
Coscheduling of Computation and Communication

Resources in Push-Pull Communications to provide

End-to-End QoS guarantees

Kanaka Juvva

August; 1999
CMU � CS � 99� 166

School Of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

This research was supported by the Defense Advanced Research Project Agency in part under agreement E30602-

97-2-0287 and in part under agreement F30602-96-1-0160. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing policies , either expressed or implied of

U.S.Government.

Keywords: Coscheduling, QoS Guarantees, End-to-End delay, Proxy, Topology, Push Communication

Abstract

In this paper, we extend the Push-Pull Communication Model [4] to provide end-to-end quality of service

(QoS) for clients located in distributed and heterogeneous nodes. Push-pull communications is a middleware

service that has been implemented on top of a Resource Kernel [9]. It is a many-to-many communication model,

which can easily and quickly disseminate information across heterogeneous nodes with
exible communication

patterns. It supports both \push" (data transfer initiated by a sender) and \pull" (data transfer initiated by a

receiver) communications. Nodes with widely di�ering processing power and networking bandwidth can coordinate

and co-exist by the provision of appropriate and automatic support for transformation on data communication

frequencies. In particular, di�erent information sources and sinks can operate at di�erent frequencies and also

can choose another (intermediate) node to act as their proxy and deliver data at the desired frequency.

In this paper, we speci�cally address the timeliness and bandwidth guarantees of the push-pull model. The

location of a proxy, the network topology and the underlying network support can impact the timeliness of data.

We formally analyze the problem of choosing an optimal proxy location within a network. We obtain the somewhat

counter-intuitive result that if slightly longer end-to-end latencies can be tolerated and unicast protocols are used,

locating the proxy at the publisher node is the best. The situation turns complex if multicast protocols are

used. We show that this problem of optimal proxy allocation can be formulated as a mixed integer programming

problem that can be solved eÆciently. As an example, we solve the proxy location problem for a high-speed vBNS

network con�guration. We obtain our end-to-end timeliness and bandwidth guarantees by using a resource kernel

o�ering CPU guarantees at the end-points and the use of a guaranteed bandwidth network between push-pull

clients. We discuss our implementation of this system and carry out a detailed performance evaluation on an

integrated RT-Mach - Darwin[3] testbed at Carnegie Mellon. Our results open up interesting research directions

for the QoS scheduling of applications which require both computation and communication resources.

1 Introduction

The advent of high-performance networks such as ATM and 100 Mbps networks in conjunction with signi�cant

advances in hardware technologies are spawning several distributed real-time and multimedia applications. Dis-

tributed multimedia systems, in particular, are becoming more prevalent and e�ective in making widespread infor-

mation accessible in real-time. Examples include video-conferencing over the Internet, multi-party collaborations

systems, and Internet telephony. Data communications in these systems take place among geographically dis-

tributed participants, whose computing and networking resources can vary considerably. A service infrastructure

which supports such distributed communications should be scalable,
exible and cater to di�erent CPU/network

bandwidths while providing real-time guarantees. Real-time push-pull communications [4] is a middleware service

which provides many-to-many communications to clients operating in the above mentioned conditions. Providing

QoS guarantees in Push-Pull communications is a major challenge. Because there can be wide variation in each

subscriber's resources and QoS requirements. For example, in a multimedia multi-party collaboration application

an audio subscriber has stringent end-to-end delay requirements, a video subscriber needs good frame rate, a

white-board subscriber requires reliable delivery and a text subscriber may prefer security. This paper focuses on

providing bandwidth and delay guarantees.

1.1 Motivation

The real-time publisher/subscriber communication model [6, 7, 8] can be considered to represent \push com-

munications" where data is \pushed" by information sources to information sinks. As a result, subscribers can

obtain information only at the rate at which the data is being pushed. This model is appropriate and eÆcient

for periodic and synchronous updates between sources and sinks which are operating at the same frequencies
1
.

Unfortunately, this can be very limiting in many cases where di�erent clients have di�erent processing power

and/or widely varying communication bandwidths (because of connectivity to a low bandwidth network such as a

telephone modem or an encrypted satellite link). If consumers did not have the same processor power or network

bandwidth, a publisher must either falsely assume that they all have the same capability or publish two (or more)

streams to satisfy consumers with di�erent capabilities.

It would be very desirable if a client with a relatively low processing power and/or communication bandwidth is

able to consume published data at its own preferred rate. In other words, the data reaching this client depends on

its own needs, and not that of the publishing volume/rate of the publisher. Also, the real-time publisher/subscriber

model is completely synchronous: subscribers normally block on a \channel" (represented by a distribution tag)

waiting for data to arrive. Publishers produce data at the rates that they determine, and the published data are

immediately sent to the subscribers on that distribution tag. Also, the publisher/subscriber model does not have

support for QoS guarantees. The Push-Pull Communications model addresses these issues.

The objectives of the Push-Pull model are listed below:

Synchronous Communication: Synchronous Communication allows consumers on the same data streams to

receive and process data at (locally determined) rates, which are independent of those used at the information

sources. As a result, clients with high or low processing power and/or high or low network bandwidth can

still usefully consume data on a stream. In addition, this can happen without the knowledge of the data

producers who do not have to distinguish among the capabilities of the receiving consumers. In our approach

we use temporal scaling and spatial scaling to implement synchronous communication.

� Temporal Scaling: A source publishes at a frequency of f and the sink consumes it at f=n where n is

normally greater than or equal to 1, and typically an integer. The transformation can, for example, `drop'

intermediate data to achieve the desired frequency transformation which correspondingly decreases the

load [14, 15, 19] on the receiver's networking and processing capabilities. Our design and implementation

currently supports only integer-based scaling owing to its simplicity and application-independence.

� Spatial Scaling: Multimedia data types such as audio and video are inherently scalable. Applications

like video telephony will bene�t if there is a provision to transform a picture of size WxH to W

0

xH

0

based on the processing power of the consumer.

Asynchronous Communication: In asynchronous communication, data can be \pulled" by an information

consumer on demand. A \pulling" consumer can choose to consume data at a rate lower than the data

production rate. In the extreme, a pulling consumer can choose to only consume data asynchronously. Pull

bu�ers as explained below can provide asynchronous communication.

� Pull Bu�ers: A �nite sequence of a real-time activity can be bu�ered at a location and can be pulled

by a subscriber on demand at a later point of time. We use pull communications to support \history

1A subscriber may choose to operate at a di�erent lower frequency by, for example, skipping every other published datum on a

subscribed tag. However, for this to happen, the subscriber must still receive and \consume" the datum albeit in a trivial \drop-it"

fashion.

1

bu�ers" and pulling of older messages on demand. Pull bu�ers are similar to Proxy Caches in Web-based

systems.

Transparent Data Communication : In our approach, we use a proxy to perform data transformation trans-

parent to the data source and the data sink. Proxy is a logical entity that can reside in the client library or

in a daemon. The proxy performs data transformations without a�ecting the functionality of producers and

consumers (but potentially increasing the end-to-end delay between the two). Spatial Scaling might also

require that the proxy be aware of the semantics of the data (for example, that it is a raw video stream). A

proxy is used only when necessary, and two (or more) clients can be receiving at two (or more) rates from

the same data channel.

QoS Guarantees: Temporal scaling as explained above provides the sampling rate required for individual clients.

Similarly, spatial scaling provides resolution control. Clients also may have di�erent timeliness requirements.

The proxy location, load on the proxy node, the distance (number of hops) between publisher and subscriber,

the network topology, link capacities and link delays impact the end-to-end QoS. For the clients who do not

require spatial/temporal scaling, proxies can be still used to provide BW and delay guarantees.

Protection and Enforcement: Since multiple communication channels can be in use simultaneously at di�er-

ent rates, there should be support for spatial and temporal protection among the various channels. As an

example, increasing the sampling rate of a video stream should ideally not adversely a�ect the worst-case

end-to-end delays of a audio stream. The scheduling/dispatching layers should use primitives which support

enforcement when possible. For instance, a reservation-based scheduling scheme [9, 11, 3] provides temporal

protection and guaranteed timeliness, while priority-based schemes can provide predictable timeliness under

worst-case assumptions that do not enforce protection.

In summary, the real-time push-pull communications model supports predictable, eÆcient and synchronous as

well as asynchronous communications among heterogeneous nodes.

1.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we provide a detailed analysis of proxy location. In

Section 2.2, we compute predicted end-to-end delays. Section 2.4 describes proxy allocation to multiple subscribers

and proxy allocation as an optimization problem. In Section 2.3 and Section 2.5 we describe performance impact

of a proxy node with Unicast protocols and multicast protocols. In Section 3, we describe the architecture of

the real-time push-pull communication model and describe its primary components. Section 3.3 gives a detailed

performance evaluation of the model using end-to-end reservation in several con�gurations. Finally, we present

our concluding remarks in Section 4.

1.3 Comparison with Related Work

In this section, we compare our approach with that of other related systems. The push-pull model is built on

top of a Resource Kernel[9] and uses resource kernel primitives real-time priorities, real-time threads, RT-IPC

and basic priority inheritance mechanisms at all levels (client and daemons) and focuses on QoS guarantees. It

interacts with Darwin for network QoS support.

The model �ts well in the context of both hard and soft real-time systems and particularly it is very promising

to distributed multimedia applications like videoconferencing. We have successfully built a Multimedia mutli-party

collaboration application on top of the model [4].

Maestro[1] is a middleware support tool for distributed multimedia and collaborative computing applications.

Salamander[5] is a push-based distribution substrate designed to accommodate the large variation in Internet

connectivity and client resources through the use of application speci�c plug-in modules. However [5] does not

address real-time guarantees and temporal protection among di�erent virtual data channels.

In [20], Fox et. al. propose a general proxy architecture for dynamic distillation of data based on client

variation. It does not address temporal dependencies which impose tight timing constraints on the distillation

process, which a�ects the architecture of the distiller. The work in [17] addresses adding group communications

support to CORBA. Some work is going on in RT-CORBA [10, 13] to provide QoS and minimize end-to-end

latencies in CORBA based systems. Work in [16, 17, 18] address group communication protocols and fault-

tolerance. There is some research on QoS which deals with global optimum allocation of resources to provide the

speci�ed QoS [21].

At a higher level, while Web browsing has evolved from pull communications to push communications, our

model has evolved from push communications (the publisher-subscriber model) to the current one which includes

pull communications. The primary di�erence is that we focus on relatively closed systems with explicit resource

management on the end-points and bandwidth guarantees, and are able to provide end-to-end timing guarantees.

2

2 Analysis of Proxy Location

We �rst de�ne some terms used in the rest of this paper:

� Publisher: A Publisher produces information on a communication channel.

� Subscriber: A Subscriber consumes information from the communication channel. Publishers and subscribers

are also called push-pull clients.

� Distribution Tag: Publisher/Subscriber uses a distribution tag as a logical handle for a communication

channel. Tag Table in each daemon serves as a repository of all the distribution tags.

� Push-Pull Daemon: The Push/Pull IPC daemon resides on every node involved in the push-pull commu-

nications. IPC Daemons on various nodes communicate with one another keeping them all appraised of

changes in distribution tags and publication/subscription status.

� Pull Bu�ers: Pull bu�ers store data samples, which can later be pulled by the pull subscribers.

2.1 Proxy

A consumer upon subscription to a tag (either as a push-client or a pull-client) can specify frequency scaling that

must be done by the middleware service on the data stream it is subscribing to. A \proxy" is used to accomplish

this frequency transformation, and once created, the proxy is transparent to the data source as well as the data

sink. A proxy can exist in one of three con�gurations:

1. Proxy at Subscriber:

The transformation and scaling takes place on the subscriber node and is useful when the subscriber node is

powerful but the application is not interested in the higher frequency. The Proxy executes in the subscriber's

address space.

2. Proxy at Publisher:

The transformation and scaling takes place on the publisher node. This is useful when the publisher node

is not loaded and frequency transformation bene�ts the subscriber. The Proxy executes in the publisher's

address space.

3. Proxy on remote/Intermediate node:

The transformation and scaling takes place on an intermediate node (potentially) speci�ed by the subscriber.

This is useful when both the publisher and the subscriber do not have the slack to perform the scaling

themselves and the subscriber bene�ts from the scaling. In practice, for low-bandwidth clients across a

modem link, nodes which act as the gateway to the wired network are good candidates for being proxies.

The Proxy executes in a daemon's address space.

In the rest of this section, we will analyze the impact on the system resources (CPU cycles and network

bandwidth) due to the assignment of proxies at di�erent nodes. We �rst study the impact of a proxy assignment

on the end-to-end delay encountered by a subscriber receiving a message stream.

2.2 Computing End-To-End Delay

In our analysis of the real-time push-pull model, we assume that one period T delay is allocated for processing and

re-transmission at each node in the datapath between a publisher and a subscriber. This is a normal assumption

in the use of rate-monotonic analysis [22, 23, 24] as it applies to distributed real-time systems. While other

assumptions can also be analyzed by the framework, this is a convenient assumption that simpli�es presentation.

Hence, if one node is located on the path between a publisher and a subscriber for a message stream with

period T , we assume that one period T will be used on the publisher node to transmit each message and another

period T will be used on the intermediate node to receive and re-transmit that message to the subscriber. This

results in a net end-to-end latency of 2T for the message stream in this case.

An interesting side-e�ect of this assumption results in the presence of a proxy which temporally scales from a

published period of T to a (longer) period
2
of T 0

. When the proxy is on the publisher node, it transmits every T 0

units of time and not T units of time. Hence, if there are 3 nodes in the path to the subscriber, the end-to-end

delay is 3T 0
. In contrast, if the proxy is on the subscriber node, the publisher and intermediate nodes transmit

data every T units of time, resulting in a net end-to-end delay of 3T , which is shorter than 3T 0
! End-to-end delays

in between 3T and 3T 0
arise if the proxy is on an intermediate remote node. The delay is longer if the proxy is

closer to the publisher and vice-versa.

2Recall that by our assumption, T 0/T = an integer.

3

Proxy On Intermediate Node Proxy at Publisher Node Proxy at Subscriber Node

CPU Network End-to-End CPU Network End-to-End CPU Network End-to-End

Load Bandwidth Delay Load Bandwidth Delay Load Bandwidth Delay

Publisher High High - Low Low - High High -

Node

Subscriber Low Low Medium Low Low High High High Low

Node

Proxy High Medium - - - - - - -

Node

Table 1: Adversity of Performance Impact due to Proxy Location Choice using Unicast Protocols

Proxy On Intermediate Node Proxy at Publisher Node Proxy at Subscriber Node

CPU Network End-to-End CPU Network End-to-End CPU Network End-to-End

Load Bandwidth Delay Load Bandwidth Delay Load Bandwidth Delay

Publisher Low Low - High High - Low Low -

Node

Subscriber Low Low Medium Low Low High High High Low

Node

Proxy High Medium - - - - - - -

Node

Table 2: Adversity of Performance Impact due to Proxy Location Choice using Multicast Protocols

2.3 Performance Impact of a Proxy Node

We now discuss the performance impact of locating proxies in di�erent nodes. The introduction of a proxy at any

node can introduce additional load on the CPU as well as impact the need for network bandwidth on that node.

The CPU load has two components: additional communication protocol processing of incoming and outgoing

network packets and computational processing to scale published data. In the case of the integral temporal

scaling that we perform, the computational processing time tends to be small since packets are just dropped or

re-directed forward to the subscriber destination(s). However, with several subscribers, the CPU load can turn out

to be signi�cant. Similarly, the bandwidth demand increases with multiple proxy requests from subscribers. As

a result, the processing power and network bandwidth resources available on a proxy node can limit the number

of proxy requests that it can handle.

In summary, the addition of one proxy to a node catering to one or more subscribers consists of (or impacts)

the following:

� CPU load: Computation load for communication protocol processing of incoming and outgoing packets, and

processing cycles for data scaling.

� Network bandwidth: Bandwidth on the network links of this node must be utilized to receive and send data

packets.

� End-to-end latency: The end-to-end latency from a publisher to its subscriber changes with the choice of

this node as the proxy (as per the discussion in Section 2.2).

2.3.1 Impact under the Use of Unicast Protocols

In this section, we assume that the transmission of a message from one publisher to one or more subscribers must

be accomplished using unicast protocols.

Consider a distribution tag with one publisher, one subscriber and a proxy. The CPU load and network

bandwidth requirements at the publisher node, the subscriber node and the proxy node vary depending upon

where the proxy is located. Since the proxy can be located at the publisher node, the subscriber node or an

(intermediate) remote node, the impact it has changes. This impact of the choice of the proxy location on the

publisher node, the subscriber node or an intermediate (remote) node is summarized in Table 1. The impact

at the publisher node, subscriber node or the proxy node form the rows of the table. The choice of the proxy

location forms the columns. The end-to-end delay metric is valid only at the subscriber node. For example,

consider the impact at the subscriber node (second row). When the proxy is at a remote node (1st column), the

subscriber node's CPU load is the lowest possible, its bandwidth requirement at its link is the lowest possible,

but its end-to-end latency is neither the highest possible nor the lowest possible (as per Section 2.2).

4

Table 1 leads to some interesting observations. If end-to-end latencies are ignored, both CPU and network

bandwidth requirements are minimal when the proxy is at the publisher node. This is true both at the publisher

and subscriber nodes. The trade-o� is that if there are k hops between the publisher and the subscriber, this

would result in an end-to-end delay of kT 0
instead of the best-case kT which occurs when the proxy is located

at the subscriber node. If this longer delay is acceptable
3
, locating the proxy at the publisher node is the right

thing to do. Finally, as seen in Section 3.3, the computational processing overhead for temporal scaling at any

node adds negligible overhead.

We now provide an algorithm and an example to illustrate this behavior.

2.4 Allocation of a Single Proxy to Multiple Subscribers

Consider the allocation of a single proxy for n subscribers to receive data from a single publisher. Proxy receives

data and performs temporal scaling for all the n subscribers and transmits to them. Publisher and subscribers are

situated in di�erent nodes in the system. The best location of proxy can be the one which guarantees end-to-end

delays for all the subscribers while minimizing the total cost (computation + communication). The required

de�nitions are given below.

� Number of subscribers = n ; n > 0.

� Number of nodes in the system = m ; m > 0. One of the m nodes will be picked to host the proxy for all

the subscribers.

� Publisher produces data at a rate of f (with period T) and the proxy scales these data for the subscriber

for consumption at a lower frequency of f 0
(with period T 0

, which is an integral multiple of T). Recall that

with integer temporal scaling, f / f 0
= an integer � 1, such that f � f 0

and T � T 0
.

� Let �
r

1, �
r

2 � � � �
r

n be the required end-to-end delays of the n subscribers respectively.

� L = Network Bandwidth required for a subscriber without temporal scaling of data. L0
= Network Band-

width required for a subscriber with temporal scaling of data. L0
� L.

� d
pub

j
= distance (number of hops) of a proxy node j from publisher. dsubi;j = distance (number of hops) of a

node j from subscriber i. dpub
j

� 0 ; 1 � j � m; dsubi;j � 0 ; 1 � i � n ; 1 � j � m ; dpub
j

+ dsubi;j � 1 ; 1 � i

� n ; 1 � j � m

� Æi;j : end-to-end delay from the publisher to subscriber i with node j acting as proxy; Where Æi;j = dpub
j

T +

dsubi;j T
0

� costi;j = Communication cost for the pathij , directly proportional to the volume of data being processed;

costi;j = K * (d
pub

j
f + dsubi;j f

0
), where K is a constant. TotalCostj =

P
n

i=1
costij is total communication

cost for all subscribers.

� The next step is to determine the proxy node on a least cost path that satis�es end-to-end delay for all

the subscribers. This can be carried out by just �nding the node j with the least value of TotalCostj and

has Æi;j <= �
r
for all n subscribers. An example system is given in Appendix A which describes how to

determine a proxy node for a simple topology.

2.4.1 Proxy Allocation as an Optimization Problem

The proxy allocation problem can be formulated as a mixed-integer programming problem with linear constraints

for a given topology of networked nodes. This mixed-integer programming problem can be solved using standard

optimization packages such as CPLEX.

The general formulation can be used with no limits on the number of tags, and any number of publish-

ers/subscribers on each tag. Due to space and presentation considerations, we will illustrate the formulation

assuming one proxy per tag.

The steps involved in the formulation are as follows:

1. Pick binary variables to represent proxy location

2. State end-to-end delay constraints in terms of these binary variables and distances from nodes

3. State bandwidth constraints on each network link

4. State processing limits (constraints) on each processing node

5. Minimize a Cost Function which can be any one of

� Total Network Bandwidth

� Total CPU cycles used

� Total Network BW used + (weight * Total CPU cycles)

3Recall from the discussion of Section 2.2 that this end-to-end delay computation is based on a one-period deadline allocation and

that this assumption can be easily relaxed.

5

2.4.2 Proxy Allocation in the High-Speed vBNS Network

We apply the bandwidth minimization cost function to the vBNS network topology shown in Figure 1. vBNS

is a high-speed high-bandwidth network deployed across the US and is extensively used for research. Assume

a publisher at CMU and a subscriber at San Diego. The datapath between the publisher and the subscriber is

shown with a dotted line. Nodes are numbered from f0 - 6g and communication links are labeled as fa - fg. A

Mixed Integer Programming formulation for a proxy allocation for the vBNS topology is given below.

Let Bw(a), BW(b), BW(c), BW(d), BW(e) and BW(f) be the bandwidth capacities of the links a,b,c,d,e and

f respectively. Let L and L0
be the unscaled and scaled bandwidths for the CMU - San Diego
ow, and T and T 0

be the time periods of the publisher and the subscriber. X, Y and Z are integer binary variables that determine

the proxy location. For example, XYZ = 001 implies that the proxy is at Node 1. Then, the mixed integer

programming problem to determine the proxy location is as follows:

San Francisco PSC
(CMU)

NCSA

San Diego

Denver

Chicago

Houston

Atlanta

MD

Boston

NY

0

1
2

4

3

5

6

a

b
c

d

e

f

Datapath from
Publisher (CMU) to
Subscriber (San Diego)

Figure 1: vBNS Topology

Objective function:

Minimize

(1 �X)(1� Y)(1� Z)6L0

+ (1�X)(1� Y)Z(L+ 5L0

) + (1�X)Y (1� Z)(2L+ 4L0

)

+(1�X)Y Z(3L+ 3L
0

) +X(1� Y)(1� Z)(4L+ 2L
0

) +X(1� Y)Z(5L+ L
0

) +XY (1� Z)6L

Subject to:

Delay constraint

(1�X)(1� Y)(1� Z)6T
0

+ (1�X)(1� Y)Z(T + 5T
0

) + (1�X)Y (1� Z)(2T + 4T
0

)

+(1�X)Y Z(3T + 3T
0

) +X(1� Y)(1� Z)(4T + 2T
0

) +X(1� Y)Z(5T + T
0

) +XY (1� Z)6T <= � (delay constraint)

and

Network bandwidth constraints

Link a:

(1�X)(1� Y)(1� Z)L0

+ (1�X)(1� Y)ZL+ (1 �X)(Y (1� Z)L

+(1�X)Y ZL+X(1� Y)(1� Z)L+X(1� Y)(1� Z)L+XY (1� Z)L � BW (a)

Link b:

(1�X)(1� Y)(1� Z)L
0

+ (1�X)(1� Y)ZL+ (1 �X)(Y (1� Z)L
0

+(1�X)Y ZL+X(1� Y)(1� Z)L+X(1� Y)(1� Z)L+XY (1� Z)L � BW (b)

Link c:

(1�X)(1� Y)(1� Z)L
0

+ (1�X)(1� Y)ZL
0

+ (1�X)(Y (1� Z)L
0

+(1�X)Y ZL+X(1� Y)(1� Z)L+X(1� Y)(1� Z)L+XY (1� Z)L � BW (c)

6

Link d:

(1�X)(1� Y)(1� Z)L
0

+ (1�X)(1� Y)ZL
0

+ (1�X)(Y (1� Z)L
0

+(1�X)Y ZL
0

+X(1� Y)(1� Z)L
0

+X(1� Y)(1� Z)L+XY (1� Z)L � BW (d)

Link e:

(1�X)(1� Y)(1� Z)L
0

+ (1�X)(1� Y)ZL
0

+ (1�X)(Y (1� Z)L
0

+(1�X)Y ZL
0

+X(1� Y)(1� Z)L
0

+X(1� Y)(1� Z)L+XY (1� Z)L � BW (e)

Link f :

(1�X)(1� Y)(1� Z)L
0

+ (1�X)(1� Y)ZL
0

+ (1�X)(Y (1� Z)L
0

+(1�X)Y ZL
0

+X(1� Y)(1� Z)L
0

+X(1� Y)(1� Z)L
0

+XY (1� Z)L � BW (f)

The objective function and the resource constraints are non-linear in X, Y and Z containing terms of the

form XY , Y Z, XY Z and XZ. These constraints can be linearized by introducing substitutions and adding extra

(linear) constraints to the problem. We use the following substitutions:

XY = a

Y Z = b

ZX = c

aZ = d

Note that XY Z = aZ = d. For example, the reduced objective function now becomes

(1 + a+ b+ c�X � Y � Z � d)6L
0

+ (Z + d� c� b)(L+ 5L
0

) + (y + d� a� b)(2L+ 4L
0

)

+(b� d)(3L+ 3L
0

) + (X � a� c+ d)(4L+ 2L
0

) + (c� d)(5L+ L
0

) + (a+ d)6L

which is linear in the new variables, and we insert the following additional constraints:

a � 0 b � 0 c � 0 d � 0

d� x � 0 a� y � 0 �a+ x+ y � 1 b� z � 0

c � x � 0 �b+ y + z � 1 c� z � 0

d� z � 0 �c+ x+ z � 1 d� a � 0 �d+ z + a � 1

Similarly, delay and BW constraints become linear in the new variables. If there are multiple subscribers (or

proxies) per tag and/or multiple tags, the above sequence will be repeated with di�erent sets of binary variables

for each proxy for each tag. The end-result will be that the number of terms in the constraints and the objective

function will increase correspondingly. But each new term will be a simple addend to the sum and the complexity

of the formulation remains the same.

The above formulation problem has been solved using CPLEX optimization package [27] for di�erent topologies

and subscribers. CPLEX always found a solution to the problem for all cases and run time was in the order of

milliseconds. We present the optimization running times for the vBNS topology in Table 3.

Topology # Nodes (# Publishers, # Subscribers) Pre-Solution time Solution time

ms ms

vBNS 7 (1,1) 0 10

vBNS 7 (1,2) 10 10

vBNS 7 (1,5) 10 20

vBNS 7 (1,10) 20 40

Table 3: The Run-Times EÆciency of Solving Proxy Allocation problem for vBNS Topology

7

2.5 Impact with the Use of Multicast Protocols

Suppose that, instead of using unicast protocols to transmit data to multiple subscribers, the publication of

a message on a tag is carried out on a multicast address. The table, corresponding to the one of Section 2.5

(Table 1), for this case is given in Table 2. Suppose that a publisher is publishing to two or more subscribers with

di�erent scaling factors (as shown in Figure). Suppose that the proxy is now located on the publisher node itself.

Each scaled message stream must now therefore be transmitted on a di�erent multicast address. This increases

the CPU load on the publisher node. Speci�cally, its protocol processing overhead increases as does its network

bandwidth requirement. Hence, the entries in the �rst row, second column of Table 2 list fHigh, Highg when

they were fLow, Lowg in the case of Table 1. As can be seen in Table 2, there is no single column that yields all

\Lows" with the �rst column of having a remote proxy coming close.

In this case, the best choice of a proxy location is not at all obvious. One would actually expect that the

problem of picking the optimal locations of proxies given a set of distribution tags, publishers and subscribers to

be computationally expensive.

3 The Push-Pull Communication Implementation and Perfor-

mance Evaluation

Node 2
Push/Pull
Clients

Data Tag
Operations

Push/Pull
Daemon

Meta data
Receiver
thread

Application
data

receiver
thread

Pull Buffers

Tag Table

delivery
manager
thread

local
manager

thread

update
manager
thread distribution

manager
thread

proxy
manager
thread

pull
manager
thread

Tag Table

Pull Buffers

Resource
Kernel

Push-Pull
Communication

Service

Resource
Kernel

Push-Pull
Communication

Service

Darwin
Router

Darwin
Router

b) Components of Push-Pull Communication

a) Push-Pull Communication service interacting with
Resource Kernel and Darwin Routers

Figure 2: The Architectural Components of the Real-Time Push-Pull Communications Model.

The architecture of the real-time push-pull communications model is illustrated in Figure 2 (a). The commu-

nication service is built on top of a Resource Kernel[9] which provides QoS guarantees. Nodes in the system are

assumed to be interconnected using DARWIN [3], a network fabric that provides bandwidth reservations. The

Darwin network is explained in the next section. As shown in Figure 2 (b) every node runs a daemon comprising

multiple threads. A client wishing to communicate using the real-time push-pull service interfaces to a library

in its own address space. The client library consists of several threads as shown in Figure 2 (b), maintains local

information from the real-time push-pull service and its own local bu�ers. This information maintained in the

8

PROXY

Subscriber1

Subscriber2

Subscriber3

Publishers

Frequency 1

Frequency 2

Frequency 3

Frequency F

Figure 3: An Intermediate Location of the Proxy performing temporal scaling to 3 di�erent subscribers.

client is structured such that any damage to this data will a�ect only this client. The threads within the daemon

and the client are shown in the �gure.

3.1 Proxy

The basics of the Proxy were already described in Section 2.1. The existence (or non-existence) of the proxy

is retained in the attributes of the distribution tags (channels) maintained by the daemons and client libraries,

and used appropriately when data is published or pulled. This is illustrated in Figure 3. The proxy location is

chosen by a subscriber by setting the proxy attributes of the particular channel on the distribution tag. The proxy

attributes are ffMode, IP addressg, Scaling Factorg.

� Mode is either Proxy at subscriber, Proxy at publisher or Proxy at intermediate node. The IP address

�eld is used only in Proxy-Mode-3 and identi�es the remote node.

� The Scaling Factor is used for temporal scaling. It is the number by which the source frequency �eld

is divided to get the desired frequency. For example a scaling factor of n implies for every 'n' samples of

publisher data,the subscriber receives 1 sample.

A push-pull daemon is run on every node of the system using our middleware service, and the proxy agent

when needed resides typically within the daemon of the node where it is located. It can reside in a client library

if the proxy is at either the publisher or the subscriber node. Data published to a subscriber who has requested

a proxy is frequency-transformed as it is being transmitted (by dropping as necessary). The critical aspect is

that multiple subscribers on the same channel may want to have their proxy in distinct modes. The performance

impact of the proxy on the system in di�erent modes is illustrated in Section 2.3.

3.2 Pull Communications

\Pull" communications is used by a subscriber to \pull" speci�c data samples asynchronously on demand. For

instance, a subscriber may want to pull dynamically a particular recent sequence of an ongoing video conference.

An aircraft control system may want to pull weather information about a particular region in the past two hours.

As a result, it is desirable that the middleware service support a history bu�er which stores recent versions of

data samples published on a channel. A customer can then request on demand the most recent copy of a data

sample, the nth-most recent version or a speci�c absolute sample from this history.
4

The \Pull attributes" we support are ffPublisher, Mode, IP addressg, Number of Messagesg, where

� Publisher is the source from which messages are to be pulled.

� Mode can be one of the following:

1. Bu�ering at Subscriber:

The daemon on the subscriber node bu�ers the messages. This mode is useful when there are no

networking constraints at the client side, and the requirements are unique to this client.

4Our current implementation supports a circular bu�er which stores a �xed number of the most recent samples published.

9

2. Bu�ering at Publisher:

The publisher node itself maintains the bu�er. This is a logical place if multiple clients need the

capability to access recent history on a demand basis.

3. Bu�ering at Remote/Intermediate node:

Bu�ering is done at an intermediate node. This mode is used when the publisher is loaded and multiple

clients can bene�t or when one client has constraints on networking, processing and storage capabilities.

� IP address is the address of the remote node for Pull-Mode-3.

� Number of Messages is the desired number of messages to be stored in the bu�er.

A subscriber issues pull requests to pull the messages. Time-stamping and/or versioning of data is required

to indicate a speci�c message. In our current implementation, all the messages carry a sequence number and the

sequence number is used to pull a speci�c message.

3.2.1 Resource Kernel

The Push-Pull Communications executes as a middleware service on top of a Resource Kernel. The Resource

Kernel provides timely and protected access to machine resources namely CPU, disk bandwidth and network

bandwidth [9, 11, 12]. Push-Pull uses the Resource kernel primitives to provide timely and eÆcient resource

utilization.

3.2.2 Darwin: The Guaranteed Bandwidth Network

Darwin [3] is a network fabric deployed at Carnegie Mellon University, which provides guaranteed access to network

bandwidth for end-hosts. The Darwin architecture shown in Figure 4 is similar in many ways to traditional resource

management structures. For example, the resource management mechanisms for the Internet de�ned by the IETF

in the last few years rely on QoS routing (service brokers), RSVP, and local resource managers that set up packet

classi�ers and schedulers. A key component is the hierarchical fair service curve and (HFSC) scheduler [26] that

manages link bandwidth and that can implement a broad range of sharing policies, including fair sharing and

guaranteed services. Moreover, it supports the hierarchical resource management that is needed for hierarchical

deployment, and it allows controlled sharing of resource between sibling nodes without violating guarantees inside

the subtrees, so subtrees can be managed independently.

Classifier Scheduler

Local Resource Manager

Beagle Delegates

Route lookup

Routing

Control API Event Notification

Xena Beagle

Other
Routing
Entities

Applications

Figure 4: Darwin node architecture.

3.3 Performance Evaluation

The real-time push-pull model has been successfully designed and implemented on a testbed consisting of endpoints

running RT-Mach and the Darwin network at Carnegie Mellon which provides guaranteed bandwidth between

speci�c end-points. This section describes a set of measurements obtained on a network of three Pentium-120

MHz PCs with 32MB RAM running RT-Mach version RK97a. The network was 10Mbps ethernet, a Subscriber

and a Publisher were run on same and di�erent nodes, with proxy in several con�gurations. Each of the Darwin

routers was a Pentium-II 256 MHz with 128MB RAM.

10

3.3.1 The Goals and Use of Our Performance Evaluation

The goals of our performance evaluations were two-fold. One, we strive to fully understand the performance impact

of the use of a proxy. As will be seen, having a proxy on a remote (intermediate) node can lead to additional delays.

Our second goal was to understand the impact on end-to-end delays with multiple hops through a real network.

These measurements can be directly plugged into standard rate-monotonic analysis techniques to obtain predicted

worst-case end-to-end delays between publishers and subscribers. In addition, explicit resource management on

the end-points and the use of a guaranteed bandwidth network like Darwin can be used to provide guaranteed

access to required bandwidth between push-pull clients.

3.3.2 The Performance Impact of a Proxy

The experiment we conducted to measure the performance impact of a proxy is as follows. A publisher transmits

a 64-byte message which is received by a subscriber, which in turn re-transmits that message by publishing on a

separate tag. The original publisher receives this message and the time taken for this sequence to complete at the

�rst publisher node corresponds to a Round-trip Delay. We calculated the average of this round-trip delay after

100 messages. These measurements based on an unoptimized implementation
5
are summarized in Figure 5.

0
1
2
3
4
5
6
7
8
9

10

No Proxy Proxy at
Subscriber

Proxy At
Publisher

Proxy On
Remote

Node

Message Size = 64 bytes

Round Trip
delays (ms)

(a) Round Trip Delays

Publisher Node Subscriber NodeProxy Node

∆ pubcpu ∆ pubcom ∆ ∆ ∆ ∆proxycpu proxycom subcpu subipc

End-to-End Delay from Publisher to Subscriber

(b) Delay Components
Figure 5: Round-Trip delays for Di�erent Proxy Locations and corresponding End-to-End Components

We repeated the experiment in 2 con�gurations: without a proxy, and with a proxy in between the �rst

publisher/subscriber pair. In addition, the proxy if used could be located on the publisher site, the subscriber site

or an intermediate site. The measurements of round-trip delays are shown in Figure 5. The key (non-network-

related) components of the end-to-end delay illustrated in Figure 5 are given in Table 4. When proxy is located at

a publisher or a subscriber, �proxycpu and �proxycom are included in �pubcpu/�subcpu and �pubcom
6
respectively.

So they are not measured separately.

Delay Components Proxy at Proxy at Proxy on

in ms Subscriber Proxy at Publisher Remote Node

�pubcpu : computational processing time 0.2816 .2871 0.2807

�pubcom : communication processing time 0.4920 0.498 0.494

�subipc : ipc overhead 0.3601 0.364 0.3626

�subcpu :computational processing time 0.33 0.328 0.3329

�proxycpu : computational processing time - - 0.042

�proxycom: communication processing time - - 0.49664

Table 4: Individual Components for End-to-End delays, Message Size = 64 Bytes

As can be seen, the presence of a proxy at a subscriber node or a publisher node adds very little overhead

compared to the case of having no proxy at all. In this case, the proxy was scaling the data stream by a factor

5The system measured uses an ISA bus 8-bit Ethernet card, and we expect signi�cantly better absolute performance numbers on a

32-bit PCI card.
6The communication processing time in push-pul daemon and doesn't include network protocol processing time

11

of one, i.e. passing the data straight through. When the proxy is on a remote node, a latency of about 3ms 7
is

added to the round-trip path. Several other experiments were conducted varying the distance (with Darwin nodes

routing the messages) between a publisher, a subscriber through a proxy and with di�erent message lengths.

3.3.3 Experiment #1: The Impact of Message Lengths when Publisher/Subscriber on a

single node

In this experiment the publisher and the subscriber are located in the same node as shown in Figure 6 (b), and the

proxy is at either the publisher, the subscriber or the remote node. We vary the message lengths and the round-

trip delays encountered are as shown in Figure 6 (a). As one can see, delays increase linearly as message length

increases and longer delays are encountered when the proxy is located on a remote node. When the publisher and

subscriber are on the same node, locating the proxy on a remote node may not appear logical. This situation can

potentially occur for proxy caches in departmental servers.

6

7

8

9

10

11

12

13

0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e
ra

g
e
 R

o
u
n
d
 T

ri
p
 D

e
la

y
s
 (

m
s
)-

-
 P

u
b

/S
u

b
 o

n
 s

a
m

e
 n

o
d

e

(a) Message Size (bytes)

Proxy at publisher
Proxy at subscriber

Proxy on remote node

 Datapath for Proxy at
Remote Node

 Datapath for Proxy at
 Publisher / Subscriber

Single Node

Remote
Node

Publisher Subscriber

(b) Publisher and Subscriber on Single node

Figure 6: The Round-Trip Delays and Publisher, Subscriber and Proxy con�guration for Experiment #1.

3.3.4 Experiment #2: The Impact of Message Lengths when Publisher and Subscriber

are at one hop distance

In this experiment, the publisher and the subscriber are located in di�erent nodes and the proxy is on one of the

three nodes as shown in Figure 7 (b). Round-trip delays encountered for all the three con�gurations as message

length is varied are shown in Figure 7 (a). The delays increase almost linearly when the proxy is at the publisher

or the subscriber. With the proxy on a remote node, an additional delay of about 2.5ms is introduced.

3.3.5 Experiment#3: The Impact of Message Lengths when Publisher and Subscriber are

at two hops distance

This experiment measures round-trip delays encountered when the Publisher and Subscriber are separated by one

Darwin router and are at two hops distance as shown in Figure 8 (b), and the proxy is at the publisher node or

the subscriber node. As shown in Figure 8 (a), the router introduces less delays for smaller messages. This can be

useful for small data packets such as audio. Audio data needs smaller delays and keeping audio packets as small

as 256 or 512 bytes can result in delays similar to that of Experiment #2.

The delays introduced by the Darwin routers will be discussed shortly.

7We expect all the overheads to come down by a factor of 4 or more with faster PCs. Experiments had to be carried out on a 90 Mhz

PC.

12

6

7

8

9

10

11

12

13

14

15

0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 R

o
u

n
d

 T
ri
p

 D
e

la
y
s
 (

m
s
)-

-
D

e
d

ic
a

te
d

 N
e

tw
o

rk

(a) Message Size (bytes)

Proxy at publisher
Proxy at subscriber

Proxy on remote node

Datapath for Proxy at
Remote Node

 Datapath for Proxy at
 Publisher / Subscriber

Publisher Subscriber

Remote
Node

(b) Publisher/Subscriber are at one hop distance

Figure 7: The Round-Trip Delays and Publisher, Subscriber and Proxy con�guration for Experiment #2

3.3.6 Experiment #4: The Impact of Message Lengths and when Publisher and Subscriber

are at three hops distance

This experiment measures round-trip delays when the publisher and the subscriber are at three hops distance

and separated by two Darwin routers as shown in Figure 9 (b). As one would expect again, with 3 hops distance,

smaller messages have less routing delays than that of larger messages as shown in Figure 9 (a).

3.3.7 Delays Introduced by Darwin Routers

Based on the round-trip delays from Experiments 2, 3 and 4, the delays introduced by the Darwin routers can

be computed and are plotted in Figure 10. As can be seen, the delays introduced by a Darwin router increases

(roughly) linearly with message size. This is as expected. Figure 10 also indicates that the delays increase faster

for messages longer than 256 bytes. We attribute this e�ect to the use of multiple bu�ers within the router to

accommodate longer messages.

3.3.8 Experiment #5: End-to-End Delays w/o reservation and w/ CPU and Network

competition

Here, we repeat Experiment #3 with competing applications and traÆc on both the end-points and within

the network but without any CPU and bandwidth reservation. The round-trip delays measured are shown in

Figure 11. As one would expect in the absence of any guaranteed bandwidth, the end-to-end delays are high

(upto 5 to 10 times more than in Figure 8 (a)). This provides our motivation for integrated end-point and

network QoS management.

3.3.9 Other Lessons Learned

A multimedia multi-party collaborative conferencing system has been implemented on top of the push-pull com-

munication and its details can be found in [4]. We learnt several lessons during the design and implementation of

the real-time push-pull layer and the RT-Conference system. We summarize them below:

� Push-Pull: The push-pull communications service made the programming of the distributed portions of the

system rather easy enabling seamless communication of the various streams. Actually, the (correct) use

of UDP/IP in the underlying communication layer of the push-pull model even had an unexpected side

bene�t. Recently, during a demonstration where RT-Conference was run over a real-time network which

o�ered bandwidth guarantees, an operator error brought down the Darwin network. When the network

13

6

7

8

9

10

11

12

0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 R

o
u

n
d

 T
ri
p

 D
e

la
y
s
 (

m
s
)

--
 O

n
e

 R
o

u
te

r

(a) Message Size (bytes)

Proxy at publisher
Proxy at subscriber

Publisher
Darwin
Node

Subscriber

Figure 8: The Round-Trip Delays and Publisher, Subscriber and Proxy con�guration for Experiment #3

bandwidth[3] got re-established, all video and audio streams recovered without any intervention and RT-

Conference resumed its functioning. Thus this middleware service can avail of the underlying resource

management schemes.

� Flexibility: The model is very
exible and can support both hard real-time and soft real-time applications.

Several applications with di�erent QoS requirements can coexist in the model at the same time. The model

clearly distinguishes non real-time actions from real-time actions.

� Priority and reservation management: In a system such as RT-Conference, the priorities (or the choice of

reservation periods which in turn dictates the priorities) of the various threads play a critical role. Each data

type in this system has di�erent semantics to the user, and di�erent timing characteristics. Audio is very

sensitive to jitter and is signi�cant for interactive communications. It is therefore relatively easy to assign

audio the highest priority in the system. The real-time data stream of the video game was assigned the next

highest priority. The video thread was assigned the next highest priority followed by the white-board and

the chat window. However, other combinations of priorities may also work depending upon available system

resources and the expected frequency of usage of some data types. Hence, these parameters may actually

need to be o�ered as options to the end-user(s).

In addition to the threads within the client application, the underlying communication service threads must

also cooperate with the application threads with appropriate priorities. It is useful to note here that daemon

threads and client threads must coordinate their priority levels, else one or the other would su�er. Such

situations are the logical candidates for abstractions like processor reserve, disk and network reserves [9],

which provide timeliness guarantees and temporal protection from misbehaving threads.

� Co-Scheduling of computation and communication resources: Distributed applications like push-pull need

both CPU and Network resources. Providing end-to-end QoS requires the correct scheduling of both the

resources. Push-Pull uses Resource Kernel's CPU reservations and Darwin's HFSC scheduler to manage

CPU load and link bandwidth. Without such resource management mechanisms, unbounded delays can

occur as CPU/Network utilization becomes 100%. Due to limitations on paper length these results are not

shown in the paper and some of them can be found in [9].

The Push-Pull communication model makes the assumption that the network resources i.e. nodes, topology

are identi�ed a priori. Integrating push-pull with network service brokers to identify available resources

online would be useful.

14

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 R

o
u

n
d

 T
ri
p

 D
e

la
y
s
 (

m
s
)-

-
T

w
o

 R
o

u
te

rs

(a) Message Size (bytes)

Proxy at publisher
Proxy at subscriber

Proxy on remote node

Publisher

Darwin
Router

Subscriber

Darwin
Router

Remote
Node

 Datapath for Proxy at
Remote Node

 Datapath for Proxy at
 Publisher / Subscriber

(b) Publisher and Subscriber are at three hops distance

Figure 9: The Round-Trip Delays and Publisher, Subscriber and Proxy con�guration for Experiment #4 .

4 Concluding Remarks

In this paper, we have addressed the problem of providing end-to-end QoS guarantees to subscribers operating

in distributed, heterogeneous environments. In speci�c, we focus on providing bandwidth and delay guarantees

to data subscribers using a real-time push-pull model of communications. A proxy is used to perform data

transformation required for the heterogeneous subscribers. The proxy architecture plays an important role in

supporting heterogeneous clients. The proxy location, the network topology and the distance between a publisher

and a subscriber all directly a�ect the end-to-end latency obtained. We have therefore analyzed the impact

(bandwidth, computation and delay) of a proxy on the publisher node and subscriber node. We have also analyzed

the choice of proxy location and formulated a mixed-integer programming problem with linear constraints to obtain

the optimal choice of proxy locations. Run-times for optimization in the context of the high-speed vBNS network

are of the order of tens of milliseconds.

Both OS and network support are clearly required to provide end-to-end bandwidth and delay guarantees.

Our push-pull communications service has therefore been successfully implemented as a middleware layer on top

of RT-Mach, a resource-centric kernel which provides guaranteed and timely access to processor and disk band-

width. The Darwin network provides end-to-end bandwidth guarantees. We have carried out detailed end-to-end

measurements for di�erent proxy con�gurations and di�erent message sizes. The results of these detailed mea-

surements can be used by techniques such as rate-monotonic analysis to predict end-to-end delays in real-time

push-pull systems. Providing more
exible QoS guarantees for each subscriber and embedding upgradable proxies

in network elements for custom data scaling are some possible future directions for this work.

Appendix A

An Exhaustive Algorithm for Proxy Allocation

In this appendix, we present a brute-force algorithm to determine the optimal proxy allocation using an exhaustive

search technique and an exmaple problem problem using the algorithm. Some of the variables used here are de�ned

in Section 2.4.

Proxy Alloc Alg()

1 for j = 1 � � � m nodes

2 for �i = 1 � � � n subscribers

3 compute Æi;j and costi;j
4 if (�r

i > Æi;j)

15

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800

D
e

la
y
s
 i
n

tr
o

d
u

c
e

d
 b

y
 D

a
rw

in
 r

o
u

te
r(

s
)

 Message Size (bytes)

One Router
Two Routers

Figure 10: Delays introduced by Darwin router(s)

5 TotalCostj = 1 /* This path is bad for subscriber i */

6 pathj is infeasible. Delay constraint is violated for the pathj .

7 break

8 else

9 TotalCostj += costi;j
10 end if

11 end for; /* for loop */

12 end /* for loop */

The next step is to determine the proxy node on a least cost path that satis�es end-to-end delay for all the

subscribers. This can be carried out by just �nding the node j with the least value of TotalCostj.

Example System We apply the algorithm described above to an example con�guration consisting of 5 nodes

connected in a star topology shown in Figure 12.

Let:

Number of publishers = 1; Number of subscribers = 2

Desired end-to-end delay = 2T , where T is period of the publisher

Suppose that the one publisher is on node 1, and the subscribers are on nodes 3 and 4. From Figure 12, we have

d
pub

1
= 0; d

pub

2
= 2; d

pub

3
= 2; d

pub

4
= 2; d

pub

5
= 1

d
sub

1;1 = 2; d
sub

1;2 = 2; d
sub

1;3 = 2; d
sub

1;4 = 0; d
sub

1;5 = 1

d
sub

2;1 = 2; d
sub

2;2 = 2; d
sub

2;3 = 0; d
sub

2;4 = 2; d
sub

2;5 = 1

Based on these distances between the nodes, the push delay and cost is computed as follows. Suppose the proxy

is located on node 1. Since node 1 transmits at a scaled period of T 0
and there are two processing elements on

the path (as per Section 2.2), we have the end-to-end delay for subscriber 1 as

Æ1;1 = 2T
0

Similarly, we have

Æ2;1 = 2T 0

Since data proportional to f 0
is transmitted by the publisher for each subscriber, the total communication costs

on all links with the proxy on node 1 is given by
8

TotalCost1 = K � 4f 0

8The link between nodes 1 and 5 will be used twice to send data to both subscribers.

16

30

35

40

45

50

55

60

65

0 200 400 600 800 1000 1200 1400 1600 1800

R
o

u
n

d
 T

ri
p

 D
e

la
y
s

w

/o

R

e
s
e

rv
a

ti
o

n
 a

n
d

 w
/
c
o

m
p

e
ti
ti
o

n

 Message Size (bytes)

One Router

Figure 11: Round-trip Delays w/o reservation and w/ competition

Similarly, we have

Æ1;2 = 2T + 2T
0

, Æ2;2 = 2T + 2T
0

, TotalCost2 = K � (4f + 4f
0

)

Æ1;3 = 2T + 2T
0

, Æ2;3 = 2T , TotalCost3 = K � (4f + 2f
0

)

Æ1;4 = 2T , Æ2;4 = 2T + 2T
0

, TotalCost4 = K � (4f + 2f
0

)

Æ1;5 = T + T
0

, Æ2;5 = T + T
0

, TotalCost5 = K � (2f + 2f
0

)

The location of the proxy node is therefore chosen to be Node 1, as it satis�es the end-to-end delay requirements

for both the subscribers and also has the least cost of 4Kf 0
. As we also discussed earlier in Section 2.2, it can be

seen that the end-to-end delays achieved by each of the subscribers in the case of proxy node 1 is actually higher

(2T 0
) than that for node 5 (T +T 0

). A similar analysis can be applied to CPU processing costs as well. With the

proxy at the publisher node, minimal additional CPU costs are incurred. With the proxy at an intermediate node,

entire protocol processing costs of all published packets, and context-switching costs are incurred in addition to

the normal costs of transmission. With the proxy at the subscriber node, additional protocol processing costs are

involved due to the extra (unscaled) packets being received.

5

1

Publisher 1

2 3

4

Subscriber 1

Subscriber 2

Figure 12: The Topology of the System Used in Appendix 'A'.

17

References

[1] Ken Birman, Roy Friedman, Mark Hayden and Injong Rhee. Middleware Support for Distributed Multimedia

and Collaborative Computing. SPIE International conference on Multimedia computing and Networking,'98,

San Jose, USA.

[2] Robert van Renesse, Ken Birman, Thorsten von Eicken and Keith Marzullo New Applications for Group

Computing In Theory and Practice of Distributed Systems, Lecture Notes in Computer Science, Vol.938.

[3] Prashant Chandra, Allan Fisher, Coresy Cosak, T . S.Eugene Ng, Peter Steenkiste, Eduardo Takshashim

Hui Zhang Darwin: Resource Management for Valud-Added Customizable Network Services Sixth IEEE

International Conference on Network Protocols (ICNP'98), Austin, October 1998.

[4] Kanaka Juvva, Raj Rajkumar The Real-Time Push-Pull Communication Model for Distributed Real-Time

and Multimedia Applications In Technical Report, CMU-CS-99107, Department of Computer Science,

Carnegie Mellon University, Jan 1999.

[5] G. Robert Malan, Farnam Jahanian, and Sushila Subramanian Salamander: A Push-based Distribution

Substrate for Internet Applications. Proceedings of the USENIX Symposium on Internet Technologies and

Systems, December 1997; Monterey, California.

[6] Raj Rajkumar, Mike Gagliardi and Lui Sha The Real-Time Publisher/Subscriber Inter-Process Communi-

cation Model for Distributed Real-Time Systems: Design and Implementation In Proceedings of the IEEE

Real-time Technology and Applications Symposium, June 1995.

[7] Mike Gagliardi, Raj Rajkumar and Lui Sha Designing for Evolvability: Building Blocks for Evolvable Real-

Time Systems. In Proceedings of the IEEE Real-time Technology and Applications Symposium, June 1996.

[8] Raj Rajkumar and Mike Gagliardi. High Availability in The Real-Time Publisher/Subscriber Inter-Process

Communication Model. In Proceedings of the IEEE Real-Time Systems Symposium, December 1996.

[9] Raj Rajkumar, Kanaka Juvva, Anastasio Molano and Shui Oikawa. Resource Kernels: A Resource Centric

Approach to Real-Time Systems. In Proceedings of the SPIE/ACM Conference on Multimedia Computing

and Networking, January 1998.

[10] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The Design of the TAO Real-Time Object

Request Broker, In Computer Communications Journal,Summer 1997.

[11] Anastasio Molano, Kanaka Juvva and Raj Rajkumar. Real-Time Filesystems:Guaranteeing Timing Con-

straints for Disk Accesses in RT-Mach. In Proceedings of the IEEE Real-Time Systems Symposium, Decem-

ber, 1997.

[12] Anastasio Molano, Raj Rajkumar, Kanaka Juvva. Dynamic Disk Bandwidth Management and Metadata

Pre-fetching in a Reserved Real-Time Filesystem. In Proceedings of 10th Euromicro Real-Time Workshop.

[13] V. Fay Wolfe, L.C.DiPippo, R.Ginis, M.Squadrito, S. Wohlever, I. Zykh, and R. Johnston Real-Time

CORBA. In Proceedings of the Third IEEE Real-TIme Technology and Applications Symposium, (Montreal

Canada), June 1997.

[14] Talley, T.M., Je�ay, K. Two-Dimensional Scaling Techniques for Adaptive, Rate-Based Transmission Control

of Live Audio and Video Streams. Proc. Second ACM Intl. Conference on Multimedia, San Francisco, CA,

October 1994, pp. 247-254.

[15] Peter Nee, Kevin Je�ay, Gunner Danneels. The Performance of Two-Dimensional Media Scaling for Internet

Videoconferencing. In Proceedings of the Seventh International Workshop on Network and Operating System

Support for Digital Audio and Video, St. Louis, MO,May 1997.

[16] van Renesse, R., Birman, K.P., and Ma�eis,S. Horus: A Flexible Group Communication System. Commun

ACM 39, 4 (April 1996).

[17] MaeÆs, S. Adding group communication and fault-tolerance to CORBA. In Proceedings of the 1995 USENIX

Conference on Object- Oriented Technologies (Monterey,calif.,June 1995).

[18] L.E.Moser,P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia and C.A. Lingeley-Papadopoulos. Totem: A

Fault-Tolerant Multicast Group Communication System. Commun ACM 39, 4 (April 1996).

[19] Amir, E., McCanne, S., and Katz, R. Receiver-driven Bandwidth Adaptation for Light-Weight Sessions.

Usenix-97.

[20] A. Fox, S.D.Gribble,Y. Chawathe,E. Brewer, P. Gauthier. Cluster-Based Scalable Network Services. In

Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles(SOSP-16), Saint-Malo,

France, October 1997.

18

[21] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. A QoS-based Resource Allocation Model In

Proceedings of the IEEE Real-Time Systems Symposium. December, 1998.

[22] Lehoczky, J. P., Sha, L. and Ding, Y. The Rate Monotonic Scheduling Algorithm | Exact Characterization

and Average-Case Behavior. Real-Time Systems Symposium, Dec, 1989.

[23] Joseph, M. and Pandya. Finding Response Times in a Real-Time System. The Computer Journal (British

Computing Society,(29) 5:390-395, October, 1986.

[24] Tindell, K. An Extendible Approach for Analyzing Fixed Priority Hard Real-Time Tasks. Technical Report

YCS189, Department of Computer Science, University of York, December, 1992.

[25] J. C. R. Bennett and H. Zhang WF 2
Q: Worst-case Fair-Weighted Fair-Queueing. Proceeding of INFOCOM

96, March 1996.

[26] Ion Stoica, H. Zhang and T. S. Eugene Ng. A Hierarchical Fair Service Service Algorithm for Link-Sharing,

Real-Time and Priority Service. Proceeding of SIGCOMM 97, September 1997.

[27] Using the CPLEX Callable Library. Using the CPLEX Base System with CPLEX Barrier and Mixed Integer

Solver Options. CPLEX Division, ILOG Inc., 1997.

|oOo|

19

