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Abstract

Optimally partitioning application and filesystem functionality within a cluster of clients and servers is
a difficult problem due to dynamic variations in application behavior, resource availability and workload
mixes. This paper presents ABACUS, a run-time system that monitors and dynamically changes func-
tion placement for applications that manipulate large data sets. Several examples of data-intensive work-
loads are used to show the importance of proper function placement and its dependence on dynamic run-
time characteristics, with performance differences frequently reaching 2–10X. We evaluate how well the
ABACUS prototype adapts to run-time system behavior, including both long-term variation (e.g., filter se-
lectivity) and short-term variation (e.g., multi-phase applications and inter-application resource contention).
Our experiments with ABACUS indicate that it is possible to adapt in all of these situations and that the
adaptation converges most quickly in those cases where the performance impact is most significant.
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1 Introduction

Effectively utilizing cluster resources remains a difficult problem for distributed applications. Because of
the relatively high cost of remote versus local communication, the performance of a large number of these
applications is sensitive to the distribution of their functions across the network. As a result, the effective
use of cluster resources requires not only load balancing, but also proper partitioning of functionality among
producers and consumers. While software engineering techniques (e.g., modularity and object orientation)
have given us the ability to partition applications into a set of interacting functions, we do not yet have solid
techniques for determining where in the cluster each of these functions should run, and deployed systems
continue to rely on complex manual decisions made by programmers and system administrators.

Optimal placement of functions in a cluster is difficult because the right answer is usually, “it depends.”
Specifically, optimal function placement depends on a variety of cluster characteristics (e.g., communica-
tion bandwidth between nodes, relative processor speeds among nodes) and workload characteristics (e.g.,
bytes moved among functions, instructions executed by each function). Some are basic hardware charac-
teristics that only change when something fails or is upgraded, and thus are relatively constant for a given
system. Other characteristics can not be determined until application invocation time, because they depend
on input parameters. Worst of all, many change at run-time due to phase changes in application behavior
or competition between concurrent applications over shared resources. Hence, any “one system fits all”
solution will cause suboptimal, and in some cases disastrous, performance.

In this paper, we focus on an important class of applications for which clusters are very appealing: data-
intensive applications that selectively filter, mine, sort, or otherwise manipulate large data sets. Such appli-
cations benefit from the ability to spread their data-parallel computations across the source/sink servers, ex-
ploiting the servers’ computational resources and reducing the required network bandwidth. Effective func-
tion partitioning for these data-intensive applications will become even more important as processing power
becomes ubiquitous, reaching devices and network-attached appliances. This abundance of processing cy-
cles has recently led researchers to augment storage servers with support for executing application-specific
code. We refer to all such servers, which may be Jini-enhanced storage appliances [Sea99], much-evolved
commodity active disks [RGF98, KPH98, AUS98], file servers allowing remote execution of applications,
or advanced RAID controllers, asprogrammable storage servers, or simplystorage servers.

In addition to their importance, we observe that these data-intensive applications have characteristics
that simplify the tasks involved with dynamic function placement. Specifically, these applications all pro-
cess and move significant amounts of data, enabling a monitoring system toquickly learn about the most
important inter-object communication patterns and per-object resource requirements. This information
allows the run-time system to rapidly identify functions that should be moved to reduce communication
overheads or resource contention.

We call our system ABACUS, because functions associated with particular streams are moved back and
forth between clients and active servers in response to dynamic system conditions. In our implementa-
tion, programmers explicitly partition the functions associated with data streams into distinct components,
conforming to an intuitive object-based programming model. The ABACUS run-time system monitors the
resource consumption and communication of these components, without knowing anything about their in-
ternals (black box monitoring). The measurements are used with a cost-benefit model to decide when to
relocate components to more optimal locations.

In this paper, we describe the design and implementation of ABACUS and a set of experiments eval-
uating its ability to adapt to changing conditions. Specifically, we explore how well ABACUS adapts to
variations in network topology, application cache access pattern, application data reduction (filter selectiv-
ity), contention over shared data, phases in application behavior, and dynamic competition for resources by
concurrent applications. Our preliminary results are quite promising; ABACUS often improves application
response time 2–10X. In all of our experiments, ABACUS selects the best placement for each function,
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“correcting” placement when the function is initially started on the “wrong” node. Further, ABACUS out-
performs all one-time placements in situations where dynamic changes cause the proper placement to vary
during an application’s execution. ABACUS is able to effectively adapt function placement based on only
black box monitoring, removing from programmers the burden of considering function placement.

The remainder of this paper is organized as follows. Section 2 discusses how ABACUS relates to prior
work. Section 3 overviews the design of ABACUS. In Section 4, we describe the ABACUS programming
model and several example applications built upon it. Section 5 describes the run-time system, focussing
on the resource monitoring and placement decision components. In Section 6, we present a variety of
experiments to demonstrate the value of dynamic function placement and ABACUS’s ability to rapidly
detect and adapt to dynamic conditions. Section 7 summarizes the paper’s contributions.

2 Related work

There exists a large base of excellent research and practical experiences related to code mobility and cluster
computing — far too large to fully enumerate here. Our work focusses on how to adapt function placement
to dynamic cluster and workload characteristics. Here, we discuss previous work on adaptive function
placement and how it relates to ABACUS.

Several previous systems such as Coign and others [HS99, MvD76, HF75, FJK96] have demonstrated
that function placement decisions can be automated given accurate profiles of inter-object communica-
tion and per-object resource consumption. All of these systems use long-term histories to make good
installation-time or invocation-time function placement decisions. ABACUS complements these previous
systems by looking at how to dynamically adapt placement decisions to run-time conditions.

River [ADAT+99] is a system that dynamically adjusts per-consumer rates to match production rates,
and per-producer rates to meet consumption rate variations. Such adjustments allow it to adapt to run-
time non-uniformities among cluster systems performing thesametask. ABACUS complements River by
adapting function placement dynamically in the presense ofmultipledifferent tasks.

Equanimity is a system that, like ABACUS, dynamically rebalances service between a single client and
its server [HF93]. ABACUS builds on this work by developing mechanisms for dynamic function place-
ment in realistic cluster environments, which include such complexities as resource contention, resource
heterogeneity, and workload variation.

Process migration systems such as Condor [BLL91] and Sprite [DO91] developed mechanisms for
coarse-grain load-balancing among cluster systems, but did not explicitly support fine-grain function place-
ment or adapt to inter-function communication. Mobile programming languages and environments such as
Emerald [JLHB88] and Rover [JTK97] do support fine-grain mobility of application objects, but they leave
object migration decisions to the application programmer. ABACUS builds on such work by providing
run-time system mechanisms that automate migration decisions.

3 Overview of ABACUS

To explore the benefits of dynamic function placement, we designed and implemented the ABACUS proto-
type system and ported to it a diverse set of test applications. ABACUS consists of a programming model
and a run-time system. Our goal was to make the programming model easy for application programmers
to use. Further, we wanted it to simplify the task of the run-time system in migrating functions and in mon-
itoring the resources they consume. As for the run-time system, our goal was to achieve low monitoring
overhead and improved performance through effective placement. Moreover, it was designed to scale to
large cluster sizes. Our first ABACUS prototype largely meets these goals.
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Figure 1: An illustration of an ABACUS object graph, the principal ABACUS components, and their inter-
actions. This example shows a filter application accessing a striped file. Functionality is partitioned into
objects. Inter-object method invocations are transparently redirected by the location transparent invocation
component of the ABACUS run-time. This component also updates the resource monitoring component on
each procedure call and return from a mobile object (arrows labeled “U”). Clients periodically send digests
of the statistics to the server. Finally, resource managers at the server collect the relevant statistics and
initiate migration decisions (arrows labeled “M”).

The ABACUS programming model encourages the programmer to compose data-intensive applications
from small, functionally independent components or objects. Thesemobileobjects provide explicit meth-
ods whichcheckpointandrestoretheir state during migration.

At run-time, an application and filesystem can be represented as a graph of communicating mobile
objects. This graph can be thought of as rooted at the storage servers by anchored (non-migratable)storage
objectsand at the client by an anchoredconsoleobject. The storage objects provide persistent storage,
while the console object contains the part of the application which must remain at the node where the
application is started. Usually, the console part is not data intensive. Instead, it serves to interface with
the user or the rest of the system at the start node and typically consists of themain function in a C/C++
program. This console part initiates invocations which are propagated by the ABACUS run-time to the rest
of the graph.

As shown in Figure 1, the ABACUS run-time system consists of (i) a migration and location-transparent
invocation component, orbinding managerfor short; and (ii) a resource monitoring and management
component,resource mangerfor short. The first component is responsible for the creation of location-
transparent references to mobile objects, for the redirection of method invocations in the face of object
migrations, and for enacting object migrations. Finally, the first component notifies the second at each
procedure call and return from a mobile object.

The resource monitoring and management component uses the notifications to collect statistics about
bytes moved between objects and about the resources used by active objects (e.g., amount of memory
allocated, number instructions executed per byte processed). Moreover, this component monitors the avail-
ability of resources throughout the cluster (node load, available bandwidth on network links). An analytic
model is used to predict the performance benefit of moving to an alternative placement. The model also
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Figure 2: Mobile objects in ABACUS. Objects have private state accessible only through the exported
interface. The private state contains either references to embedded objects, or external references to other
mobile or anchored objects. Anchored objects do not migrate while mobile objects can. The console
represents the part of the application that is not mobile. This part performs processing that is not data-
intensive, usually initialization and user/system interface functions.

takes into account the cost of migration — the time wasted to acquiescing and checkpointing an object,
transferring its state to the target node, and restoring it on that node. Using this analytic model, the com-
ponent arrives at the placement with the bestnet benefit. If this placement is different from the current
configuration, the component effects object migration(s).

The ABACUS prototype is written in C++. We leverage the language’s object-oriented features to sim-
plify writing our mobile objects. For our intra-node communication transport, we use DCE RPC. As the
focus of our prototype is on function placement decisions, we leave unaddressed several important but or-
thogonal mobile code issues. For example, we sidestep the issues of code mobility [Tho97] and dynamic
linking [BSP+95] by requiring that all migratable modules be statically linked into an ABACUS process
on both clients and servers. Further, issues of inter-module protection [WLA93, NL96] and sandbox-
ing [FHL+96] are not addressed. While these will be important issues for production systems, and we plan
to address them in future generations of the prototype, they are tangential to the questions addressed in this
paper.

4 Programming model

ABACUS provides two fundamental abstractions to support the efficient implementation of mobile object-
based applications and filesystems:mobile objectsandmobile object managers.

4.1 Mobile objects

A mobile object in ABACUS is explicitly declared by the programmer as such. It consists of state and the
methods that manipulate that state. A mobile object is required to implement a few methods to enable the
run-time system to create instantiations of it and migrate it. Mobile objects are usually of large granularity
— they are not meant to be simple primitive types — performing a self-contained processing step that is
data intensive, such as parity computation, caching, searching, aggregation,etc.
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Mobile objects have private state that is not accessible to outside objects, except through the exported
interface. The implementation of a mobile object is internal to that object and is opaque to other mobile
objects and to the ABACUS run-time system. The private state consists of embedded objects and references
to external objects. Figure 2 gives an example of the relationship of some objects.

The mobile object is responsible for saving its private state, including the state of all embedded objects,
when itsCheckpoint() method is called by ABACUS. It is also responsible for reinstating this state,
including the creation and initialization of all embedded objects, when the run-time system invokes the
Restore() method, after it has been migrated to a new node. TheCheckpoint() method saves the state
to either an in-memory buffer or to a file. TheRestore() method can reinstate the state from either
location.

Each storage server (a server with a data store) provides local storage objects exporting a flat file
interface. Storage objects are accessible only at the server that hosts them and therefore never migrate. The
migratable portion of the application lies between the storage objects on one side and the console object
on the other. Applications can declare other objects to be non-migratable. For instance, an object that
implements write-ahead logging can be declared by the filesystem as non-migratable, effectively anchoring
it to the storage server where it is started (usually the server hosting the log).

Component objects perform their processing when one of their methods is invoked and usually make
method invocations to other objects downstream. The amount of data moved in each invocation is an
application-specific block of data rather than entire files at once. This is required as an artifact of our
monitoring and migration system. ABACUS accumulates statistics on return from method invocations for
use in making object migration decisions. If the program makes a single procedure call down a stack of
objects, ABACUS will not collect this valuable information until the end of the program, at which point any
migration would be useless.

4.2 Mobile object managers

Often, a service is better implemented via a single entity that controls the resources for a group of objects of
the same type. For example, a filesystem may wish to control the total amount of physical memory devoted
to caching, or the total number of buffers available for prefetching. To support this type of aggregation, a
mobile object manager can be used. In the filesystem example, the mobile object manager would wrap the
implementation of all cache objects on a given node in the cluster. Object managers provide an interface
that is almost identical to that of the types they contain. They take an additional first argument to each
method invocation that represents a reference to the managed object to be invoked.

4.3 Examples

To stress the ABACUS programming model and evaluate the benefit of adaptive function placement, we
have implemented an object-based distributed filesystem and a few data intensive applications. We describe
them in this section and report on their performance in Section 6.

4.3.1 Object-based distributed filesystem

Applications often require a variety of services from the underlying storage system. ABACUS enables
filesystems to be composed of explicitly migratable objects, each providing storage services such as reli-
ability (RAID), cacheability, and application-specific functionality. This approach was pioneered by the
stackable and composable filesystem work [HP94, KS97] and by the more relevant Spring object-oriented
operating system [KN93].
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Figure 3: The architecture of the object-based distributed filesystem built atop ABACUS. The figure shows
a typical file and directory object stack (a). The object placement shown is the default for high-bandwidth
networks and trusted clients. Also shown are the component filesystem objects which are implemented to
date and a brief description of their function (b).

Files are usually associated with more than one service. For instance, a file may be cacheable, striped,
and reliable. The constructor of a cacheable object requires a backing object to read from and write back
to. The backing object can be a storage object, a mirrored object, or even another cacheable object. An
object may have references to more than one object from a lower layer, as would be the case if the object
is mirrored.

The ABACUS filesystem provides coherent file and directory abstractions atop the flat object space
exported by base storage objects. A file is associated with a stack of objects when it is created representing
the services that are bound to that file. For instance, only “important” files include a RAID object in their
stack. When a file is opened, the top-most object is instantiated, which in turn instantiates all the lower
level objects in the object graph. Access to a file always starts at the top-most object in the stack and the
run-time system propagates accesses down to lower layers as needed.

The prototype filesystem is distributed. Therefore, it must contain, in addition to the layers that are
typically found in local filesystems (such as caching and RAID), services to support inter-client file and
directory sharing. In particular, the filesystem allows both file data and directory data (data blocks) to be
cached and manipulated at trusted clients. Because multiple clients can be concurrently sharing files, we
implement AFS style callbacks for cache coherence [HKM+88]. Similarly, because multiple clients can
be concurrently updating directory blocks, the filesystem includes a timestamp-ordering protocol to ensure
that updates performed at the clients are consistent before they are committed at the server. This scheme is
highly scalable in the abscence of contention because it does not require a lock server or any lock traffic.
In Section 6, we describe how ABACUS effectively changes the concurrency control protocol during high
contention to a locking scheme by simply adapting object placement.

By default, each file’s graph consists of a filesystem object providing the VFS interface to applications,
a cache object, an optional RAID 5 object, and one or more storage objects. The cache object keeps an
index of a particular object’s blocks in the shared cache kept by the ABACUS filesystem process. The
RAID 5 object stripes and maintains parity for individual files across sets of storage servers. The storage
objects provide flat storage and can be configured to use either the standard Linuxext2 filesystem or our
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research group’s Network-Attached Secure Disks (NASD) prototype [GNI+99] as backing store. Figure 3
shows a sketch of typical file and directory stacks.

Each directory’s graph consists of a directory object, an isolation object, an atomicity object, and a
storage object. The directory object provides POSIX-like directory calls and caches directory entries.
The isolation object provides support for both cache coherence and optimistic concurrency control. The
former is provided by interposing onReadObj() andWriteObj() calls, installing callbacks on cached
blocks duringReadObj() calls, and breaking relevant callbacks duringWriteObj() calls. The latter is
provided by timestamping cache blocks [BG80] and exporting a specialCommitAction() method that
checks specifiedreadSetsand writeSets1 for conflicts. The atomicity object provides atomic recovery
for multi-block writes by interposing on theCommitAction() method, and ensuring that a set of blocks
(possibly from differing objects and devices) are either updated in their entirety or not updated at all. This
object employs a shared log object among all of its instances.

The ABACUS filesystem can be accessed in two ways. First, applications that include ABACUS objects
can directly append per-file object subgraphs onto their application object graphs for each file opened.
Second, the ABACUS filesystem can be mounted as a standard filesystem, via VFS-layer redirection. Un-
modified applications using the standard POSIX system calls can thus interact with the ABACUS filesystem.
Although it does not allow legacy applications to be migrated, this second mechanism does allow legacy
applications to benefit from the filesystem objects adaptively migrating beneath them.

The ABACUS filesystem is interesting, in and of itself, because it allows its functionality to be dynami-
cally migrated based on run-time observations.

4.3.2 Object-based applications

Data-intensive portions of applications can be similarly decomposed into objects that perform operations
such as searching, aggregation, or data mining. As data sets in large-scale businesses continue to grow, an
increasingly important user application is high-performance search, or data filtering. Filtering is generally
a highly selective operation, consuming a large amount of data and producing a smaller fraction. This
makes an ideal candidate for execution close to the data, so long as storage resources are available and the
benefit of executing this function on the storage nodes outweighs the benefit to competing workloads. The
difficulty lies in not statically knowing the selectivity and resource requirements of a filter operation which
can change from one invocation to the next, depending on the filter’s input stream and parameters.

5 Run-time system

The ABACUS run-time system consists of per-node binding managers and resource managers. Each bind-
ing manager is responsible for the instantiation of mobile objects and the invocation of their methods in a
location-transparent manner (Section 5.1), and the migration of objects between cluster nodes (Section 5.2).
The resource managers are responsible for collecting statistics about resource usage and availability (Sec-
tion 5.3), and making placement decisions based on the collected statistics (Section 5.4).

5.1 Object instantiation and invocation

The two kinds of nodes in an ABACUS cluster are clients and servers. Servers are nodes on which at least
one base storage object resides and clients are nodes which execute applications that access storage servers.

1The readSet (writeSet) consists of the list of blocks read (written) by the client. A directory operation such asMkDir() requires
reading all the directory blocks to ensure the name does not exists than updating one block to insert the new name and inode number.
The readSet in this case would contain all the directory blocks and their timestamps and the writeSet would contain the block that
was updated.
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Since servers can also execute applications, one storage server can potentially be a client of another server.
Applications instantiate mobile objects by making a request to the ABACUS run-time system. For

example, when filtering a file, the application console object will request a filter object to be created. The
run-time system creates the object in memory by invoking the object manager for that type. If no object
manager exists, one is created. Object managers must implement aCreateObj() method which takes
arguments specifying any initialization information. This method returns a reference that identifies the
new object within that object manager. The object manager finally creates the actual object (with thenew

operator in C++) and returns a “manager reference” to the run-time system. If the object is not managed,
as is the case for most application objects, the ABACUS run-time will handle its allocation.

ABACUS also allocates and returns to the caller a network-wide unique run-time identifier, calledrid,
for the new object.2 The caller uses therid to invoke the new mobile object. Therid acts as a layer of
indirection, allowing objects to refer to other objects without knowing their current location. The ABACUS

binding manager interposes between method invocations and usesrids to forward them to the object’s
current location.

ABACUS maintains the information necessary to perform inter-object invocations in a per-node hash
table that maps anrid to a(node, objectmanager, managerreference)triplet, called a location table. As
mobile objects move between nodes, this table is updated to reflect the new node, new object manager, and
new manager reference. Therid is passed as the first argument of each method invocation, allowing the
system to properly redirect method calls.

At run-time, this web of objects constitutes a graph whose nodes represent objects and whose edges rep-
resent invocations between objects. For objects in the same address space, invocations are implemented via
procedure calls, and data is passed without any extra copies. For objects communicating across machines
or address spaces, remote procedure calls (RPCs) are employed.

5.2 Object migration

In addition to properly routing object calls, ABACUS binding managers are responsible for enacting migra-
tion. Consider migrating a given object from asource nodeto a target node. First, the binding manager
at the source node blocks new callsto the migrating object, quiescing it. Then, the binding manager waits
until all active invocations in the migrating object have drained (returned). Migration is cancelled if this
step takes too long. Next, the object is checkpointed locally by invoking itsCheckpoint() method. The
object allocates an in-memory buffer to store its state or writes to the filesystem if the checkpoint size is
large. This state is then transferred and restored on the storage node. Then, the location tables at the source
and target nodes are updated to reflect the new location. Finally, invocations are unblocked and are redi-
rected to the proper node via the updated location table. This procedure extends to migrating subgraphs of
objects.

Location tables are not always accurate. Instead, they provide hints about an object’s location which
may become stale. Nodes other than the source and target who have cached hints about an object’s location
will not be updated when a migration occurs. However, stale data is detected and corrected when these
nodes attempt to invoke the object at the old node. At that time, the old node notifies them that the object
has migrated.

For scalability reasons, nodes are not required to maintain forwarding pointers for objects that they
have hosted at some point in the past. Consequently, the old node may not be able to inform a caller the
current location of an object. In this case, the old node will redirect the caller to the node at which the
object originated, called thehome node. The home node can be easily determined because it is encoded
in the object’srid. The home node always has up-to-date information about the object’s location because

2Therid consists of a network-wide identifier, which is generated by concatenating the node identifier where the object is created
and a local object identifier that is unique within that node.
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during each migration its location table is updated in addition to the tables at the source and target nodes.
Because objects usually move between a client (an object’s home node) and one of the servers, no extra
messaging is usually incurred to update location tables during migration.

5.3 Resource monitoring

The resource manager on a given server seeks to perform the migrations that would result in the minimal
average application response time across all the applications that are accessing it. This amounts to figuring
out what subset of objects executing currently on clients can benefit from computing closer to the data.
Migrating an object to the server could potentially reduce the amount of stall time on the network, but it
could also extend the time the object spends computing if the server processor is loaded. Thus, while it may
be beneficial to “pull” a few data-intensive objects to the server, pulling more objects may end up hurting
application response time. Resource managers at the servers use an analytic model to determine which
objects should be migrated from the clients to the server and which objects, if any, should be migrated back
from the server to the clients.

Resource managers at the clients collect statistics about the resources consumed by active local objects.
They periodically send these statistics to the servers that are being accessed by the active objects. Server-
side resource managers receive and buffer these statistics and periodically inspect them to determine if a
better placement exists. In particular, the required statistics include the rate of data flowing between objects,
the amount of memory used by an object, the instructions executed by the object per byte of data processed,
the stall time spent at each object waiting for processing at lower layers, and the load of any nodes that
are candidates for object placement. We use the run-time system’s intermediary role in redirecting calls to
collect all the necessary statistics. By only interposing monitoring code at procedure call and return from
mobile objects, we do not slow down the execution of methods within a mobile object.

Threads spend their time computing, blocked (stalled), or contending for the processor (on the ready
queue). On the same node, threads can cross the boundaries of multiple mobile objects by making method
invocations that propagate down the stack and then unwind back to the console object. The ABACUS

resource manager must charge the time a thread spends computing or blocked to the appropriate object.
Similarly, it must charge any allocated memory to the proper object. The ABACUS run-time collects the re-
quired statistics over the previousH seconds of execution, which we refer to as the length of the observation
window. The statistics are collected as follows:

Data flow graph. The bytes moved between objects are monitored by inspecting the arguments on
procedure call and return from a mobile object. The number of bytes transferred between two objects
is then recorded in a timed data flow graph. This graph maintains moving averages of the bytes moved
between every pair of communicating objects in a graph. Data flow graphs are of tractable size because
most data-intensive applications do the bulk of their processing in a stream-like fashion through a small
stack of objects.

Memory consumption. We monitor the amount of memory dynamically allocated by an object as
follows. On each procedure call or return from a mobile object, thepid of the thread making the call
is recorded. Thus, for at any point in time, the run-time system knows the currently processing mobile
object for each active thread in that address space. Wrappers around each memory allocation routine (e.g.,
malloc, free) inspect thepid of the thread invoking the memory allocation routine, and use thatpid to
determine the current object. This object is then charged for the memory that was allocated or freed.

Instructions executed per byte. Given the number of bytes processed by an object, computing the
instructions/byte amounts to monitoring the number of instructions executed by the object during the ob-
servation window. Since we know the processing rate on a node, this amounts to measuring the amount of
time spent computing within an object.
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Figure 4: This figure shows how mobile objects interact in a layered system. Most of the invocations are
synchronous, starting at the top-most console module and trickling down the layers. An object servicing a
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We use two mechanisms to measure this time, interval timers and the Pentium cycle counter. Linux pro-
vides three interval timers for each thread. TheITIMER REAL timer decrements in real time,ITIMER VIRT

decrements whenever the thread is active in user-mode, andITIMER PROF decrements whenever the thread
is active in user or system-mode. We use theITIMER VIRT andITIMER PROF timers to keep track of the
time spent computing in user/system mode and then charge that time to the currently executing object of a
thread.

The only complication is that interval timers have a 10ms resolution and many method invocations
complete in a shorter period of time. To measure short intervals accurately, we use the Pentium cycle
counter which is read by invoking therdtsc instruction (using theasm("rdtsc") directive within a
C/C++ program). Using the cycle counter to time intervals is accurate as long as no context switch has
occured within the measured interval. Hence, we use the cycle counter to measure intervals of computation
during which no context switches occur, otherwise, we rely on the less accurate interval timers. We detect
that a context switch has occurred by seeing if the time reported byITIMER PROF/ITIMER REAL and the
cycle cycle counter for the candidate interval differ significantly.

Stall time. To estimate the amount of time a thread spends stalled in an object, we need to have more
information than is currently provided by the system timers. We extend thegetitimer/setitimer system
calls to support a new type of timer, which we denoteITIMER BLOCKING. This timer decrements whenever
a thread is blocked and is implemented as follows. When the kernel updates the system, user, and real
timers for the active thread, it also updates the blocking timers on behalf of all the threads in the queue
which are marked as blocked (TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE).

Node load.We also measure the load on a given node, defined as the average number of threads in the
ready queue over the observation window,H. This value is required to estimate the processing time for an
object after migration to a new node given the object’s instruction per byte and number of bytes processed.

Linux reports load averages for 1 min., 5 min., and 15 min. via the/proc/loadavg pseudo-file. We
add an ABACUS specific load average which decays over the pastH seconds and report this value as a
fourth value in/proc/loadavg.

5.4 Dynamic placement

We now describe at a high-level the algorithm employed by ABACUS to optimize object placement. To
begin, consider the case of a single stack of objects, as shown in Figure 4. Each invocation trickles down
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the stack from the client to the server and back. At each layer, some processing is performed and some
time is spent transferring data between the layers. We will first derive the application response time for this
simple case, then describe how it is extended to multiple concurrent stacks.

5.4.1 Single stack

Consider the stack in figure 4. Invocations start at the console object,O0, and trickle down until objectOn.
Let’s denote the processing time expended by an object byPj , and the “blocking” or “stall” time between
objectsOi andOi+1 by Ci . Thus, we can represent the response time of an application’s invocation as:

Tapp=
n

∑
j=0

Pj +
n

∑
j=0

Cj (1)

or the total processing time plus the total stall time.
Let’s further denote the total number of bytes processed by an object during the history windowH by

bj , and the inherent processing ratio, expressed in instructions/byte for an object, byhj . Given the average
number of tasks in the ready queue over the history window,Lnode, and the raw processing rate,Rnode, a
particular node’s effective processing rate as seen by an object isrnode=Rnode=Lnode. We now break down
the time spent in an observation window in terms of inherent application and system parameters as follows:

Tapp=
n

∑
j=0

hjbj

rnode
+

n

∑
j=0

Cj (2)

The numeratorhjbj represents the number of instructions executed by the object during the observation
window while the denominator represents the effective processor rate as observed by the object.

In our model, local communication within one machine is instantaneous, i.e., an object does not block
when communicating with another object colocated on the same node. This assumption is safe because
inter-node communication is so much less expensive than network communication. Assume that under the
original placement objectsO1 throughOk execute on the client and objectsOk+1 throughOn execute on
the server. With these refinements, we rewriteTapp as follows:

Tapp(k) =
k

∑
j=0

hjbj

rclient
+Ck+

n

∑
j=k+1

hjbj

rserver
(3)

This equation expresses application response time as the sum of the time spent computing at the client,
the time spent transferring data over the network, and the time spent processing at the server.Tapp is
expressed as a function ofk, the point at which the application’s stack is split. Note that migrations
potentially change the load on participating nodes and the stall time on the network between them.

Recall that in the above equation,rserver can be expressed in terms of raw processor rate,Rserver, and
node load,Lserver, asRserver=Lserver. SubstitutingRserver=Lserver for rserver andRclient=Lclient for rclient in
Equation 3, we get:

Tapp(k) = Lclient(k)
k

∑
j=0

hjbj

Rclient
+Ck+Lserver(k)

n

∑
j=k+1

hjbj

Rserver
(4)

Equation 4 can be used to estimate application response time under a hypothetical placement. It requires
inherent parameters, such as instructions per byte and raw processor rates, which can be derived directly
from static characteristics or from collected statistics. It also requires calcluating node load,Lserver(k) and
Lclient(k), whose values under the hypothetical placement must be estimated.
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Givenk0, a hypothetical stack split point, and assuming a single active application stack, the load on
the server,Lserver(k0), can be estimated from the current measured load,Lserver(k) as:

Lserver(k
0) = Lserver(k)+

∑k
j=k0 hjbj

RserverTapp(k0)
(5)

The equation above assumesk0 < k. A similar equation can be easily derived for the other case. Equa-
tion 5 states that the difference in load due to the change in placement is equal to thefraction of time the
objects that are hypothetically migrated to the server will spend processing at the server. The remainder
of the time the objects are passive, waiting for client-side processing or network transfers.

The new value for application response time can be expressed by rewriting Equation (4), substituting
k0 for k, as:

Tapp(k
0) = Lclient(k

0)
k0

∑
j=0

hjbj

Rclient
+Ck0 +Lserver(k

0)
n

∑
j=k0+1

hjbj

Rserver
(6)

Equations 5 and 6 can be used together to calculate the new value forTapp under stack splitk0. The only
remaining complication is that estimating the new value forTapp using Equation 5 requires the new value
for server load,Lserver. But we arrived at an estimate of the new server load that requires the new value for
Tapp. To resolve this circular dependency, an iterative algorithm can be used. The current values are used
to initialize Tapp andLserver, then Equation 6 is invoked to compute newTapp. The new value forTapp can
then be used to estimated the new load, and the algorithm repeats until it converges.

5.4.2 Concurrent stacks

In practice, multiple applications can be active at the same time. The server-side resource managers must
decide at what point to spliteachstack such that the averageTapp across all applications is minimal. A
migration in one application’s stack usually impacts the server load and can result in slow-downs or speed-
ups to the remainder of server-resident applications objects.

We formalize the notion of a placement as a vector of stack splits across all active applications. Thus
a placement,P, can be denoted as(k1;k2; :::;kN), whereN is the number of application stacks actively
accessing the server. The response time for applicationTappwith stack splitk1 can be written using equation
(4) as:

Tapp(P) = Lclient(P)
P

∑
j=0

hjbj

Rclient
+Ck1 +Lserver(P)

n

∑
j=k1+1

hjbj

Rserver
(7)

Equation 7 expresses application response time as a function of the placementP. Let’s first consider
the implications of Equation 7. Naturally, a placementP that migratesmoreobjects to the server results
in increasing the node load,Lserver(P), magnifying the third term in Equation 7 above for each application
that performs any processing at the server. If the server were infinitely fast, changes in the load,Lserver(P),
will make little difference to the the third term of Equation 7 relative the second term, or network stall
time. Thus, in the case of an infinitely fast server CPU, the placement algorithm should selectk (the point
at which to split the stack) such that stall time on the network,Ck, is minimized without worrying about
changes in the third term. In practice, however, the server’s CPU is not infinitely fast and increases in
Lserver(P) can cause server-side processing to be the bottleneck under high load. Under such conditions,
migrating more objects to the server becomes counter-productive because the savings in stall time are offset
by slower server-side processing.
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In the general case, the server-side resource managers have to estimate values for client and server load
under a hypothetical change in placement. In particular, client load,Lclient, is assumed to remain constant.
Since the server-side resource managers have no control over the allocation of the client CPU or over what
applications can be started, this is a reasonable assumption in practice. The new server load,Lserver, after a
hypothetical change in placement is estimated using Equation 6 above.

5.4.3 Placement algorithm

Now that we can analytically predict the change in averageTapp given a hypothetical change in object
placement, we need to decide how to use this to enact effective placement decisions. In particular, if
the server has foreknowledge of all the application that will start, then it can determine the best “future
schedule” for allocating its resources to application objects so that average response time is minimized by
calculating the new value forTapp under each placement and selecting the best placement at each point in
time in the future.

In the absence of this knowledge, however, the server has to operate only based on statistics about the
past behavior of applications that have already started. ABACUS allocates the server’s resources greedily to
the currently known applications, and then reconsiders the decision when other applications start. ABACUS

makes changes placement if it would result in a reduction in average response time, considering the cost
of the migrations needed to move to the next placement. The cost is modeled as the time wasted to acqui-
escing, checkpointing, transferring state, and restarting a migrated objects. We keep a history of the time
needed to quiesce activity in an object graph and we estimate the cost of the transfer from the size of the
checkpoint and the measured bandwidth between the source and target node. A relocation is performed
only if the net benefit — benefit minus cost — is greater than a threshold value,Bthresh. In our prototype,
both this threshold and the history window size are configurable. In our experiments, we used a value of 1
second forH and 30% forBthresh.

6 Performance benefits of dynamic placement

In this section, we show how performance depends on the appropriate placement of function. The several
sections that follow give increasingly difficult cases where ABACUS can adapt function placement even
when the correct location is hard or impossible to anticipate at design-time. We begin with scenarios in
which the objects’ correct location is based on hardware characteristics, application run-time parameters,
application data access patterns, and varying levels of data contention among multiple applications. We
conclude with the following sections stressing adaptation under dynamic conditions: phases of application
behavior, and contention by multiple applications.

6.1 Evaluation environment

Our evaluation environment consists of eight clients and four storage servers. All twelve nodes are standard
PCs running RedHat Linux 5.2 and are equipped with 300MHz Pentium II processors and 128MB of main
memory. None of our experiments exhibited significant paging activity. Each server contains a single
Maxtor 84320D4 IDE disk drive (4GB, 10ms average seek, 5200RPM, up to 14MB=s media transfer
rate). Our environment consists of two networks, a switched 100Mbps Ethernet, which we refer to as
the SAN(server-area network) and a shared 10Mbps segment, which we refer to as theLAN (local-area
network). All four storage servers are directly connected to the SAN, whereas four of the eight clients,
are connected to the SAN (called SAN clients), and the other four clients reside on the LAN (the LAN
clients). The LAN is bridged to the SAN via a 10Mbps link. While these networks are of low performance
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Figure 5: This figure shows a file bound to an application accessing a RAID object which maintains per-
file parity code and accesses storage objects running on the storage devices. We show one binding of the
stack (Client A) where the RAID object runs at the client, and another binding (Client B) where the RAID
object runs at one of the storage devices. Thicker lines represent more data being moved. The appropriate
configuration is dependent on the bandwidth available between the client and storage devices. If the client
LAN is slow, Client B’s partitioning would lead to lower access latencies.

by today’s standards, their relative speeds are similar to those seen in high-performance SAN and LAN
environments (Gbps in the SAN and 100Mbps in the LAN.

The bar graphs in the following sections adhere to a common format. Each graph shows the elapsed
time of several configurations of an experiment with a migrating object. For each configuration, we report
three numbers: the object (1) statically located at the client, (2) beginning at the client, but with ABACUS

dynamically monitoring the system and potentially migrating the object, and (3) statically at the storage
server. Graphs with confidence intervals report averages over five runs with 90% confidence. We have
intentionally chosen smaller benchmarks to underscoreABACUS’s ability to adapt quickly. We note that the
absolute benefit achieved by dynamic function placement is often a function of the duration of a particular
benchmark, and that longer benchmarks operating on larger files would amortize adaptation delays more
thoroughly. Throughout the experiments in this section, the observation window,H, was set to 1 second,
and the threshold benefit,BThresh, was set to 30% of the observation window.

6.2 Adapting to network topology/speed

Issue.Network topology/speed dictate the relative importance of cross-network communication relative to
server load. Here we evaluate the ability of ABACUS to adapt to different network topologies. We default
to executing function at clients to offload contended servers. However, ABACUS moves function to a server
if a client would benefit and the server has the requisite available cycles. Our goal was to see whether
ABACUS can decide when the benefit of server-side execution due to the reduction in network stall time
exceeds the possible slowdown due to slower server-side processing.

Experiment. Software RAID is an example of a function which moves a significant amount of data and
performs quite a bit of computation (XOR). Files in the ABACUS filesystem can be bound to a RAID object
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Figure 6: his figure shows the results of our RAID benchmark. Contention on the server’s CPU resources
make client-based RAID more appropriate, except in the LAN case, where the network is the bottleneck.

providing storage striping and fault-tolerance. The RAID object maintains parity on a per-file basis, stripes
data across multiple storage servers, and is distributed to allow concurrent accesses to shared stripes by
clients by using a timestamp based concurrency control protocol [AGG00]. The RAID object can execute
at either the client nodes or the storage servers. The object graph used by files for this experiment is shown
in Figure 5.

The proper placement of the RAID object largely depends on the performance of the network connect-
ing the client to the storage servers. Recall that a RAID small write invokes four I/Os, two to pre-read the
old data and parity, and two to write the new data and parity. Similarly, when a disk failure occurs, a block
read requires reading all the blocks in a stripe and XORing them together to reconstruct the failed data.
This can result in substantial network traffic between the RAID object and the storage servers.

We construct two workloads to evaluate RAID performance on ABACUS. The first consists of two
clients writing two separate 4MB files sequentially. The stripe size is 5 (4 data + parity) and the stripe unit
is 32KB. The second workload consists of the two clients reading the files back in degraded mode (with
one disk marked failed).

Results. As shown in Figure 6, executing the RAID object at the server improves RAID small write
performance in the LAN case by a factor of 2.6 over executing the object at the host. The performance
of the experiment when ABACUS adaptively places the object is within 10% of the optimal. Conversely,
in the SAN case, executing the RAID object locally at the client is 1.3X faster because the client is less
loaded and able to perform the RAID functionality more quickly. Here, ABACUS arrives within 1% of
this value. The advantage of client-based RAID is slightly more pronounced in the more CPU-intensive
degraded read case, in which the optimal location is almost twice as fast as at the server. Here, ABACUS

arrives within 30% of the optimal. In every instance, ABACUS automatically selects the best location for
the RAID object.

6.3 Adapting to run-time parameters

Issue.Applications can exhibit drastically different behavior based on run-time parameters. In this section,
we show that the data being accessed by a filter (which is set by an argument) determines the appropriate
location for the filter to run. For example, there’s a drastic difference betweengrep kernel Bible.txt

andgrep kernel LinuxBible.txt.
Experiment. As data sets in large-scale businesses continue to grow, an increasingly important user
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Figure 7: The performance of our filter benchmark is shown in this figure. Executing the filter at the storage
server is advantageous in all but the third configuration, in which the filter is computationally expensive
and runs faster on the more resourceful client.

application is high-performance search, or data filtering. Filtering is generally a highly selective operation,
consuming a large amount of data and producing a smaller fraction. We constructed a synthetic filter
object that returns a configurable percentage of the input data to the object above it. Highly selective filters
represent ideal candidate for execution close to the data, so long as storage resources are available.

In this experiment, we varied both the filter’s selectivity and CPU consumption from low to high. We
define selectivity as: selectivity= (1�output=input). A filter labeled low selectivity outputs 80% of the
data that it reads, while a filter with high selectivity outputs only 20% of its input data. A filter with
low CPU consumption does the minimal amount of work to achieve this function, while a filter with high
CPU consumption simulates traversing large data structures (e.g., the finite state machines of a text search
program likegrep).

Results.Figure 7 shows the elapsed time to read and filter a 16MB file in a number of configurations.
In the first set of numbers, ABACUS migrates the filter from the client to the storage server, coming within
25% of the ideal case, which is over 5X better than filtering at the client. Similarly, ABACUS migrates the
filter in the second set. While achieving better performance than statically locating the filter at the client,
ABACUS reaches only within 50% of the optimal because the time required for ABACUS to migrate the
object is a bigger fraction of total runtime. In the third set, we run a computationally expensive filter. We
simulate a loaded or slower storage server by making the filter twice as expensive to run on the storage
server. Here, the filter executes 1.8X faster on the client. ABACUS correctly detects this case and keeps the
filter on the client. Finally, in the fourth set of numbers, value of moving is too low for ABACUS to deem
it worthy of migration. Recall that the migration threshold is 30%.

6.4 Adapting to data access patterns

Issue.Client-side caches in distributed file and database systems often yield dramatic reduction in storage
access latencies because they avoid slow client networks, increase the total amount of memory available for
caching, and reduce the load on the server. However, enabling client-side caching can yield the opposite
effect under certain access patterns. In this section, we show that ABACUS appropriately migrates the
per-file cache object in response to data access patterns via black-box monitoring.

Experiment. Caching in ABACUS is provided by a mobile cache object. Consider an application that
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Figure 8: The figure shows that client-side caching is essential for workloads exhibiting reuse (Scan), but
causes pathological performance when inserting small records (Insert). ABACUS automatically enables
and disables the client caching by placing the cache object at the client or at the server.

inserts small records into files stored on a storage server. These inserts require a read of the block from the
server (aninstallation read) and then a write back of entire block. Even when the original block is cached,
writing a small record in a block requires transferring the entire contents of each block to the server. Now,
consider an application reading cached data. Here, we desire the cache to reside on the client.

We carried out the following experiments to evaluate the impact of and ABACUS’s response to appli-
cation access patterns. In the first benchmark,table insert, the application inserts 1,500 128byte records
into a 192KB file. An insert writes a record to a random location in the file. In the second benchmark,
table scan, the application reads the 1,500 records back, again in random order. The cache, which uses a
block size of 8KB, is large enough for the working set of the application. Before recording numbers, the
experiment was run to warm the cache.

Results.As shown in Figure 8, locating the cache at the server for the insert benchmark is 2.7X faster
than at a client on the LAN, and 1.5X faster than at a client on the SAN. ABACUS comes within 10%
of optimal for the LAN case, and within 15% for the SAN case. The difference is due to the relative
length of the experiments, causing the cache to migrate relatively late in the SAN case (which runs for only
a few multiples of the observation window). The table scan benchmark highlights the benefit of client-
side caching when the application workload exhibits reuse. In this case, ABACUS leaves the cache at the
client, cutting execution time over caching at the server by over 40X and 8X for the LAN and SAN tests
respectively.

6.5 Adapting to contention over shared data

Issue. Filesystem functionality such as caching or namespace updates/lookups is often distributed to im-
prove scalability [HKM+88], as are functions of other large applications. When contention for the shared
objects between clients is low, executing objects at the client(s) accessing them yields higher scalability and
better cache locality. When contention increases over a shared object, however, server-based execution is
more preferrable. In this case, client invocations are serialized locally on the server, avoiding the overhead
of retries over the network.

This kind of adaptation also solves performance cliffs caused by false sharing in distributed file caches.
When several clients are writing to ranges in a file that happen to share common blocks, the invalidation
traffic can degrade performance so that write-through to the server would be preferable.
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Figure 9: This figure shows directory updates from multiple contending clients. While distributing direc-
tory management to clients is beneficial under low contention, under high contention, it results in a flurry
of retries per directory operation. When the object is moved to the storage device, multiple client requests
are serviced by (multiple threads in) the same object, serializing them locally without the cost of multiple
cross-network retries. Adaptation in this case automatically shifts the concurrency control algorithm from
a distributed optimistic scheme to a local locking scheme.

LAN SAN
At client 125.50 86.10
Adaptive 6.66 27.33
At server 0.00 0.00

Table 1: Shown are the number of retries (averaged over 5 runs) incurred by the optimistic concurrency
control scheme when inserting entries into a highly contended directory. We show the directory object
statically placed at the client, dynamically located by ABACUS, and statically placed at the storage server.

Experiment. We chose a workload that performs directory inserts in a shared namespace as our con-
tention benchmark. This benchmark is even more complicated than the distributed file caching case and
therefore more challenging to ABACUS. Directories in ABACUS present a hierarchical namespace like all
UNIX filesystems and are implemented using the object graph shown in Figure 9. When clients access
disjoint parts of the directory namespace (i.e., there are no concurrent conflicting accesses), the optimistic
scheme in which concurrency control checks are performed by the isolation object (recall Section 4.3.1)
works well. Each directory object at a client maintains a cache of the directories accessed frequently by
that client, making directory reads fast. Moreover, directory updates are minimally cheap because no meta-
data pre-reads are required, and no lock messaging is performed. Further, offloading the server for the
bulk of the work results in better scalability and frees storage devices to execute demanding workloads
from competing clients. When contention is high, however, the number of retries and cache invalidations
seen by the directory object increases, potentially causing several round-trip latencies per operation. When
contention increases, we desire the directory object to migrate to the storage device. This would serialize
client updates through one object, thereby eliminating retries.

We constructed two benchmarks to evaluate how ABACUS responds to different levels of directory
contention. The first is a high contention workload, where four clients insert 200 files each in a shared
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Figure 10: This figure shows the time to execute our directory insert benchmark under different levels of
directory contention. ABACUS migrates the directory object in all but the fourth case.
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Figure 11: This figure shows the cumulative inserts and retries of two clients operating on a highly con-
tended directory over the SAN. Client 1’s curves are solid, while client 2’s are dotted.

directory. The second is a low contention workload where four clients insert 200 files each in private
(unique) directories.

Results. As shown in Figure 10, ABACUS cuts execution time for the high contention workload by
migrating the directory object to the server. In the LAN case, we are within 10% of the optimal. The
optimal is 8X better than locating the directory object at the host. We come within 25% of the optimal
for the high contention, SAN case (which is 2.5X better than the worst case). We look closely at the retry
behavior in Table 1. There are lower retries under ABACUS for the high contention, LAN case than for the
high contention, SAN configuration. In both cases, ABACUS observed relatively high traffic between the
directory object and storage. ABACUS estimates that moving it closer to the isolation object would make
retries cheaper (local to the storage server). It adapts more quickly in the LAN case because the estimated
benefit is greater. ABACUS had to observe far more retries and revalidation traffic on the SAN case before
deciding to migrate the object.

Under low contention, ABACUS makes different decisions in the LAN and SAN cases, migrating the
directory object to the server in the former and not migrating it in the latter. We started the benchmark from
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Insert Scan Insert Scan Total
At client 26.03 0.41 28.33 0.39 55.16
Adaptive 11.69 7.22 12.15 3.46 34.52
At server 7.76 29.20 7.74 26.03 70.73
Optimal 7.76 0.41 7.74 0.39 16.30

Table 2: Inter-application phases. This table shows the performance of a multiphasic application in the
static cases and under ABACUS. The application goes through an insert phase, followed by a scan phase,
back to inserting, and concluding with another scan. The table shows the completion time in seconds of
each phase under each scheme.

a cold cache, causing many installation reads. Hence, in the low contention, LAN case, ABACUS estimates
migrating the directory object to the storage server, avoiding the network, is worth it. However, in the SAN
case, the network is fast enough that ABACUS cost-benefit model estimates the installation read network
cost to be limited. Indeed, the results show that the static client and storage server configurations for the
SAN case differ by less than 30%, our migration threshold.

Note also that the directory objects from different clients need not all migrate to the server at the
same time. The server can decide to migrate them independently, based on its estimates of the migration
benefit for each client. Correctness is ensured even if onlysomeobjects migrate, because all operations are
verified to have occurred in timestamp order by the underlying isolation/atomicity object. Figure 11 shows
a timeline of two clients from the high contention, SAN benchmark. The graph shows the cumulative
number of inserted files and the cumulative number of retries for two clients. One client experiences a
sharp increase in retries and its object is moved to the server first. The second happens to suffer from a
relatively low, but steady retry rate, which triggers its adaptation a little later. The first client experiences
a sharp increase in the rate of progress soon after it migrates. The second experiences a substantial, but
lower, increase in its rate of progress after it migrates, which is expected as storage server load increases.

6.6 Adapting to application phases

Issue.Having established that optimal placement depends on several system and workload characteristics,
we further note that these characteristics change with time on most systems. In this section, we are con-
cerned with characteristics that vary with algorithmic changes within the lifetime of the application. The
next section addresses adaptation in light of competition from concurrent applications.

Applications rarely exhibit the same behavior or consume resources at the same rate throughout their
lifetimes. Instead, an application may change phases at a number of points during its execution in response
to input from a user or a file or as a result of algorithmic properties. Multiphasic applications make a
particularly compelling case for the function relocation that ABACUS provides.

Experiment. We now revisit our file caching example with the difference that it is now multiphasic. We
run a benchmark which does an insert phase, followed by scanning, followed by inserting, and concluding
with another scan phase. The goal is to determine whether the benefit estimates at the server will eject
an application that changed its behavior after being moved to the server. Further, we wish to see whether
ABACUS recovers from bad history quickly enough to achieve adaptation that is useful to an application
that exhibits multiple contrasting phases.

Results. Table 2 shows that ABACUS migrates the cache to the appropriate location based on the
behavior of the application over time. First, ABACUS migrates the cache to the server for the insert phase.
Then, ABACUS ejects the cache object from the server server when the server detects that the cache is being
reused by the client. Both static choices lead to bad performance in alternating phases. Consequently,
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Figure 12: This figure plots the cumulative number of blocks searched by two filters versus elapsed time.
ABACUS’s competition resolving algorithm successfully chooses the more selective Filter 2 over the Filter
1 for execution at the storage server.

ABACUS outperforms both static cases — by 1.6X compared to the client case, and by 2X compared to the
server case. The optimal row refers to the minimum execution time picked alternatively from the client and
server cases. We see that ABACUS is approximately twice as slow as the optimal. This is to be expected,
as this extreme scenario changes phases fairly rapidly.

6.7 Adapting to competition over resources

Issue. Shared storage server resources are rarely dedicated to serving one workload. An additional com-
plexity addressed by ABACUS is provisioning storage server resources to competing clients. Toward re-
ducing global application execution time, ABACUS resolves competition among objects that would execute
more quickly at the server by favoring those objects that would derive a greater benefit from doing so.

Experiment. In this experiment, we run two filter objects on a 32MB file on our LAN. The filters have
different selectivities, and hence derive different benefits from executing at the storage server. In detail,
Filter 1 produces 60% of the data that it consumes, while Filter 2, being the more selective filter, outputs
only 30% of the data it consumes. The storage server’s memory resources are restricted so that it can only
support one filter at a time.

Results.Figure 12 shows the cumulative progress of the filters over their execution, and the migration
decisions made by ABACUS. The less selective Filter 1 is started first. ABACUS shortly migrates it to the
storage server. Soon after, we start the more selective Filter 2. Shortly after we start the second filter,
ABACUS migrates the highly selective Filter 2 to the server, kicking back the other to its original node. The
slopes of the curves show that the filter currently on the server runs faster than when not, but that Filter 2
derives more benefit since it is more selective. Filters are migrated to the server after a noticeable delay
because in our current implementation, clients do not periodically update the server with resource statistics.
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7 Conclusions

In this paper, we demonstrate that optimal function placement depends on system and workload charac-
teristics that are impossible to predict at application design or installation time. We propose a dynamic
approach to function placement in clusters where a distributed runtime system continuously adapts place-
ment decisions based on resource usage and availability. Measurements demonstrate that placement can
be decided based on black-box monitoring of application objects, in which the system is oblivious to the
function being implemented. Preliminary evaluation shows that ABACUS, our prototype system, can im-
prove application response time by 2–10X. In all of our experiments, ABACUS selects the best placement
for each function, “correcting” placement when function was initially started on the “wrong” node. Fur-
ther, ABACUS outperforms all one-time placements in situations where dynamic changes cause the proper
placement to vary during an application’s execution. In summary, our results to date indicate a promising
future for this approach. We believe that the ability to continually and automatically reconfigure storage
clusters will eventually help reduce their exorbitant management costs.
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