethe metric treetighter and faster in a post-processing step. This algorithm was derived from
our findingsthat highoverlapinametrictreeislargely responsiblefor itsinefficiency. Unfortunately, thewd|-
known techniques to measure overlap of a pair of intersecting objects (e.g. circlesin atwo-dimensional space)
cannot beusedfor metricdata. Instead, we present the” fat-factor” and the* bloat-factor” to measurethedegree
of overlap where avalue closeto zero indicates low overlap. We show that the Slim-down algorithm reduces
the bloat-factor and hence, improves the query performance of the metric tree.

The remainder of the paper is structured as follows. In the next section, we first give a brief history of
MAMSs, including a concise description of the datasets we used in our experiments. Section 3 introduces the
Slim-tree, and Section 4 presents its new splitting algorithm based on minimal spanning trees. Section 4
introducesthefat-factor and thebloat-factor. The Slim-down algorithmisdescribed in Section 6, while Section
7 gives a performance evaluation of the Slim-tree. Section 8 presents the conclusion of this paper.

2. Survey

The design of efficient access methods has interested researchers for more than three decades. An excellent
survey on multidimensional accessmethodsisgivenin[GG 98]. However, most of theseaccess methodsrequire
that data be ordered in a one- or multi-dimensional vector space.

The problem of supporting nearest neighbor and range queries in metric spaces has recently attracted the
attention of researchers. The pioneering work of Burkhard and Kdler [BK73] provided different interesting
techniques for partitioning a metric data set in a recursive fashion where the recursive process is materialized
asatree. Thefirst technique partitions a data set by choosing a representative from the set and grouping the
elements with respect to their distance from the representative. Originally Burkhard and Kdler in [BK 73]
assumed that the distance function returnsintegral values, but the approach can also be extended to numerical
values. The second technique partitions the original set into a fixed number of subsets and chooses a
representative from each of thesubsets. Therepresentative and the maximum distance from therepresentative
toapoint of thecorresponding subset are also maintained, to support nearest neighbor queries. Themetrictree
of Uhlmann [Uhl 91] and the vantage-point tree (vp-tree) of Yanilos[Yia 93] are somehow similar to the first
technique of [BK 73] as they partition the eements into two groups according to a representative, called a
vantage point. In[Yia 93] the vp-tree has also been generalized to a multi-way tree. In order to reduce the
number of distance calculations, Baeza-Y ates et al [BCM 94] suggested to use the same vantage point in all
nodes that belong to the same level. Then, a binary tree degenerates into a simple list of vantage points.
Another method of Uhlmann [Uhl 91] is the generalized hyper-plane tree (gh-tree). The gh-tree partitions the
data set into two by picking two points as representatives and assigning the remaining to the closest
representative. Bozkayaand Ozsoyoglu [BO 97] proposed an extension of thevp-treecalled multi-vantage-point
tree (mvp-tree) which chooses in a clever way m vantage points for a node which has a fanout of n?. The
Geometric Near Access Tree (GNAT) of Brin [Bri 95] can be viewed as a refinement of the second technique
presented in [BK 73]. In addition to the representative and the maximum distance, it is suggested that the
distances between pairs of representatives be stored. These distances can be used to prune the search space
using the triangle inequality.

All methods presented above are static, in the sense that the data structure is built once and new insertions
arenot supported. TheM-tree[CPZ 97] of Ciaccia, Patelaand Zezulla overcomesthisdeficiency. TheM-tree
is aheight-balanced tree where the data e ements are stored in the leaves. Aninternal node consists of a set of
entries where each consists of a pointer to a subtree, a representative and a distance d which is an upper limit
for themaximum distance between therepresentativeand an e ement in theleaves of the corresponding subtree.
Each of the nodesisfilled with at least c and at most C entries, wherec <C/2. The M-tree supportsinsertions
similar to R-trees [Gut 84].

Inorder toillustratethe performanceof thedifferent MAM, weusesix synthetic and real datasetsthroughout

Datasets Number | Dimension | Metric | Description
of Objects D
N

Uniform2D 10,000 2 L, | Uniformly distributed data (see Figurela)

Sierpinsky 9,841 2 L, | Fractal dataset (see Figure 1b)

MGCounty 15,559 2 L, | Intersection points of roads from Montgomery County -

Maryland (see Figure 1c).

EigenFaces 11,900 16 L, | Facevectors from the Informedia project [WTS 96].

Facel T 1,056 unknown Facelt | A dataset constructed by a distance matrix obtained from
™ | Facelt™ software, version 2.51 [Vis 98].

Table 1 - Datasets used in the experiments.

2

the paper. Table 1 reports the most important characteristics of our datasets. Among them there are vector
datasets (2- and 16-dimensional) and metric datasets. Specifically note that for the Facel T dataset we have
used a distance function from a commercial software product. In general, we have used the L, metric for the
vector datasets, but for the EnglishWords dataset, Levenshtein or string edit distance (Lgy,) was used. Ly,
(x,y), isametric which counts the minimal number of symbols that have to beinserted, deleted, or substituted,
totransform xintoy (eg. Ly (“head”, “hobby”) = 4 - three substitutions and one insertion).

quququ

1 T = T T T - .
L a) sl D G e i ernr b)
o L . . 5 s L
i P £ - - mrar

999999999

sssssssss

¢) MGCounty.

Symbols Definitions

d(x,y) the distance function between objects x and y

T ametric tree

N number of objects in the dataset

M number of nodes in a metric tree

Muin minimal number of nodes for a given metric tree

H height of the metric tree

Huin minimal height for a given metric tree

T metric tree

Ic total number of node accesses required to answer a pont query for each object

C Effective capacity of a metric tree node (average number of points stored in a non-
root node)

fat(T) fat-factor for themetrictree T

bI(T) bloat-factor for the metric tree T

Table 2 - Summary of symbols and definitions.

3. The Slim-Tree: an improved performance metric tree

The Slim-tree is a balanced and dynamic tree that grows bottom-up from the leaves to the root. Like other
metric trees, the objects of the dataset are grouped into fixed size disk pages, each page corresponding to atree
node. Theobjectsarestoredintheleaves. Themain intent isto organizethe objectsin ahierarchical structure
using a representative as the center of each minimum bounding region which covers the objectsin a sub-tree.

The Slim-tree has two kinds of nodes, data nodes (or leaves) and index nodes. Asthe size of a pageis fixed,
each type of node holds a predefined maximum number of objects C. For simplicity, we assume that the
capacity C of theleavesis equal to the capacity of the index nodes. Table 2 summarizes the symbols used in
this paper.

Theleaf nodes hold all objects stored by the Slim-tree, and their structureis

leafnode [array of <Oid,, d(O, , Rep(O))), O>]
where, Oid, is the identifier of the object O, and d(O,, P(O))) is the distance between the object O, and the
representative object of this leaf node Rep(O).

indexnode [array of <O,, Radius, d(O; , Rep(0))), Ptr(TO,), NEntries(Ptr(TO;)) >]
where, O; keeps the object that is the representative of the sub-tree pointed by Ptr(TO,), and Radius is the
covering radius of that region. The distance between O; and the representative of this node Rep(O,) is kept in
d(O, , Rep(Oi)). The pointer Ptr(TO;) points to the root node of the subtree rooted by O,. The number of
entries in the node pointed by Ptr(TOi) is held by NEntries(Ptr(TO))).

Analogous to other metric trees, the distance to arepresentative can be used in combination with thetriangle
inequality to prune an entry without any extra distance calculation. Theregionsthat corresponds to each node
of the Slim-tree can overlap each other. Theincreasing of overlaps also enlarges the number of paths to be
traversed when a query isissued, so it also increases the number of distance calculations to answer queries.
The Slim-tree was devel oped to reduce the overlapping between regions in each levd.

3.1 - Building the Slim-tree

The objects are inserted in a Slim-tree in the following way. Starting from the root node, the algorithm tries
to locate a node that can cover the new object. If none qualifies, select the node whose center is nearest to the
new object. If morethan one node qualifies, execute the ChooseSubtree algorithm to select one of them. This
processis recursively applied for al levels of thetree. When anode m overflows, a new nodem’ is allocated
at the same level and the objects are distributed among the nodes. When the root node splits, a new root is
allocated and the tree grows one leve.

The Slim-tree has three options for the ChooseSubtree algorithm: random (randomly choose one of the
qualifying nodes), mindist (choose the hode that has the minimum distance from the new object and the center
of the node), minoccup (choose the node that has the minimum occupancy among the qualifying ones). The
number of entries in each child node (NEntries) maintained in each indexnode of the Slim-treeis intended to
be used by the MinOccup ChooseSubtree algorithm. Although it uses some memory spacein each indexnode,
thisis usually a small proportion of the total memory used for each entry (one byteis usually enough), but as
we will show later, this ChooseSubtree algorithm generated trees with higher node occupation rates, leading
to smaller number of disk accesses.

The splitting algorithms for the Slim-tree are:

Random - The two new center objects are randomly selected, and the existing objects are distributed
among them. Each object is stored in anew nodethat has its center nearest this object, with respect to
aminimum utilization of each node. Thisis not awise strategy, but it is very fast.

minMax - All possible pairs of objects are considered as potential representatives. For each pair, alinear
algorithm assigns the objects to one of the representatives. The pair which minimizes the covering
radiusis chosen. The complexity of thealgorithmis EXC 3), using €C ?) distance calculations. This
algorithm has already been used for the M-tree, and it was found to be the most promising splitting
algorithm regarding query performance [CP 98].

MST - Theminimal spanning tree[Kru 56] of the objects is generated, and one of the longest arcs of the
treeis dropped. This algorithm is one of the contributions of this paper, and it is presented next. This
algorithm produces Slim-trees almost as good as the minMax algorithm, in a fraction of the time.

4. The splitting algorithm based on minimal spanning tree

In this section we address the following problem. Given a set of C objectsin anodeto be split, quickly divide
them in two groups, so that the resulting Slim-treeleads to low search times. We propose an algorithm based
on the minimum spanning tree [Kru 56], which has been successful in clustering. We consider the full graph
consisting of C objects and C(C-1) edges, where the weight of the edges refers to the distance between the
connecting objects. So, we proceed with to the steps as showed in Figure 2.

Algorithm 1 - Splitting of a node using MST
begin
1. Build the MST on the C objects of the node.
2. Delete the longest edge.
3. Report the connected components as two groups.
4. Choose the representative of each group, i.e., the object whose maximum distance to all other objects
of the group isthe shortest.

end

Figure 2. Algorithm for splitting a node using minimal spanning tree.

Unfortunatdy, this algorithm does not guarantee that each group will receive a minimum percentage of
objects. To obtain more even
distribution, we choose from
among the longest arcs the most
appropriate one. If none exists
(as in a star-shaped set), we
accept the uneven split and
remove the largest edge. The
executiontimeof thisalgorithmis
O(C 2log (C)) on the number of

b) c)

Fdge to be removed

-
m

MST built using the objects

n Od e ObJ ects. Node before split of this node Nodes after splitting
Figure 3 illustrates our
approach applied to a vector Figure 3. Exemplifying a node split using the MST algorithm.

space. After building the MST,
the edge between objects A and E will be deeted, and one node will keep the objects A, B, C, D, having B as
the representative. The other node will have the objects E, F, G and H, having F as the representative.

5. Overlap optimization

In this section we present the theoretical underpinnings behind the Slim-down algorithm. The Slim-down
algorithm is an easy-to-use approach to reduce overlaps in an existing Slim-tree. Before presenting the
algorithm, we have to define the meaning of overlap in a metric space. It should be noted that the notion of
overlap in vector space cannot be applied to a metric space [CPZ 98].

A typical assumption when someoneis estimating the number of distance calculations or disk accesses from
atree isthat thetreeis ‘good [FK 94][TTF 99]. That is, the nodes are tight and the overlaps over the nodes
areminimal. Thepresent work directly tacklesthis subject. That is, themajor motivation behind thiswork was
to solve the following problem: “ Given N objects organized in a metric tree, how can we express its
‘goodness’/’ fitness’, with a single number ?”

We also show that our approach to measuring overlap in a metric space leads to the fat-factor and to the

5

bloat-factor. Both of thesefactors are suitableto measurethe goodness of the Slim-tree and other metric trees.
After discussing the properties of these factors, we will present the Slim-down algorithm.

5.1. Computing Overlap in a Metric Access M ethod

Let us consider two index entries stored in anode of the Slim-tree. In vector spaces, the overlap of two entries
refers to the amount of the common space which is covered by both of the bounding regions. When the data
isin avector space, we simply compute the overlap as the volume of the intersection. Since the notion of
volumeis not available in a metric spacewe pursue adifferent approach. Instead of measuring the amount of
Space, we suggest counting the number of objects in the corresponding sub-trees which are covered by both
regions.

Definition 1 - Let 11 and 12 betwo index entries. The overlap of 11 and 12 is defined as the number of objects
in the corresponding sub-trees which are covered by both regions divided by the num of the abjectsin both
sub-trees.

Thisdefinition provides a generic way to measure theintersection between regions of ametric tree, enabling
the use of the optimization techniques, developed for vector spaces, on metric trees.

5.2. The Fat-Factor

Analogous to Definition 1 of overlap in a metric space, in this section we present a method to measure the
goodness of ametrictree. Thebasicideaof thefollowing definition of thefat-factor isthat agood treehasvery
little or ideally no overlap between itsindex entries. Such an approach is compatible with the design goals of
index structures like the R+-tree [SRF 87] and the R*-tree [BK S+ 90], which were designed with the goal of
overlap minimization.

Our definition of the fat-factor makes two reasonable assumptions. First, we take into account only range
queriesto estimatethe goodness of atree. Thisassumptionisnot restrictive since nearest neighbor queries can
be viewed as special cases of range queries[BKK+ 97]. Second, we assume that the distribution of the centers
of range queries follows the distribution of data objects. This seems to be reasonable since we expect the
queries are more likely issued in regions of space where the density of objectsis high.

Assuming the above, it is easy to state how an ideal metric-tree should behave. For apoint query (arange
query withradius zero), theideal metric-treerequires that one nodeberetrieved fromeachleve. Thus, thefat-
factor should be zero. Theworst possibletreeis the one which requires the retrieval of all nodes to answer a
point query. In this situation the fat-factor should be one. From this discussion we suggest the following
definition of fat-factor.

Definition 2 - Let T beametric treewith height H and M nodes, M > 1. Let N bethe number of objects. Then,
the fat-factor of ametrictree T is
where | denotes the total number of node accesses required to answer a point query for each of the N objects
o —H*N 1
N Q M —H)

fat(T) = ()

stored in the metric tree.

Lemmal- Let T beametric tree. Then, fat(T) returns a value in therange [0,1]. Theworst possible tree
returns one, whereas an ideal tree returns zero.
Proof: Let usconsider apoint query for an object stored inthetree. Such aquery hasto retrieve at least one

6

nodefrom each leve of thetree. In particular, the nodes on theinsertion path of the object qualify and
arerequired to beread from disk into memory. A lower limit for I (thetotal number of disk accesses
for al point queries) isthen H*N resulting in a fat factor of zero. The worst case occurs when each
node has to be read for each of the queries. An upper limit of | isthen M*N resulting in a fat-factor
of one. Sincethefat factor isalinear functioninl.andH*N < IC < M*N, it follows that thefat factor
has to bein the range[0,1].

In order to compute the fat-factor of a metric tree, we need to process a

point query for each of the objects stored in the metric tree. The
computation cost depends on thefat-factor sinceweneed only to investigate
those sub-trees where the corresponding index entry qualifies. Therefore,
thisoperation requires at most N* M comparisons and distance computations
Ffat(=1

when the treeis the worst possible, and only O(N*log N) for an ideal tree.

The number of disk accesses depends on the available buffer space, but in

theworst case we need to retrieve every page once for each point query. In Jat)—0

order to reducethe complexity of thecomputation of thefat-factor, sampling Figure 4. Two trees storing the

might be considered aswell. Therefore, complexity does not depend on N, same détaset with different

but on the size of the sample. number of nodes and fat-factors.
Figure 4 shows two trees and their fat-factor. In order to illustrate the Root nodes are shown in broken

relationships between the representative and its associated objects, wehave |ine.

drawn a connection line. Calculating the fat-factor for these trees is

straightforward, e.g., for thetreein Figure 4awe have |- =12, H=2, N=6 and M=4, |eading to a fat-factor=0.

For thetreein 4b we have | =14, H=2, N=6 and M=3, leading to a fat-factor=1/3.

5.3. Comparing different treesfor the same dataset: the bloat-factor

Thefat-factor is a measure of the amount of objects that lie inside intersection of regions defined by nodes at
thesameleve of ametrictree. If two trees store the same dataset and have the same number of nodes but have
different fat-factors, the tree with the smaller factor will have fewer points in intersecting regions, and thus it
will need fewer disk accesses and distance calculationsto perform agiven query. However, if two trees storing
the same dataset have different number of nodes, the direct comparison of the corresponding fat-factors will
not give such an indication. This is due to the fact that a tree with fewer nodes can lead to a tree with more
objects lying inside intersection regions, and thus a bigger fat-factor. However the average number of disk
accesses needed to answer the queries can also be smaller because there are less nodes to be read (see Figure
4).

To enable the comparison of two trees that store the same dataset (but that use different splitting and/or
different promotion algorithms leading to different trees), we need to “penalize’ trees that use more than the
minimum required number of nodes (and so disk pages). This can be done by defining a new measure, called
the “bloat-factor”. Inasimilar way to the fat-factor, the bloat-factor considers not the height and number of
nodes in thereal tree, but that of theminimumtree. Among all possibletrees, the minimumtreeisthe onewith
minimum possible height H,,,;,, and minimum number of nodes M,;;,. Thus, thisleadsto thefollowing definition.

Definition 3 - The bloat-factor of ametric tree T with more than one node is expressed as

-H...*N o 1 2
N (Mmin - Hmin) ()

bl(T) = le
Thisfactor will vary from zero to a positive number that can be greater than one. Although not limited to one,

this factor enables the direct comparison of two trees with different bloat-factors, as the tree with the smaller
factor always will lead to a lesser number of disk accesses.

7

The minimum height of the tree organizing N objectsisH,;,, =[1og. N[and the minimum number of

Hmin .
nodes for a given dataset can be calculated as M ,;, = 5 [N/ C' [Where, Ciis the capacity of the nodes.
=1

It isworth emphasizing that both thefat-factor and the bloat-factor aredirectly related to the average amount
of overlap between regionsin the samelevel of thetree, represented by I.. The fat-factor measures how good
agiven tree is with respect to this amount of overlaps, regardless of a possible waste of disk space dueto a
lower occupation of its nodes. The bloat-factor enables us to compare two trees, considering both the amount
of overlaps and the efficient occupation of the nodes.

6. The Slim-down algorithm

Inthis section we present an algorithm that produces a‘tighter’ tree. Thefat and bloat-factor indicate whether
atreehasroomfor improvement. Itisclear from Definition 3 that if wewant to construct atreewithasmaller
bloat-factor, we need first to diminish the number of objects that fall within the intersection of two regionsin
the samelevel. Secondly, we may need to decrease the number of nodes in the tree.

Weproposea Slim-down algorithm to post-process atree, aiming to reduce these two numbersin an already
constructed tree. This algorithm is described in Figure 5 and Figure 6 illustrates graphically it.

Algorithm 2 - Slim down

begin
1. For each nodei in agiven level of thetree, find the farthest object ¢ from the representative b.
2. Find asibling nodej of i, that also covers object c. If such anodej existsand it isnot full, remove c
from nodei and insert it into nodej. Correct the radius of nodei.
3. Steps 1 and 2 must be applied sequentially over all nodes of a given level of thetree. If after afull
round of these two steps, an object moves from one node to another, another full round of step 1 and 2
must be re-applied.

end

Figure 5. Slim down algorithm.

In thisway, if object ¢ was moved from nodei to nodej in step 2, and it is the only object in nodei at this
distance from the original center, then the correction of the radius of nodei will reduce the radius of this node
without increasing any other radii. As Figure 6 illustrates, we can assume that object e is the next farthest
object from the representative of nodei.
Thus, after the reduction, the new radius
of node i will be that shown with broken
line. With this reduction, at least object
c will go out of the region of this node
which intersects with theregion of nodej,
reducing | counting. Moreover, when
this algorithm is applied, we do not Before Correction After Correction
guarantee a minimum occupancy in the
nodes of the tree, so eventually some
nodes can become empty, further
reducing the number of nodes in the tree. It must be noted that step 2 can take advantage of the triangle
inequality to prune part of the needed distance calculations.

Figure 6. How the Slim-down algorithm works.

A difficulty can happen in step 3 if the situation shown in Figure 7
occurs. Inthiscase, objectsf, d and ewill synchronously movefrom nodes
i, j and kto nodes |, k, and i respectively, and then again to their original
positions. Thisis illustrated in Figure 7 by the sets of solid and broken
lines. As this can lead to an infinite loop, we limited the number of
executions of step 3 to three times the number of objectsin the nodein the
preceding level, which holds the moving objects. The experiments
performed indicated this value as a good choice.

We implemented the algorithm to manipulate the leaf nodes after
indexing the full dataset. Figure 8 plots the regions of the leaves of trees ~ Figure 7. A cyclic move of
created with the Sierpinsky dataset, using the random splitting algorithm. objects without reducing radii.
Figure 8a shows thetree prior to the slimming down, and Figure 8b shows
it after correction by theSlim-downalgorithm. Theregions shown correspond to theminimum bounding circles
at the leaf level only (to avoid cluttering).

The tree of Figure 8b clearly has fewer and tighter circles; therefore, it should perform better. This is
confirmed by the bloat-factor values, which are 0.03 for the treein Figure 8a, and 0.01 for the treein Figure
8b. We used the Sierpinsky triangle dataset in this example due to its well-known shape, so that seeing the
improvements would be easier. However, higher or metric (non-dimensional) datasets usually lead to more
effective improvements.

10000

10000

T T T
‘sier8lscL1.out’ ‘sier8lccL1.out’
'sierBlscLeaf.out' b) ‘sier8lccLeaf.out’

a)

6000 E 8000 J

2000 - 2000 | 4

-2000 L L L L L L -2000
2000 a 2000 6000 10000 2000 0 2000 5000 10000

Figure 8. A treeindexing the Sierpinsky triangle using the random splitting algorithm: a) before the correction the
bloat-factor is 0.03, and b) after the correction the bloat-factor is 0.01.

This algorithm can be executed at different phases of the evolution of the tree. The following variations
immediately come to mind.

a) A similar algorithm could be applied to the higher levels of thetree.

b) The algorithm could be dynamically applied to slim down the sub-tree stored in a node just after one of

its direct descendants has been split.

¢) When a new object must beinserted inanodewhichisfull, asinglere ocation of thefarthest object of one

node could be tried instead of splitting.

Besides the algorithm being applied over the leaf nodes after the completion of the tree, we aso have
implemented variation (b), and wefound that it indeed leads to a better tree. Moreover, both variations can be
applied isolated or together, and either way, each provides an increase in performance. However, this last
variation slows down the building of the tree and does not give results as good as those obtained by working
on the completed tree. So, dueto lack of space, we are not showing these results here.

7. Experimental Evaluation of the Slim-tree

In this section we provide experimental results of the performance of the Slim-tree. We run experiments
comparing the Slim-tree with the M-tree and demonstrating the impact of the M ST-splitting method and the
slim-down algorithm. The Slim-tree was implemented in C++ under Windows NT. The experiments were
performed on a Pentium 11 450MHz PC with 128 MB of main memory. Our implementation is based on a
simple disk ssimulator which provides a counter for the number of disk accesses.

Sincethe performance of insertionsislargely determined by the CPU-time (because of therequired distance
computations and the complexity of split operations), we report in the following only the total runtime for
creating metric trees. For queries, however, we report the number of disk accesses which is a good indicator
for the query performance. We found that the number of distance calculations is highly correlated with the
number of disk accesses.

In our experiments we used the six previously introduced data sets. Let us mention here that the domain of
thevector setsistheunit cube. The experiments were performed in theway that wefirst build up ametric tree
by inserting tuples one by one. Thereafter, we run 13 sets of 500 range queries where the size of the range
queries was fixed for each set. Inthefollowing graphswereport the average number of disk accesses obtained
from a set of queries as the function of the query size. All the graphs are givenin log-log scale.

7.1 Comparing the Slim-tree and the M-tree

Since the M-tree is the only dynamic metric tree available, we compared its alleged best performance to the
corresponding one of our Slim-tree. Figure 9 shows the query performance of the Slim-treeand the M-treefor
the six datasets. Both trees were built using the minMax-splitting algorithm. This algorithm was found to be
the most promising for the M-tree [CPZ 97]. The corresponding capacities of the nodes used in these
experiments are reported in Table 4. Note that for both trees we used the same settings of the parameters,
leading to a fair comparison.

Fromtheplotsin Figure9 we can seethat the Slim-tree constantly outperforms M-tree. Oneof the reasons
isthat the occupation of thenodesis higher for the Slim-treeand therefore, thetotal number of nodesissmaller.

1001 : : 1000 ‘ ‘ 10 ‘ ‘ ‘
@ ISlim-Tree (mi_n—max) —%— o | Slim-Tree (mi_n-max) —— @ | Slim Tree (min-max) ——x—
8 M-tree (min-max) —&— 8 M-tree (min-max) —a— § M-tree (min-max) =
< g <
100 100 | 106
X X X
a o a
3* H* 3#*
2 2 4
Fo Fo | 1S4
— AB\E/E\E*’/* — P = —
Uniform10k dataset Sierpinsky dataset MGCounty dataset
1 ' L L 1 L L L 1 L L L
0.0001 0.001 0.01 01 radius 1 0.0001 0.001 0.01 01 radius ! 0.0001 0.001 0.01 0.1 radius 1

IS)

S
o
=3

Slim-Tree (min-max) —=— 8lim Tree (min-max) ~ —>—
M-tree (min-max) —o— M-tree (min-max) —a—

i
W

{
Facelt dataset EnglishWords dataset

Slim-Tree (min—mak) -
M-tree (min-max) —&—

o
o
=3

Avg #Disk Acc.
Avg #Disk Acc.

o

=]

T
o
=]

Avg #Disk Access

10—

. I . 10 .
0.0001 0.001 0.01 0.1 radius ! 0.01 0.1

radius 1 5 10 15 20 radius?5

Figure 9. The query performance (given by average number of disk accesses) for the M-tree and the Slim-treeasa
function of the query radius where each of the plots refers to one of our datasets.

10

This effect isvisiblefor the Facelt and EnglishWords datasets, where alarge number of the pages arerequired
for thelargerange queries. For thevector data sets, however, both trees perform similarly for large query radii.
This is because the overlap of the entries is low and therefore, the different insertion strategies of the M-tree
and the Slim-tree perform similarly. Note also that for large query radii it might be more effective to read the
entire fileinto memory (using sequential 1/0s). However it is common to expect that the majority of queries
radii are rather small so that it is beneficial to use a metric tree.

7.2 - Comparing minMax and M ST splitting algorithms

Figure10 comparesthequery performanceof two Slim-treeswheretheoneusestheminM ax-splitting algorithm
and the other uses the M ST-gplitting algorithm. The left and right plot shows the results for Sierpinsky and
Facelt, respectively. The plot showsthat both Slim-trees perform similarly. Table 3 givemoredetailsabout the
comparison of the different splitting strategies. Here, the columns “range queries’ refer to the CPU time
required to perform all the queries of the 13 sets. We point out here that the M ST-gplitting strategy suffers
dlightly when the number of objects per node (the capacity) is small. The columns “build” show the time to
createthe Slim-trees. The MST-algorithmis clearly superior to the minMax-splitting algorithm. For example,

1000 (a) Slim-tree, Sierpinsky dataset 10 (b) Slim-tree, Facelt dataset
T T T T T T
§ minMax ——x— minMax ——<—
8 MST —=— ” MST —=—
:
100- g
5 <
2
H* X
o @
>
< o
101 2
<
e /e j ol
b e o 5 e
1 L I | 10 | | |
0.0001 0.001 0.01 0.1 radivs | 0.0001 0.001 0.01 0.1 radius |

Figure 10. The query performance of two Slim-trees using the minMax-splitting algorithm and the MST-splitting
algorithm. (). Sierpinsky dataset, (b) Facelt dataset.

the MST-algorithm is faster by a factor of 60 for the two-dimensional datasets. Overall, the MST-splitting
algorithm gives considerable savings when a Slim-tree is created and provides almost the same performance
as the minM ax-splitting algorithm for range queries.

The experiments on the splitting algorithms show that the runtime of the MST-gplitting algorithm is
increasingly better than the minM ax-splitting algorithm as the number of entriesincreases. From the results of
our experiments we can givethefollowing rule of thumb for choosing a split algorithm: When C (the capacity
of the nodes) is lower than 20, it is beneficial to use the minMax- splitting strategy. For treeswith bigger C,
the M ST-splitting algorithmis abetter choice. It isalsoimportant to say that the ChooseSubtree algorithm also
has an influence on the splitting algorithms.

7.3 - Experiments with the Slim-down algorithm
The Slim-down algorithmimproves thenumber of disk accessesfor rangequeriesinaveragebetween 10t0 20%

for vector datasets. As these datasets already have alow bloat-factor, this gives small room for improvement
through the Slim-down algorithm. For datasets with bigger bloat-factors (as the metric datasets Facelt and

11

EnglishWords), the average improvement goes to between 25 and 35%.

Slim-tree, Facelt dataset Slim-tree, Facelt dataset

10 :

=y
[=3

minMax (without slimming down) < MST (without slimming down) —<—
” MinMax (with slimming down) —&a— 8 MST (with Slimming down) —&—
X a —
8 T :
o It
>
<

10! L L L
10! L | M| L
0.0001 0.001 0.01 01 s ! 0.0001 0.001 0.01 01 radius

Figure 11. Comparing the improvements given by the Slim-down algorithm to answer range queries.

Figure11 comparesthe query performance of the Slim-treeswherethe one uses the slim-down algorithm and
theother doesnot. Notethat on theleft-hand side of Figure 11 we show the results when the minM ax-splitting
algorithmisused, whereastheresults of theM ST-splitting algorithm are presented on theright-hand side. Both
graphs show that the slim-down algorithm improves the Slim-trees. In Table 3 (column “ slim-down”) we also
show the time to perform the slim-down on the tree. In general, only a small fraction of the build time is
required to perform a slim-down on a Slim-tree.

Slim-tree using the minMax-splitting algorithm Slim-tree using the MST-splitting a gorithm (time
Datasets (timeinsec.) insec.)

build range slim-down get fat- build range slim-down get fat-

queries factor queries factor
Uniform10k 94.62 17.23 0.23 1.54 1.58 16.62 0.33 191
Sierpinsky 103.88 11.86 0.41 0.83 1.68 11.96 0.23 0.99
MgCounty 195.16 20.67 0.38 231 3.08 20.78 0.40 2.16
Eigenfaces 61.60 62.33 1.20 0.13 6.46 68.67 0.89 71.10
EnglishWords 1704.44 504.17 82.59 173.36 33.96 513.03 210.41 204.78
Facelt 0.45 0.13 0.08 0.06 0.15 0.16 0.01 0.16

Table 3 - A comparison of the Slim-trees using the minMax-splitting algorithm and the MST-splitting a gorithm.
The numbers are wall-clock times in seconds.

Although the measurement of |- takes some computing time, the alternative way to obtain some values that
represent the performance of a metric treeis to issue several queries for each given radius, keep the average
number of disk accesses (or distance calculations) and their standard deviations and then generate the
corresponding plots. We measured the times spent to calculate both the fat-factor and the average of disk
accesses using 500 randomly generated queries. Thesemeasurements areshownin Table3, and fromtherewe
can see that the calculation of the fat-factor is faster than the other alternative.

Thelast two columns of Table4 show thefat-factor and the bloat-factor calculated for the Slim-trees using
the M ST-splitting algorithm. Moreover, we also present the number of nodes and the height of thetree. Note

12

Dataset Num. | Objects| Number of nodes| Height of the Fat Bloat
of per tree factor | factor
objects | node M M Ff() Bl()

N C H Hi,

Uniform2D 10,000 52 307 198 3 3 0.03 0.05

Sierpinsky 9,841 52 374 195 3 3 0.01 0.01

MGCounty 15,559 52 568 307 3 3 0.01 0.01

Eigenfaces 11,900 24 930 518 4 3 0.32 0.58

Facelt 1,056 11 226 106 4 3 0.23 0.51

EnglishWords | 25,143 60 476 428 3 3 0.48 0.53

Table 4 - Parameters of the Slim-trees using the MST-splitting algorithm

that parameter M refersto the actual number of nodes and parameter My, gives the minimum number of nodes.
Analogously, the parameters H and H,, refer to the height of the Slim-tree. The number of objects per node
(C) varies because of the size of the data objects.

In general, the results of our experiments confirmed that the fat-factor is suitable to measure the quality of
a Slim-tree. As arule of thumb, we believe that a metric tree with a fat-factor between 0 and 0.1 can be
considered as a good tree, with a fat-factor between 0.1 and 0.4 as an acceptable tree, and with a fat-factor
greater than 0.5 a bad tree. From Table 4 we can see that the Slim-trees for Uniform2D, Sierpinsky and
MGCounty are very good trees, but the trees for Eigenfaces, Facelt and EnglishWords are considered to be
barely acceptable.

8. Conclusions

We have presented the Slim-tree, a dynamic metric access method which uses new approaches to efficiently
index metric datasets. Our main contributions consist of the Slim-down algorithm and anew splitting algorithm
based on the minimum spanning tree (MST). Additionally, we suggest a new ChooseSubtree algorithmfor the
Slim-treewhich directstheinsertion of an abject from a given nodeto the child nodewith thelowest occupation
when more than one child node qualifies. This leads to tighter trees and fewer disk pages, which also results
in amore efficient processing of queries.

The new M ST-splitting method is considerably faster than the minMax-splitting method, which has been
considered thebest for the M-tree[CPZ 97] [CP 98], whilequery performanceis almost not effected. For anode
with capacity C, theruntime of theminM ax-splitting methodis O(C?) whereas theruntimeof theM ST-splitting
method is O(C? log C). Their performance differenceis reflected in our experiments where the time to build
a Slim-tree using the M ST-splitting method, is by afactor of up two orders of magnitude lower than using the
minMax-splitting method. Both splitting methods result in Slim-treeswith almost the same query performance.
We observed that query performance suffered a little by using the M ST-splitting method, but only for small
node capacities (less than 20).

The Slim-down algorithm is designed to be applied to a poorly constructed metric treein order to improve
itsquery performance. Thetheoretical underpinning of the Slim-down algorithmisour approach for computing
overlap inametric tree. Although overlap isidentified as an important tuning parameter for improving query
performance for spatial access methods, it has not been previously used for metric trees due to theinability to
computethevolume of intersecting regions. In order to overcomethis deficiency, we proposeusing therdative
number of objects covered by two (or more) regionsto estimatetheir overlap. Thisconcept isusedinthedesign
of the Slim-down algorithm. Inthis paper, weused the Slim-down algorithmin apost-processing step, just after
theinsertion of all objects. This approach does not impedes subsequent insertions since it could also be used
when objectshaveyet to beinserted. In our experiments, the Slim-down algorithmimproves query performance

13

by afactor of up to 35%.

Our concept of overlap also leadsto the introduction of two factors each of them expresses the quality of a
Slim-tree for a given dataset using only a single number. The fat-factor measures the quality of a tree with a
fixed number of nodes, whereas the bloat factor enables a comparison of trees where the number of nodesis
different. Moreover, we foresee that the proposed method of treating overlaps in metric spaces allows us to
apply to metric access methods many well-known fine-tuning techniques devel oped for spatial access methods.

In our future work, we are primarily interested in the following subjects. First, we plan to apply the Slim-
down algorithm to the nodes of the upper levels of a metric tree. So far, we have used the algorithm only for
the internal nodes on the lowest leve (the first level above the leaves). Second, we are interested in a
comparison of the Slim-down algorithm with the re-insertion technique of the R*-tree. Third, we will study
whether thebloat-factor can be used to develop a cost mode for predicting thecost of arangequery intheSlim-
tree. Fourth, wewill investigate whether thedefinition of the bloat-factor can begeneralized whenweexplicitly
distinguish between a set of query objects and a set of data objects.

Acknowledgments
We are grateful to Pavel Zezula, Paolo Ciaccia and Marco Patdla for giving us the code of the M-tree.

Refer ences

[BcM94] R. A. Baeza-Yates, W. Cunto, U. Manber, Sun Wu - Proximity Matching Using Fixed-Queries
Trees, CPM: 198-212 (1994).

[BK 73] W. A. Burkhard, R.t M. Kdler - Some Approaches to Best-Match File Searching, CACM 16(4):
230-236 (1973).

[Bks+90] N. Beckmann, H.P. Kriegd, R. Schneider and B. Seeger - The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles’, Proc. ACM-SIGMOD: 322-331 (1990).

[BBK+97] S. Berchtold, C. Bohm, D. A. Keim, H.-P. Kriegd - A Cost Model For Nearest Neighbor Search
in High-Dimensional Data Space. Proc. ACM-PODS 1997: 78-86.

[BO97] T. Bozkaya, Z. M. Ozsoyoglu - Distance-Based Indexing for High-Dimensional Metric Spaces,
Proc. ACM-SIGMOD: 357-368 (1997).

[Bri 95] S. Brin - Near Neighbor Search in Large Metric Spaces, Proc. VLDB: 574-584 (1995).

[cPzo7] P. Ciaccia, M. Patdla, P. Zezula - M-tree: An Efficient Access Method for Smilarity Searchin
Metric Spaces, Proc. VLDB: 426-435 (1997).

[cPzog] P. Ciaccia, M. Patdla, F. Rabhitti, P. Zezula - Indexing Metric Spaces with M-tree, Proc. Quinto
convegno Nazionale SEBD, (1997).

[cPog] P. Ciaccia, M. Patdla - Bulk Loading the M-tree, Proc. ADC’ 98: 15-26 (1998).

[GGos] V. Gaede, O. Gunther - “Multidimensional Access Methods” , ACM Computing Surveys, Vol. 30,
No. 2, 170-231, (1998).

[GuTrs4] A.Guttman-“ R-Tree: Adynamic Index Structurefor Spatial Searching” , Proc. ACM-SIGMOD
Conference: 47-57 (1984).

[FK 94] C. Faloutsos, L. Kame - Beyond Uniformity and Independence: Analysis of R-tree Using the
Concept of Fractal Dimension, Proc. ACM-PODS: 4-13 (1994).

[Kruse] J. B. Kruskal Jr. - On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem, Proc. Amer. Math. Soc., (7): 48-50 (1956).

[srRF87] T. Sdlis, N. Roussopoulos, C. Faloutsos - The R+-tree; A Dynamic Index for Multi-dimensional

14

[TTF99]
[UHL 91]

[Viso8]
[wTs+96]

[Yia93]

Objects, Proc. VLDB: 507-518 (1987).

C. Traina Jr., A. Traina, C. Faloutsos - Distance Exponent: A New Concept for Selectivity
Estimation in Metric Trees, CMU-CS-99-110 Technical Report (1999).

J. K. Uhlmann - Satisfying General Proximity/Smilarity Querieswith Metric Trees, IPL 40(4):
175-179 (1991).

Visionics Corp. - Available at http://www.visionics.comV/live/frameset.html (12-Feb-1999).

H. D. Wactlar, T. Kanade, M. A. Smithand S. M. Stevens - “ Intelligent Accessto Digital Video:
Informedia Project” , IEEE Computer, vol. 29 (3): 46-52 (1996).

P. N. Yianilos - Data Structures and Algorithmsfor Nearest Neighbor Searchin General Metric
Soaces, SODA: 311-321 (1993).

15

