Optimizing a Solver of
Polymorphism Constraints: SEMI

Robert O’Callahan
June 1999
CMU-CS-99-136

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

As part of the Ajax system for analyzing Java bytecode programs, I have developed an
analysis called SEMI, based on type inference with polymorphic recursion. SEMI has a
number of optimizations which significantly decrease the time and space requirements
for analyzing large programs. These optimizations exploit the characteristics of Java
programs to make analysis tractable. These assumptions, and the optimizations that
follow from them, may apply in other domains using type inference with polymorphic
recursion. In this report, I describe the SEMI algorithm, the optimizations it incorporates,
and the characteristics of Java programs that justify the optimizations.

This research is sponsored in part by the Defense Advanced Research Projects Agency and the Wright
Laboratory, Acronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-2-0031 and
in part by the National Science Foundation under Grant No. CCR-9523972. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The author was supported by a graduate fellowship from Microsoft Corporation.

The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency Rome Laboratory, the U.S. Government, or Microsoft Corporation.

Keywords: Java, bytecode, Ajax, polymorphism, polymorphic recursion, SEMI,
constraint solving

1. Introduction

As part of the Ajax system for analyzing Java bytecode, I developed an analysis based on
type inference with polymorphic recursion [H93], called SEMI. (“SEMI” stands for
“semiunification”.) SEMI has three major components:

e A “constraint generation” phase, which traverses the program code to build an initial
constraint set

e A “solver” phase, responsible for analyzing the set of constraints and adding new
constraints to the set in order to reach a “closed form”

e An “interpretation” phase, which examines the structure of the closed form to deduce
information about the possible behaviors of the program.

This document focuses on the specification and implementation of the solver, in
particular, the optimizations introduced to make it efficient. This document is a technical
memorandum describing a variety of implementation techniques, and will mainly be of
interest to someone implementing a system using similar technology. You have been
warned.

An important point in the design and implementation of SEMI is that it is not, strictly
speaking, a type inference system. I make no attempt to assign semantics to the structures
produced by SEMI, except for one specific soundness theorem that relates properties of a
“closed” constraint set to the behavior of the program which induced the initial set of
constraints. The design is motivated by types, and it is often helpful to use concepts of
type inference to think about SEMI, but the semantics usually associated with types do
not apply.

2. The Constraint System

2.1. Type inference with polymorphic recursion

Traditional type inference with polymorphic recursion has been described as a solution
procedure over constraints between terms [H93]. The terms represent types in a standard
way; for example, there are unary symbols representing scalar types, a binary symbol
representing function types, and variable-arity symbols representing tuple types. A term
may also be a type variable, which may become bound to other type variables or terms.
The constraints are of the form “#; <; #,”, meaning that #, is instance 7 of #;. For example,
11 may represent the type of a polymorphic function, and #, an instance of #; at some call
site 7.

The type inference procedure finds assignments to the type variables, and for each
instance 7 a substitution S; such that #; <; #; implies Si(7;) = 7. Each substitution S;
describes how polymorphic type variables are instantiated at instance number 7. Upon
termination, the type inference procedure will return a principal type [DM82], i.e. the
most general type assignment possible; if such a solution does not exist, it will signal an

error. Termination is not guaranteed, but folklore asserts that the algorithm terminates for
practical examples.

Unfortunately, terms are not well suited to representing recursive structures. Adding
recursion to terms requires the introduction of a new type, e.g. “uz. T” where 7 occurs free
in T, meaning the solution to the fixpoint equation 7 = T(?).

A subtler problem with using terms in my program analysis is that the symbol names in
type terms are not useful. The type inference algorithm only uses symbol names to detect
type errors; e.g. when the program requires a value to have both a function type and a
scalar type. However, Ajax never rejects a program and does not need to detect these
“errors”.

2.2. The SEMI constraint system

It is natural to represent a term as a tree, where the root of the tree is labeled with the
term’s N-arity symbol and has N edges, labeled 0 to N-1. Edge 7 leads to a subtree
representing the subterm at argument position i. A recursive type can be represented as an
infinite tree, the “infinite unfolding” of the recursive definition. Of course, in practice the
representation must be finite, and it is natural to simply represent the recursive type as a
cyclic graph. In other words “uz.T” is represented as a rooted graph in which 7 is
associated with the root node and references to 7 in T are simply edges pointing back to
the root.

Therefore 1 discard terms and work directly with the graph structure. The graph edges
that connect a node to its arguments become “component constraints”. For example, the
function type 7 = “a — b” becomes the two constraints { 7 > &, f Drequre & }. With
component constraints, recursive structures require no special machinery. Furthermore,
we shall see that the properties of polymorphic recursion become easy to state, in a way
that is close to the implementation.

The SEMI solver uses the following structures:
e V — the set of variables (which can be thought of as type variables).

o L — the set of component labels (e.g.”arg”, “result”). SEMI treats them as abstract
entities and assigns no meaning to them.

e [— the set of instance labels; each instance label represents a program site at which a
polymorphic value is being used. SEMI treats them as abstract entities and assigns no
meaning to them.

e (C — a set of constraints of the following kinds:

e “a=p" — an equality constraint expressing the fact that the two variables a and b
are to be considered identical.

e “a>>,b” — acomponent constraint expressing the fact that variable a’s
component with label ¢ is variable 5.

e “a <;b” — an instance constraint expressing the fact that variable a’s instance 7 is
variable b.

Later in this document I introduce additional constraints to support certain optimizations.

If the constraint a <; b is present in a set, then I write “b is an instance of a” and “a is a
source of ”. The set should be clear from context. Likewise, if “a I>. 5” is in a set, then |
write “b is a component of @” and “a is a parent of ”.

I also use transitive versions of the instance and component relationships:
o axch® i, .. i t, .. . 1. { a<nty, ... La<ipb } cC
o abch# dey, .o, et L L. {Cl >ty oo, P b } cC

2.3. Closure

I now define what it means for a set of constraints C to be closed. Closure can be thought
of as a guarantee that the set is a consistent description of types and their relationships.

e Equality closure rules
Equality has the usual properties of reflexivity, symmetry, transitivity, and
substitutional equivalence. (Reflexivity is implicit; constraints of the form “u = u”
are not required to be part of the constraint set.)
{t=u}cC>{u=t}cC
{t=u,u=vicC={r=vcC
{t=ut>.vicC=>{u>.v}cC
{t=u,v>.t}cC=>{v>.u}cC
{t=ut<,vicC=>{u<x,v}cC
{t=uv<,t}cC=>{ux;t}cC

e Component consistency rule
A given component of a variable has only one value. This and the previous rules
together perform a kind of unification, effectively a monomorphic type inference.
{tocu,t>.vicC=>{u=v}cC

e Instance consistency rule
A particular instantiation maps every occurrence of a given variable to the same new
variable.
{t<iut<;,vicC=>{u=v}icC

e Component propagation rule
Components propagate through instances.
{t<ut>,vicC=>Iw {u>.wicC

e Instance propagation rule
Instances propagate down matching components
{t<iut>vub,wicC>{v;,w}cC

2.4. Solver specification

Given an initial constraint set Cy, the job of the solver is simply to find a closed set C
containing Cp.

Ci represents constraints induced by the program under analysis. C represents an
extension of those constraints into a complete and consistent description of the “types” in
the program.

Note that such a C always exists. For example, given C;, add constraints making all
variables equal and making all component and instance relationships hold between all
variables. (This is finite because only the variables, component labels and instance labels
that occur in C; need be considered.) Effectively this merges everything into one giant
type. In practice this result would not be useful, and it is preferable to retain distinctions
between types whenever possible, but this example illustrates that implementations of the
specification can trade off accuracy for performance.

2.5. Decidability and performance

It has been shown that the general problem of finding a principal type is undecidable in
Henglein’s type inference system. However, in practice all examples seem tractable. In
fact, the algorithm is reported [H93] to be quite efficient at inferring types for functional
programs.

To a large extent, these results carry over into my domain. In my work on the solver,
which is similar in structure to Henglein’s algorithm, nonterminating cases have always
been traced back to errors in the solver implementation. It is also relatively efficient,
allowing for the fact that Java programs induce constraint sets that are considerably more
complex than the constraints induced by most functional programs. However, it is still
true that my algorithm has no guarantee of termination. Clearly there are worst cases that
give arbitrarily poor performance; efficiency depends on the characteristics of “average
case” programs.

In fact, as noted above, there is no unique solution to my problem of finding a closed set,
and such a set can always be found; my problem is trivially decidable. The goal is simply
to obtain a “good” solution efficiently’. (“Good” generally means that the solver refrains
from making variables equal, when that is possible.) It turns out that “optimal” solutions
(which would correspond to principal types) do not actually exist in my domain, due to
the combination of unrestricted recursive types and polymorphic recursion (see Appendix
A for a proof).

Therefore, because termination of my algorithm is not guaranteed and optimal solutions
do not exist, I measure performance and precision empirically. That is why I present no
worst case bounds on the behavior of my algorithms.

2.6. Refined specification

The SEMI analysis engine extracts a “value-point relation” «+p ¢ from the closed set C.
This relation is the only function of C that is used. Therefore I relax the specification of
the solver to allow it to produce any set C' that gives the same value-point relation as the

! For this reason, I could guarantee termination by timing out and falling back to an
algorithm that is guaranteed to terminate, but I have not found this to be necessary.

closed set C. I will call such a set “quasi-closed”. This relaxation enables many
optimizations.

«»pc 1s defined as follows:
Bl <pC B2 def Elx. M(Bl) ﬁc X N M(BZ) ﬁc X

M is a map from bytecode expressions (e.g. a variable in the bytecode language) to
constraint variables.

This definition means that SEMI checks to see if two expressions are related by first
converting them to constraint variables using the map M, then trying to find some
variable x that is an instance of both variables (possibly transitively). This can be done by
traversing the graph of < constraints.

The range of M is required to always be contained in the variables occurring in C;. When
querying on expressions that do not occur in the program text, the system may add
constraints to Cj to associate constraint variables with these expressions. For example, if
R is a local variable, then there will be some associated M(R) giving the constraint
variable for R. Suppose R has a field P that is never accessed by the program, but there is
a query on the expression “R.P”. The constraints induced by the program may not
associate a variable with “R.P”. The system will need to add the constraint “M(R) >p 7~
to the initial set so that M(R.P) can return 7.

From these definitions, it follows that C' is quasi-closed if there exists a C such that
e C(Cisclosed
e C contains C;

o ViueVars(C) (Ix. 1 xcxrnuxcx) (I r<cxAnu=<cX)

2.7. Incrementality

The SEMI solver is incremental, in the sense that one can add to the initial constraint set
Ci at any time and the (quasi) closed set C will correspondingly expand. This is not
difficult to implement and is not discussed further in this document.

2.8. The graph representation of the value-point relation

I have described how to treat the computed value-point relation as a graph in order to
make complex queries execute more efficiently [O99]. It is not hard to transform the
graph of < constraints into the required form, but I will not detail the transformation
here. In this document I will only describe how to extend an initial constraint set to a
quasi-closed state.

3. Constraints for Java bytecode programs

Although the details of the extraction are beyond the scope of this report, I give examples
to show how the constraints are used.

Bytecode Induced Initial Constraints

class X { Tr <fin-x tx.r Cx >eixr
f(a) { Tt D> arg-0 Linis-param.£ Tt > arg-1 La-param.f
Te D resurt Ry
0: aload this;
1: areturn; Re= this-param,f
}
static g(c, d) { Ty > arg-0 Leparam,g T D arg-1 Laparam,g

Tg D> result Rg

0: aload ¢
1: aload d
2 invokevirtual £; | Lepaamg B>ru U D g0 Leparam.g
u Darg-l Ld-param,g
3: areturn; U D et Rg
}
static main(b) { Tmain Darg-O Lb-param,main Tmain D> result 1{main
O: new X; CX X new-at-O-in-main Ltmp-l,main
1: aload b;
2 invokestatic g; Ty <main2 t t > arg-0 Limp-1,main
t Darg-l Lb-param,main
3: areturn; t D> result Rimain

Figure 1: Constraints for a bytecode program

3.1. Example

See Figure 1. Bytecode equivalent to the code in Figure 1 would be generated by the
following Java code:

class X {
X £(X a) { return this; }
static X g(X ¢, X d) { return c.f(d); }
static X main(X b) { return g(new X (), b); }

For this program, one might ask “can main’s result equal the new X object it creates?”
We shall see how this question is answered by extracting the initial constraints (shown in
Figure 1) and finding a closed form.

3.2. The initial constraints

Consider the code and initial constraints for function f£. Tris the constraint variable
associated with £. £’s parameters and results are also have constraint variables associated
with them: Linis-param.f, La-param.f and Ry, Component constraints record the relationship
between these constraint variables and Tr. Returning “this” from f induces the equality
constraint Re = Linis-param.f.

The class X is associated with a constraint variable Cx; this can be thought of as the
inferred “type” for a prototypical object of class X. Cx has a component for each
nonstatic method of X. In this case, there is just one nonstatic method, £. Thus, Cx has an
f-component, txr. txris an instance of Ty, because multiple classes may inherit £ and we
should keep these different uses of f separate, so that placing a constraint on one instance
doesn’t unnecessarily constrain the other instances.

A constraint variable associated with an object reference not only has components for the
virtual methods of that object, it can also have components for the fields of that object.
The field components are used by “putfield” and “getfield” instructions to access the
inferred “type” of the field. The constraint variable for the class itself (e.g. Cx) has no
field components, because nothing is known about the inferred types of fields until code
is found to be operating on actual object instances.

Virtual method components are used when a virtual method is called, such as in the code
for g. g has a reference to an X in its ¢ parameter, associated with variable Lc.param,g. TO
call the virtual method £ on c, the £-component of Lc param,g 1S €xtracted (into variable
“u”) and its result and parameter variables are bound to variables for the actual
parameters and results. Note that “u” itself is used, not an instance of “u”. Using an
instance of “u” would make the analysis unsound; the intuitive reason is that only
constant values can be treated polymorphically.

Static method calls can use a fresh instance of the called method’s constraint variable,
because the callee is a constant. In main, the constraint variable “t” is a fresh instance of
the constraint variable for the callee, g.

When a new object is created, the variable corresponding to the new object (Linp-1.main 10
this example) is made a fresh instance of the class’s associated constraint variable (Cx).

Thus the components for the virtual methods of X will propagate to the instance.

3.3. Finding a closed form

Closing the constraint set generates the following additional constraints (among others):
The equality constraints within f give

Tf D> result Lthis-param,f

We propagate components of Trto Ty,s, getting

tX,f Darg-O v tX,f D> result V

(Where Lthis-param,f < fin-X V)

Now we propagate Ty,rand its components to the instance of Cx in main:
Ltmp-l,main th'X,f t'X,f Darg-O V' t'X,f D> result V'
(where V <new-at-0-in-main V')

In other words, we know in main that the object’s f method aliases its first parameter and
result. Now we need to work on g. g’s equality constraints give us

Lc-param,g >ru u Darg-O Lc-param,g U P result Rg

So inside g, we know that we pass ¢ into ¢’s f method, and the result of that method is
returned from g. We don’t assume anything else about f here.

We propagate g’s constraints to main:

Lc-param,g < main-2 Ltmp-l,main Rg < main-2 1{main

From here we get
Ltmp-l,main D¢ u' u' Darg-O Ltmp-l,main u' D> result 1{main
(where U < main2 U").

Now Limp-1.main > u' and Limp-1.main & ¢ t'x s require us to set u' = t'x r. In other words, we
have “discovered” the implementation of fthat g uses.

From the arg-0 components of u' and t'x s, we get

v = Ltmp-l,main v = 1{main

Thus
Ltmp-l,main = 1{main

The conclusion is that the result of main may be the new X it creates; at least, this
analysis cannot prove otherwise.

4. The basic algorithm

I will describe a series of algorithms leading up to the full SEMI algorithm, each more
sophisticated than the last. All the algorithms start with the initial constraint set C; and
add constraints to the set until it is closed (or quasi-closed). The basic algorithm
presented in this section corresponds to Henglein’s type inference procedure [H93].

4.1. Equality elimination

Like every algorithm of this kind, my solver uses a representation of the constraint set
that avoids explicit equality constraints. Whenever a constraint of the form “a = 5" is
encountered or produced, it is discarded, and the solver substitutes b for a (or a for b) in
all the other constraints. This can be implemented efficiently by treating each variable as
an equivalence class and employing the union-find algorithm to merge equivalence
classes.

10

4.2. Functional representation of components and instances

The component consistency rule guarantees that for a given variable 7 and component
label ¢, there is at most one v such that 7 > v (after taking into account equivalencies).
Thus the component constraints can be represented as a curried partial function Fy. :
VoL~V

Likewise the instance constraints can be represented as F<: V> 1+~ V.

In the implementation, each variable v has two hash tables associated with it, one
representing F»(v) and the other F<(v).

When a variable v is substituted for # because # and v have been set equal, #’sL — V
component map is merged into v’s L. — V component map. The tricky part of this process
is that, for each / in the intersection of their domains, the variable Fi.()(/) is made equal
to the variable Fr.(v)(/), thus, the merge procedure can invoke itself recursively. The
procedure corresponds to unification of terms.

The algorithm also has to merge #’s I — V instance map into v’s I — V instance map.
This is similar to the case of the component maps, and can also result in recursive merge
calls.

4.3. Component propagation

The above normalization procedures ensure that the constraint set is always closed under
all rules, except for the component and instance propagation rules. Naturally, this is
where things start to get interesting.

We treat the rules as production rules:

e Component propagation
Upon detecting { # <; u, t >.v } < C for some 7, u, v, i and ¢, add a new variable w
and constraint # >, w (unless there is already a w such that # >, w).

e Instance propagation
Upon detecting { <, u, t>.v,u>,w } C C for somet, u, v, w,iand ¢, add
constraint v <; w (if not already present).

This is implemented using a worklist. The algorithm maintains a list of “dirty”
component constraints (e.g. “7 >, V) that must be checked by the component propagation
rule. All component constraints in C; start off in the dirty list. Whenever a new
component constraint is added, it is added to the dirty list. Whenever a variable 7 is
substituted for another variable w, all the components of 7 that do not already appear in w
are made dirty, and likewise all the components of w that do not already appear in ¢ are
made dirty; formally:

{to.v|{tb.vicCAnCIu {w>.u}cC)}u
{wDv|{wbvicCaA(CTu {t>.,u}cC)}

Also, whenever an instance constraint 7 <; # is added, all the components of 7 and « are
made dirty.

11

During each iteration of the solver, it pulls one dirty component constraint 7 >, v from the
dirty list. Then for each # and 7 such that { 7 <; # } < C, the two production rules are
checked. Also, for each # and 7 such that { # <, 7 } < C, the second production rule is
checked, swapping # with 7 and v with w. Note that in checking the second rule, since #
and c¢ are known, there can be at most one applicable w.

Iteration continues until the worklist of dirty component constraints is empty. Upon
termination, the constraint set is closed.

When an equality constraint is processed by applying a substitution to the entire
constraint set, the same substitution is applied to the elements of the worklist.

4.4. Saving time by recording additional dirtyness information

For some variables 7 there may be many # such that 7 <; # or # <, . When a dirty
component 7 I>. v is being processed, it can be slow to scan all the instances # such that

t <; u and all the sources u such that # <, ¢. Therefore for each dirty component 7 >, v,
we maintain a list of all the 7 <; # and u <; 7 that need to be inspected in conjunction with
that component constraint. For every situation in which a component constraint may
become dirty, there is an associated set of instance and source constraints that will need
to be inspected. If a component constraint is already dirty, its associated sets can still be
extended with additional instance and source constriants to be inspected.

e When a new component constraint 7 >, v is added, all constraints of the form 7 <; u
and u <; 7 need to be inspected.

e When the variable 7 is substituted for variable w, then for each 7 >, v such that
{t>.vicCA(CIu {wbd,u} cC), all constraints of the form w <, # and u <; w
need to be inspected in conjunction with 7 > v. Likewise, for each w >, v such that
{w>.vicCaA(3u {t>.u} < C), all constraints of the form 7 <; w and u <; ¢
need to be inspected in conjunction with w >, v.

e Whenever an instance constraint 7 <; # is added, then for each 7 >, v in C, the
instance constraint 7 <; # must be inspected in conjunction with 7 >, v. Also, for each
u >, vin C, the source constraint 7 <; # must be inspected in conjunction with # >, v.

This additional bookkeeping greatly improved runtime, while adding a small amount of
space overhead (bounded by a small constant factor in the worst case, but still
significant).

4.5. Nontermination problems

Unfortunately, it is easy to construct constraint sets for which this algorithm does not
terminate. Furthermore, these sets do arise in practice.

For example, consider the set { T¢ > et Tr, T <i T; }. This could arise from an analysis
of the following program:

£f() { return £; }

12

f’s result is an instance of f£. (This is a contrived example. Real examples in Java are
more complicated, e.g. when a method M returns a reference to a new object which
contains M.)

Suppose we apply the above algorithm to this constraint set:

e Apply component propagation to { T¢ > requtt Tr, Te <i Tt }:
add T; and constraint { Ty > resurt T1 }

e Apply instance propagation to { T¢ D> recurt Tr, Tt <i Tr, Tr D resurt T1 }:
add constraint { T; <; T; }

e Apply component propagation to { Ty >reurt T1, Tr <i T1 }:
add T, and constraint { Ty D> equr T2 }

e Apply instance propagation to { Tr > recutt T1, Tr <i T1, T1 D> resurt T2 }:
add constraint { T; <; Tz }

4.6. 'The extended occurs check
In type inference, the type of £ would be an infinite term:
void — (void — (void — ...))

This recursive type is not valid in Henglein’s scheme; therefore his algorithm detects this
situation and reports failure. He calls this detection the “extended occurs check”. (It is
analogous to the occurs check performed during term unification.) In terms of my
formalism, the extended occurs check fires whenever, for some sets of variables #; and u;:

{ h <ii Uy, ..., Upa < in Uy, h Dcomp] Z2; ceey I Dcompn Uy } - C

This means that the extended occurs check is applicable whenever we have a variable #;
that has a transitive instance u, that is also transitively a component of #;.

When the extended occurs check fires in SEMI, the solver simply forms a recursive type
by setting #; = u,, and continues. In the example, the extended occurs check sets T, = Ty,
halting the expansion.

Note that adding this equality forces variables to be equal that do not necessarily need to
be equal according to the initial constraints. This is why SEMI does not compute a most
general (i.e. principal) solution. The demonstration of non-existence of principal types in
Appendix A is based on a similar example.

The implementation of the SEMI solver performs an extended occurs check whenever the
instance propagation rule adds a new instance constraint 7 <; # to C. It sets u,.1 =1, u, = u
and 7, = 7, and then searches the component and instance graphs for a variable #
satisfying the check. Any such variables found are bound to #. The search proceeds by
first scanning the instance graph backwards, finding all candidate #;s that are transitive
sources of 7 (including 7 itself), and for each candidate, scanning its components
transitively looking for u.

2

This check could easily be changed from worst case O(N?) time, where N is the number
of variables, to O(N) time, simply by finding all transitive sources of 7 first, then scanning

13

all of ’s transitive parents (variables that have 7 as a transitive component). In practice,
however, the average numbers of transitive instances, sources, components or parents that
a variable has are all very large, and a check that is linear time in any of these quantities
is prohibitively expensive (since the extended occurs check is performed frequently).
Therefore a more complex approach is required (described below), which builds on the
basic algorithm above. It turns out that in the presence of those optimizations, the worst
case O(N"2) version performs a lot better.

5. Optimizing the occurs check: clusters

The naive approach to performing the extended occurs check can be sped up enormously
by exploiting the structure of the constraints induced by a Java program (or any program
that has layers in its architecture, i.e. almost all programs).

5.1. Constraint structure

SEMI generates instance constraints from a Java program in the following situations:

e A method body M; makes a “static” call to another method M, (M; depends on M;)
e A method body M; creates a new object of a class C (M; depends on C)

e A method body M; is installed in the dynamic dispatch table of a class C (C depends
on Ml)

Due to the layered structure of most programs, the graph of dependencies is “mostly”
acyclic. However, the JDK class library itself contains a number of surprisingly complex
cycles, so it is important to be able to handle cycles well.

5.2. Clusters

Normally (i.e., in the absence of a recursive chain of dependencies), the variables
associated with parameters, local variables, results, and intermediate values within a
given method, and their components, are related only by component constraints. Instance
constraints (and only instance constraints) relate these variables to variables associated
with other methods. Similarly, in a class there are variables associated with the method
slots, and a variable for the prototype object of the class, which are related to each other
by component constraints only. Instance constraints relate these variables to variables in
the methods that create objects of the class, and to variables in the method bodies used by
the class.

The SEMI solver explicitly captures this structure. The variables are partitioned into
abstract clusters; the partition is written R : V — X (where X is the set of cluster labels).
The only required property of R is that if 7 >, is a constraint, then R(¥) = R(«). In other
words, all variables related by only component constraints are in the same cluster.
Typically, Java programs give rise to a large number of small clusters (one cluster per
method).

14

It is not strictly necessary to have R be the most refined partition possible, but that is easy
to implement and gives the best results. That is, if # and # are not related by any chain of
component constraints, ignoring direction, then R(7) = R(u).

The implementation maintains the cluster map dynamically, taking account of variable
merging, new constraints, etc.

5.3. Optimizing the extended occurs check using clusters

The cluster map is used to short-circuit the subroutine that computes “Is u a transitive
component of #17”. If R(«) # R(#), then the result must be false. Since clusters are
generally small and numerous, and following an instance constraint usually leads to
another (different) cluster, R(#) = R(#;) almost always holds during the extended occurs
check search.

5.4. Cluster levels

Unfortunately, even scanning all transitive sources of a variable and performing a
constant-time check for each is too expensive, given the frequency with which extended
occurs checks are performed.

SEMI resolves this problem by explicitly capturing the “mostly acyclic” structure of the
inter-cluster instance graph. The instance constraints are projected onto the clusters; i.e.
the clusters are assembled into a directed graph G such that for each 7 <; u, (R(¥), R(%)) is
an edge in G. Then the graph is partitioned into strongly connected components, called
cluster levels. This partition is written S : X — Z, where Z is the set of cluster level
labels. By definition, G projected onto cluster levels is acyclic (excluding self-loops). The
fact that G itself is “mostly acyclic” means that most cluster levels contain just one
cluster.

The implementation maintains the cluster levels dynamically, as the underlying constraint
system changes. I have developed an efficient implementation, but it is tricky, because
detecting cycles can be expensive. I found it helpful to delay cycle detection (in response
to changes in the constraint system) until the cluster levels are required to be in a
consistent (acyclic) state (e.g., until the next extended occurs check). My system
maintains a “dirty” bit for each cluster level, indicating that it may be part of a cycle of
cluster levels because of the addition of new instance constraints incident to the cluster
level. When the acyclic state is required, the algorithm performs a worst-case linear time
traversal of the cluster level graph — a depth-first search backwards along the instance
edges, starting from the dirty cluster levels. Any cycles found are recorded. Finally, the
cluster levels in each cycle are merged. It requires care to make sure that all cycles are
detected, since the straightforward depth-first search algorithm is only guaranteed to find
one cycle (assuming a cycle exists).

In my system, the cost of maintaining the cluster levels is usually negligible and never the
performance bottleneck.

15

5.5. Optimizing the extended occurs check using cluster levels

The cluster level map is used to optimize the subroutine that scans the source graph for
all candidate #;s that are transitive sources of 7.

The extended occurs check subroutine receives 7 and # where u is an instance of 7.
Therefore every candidate #; has # as a transitive instance. Now suppose S(R(u)) #
S(R(#1)). There must be a path from S(R(#1)) to S(R(«)) in the instance graph projected
onto the cluster levels, because there is a path from #; to # in the instance graph. Because
the cluster level instance graph is acyclic, there cannot be a path from S(R(#)) to S(R(#)).
Therefore, for all transitive sources s of 11, S(R(s)) # S(R(x)), because otherwise we
would have an instance path from S(R(s)) = S(R(#)) to S(R(#1)).

Therefore, whenever the extended occurs check subroutine detects S(R(#)) = S(R(#1)), #1’s
sources need not be searched. In practice this prunes the search tremendously. In
particular, if S(R(#)) # S(R(?)) then R(u) = R(?) follows, and neither 7 nor its sources need
be checked; the entire check takes constant time.

In the special case in which there are no recursive dependencies in the original program,
the instance graph projected onto clusters is acyclic, i.e. S is one-to-one. Then the
extended occurs check always completes in constant time. In other words, this
optimization ensures that the extended occurs check only incurs a cost when polymorphic
recursion is actually being used.

5.6. Replacing the extended occurs check with a conservative
approximation

In the case S(R(#)) = S(R(?)), instead of performing the rest of the extended occurs check,
one could simply add the equality constraint “# = . The new instance constraint 7 <; # 18
reduced to a self-loop in the instance graph, which forestalls the nonterminating behavior
that the extended occurs check is designed to prevent. This approach is similar to the
Hindley-Milner algorithm, which (interpreted in this context) simply prohibits any
polymorphism constraints within a cluster level. This behavior can lead to smaller
constraint sets because of the “unnecessary” inequalities that are introduced, which
improves performance but does yield a noticeable decrease in accuracy for some
applications of the analysis.

5.7. Possible “lazy” extended occurs checking

I considered several schemes for reducing the frequency and amortized cost of extended
occurs checks by postponing them and processing several at once in a single search. This
seemed to be extremely difficult, partly due to the complexities of implementation, but
also because once an extended occurs violation arises, the solver can repeatedly
“unwind” the structure to generate a large number of new constraints. Thus it seems
necessary to detect and correct the situation as soon as possible.

In any case, further optimization of the extended occurs check seems unprofitable at this
time. The amount of time and space the solver spends on the task is currently negligible.

16

6. Scheduling the worklist using cluster levels

It turns out that the acyclic cluster level graph is useful for tasks other than optimizing the
extended occurs check.

6.1. The scheduling problem

Components propagate from sources to instances, but not the other way around.
Therefore as changes are made to constraints at the “bottom” of the instance graph, they
tend to “bubble” up to instances. It improves performance to do as much work as possible
at the bottom of the instance graph before making changes further up the graph, by
reducing the number of times each component is visited or examined.

6.2. Using cluster levels

A cluster level / is “dirty” if there is a component constraint in the worklist of the form
“t >, u”, where S(R(7)) =1.

Whenever SEMI chooses a component constraint from the worklist, it chooses a
constraint 7 >, # where the cluster level S(R(?)) has no dirty cluster levels below it in the
projected instance graph. Such a constraint is guaranteed to exist because the cluster level
graph is acyclic.

Making this choice efficiently is tricky, but requires negligible time and space in my
system. The dirty component constraints are stored on the worklist indexed by cluster
levels; the problem reduces to finding an appropriate cluster level to work on. I record in
each cluster level whether it is dirty. I also cache two facts in each cluster level: whether
it is known that there are some dirty cluster levels below it on the projected instance
graph, and whether it is known that there are no dirty cluster levels below it on the
projected instance graph. In practice, this cache can be updated and invalidated efficiently
in response to changes in dirty state and changes in the underlying constraint set.

The system keeps a list of dirty cluster levels, separated into two parts: the set of dirty
cluster levels that are known to have no dirty cluster levels below them on the projected
instance graph, and the rest. When a constraint is selected from the worklist, a cluster
level is chosen from the former set and one of its dirty constraints is used. If the former
set is empty, then a cluster level / is chosen from the latter set. Then the algorithm
performs a depth-first search of the cluster level projected instance graph, backwards
from /, from instances to sources. During this search, each visited cluster level is marked
as either having dirty cluster levels below it, or not. The acyclic nature of the projected
instance graph guarantees that after this procedure, at least one dirty cluster level will be
found with no dirty cluster levels below it (unless there are no dirty cluster levels left, in
which case the algorithm terminates).

17

7. Suppressing components: advertisements

7.1. Useless component propagation

Suppose F is a function in the program for which we infer a large “type”, Tr. This means
that Tr is the root of a large graph of component constraints. At every use of F (a direct
call or the use of F to fill a slot in a method table), a new instance 7 of Ty is created, and a
constraint Tr <; 7 1s added. The component propagation rule will effectively copy the
transitive components of Tr (i.e., the component graph under Tr) to the instance. Often,
however, much of this structure will not be used. For example, consider this Java code:

Foo x = bar();
println(x.kitty);

Given the code for bar, the analysis may work out some complex type structure for its
return value, including information about the various methods and fields of x. All this
information will be propagated to the caller, but only one field is used, and therefore the
rest of the information is irrelevant.

Furthermore, suppose bar is implemented as a wrapper:
Foo bar() { return baz(5); 1}

Such constructs are common, and defeat purely local schemes for suppressing useless
structure.

7.2. Illustration

Consider the following constraint set Q. This diagram and the diagrams that follow
represent graphs. Nodes correspond to variables. A constraint of the form 7 >, u 1s
displayed as a black edge from #’s node to #’s node labelled with .. A constraint of the
form 7 <; u is displayed as a gray edge from #’s node to #’s node labelled with <;.

18

Z)\

>, >

>, Br\ Pg/ Do

T represents the type of some compound object with an instance 7 and further instances j
and k. Assume Q contains the initial constraint set, C;. The basic algorithm extends Q to
the following closed set C:

<j
>, >
<k
yA\
> >
Y RDQ > D>y
v
-

The basic algorithm reaches C by copying T’s component tree to all the instances, and
connecting the components with instance relationships.
7.3. Quasi-closure conditions

These new components are all unnecessary; Q is, in fact, quasi-closed. To see this,
consider two variables in Cy, # and v. I must show that # and v are related in Q if and only
if they are related in C. There are two cases:

e Suppose # and v are not related in C. Then —3x. # <c x A v ¢ x. It follows that
—dx. u <o x AV ¥, since C is a superset of Q.

19

e Suppose # and v are related according to C. Then dx. # <¢ x A v <¢ x. I show that
dp. u <o p AV <Xqp, by induction on the length of the shortest chain of instances
justfiying u <c x.

Regardless of the length of the chain, if x occurs in Q, then # <q x A v < ¥, since the
chains of instances justifying # <c¢ x and v <¢ x are also in Q. (In other words, every
instance constraint in C that holds between variables in Q is is already in Q.). Thus
the induction hypothesis holds, setting p = x.

If the length of the chain is zero, then x =, hence x is in Q and the hypothesis holds.
If x is not in Q, then it must be a child variable of one of the new component
constraints. Each such variable has a unique predecessor P, such that P, < x. The
chains # <¢ x and v <¢ x must have length at least one, since x is not in Q and
therefore does not equal # or v. Therefore the last link of each chain must be P, < x.
Therefore, it also holds that # <¢ Px A v <¢ P, By the induction hypothesis,
dp.u<oprv=<qp.

This argument can be generalized. A general set Q is quasi-closed over Cj if:

1. Equalities have been eliminated from Q, and it is closed under the instance and
component consistency rules (guaranteed by my representation).

2. Q contains C;.
3. Qs closed under the instance propagation rule.

4. Forallt,u,v,c,x,y,ift <qurnu=<qovAa{t>.x,v>.y}cQ,thenthereisaw
suchthat { u>.w } Q.

5. Forallt,u,c,v,ift <qun{t>.v}cQbut{u>.w} & Q for any w, then the set
{x[Fwyy<qun{x<;p,x>ewcQA(Vz {ybcz} EQ)}j={1}

Conditions 1 and 2 are fundamental. Conditions 3 and 4 are required to justify the “x in
Q” part of the proof; they require Q to be closed except possibly for some unexpanded
instances of compound structures. Condition 5 is required to justify the “x not in Q” part
of the proof;, it ensures that if a component ¢ is not propagated to u, then there is a unique
instance-chain predecessor that has a real component that we can fall back to. I have not
worked out the details of the argument yet, but this is what the system does.

7.4. Advertisements

The system reaches this state by propagating components lazily. When the component
propagation rule fires, it actually propagates an advertisement, representing the
possibility of a component being present in the instance. An advertisement is a pair: the
parent variable, v, and a component label, ¢, written v >.. These advertisements are
propagated along the instance graph using two rules:

e Advertisement propagation from component
Upon detecting { # <; u, t>.v } < C for somet, u, v,iand ¢, add u >_.

e Advertisement propagation from advertisement
Upon detecting { # <; u, t >, } < C for some 7, u, i and ¢, add u >_.

20

If a variable 7 already has a component c, then it does not need an advertisement for the
same component.

e Redundant advertisement suppression
Upon detecting { # >., 1 >.v } < C for some 7, v and ¢, delete 7 >.

The component propagation rule from the basic algorithm is not used, but the instance
propagation rule still is. Thus the algorithm will terminate with a set satisfying at least
quasi-closure conditions 1, 2 and 3.

7.5. Example

. /\
< A\
/o
/N
/ \
/ \
/> A
> >d\
/ \
/ \
/ \
<t '/ \
A
/\
/A
/o
/N
/ \
/ \
/ \
>./ >

Instead of copying T’s entire component tree, we have added advertisements for T’s
immediate components.
7.6. Ensuring quasi-closure: fill-in

To satisty quasi-closure condition 4, the algorithm “fills in” an advertisement that has a
real component above it in the instance graph:

e Advertisement fill-in
Upon detecting { # <; u, t >, u>.w } < C for some 7, # and w, add 7 >, v, where v is
a fresh variable.

For example, consider the initial set:

21

TC Uc

An advertisement will be added between T and U. The fill-in rule will ensure that the
advertisement is replaced with a real component. The instance propagation rule will
ensure that the instance chain from T, to U, is completed:

Ue

7.7. Ensuring quasi-closure: detecting conflicting sources

To satisty quasi-closure condition 5, each advertisement is associated with an
advertisement source, s, that records the variable the advertisement is derived from. The
advertisement is written 7 >, [s]. Quasi-closure condition 5 becomes the “unique source
condition”:

If the advertisement # >, [s] exists, thenthe set { x |Jj, w,y. {x <, y, y <cu,x>.w } C
CA(Vz.y>,z27¢C)}={s}.

The advertisement rules are extended:

e Advertisement propagation from component
Upon detecting { # <; u, t>.v } < Cforsome?, u, v,iand c, add u > [7].

e Advertisement propagation from advertisement
Upon detecting { <; u, t >, [s] } < C for some 7, u, 5,7 and ¢, add u > [s].

e Redundant advertisement suppression
Upon detecting { >.[s], t >.v } < C for some 7, v, s and c, delete 7 >, [s].

e Advertisement fill-in
Upon detecting { <, u, t >.[s], u >, w } c C for some, u, sand w, add 7 >, v,
where v is a fresh variable.

When a conflict arises — two advertisements for the same component show different
sources — we collapse the advertisements and make a real component.

22

e Conflicting advertisement detection
Upon detecting { >.[s], t >.[r] } < C for some ¢, s, ¢ and r, where r # s, create a
new w and add 7 >, w.

This rule tests for the inequality of two variables. This could be tricky because variables
can become equal during the run of the algorithm, but in fact it only means that conflicts
may be detected that in the end may not be “true” conflicts. Since replacing an
advertisement with a real component is always a conservative operation (possibly hurting
performance, but never correctness), this is not a problem.

The conflicting advertisement rule guarantees that upon termination, the unique source
condition is satisfied.
7.8. Simple example

For example, consider this Cr:

U <j
V
Dc <z’
T
Ud
D¢
T;

The algorithm propagates advertisements from U and T to V, but since U # T, the conflict
detection rule fires and a real component is created for V. This is necessary to make the
result quasi-closed.

7.9. Advertisement source updates

The conflicting advertisement detection rule alone is not satisfactory, however. Consider
this example:

23

—]

D¢

U

Suppose the algorithm propagates an advertisement from T to V and then W, and then
propagates an advertisement from U to V. (This schedule might be chosen because of
additional constraints not shown.) Now at V there are conflicting advertisements, with
sources U and T. The algorithm creates a real component at V. Next it propagates an
advertisement for that component to W. Now there are conflicting advertisements at W,
with sources T and V, so a new component must also be created at W. This is suboptimal
because W could simply have an advertisement with source V.

To avert such situations, it suffices to destroy the advertisements that could be affected
by a new component; they will be regenerated with correct source information, if
possible.

e Advertisement source update
Upon detecting { # >.[s],y >.z } < Cforsomet, s, y, zand ¢, where s <cy,y <ct
and s # y, delete “7 >, [s]”.

7.10. Implementation

Advertisement constraints are easily added by treating them as a degenerate kind of
component. Propagation and fill-in detection are implemented by allowing
advertisements as well as components to be on the worklist. Conflicting advertisement
detection is straightforward to implement and is done eagerly.

The advertisement source update is difficult to implement efficiently. The straightforward
implementation can destroy and recreate many advertisements each time a component is
added. My system uses an alternative representation for the source field of an
advertisement. An advertisement for ¢ at 7 records a “bottleneck variable” v such that
every instance chain from the true source s to 7 passes through v. v may be s, or it may be
some instance of s, in which case v also has an advertisement for ¢ (and its own
bottleneck variable, etc). The true source s for 7 can be found quickly; it is either v, or it is
v’s true source. When v is not s, components may be added along the path from s to v
without having to update the information cached in the advertisement at 7.

24

8. Suppressing components: modality

8.1. Example
Consider the following Java code:

Foo x = b ? new Bar () : new Baz();
println(x.kitty);

The advertisement algorithm does not perform well on this code. Suppose Ty is the
constraint variable associated with x. For each dynamically dispatched method m defined
in both classes Bar and Baz, Ty will get two advertisements for component m, one from
Bar and one from Baz. If the method implementations are different, then the
advertisements will have conflicting sources, so the structure of the method’s inferred
type will be expanded (forming the unification of the types of Bar’s m and Baz’s m).
This can result in a large number of unnecessary constraints.

Bar

>m

> args D> result > m

> args D> result

8.2. Approach

I annotate component constraints with mode information indicating how that component
is used. A component constraint is written ¢ > ¢ u, £ >, t >0 u, or t >, u. The
superscript “c” means that the component is used in “constructor” mode. The superscript
“d” means that the component is used in “destructor” mode. The superscript “-“ means
that the component is not used in any mode. “cd” means that the compnent is used in both

modes.

The idea comes from the realm of functional languages. In that domain, component
constraints are associated with the use of type constructors, such as the arrow type for
functions. The type rules for these languages have two forms: one form that introduces a
new occurrence of the constructor (“constructor mode”), e.g., the “lambda” rule for
creating a new function, and another form that eliminates an occurrence of the
constructor and uses the components (“destructor mode”), e.g., the “app” rule for

25

applying a function. The intuition I rely on is that if a component is not used in both
constructor and destructor modes, then no useful information is transmitted through it.
For example, if a function type is introduced through the “lambda” rule but is never
subject to the “app” rule, then it does not matter what its components are. Similarly, if
there is an “app” with no corresponding “lambda” then the components do not matter. (In
operational terms, the code performing the application must be dead.)

When SEMI gathers constraints from the original Java bytecode program, it adds mode
annotations to the component constraints as follows:

e Installing a method implementation into a new object type adds a component
constraint in constructor mode.

e C(Calling a virtual method in an object type adds a component constraint in destructor
mode.

e Writing a field of an object type adds a component constraint in constructor mode.
e Reading a field of an object type adds a component constraint in destructor mode.

e C(Calling a method adds parameter and result component constraints to the method type
in destructor mode.

e Declaring a method adds parameter and result component constraints to the method
type in constructor mode.

This mode information changes the interface to the solver and its specification. The
relevant change is in the definition of closure. The following parts of the definition of
closure are altered:

e Component propagation rule
Components propagate through instances, with nondecreasing modes:
{t<iut>"v}icC=>3wm {u>"wamcm'}cC

The benefit of modes is that we can safely inhibit some instance propagation.

e Instance propagation rule
Instances propagate down matching components, if the modes match
(t<imt>"vudcw}cCA@yzugcyr{y>blzicO={v<w}cC
The instance constraint is only propagated to the component if there is some transitive
instance of the component constraint that is used in both constructor and destructor
mode. Otherwise the instance constraint need not be propagated.

8.3. Solver rules

The solver rules given in previous sections remain in force. Rules that match a
component constraint match any mode annotation. Rules that add component constraints
add constraints with the “no mode” annotation. We introduce a separate rule to propagate
annotation information:
e Mode propagation

Upon detecting { 7 <; u, ¢ > v, u > w}cCforsomet, u,v,i,c, w, mandm,

mom'

replace “u >." w” with “u > w”.

26

e Instance propagation
Upon detecting { ¢ <;u, t>." v,u>.w } < C for some £, u, v, w, i, ¢, and m,
if 3y, z. u <c y Ay > z, then add constraint v <; w (if not already present).

2

8.4. Implementation

These rules are not difficult to implement, and cost very little in time and space. Mode
propagation takes place along with the other work on each dirty constraint from the
worklist. The instance propagation check is performed very efficiently by tracking, for
each 7 > v, whether there is an instance of the component with the “cd” annotation; this
“instance mode” information is propagated from instances to sources.

9. Globals
9.1. Encoding globals

It 1s straightforward to encode global variables (“static fields” in Java) in the constraint
system presented. They can be treated as a single “globals” object with one field for each
variable, which is passed into each function as a parameter. However, this is not very
efficient because globals information must be propagated through each method type. It is
much more efficient, and no less accurate, to have just one variable representing the
globals object and one copy of the information for the global variables.

9.2. Characterization of constraints for globals

In terms of the constraints, a variable v in an initial set C; is global if, for all closed sets C
containing C;, 3g.Vy. v ¢y = y <¢ g This means that, for a variable corresponding to
global data in some context, there is a corresponding “top level” variable representing the
original global data that is passed into the “main” method and is used everywhere.

Suppose that variables 7 and u are related according to the quasi-closure check. Then Jx.
t <cx Au <cx. Ifx corresponds to global data, then 3g.Vy. x <¢cy = ¥ <¢ g Therefore
dg. t <cg rnu <cgngisatop-level global. Thus, for quasi-closure, we do not need any
copies of global variable information other than the top-level copy.

9.3. Implementation

SEMI gives hints to the solver that a variable corresponds to global data. The solver
marks such variables as global and treats global variables specially:

e If7r>.vand7is global then v is made global.

e Global variables do not belong to any cluster or cluster level. The cluster invariant is
modified to “if # >, v and v is not global then 7 and v belong to the same cluster”. The
scheduler keeps a separate list of dirty constraints on global variables and always
processes them last, when no dirty clusters are available.

e If7<;u and 71is global then the algorithm sets # = # and deletes the instance
constraint.

27

9.4. Exceptions

SEMI encodes exceptions thrown by methods as auxiliary result components of method
types. In practice, as far as SEMI is concerned, any exception thrown by a method can be
propagated to the top level . This means that variables corresponding to thrown
exceptions (or their components) satisfy the same constraint property given above for
variables corresponding to global data. Thus, using the “globalization” optimization on
variables for thrown exceptions causes no loss of precision, and in practice the savings in
space and time are significant.

10. A failed optimization: cut-throughs
10.1. Example

Consider the following program:

Foo f1() { return new Foo(); 1}
Foo f£2() { return f£f1(); }

Foo £3() { return f£2(); }

. £3()

Any necessary components of the new Foo will be propagated to the call site for £3. The
variables corresponding to the results of £2 and £1 will also get copies of the
components. This is unsatisfying because handling these semantically meaningless layers
of abstraction could exact a significant cost in time and space for the solver.

10.2. Cut-throughs

I attempt to resolve this problem by introducing a notion of a “cut-through instance”: a
single instance constraint that summarizes a chain of instance constraints. In the example,
a single cut-through instance could connect the result of “new Foo” with the result of £3.
This meant that the components of the object need not be expanded in the results of £2
and £1.

It was very difficult to implement. A large amount of bookkeeping was required to ensure
consistency, and it was tricky to implement efficiently. To make the implementation
tractable, I had to carefully restrict the circumstances in which cut-through edges could
be used. Unfortunately, experiments showed that on real examples cut-through instances
were hardly ever being used, so I disabled them. I do not recommend introducing this
style of optimization.

11. Conclusion

I have presented a description of the strategies used in my implementation of SEMI, a
solver of systems of polymorphism constraints. All of them, except for “cut-throughs”,
made significant contributions to the performance of the system working on real
programs (e.g. Sun’s jar, javap and javac tools, and Ajax itself).

28

I have certainly not exhausted the possibilities for improvements. For example, there
seem to be further opportunities to reduce space by implicitly representing some instance
and/or component constraints and reconstructing them on demand. Other future work
might involve extending the constraint system with new information or new kinds of
constraints, to provide better accuracy.

12. Bibliography

[DM82] | L. Damas and R. Milner, Principal Type Schemes for Functional Programs.
Proceedings of the Ninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January 1982, pp. 207-212.

[H93] F. Henglein. Type inference with polymorphic recursion. TOPLAS, Volume
15, No. 2, 1993.

[099] R. O’Callahan. The Design of Program Analysis Services. CMU-CS-TR-99-
135.

Appendix A: Polymorphic Recursion, Unrestricted
Recursive Types and Principal Types

Consider a standard lambda language with a type system having polymorphic recursion
and unrestricted (1) recursive types. In such a language, there are typable program terms
that do not have principal types. Note that in the setting of p-recursive types, a type T for
aterm f is principal iff T is a type of £ and every type of £ is equivalent to an instance of
T, where type equivalence means that the (possibly infinite) regular labelled trees
corresponding to the types are identical.

Consider the following function, written in ML-like syntax:
fun £ (a, b) = £ b

This function is typable using polymorphic recursion and unrestricted recursive types, but
there is no principal type. Here are some possible types (all free variables are assumed to
be universally quantified):

o (W vxh)—>u
o wx(ULvxt)—>u
o xx(wx(uLvxt)—ou

Informally we could write these types as “(v, (v, (v, ...))) = u”,
“w, v, (v, (v, ...)))) > u”, and “(x, (w, (v, (v, (v, ...))))) = . The principal type would
need to have an unbounded number of quantified variables, but such types do not exist.

More formally, suppose T is the principal type. Let m be the number of free variables in
T. Define

Jo=ut. vxt

Jo=w, x (n>0)

29

For all n, J, » u 1s a type of £. Therefore there is a substitution S such that S(T) is
equivalent to J,, > u. J,, — u has more free variables than T; therefore, there is a free
variable of T (referred to as e) such that S maps e to a term equivalent to a subterm of
Jm — u containing at least two free variables (I will refer to the latter subterm as the
“expansion term”). These are the subterms of J,, — #, modulo equivalence:

1. Ju—>u

2. u

3. (1<i<m)
4. wi(1<1<m)
5. v

6. W.vxt

Cases 2, 4, 5 and 6 do not contain at least two free variables, hence cannot be the
expansion term. Case 1 cannot be the expansion term, for then T = e which is not a type
of £. Therefore the expansion term is J; (for some i, 1 <1 <m).

Let S' be the same substitution as S except that e is mapped to “int”. S'(T) is equivalent to
the tree for J,, — u with one or more subtrees equivalent to J; replaced by “int”. But since
w; occurs just once in the tree for “J,, — u”, there is only one such subtree — the actual
occurrrence of J; introduced by the production rules. Therefore S'(T) = K,, — u# where

K,' = int
K, =w, x Kj.1 (n>0)

It is easy to see that this is not a type of £, violating the assumption that T is a principal
type.

30

