
Learning State Features from Policies

to Bias Exploration in Reinforcement Learning

Bryan Singer Manuela Veloso

April, 1999

CMU-CS-99-122

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

This research is sponsored in part by the Defense Advanced Research Projects

Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement

number F30602-97-2-0250. The �rst author, Bryan Singer, is partly supported by a

National Science Foundation Graduate Fellowship.
The views and conclusions contained herein are those of the authors and should not

be interpreted as necessarily representing the o�cial policies or endorsements, either

expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory (AFRL), the National Science Foundation (NSF),

or the U.S. Government.

Keywords: machine learning, reinforcement learning

Abstract

When given several problems to solve in some domain, a standard reinforcement

learner learns an optimal policy from scratch for each problem. If the domain

has particular characteristics that are goal and problem independent, the learner

might be able to take advantage of previously solved problems. Unfortunately,

it is generally infeasible to directly apply a learned policy to new problems.

This paper presents a method to bias exploration through previous problem

solutions, which is shown to speed up learning on new problems. We �rst allow

a Q-learner to learn the optimal policies for several problems. We describe each

state in terms of local features, assuming that these state features together with

the learned policies can be used to abstract out the domain characteristics from

the speci�c layout of states and rewards in a particular problem. We then use a

classi�er to learn this abstraction by using training examples extracted from each

learned Q-table. The trained classi�er maps state features to the potentially

goal-independent successful actions in the domain. Given a new problem, we

include the output of the classi�er as an exploration bias to improve the rate

of convergence of the reinforcement learner. We have validated our approach

empirically. In this paper, we report results within the complex domain Sokoban

which we introduce.

1 Introduction

Consider learning to optimally solve many di�erent Markov Decision Problems

(MDPs) in a particular domain. The domain may be speci�ed by high level

constraints such as the types and e�ects of the actions that are available (deter-

ministic or non-deterministic). A problem speci�es a set of states, initial states,

a reward function, the possible actions in each state, and the state transition

function. For example, in a maze domain, all problems might consist of a set

of either open or blocked grid locations, a goal location, and actions moving

in one of four directions. A speci�c problem in the maze domain would then

be a speci�c grid layout, indicating exactly which cells are open and which are

blocked, and a speci�c goal location.

Given a speci�c problem in a domain, a standard reinforcement learner learns

the optimal policy specifying the best action to take in each possible state for

this speci�c problem.

For each new problem, learning starts from scratch because each problem

may have a di�erent set of states and rewards. This has been recognized as

rather unfortunate and several approaches have been and are being investigated

to �nd structure, abstraction, generalization, and/or policy reuse in reinforce-

ment learning (e.g., [4, 14, 5, 8, 1, 11]).

The work presented in this paper contributes a technique within this line

of research. It builds upon the assumption that the solutions to a series of

problems contain biasing information about selecting actions to more e�ciently

solve new problems within the domain. The algorithm presented here aims at

extracting these domain-speci�c invariants.

Classical reinforcement learning algorithms in their policy learning do not

provide the reason why an action should be chosen at a particular state. In fact

a state may be viewed as simply an entity. However, many domains may have

a natural set of features that are attributable to each state. For example, in a

maze domain where states are cells in the maze, some natural features for each

state are the agent's cell position and whether each of the adjacent cell locations

are blocked or open.

This work focusses on domains for which there are local state features that
may correlate directly with the actions to explore independent of the particular

problem trying to be solved.

While a plain state numbering based on location, as commonly used by a

reinforcement learner, uniquely identi�es each state, these local features need

not uniquely determine a single state. For example, in a maze there may be

many locations where all immediately adjacent locations to the agent are open.

Therefore, these state features have the potential to represent state generaliza-

tions.

This paper contributes an experience-biased reinforcement learning algo-

rithm to learn a mapping from state features to actions worth exploring so

that learning can be more e�ective in new problems. Our approach consists

of using the learned policies from a variety of individual problems in a speci�c

domain as training examples for a state-feature classi�er. In new problems,

1

our algorithm uses the learned classi�er to bias exploration in reinforcement

learning, reducing the number of states visited and speeding up learning.

2 Experience-Biased Reinforcement Learning

There are two assumptions required by our learning approach: (i) a domain D

with local state features prede�ned for each state, and (ii) a set of su�ciently

simple MDPs, fP1; : : : ; Png.

The �rst step of our approach consists of building action classi�ers from

reinforcement learning experience. Table 1 presents the top-level view of this

�rst step of our method. The problems fPig; i = 1; : : : ; n are given to a Q-

learner to be solved. The resulting entries in the Q-tables are used to generate

training examples of positive and negative uses of an action as a function of

local state features of each state in the Q-table. Then a set of classi�ers are

trained for each action to learn a mapping from local state features to actions

worth exploring in states with the same features.

Let Examples ;
For each problem Pi in fP1; : : : ; Png

Run the Q-learner on Pi saving the Q-table

Let Examples Examples [Generate Examples(Pi, Q-table)

For each action a available in the domain

Train a classi�er ca on the subset of Examples pertaining to a.

Table 1: Top-Level Algorithm for Building Classi�ers

The second step of our approach consists of using the learned classi�ers to

provide an exploration bias to the reinforcement learner. The goal is to allow

other, potentially more di�cult, problems within the domain to be solved more

e�ectively than a reinforcement learner would if starting from scratch.

This section presents the details of our approach.

2.1 Local State Features

Since each problem may have a completely di�erent set of states, it is impossible

to directly use the learned policy for one problem in another problem. Instead,

if we describe the states with local state features, it may be possible to abstract

information from the policy that is problem and goal independent. Since many

domains may have many possible features that describe states, we now brie
y

discuss what may constitute good local state features.

The learned policy for each problem depends on several factors, including

the reward function, and what action sequences produce what state sequences.

The speci�c action choice in each state may depend on the complete setup of the

problem. Furthermore, the policy is dependent upon the constraints placed on

the problem by the domain itself. The problem-independent domain constraints

2

may make some actions always lead to failure in some situations, making the

remaining actions the only reasonable ones to explore.

Thus, good local state features would be able to capture the di�erences

between states based on problem-independent domain constraints.

In order for the features to generalize between problems, they should not

require analyzing the entire problem. That is, the features should not uniquely

determine the exact state, but rather some portion of the state relevant to cap-

turing domain constraints. This is why we use the name \local state features".
Thus, many states within a problem and between problems could be described

by the same set of feature values.

So, for the domainD, our goal is to choose a set of features hf1; : : : ; fmi, such

that there is an easily computable function FD:SD � PD ! hf1; : : : ; fmi that,

given a particular state in a speci�c problem generates the local state features

for that state.

2.2 Generating Examples from the Learned Q-table

For each state in a learned Q-table, there is an action or a set of actions that has

the highest Q-value, which constitutes the optimal policy. Thus, for any other

state with the same set of local state feature values in another problem, this

action may be one worth exploring. On the other hand, if a particular action in

some state has an unchanged value (e.g. 0), then this means that the Q-learner

did not �nd any way to reach one of the goal states after taking that action in

that state, assuming that the only non-zero rewards are given for actions moving

the agent into one of the goal states. For this particular problem, taking that

action in that state lead to a dead-end. Thus, for any other state with the same

set of feature values in another problem, this action may not be worth exploring.

Based on this insight, we introduce the algorithm in Table 2 for extracting

positive and negative training examples of whether a particular action should

or should not be explored.

Let us add a few comments about this algorithm: First, when running the

Q-learner on a problem to generate the Q-table, the local state features are not
used. The Q-learning on the simple training problems uses only a standard

state numbering. The local state features are only used when generating the

state-action training examples. This distinction is important in that two states'

local state feature values may be the same while the particular best action to

take in each of the states is di�erent. Second, if a very small negative reward is

given for every action except actions moving the agent into a goal state, then

the above algorithm is still valid if the line \If Q(s; a) = 0" is changed to \If

Q(s; a) < 0" in the Negative Example function. That is, under this new reward

structure, actions leading to dead-ends will have negative values while actions

eventually leading to a goal state will have positive values. Note that these

negative rewards must be smaller in absolute value than the discounted value

of reaching the goal along any optimal path. Third, as a matter of practicality,

a Q-learner is often not allowed to fully converge all of its Q-values, especially

those that it has not found to lead to a goal state. To try to avoid generating

3

Generate Examples(Pi, Q-table)

Let Examples be the empty set

For each state s in problem Pi
For each action a available in state s

If Negative Example(a, s, Q-table)

Add hFD(s; Pi), :ai to Examples
else if Positive Example(a, s, Q-table)

Add hFD(s; Pi), ai to Examples

Negative Example(a, s, Q-table)

If Q(s; a) = 0

return True

else

return False

Positive Example(a, s, Q-table)

If Q(s; a) = maxa0 Q(s; a0)

return True

else

return False

Table 2: Generating Examples from Q-tables

many noisy examples, only states that have been visited at least some speci�ed

number of times are used.

2.3 Building a Set of Classi�ers

The set Examples (see Table 2) contains instances with local state features as

attributes and with classi�cations of either taking or not taking a particular

action.

To make this information useful for new problems, it needs to be condensed

into a form that can quickly tell for any state what actions are worth exploring

and which may not be. Further, since not every possible set of local state

feature values may have been seen, some generalization from the data would be

desirable.

The one di�culty of using a standard machine learning classi�cation algo-

rithm is that for any state the desired output is whether each of the actions

should or should not be taken, not a single value. One easy solution to this dif-

�culty is to train a separate classi�er for each action, with its output indicating

whether its particular action is worth exploring or not.

We learn a set of classi�ers, where each takes local state feature values and

maps them to whether each action is worth exploring or not, based on the

experiences from the data generated from the Q-tables learned in the training

problems.

4

2.4 Biasing Exploration

The �nal step of our approach consists of actually using the set of classi�ers to

bias the reinforcement learner's exploration strategy in new problems.

When a reinforcement learner is trying to decide what action to take, it

assigns a selection probability, Pt(a; s), to each action a available in the current

state s at time t (with
P

a
Pt(a; s) = 1). This probability distribution often

is based on the learner's exploration strategy and the current Q-values. The

reinforcement learner then randomly chooses an action to take according to this

probability distribution.

We incorporate the learned classi�ers to provide a new bias that alters this

probability distribution.

Assume that the classi�ers only return whether each action should or should

not be taken according to the training data. Then we would like to prefer, i.e.,
give higher probability weight to those actions that should be taken according

to the classi�ers.

Formally, let us de�ne for all actions a and states s, a weight function w:

w(a; s) =
�wpos if ca(s)=a

wneg if ca(s)=:a

where wpos and wneg are prede�ned large and small numbers, respectively for

when the classi�er returns that the action should or should not be taken.

However, the classi�ers can also return a con�dence value along with their

classi�cation. The algorithm can then use this con�dence to weight the di�erent

actions. So, for all actions a and states s let

w(a; s) = f(ca(s));

where the classi�er, ca, now returns a value directly proportional to its con�-

dence value, and where f is any non-decreasing non-negative function (possibly

the identity function).

Then we introduce a classi�er-based-only exploration strategy which is based
solely on the learned classi�ers. An action a is selected with probability:

w(a; s)
P

a0 w(a0; s)
;

i.e., the reinforcement learner weights each action by its w(a; s) value.

In our general approach, the learned classi�ers are \combined" with any

built-in exploration strategy (e.g. Boltzmann exploration). Let Pt(a; s) capture

this existing exploration bias. We introduce the combined-classi�er-built-in ex-

ploration strategy, in which an action a is chosen randomly with probability:

w(a; s) �Pt(a; s)P
a0 w(a0; s) �Pt(a0; s)

;

i.e., the reinforcement learner weights the existing probabilities by the new

w(a; s) values derived from the classi�er.

5

As a special case, if wpos = 1 and wneg = 0, then only actions that are to be

taken according to the classi�er are ever actually taken (all the rejected actions

by the classi�er are weighted by wneg = 0). Potentially, this can greatly prune

the search space, but it requires high accuracy in the classi�ers to guarantee the

optimal policy is still learned.

3 Implementation

We have fully implemented our experience-based reinforcement learning ap-

proach and tested it in several grid domains. We used classical Q-learning on

the training problems.

Initially, in a simple maze world, we used a decision tree as the state-action

classi�er. The decision tree provided a bias for learning new mazes that signi�-

cantly reduced search time.

In this paper, we report on the implementation in a complex grid world,

namely the Sokoban domain. 1 We use a neural network for the state-action

classi�ers with a standard back-propagation algorithm.

In this section, we introduce the Sokoban game and the experimental setup

that supports the empirical results.

3.1 Sokoban

Sokoban is an interesting domain of puzzles which falls in the general class of

motion planning problems with movable obstacles [15]. The object of the puzzle

is for an agent in a grid world to move all of the balls so that each is located on

a destination grid cell. Each grid location is either open or blocked by a wall.

An open grid cell may:

� contain a single ball,

� contain the agent if it does not contain a ball,

� be a destination location.

The agent:

� has at most four deterministic actions available to it: moving North, East,

South, or West;

� may not move into a blocked location;

� pushes a ball if it moves to an adjacent cell that has a ball; i.e., if the

agent is at position x; y and a ball is north of it at position x; y+ 1, then,

when the agent moves north, the new agent's and new ball's location are

x; y + 1 and x; y + 2;

� may not push a ball into a wall;

1See for example http://xsokoban.lcs.mit.edu/xsokoban.html.

6

Because the agent can only push balls and not pull them, there are many

situations in which a ball can become stuck or can have a limited set of cells it

can be moved to. For example, a ball pushed into a corner is not retrievable,

and a ball pushed onto a wall can only be moved along that wall unless the wall

comes to an end before reaching a corner. Thus, many rather small mazes can

be surprisingly di�cult to solve. Being able to avoid these stuck positions could

greatly limit the search space. It should be noted that many stuck or limited

range situations are not easily detectable.

3.2 Experimental Setup

A state is de�ned by the location of the agent and the location of each of the

balls. A small negative reward is given for each move, and a large reward is

given for reaching any state that has all of the balls on destination locations.

Since it is possible to reach states from which the goal is not achievable and

since this situation is not easily detectable, a maximum number of moves is

speci�ed at which time the problem is reset to its initial con�guration.

Local state features are chosen to describe all of the grid locations immedi-

ately surrounding the agent up to a radius of r cells away from the agent. Note

that we must use at least r = 3 in order to tell if a move will push a ball next

to a wall or into a corner. In the results presented below, we used r = 4. Each

of these local state locations are described in terms of three boolean attributes:

is-blocked, has-ball, is-destination.
Note that a grid world has inherent symmetry built in. For example, a move

East in some grid is equivalent to a move North in a 90o counter-clockwise

rotated grid. Thus, through the use of rotations, any example generated that

corresponds to taking or not taking an action other than North, can be trans-

formed into an example for taking or not taking a move northward. Therefore

we generate a single classi�er for the North action. We use a standard back-

propagation neural network. Its inputs are the local state features (r = 4) and

its output indicates whether moving North is worth exploring or not for such

generalized input state.

When solving a new problem, the state feature values for the current state

and each of its rotations are presented to the classi�er in turn to determine

whether each of the four actions are worth exploring or not.

4 Empirical Results

For the �rst set of tests in the Sokoban domain, we began by running a Q-learner

on a set of 12 simple puzzles. Each puzzle contained only a single ball and a

single destination location and consisted of all open locations except a wall of

blocked locations around the perimeter. The amount of open space changed

in di�erent puzzles, with an equal number of grids of sizes 5 � 5, 10� 10, and

20� 20 (see Figure 1(a)).

7

B

D

D

B

(a) (b)

Figure 1: Two Example Sokoban Grids (D=destination location, B=ball, agent

not shown)

After the Q-learner solved these training problems, the neural network was

trained on the resulting data. Then we tested with a set of similar mazes, of

sizes 8� 8 and 16� 16.

For comparison, the Q-learner was run on these testing mazes with and

without using the learned neural network. The experience-based reinforcement

learner used the same built-in exploration bias as the standard Q-learner and

used the classi�er with wpos = 1 and wneg = 0.

An \epoch" was de�ned to be one set of actions that lead to the goal state or

a set of 10,000 moves, whichever came �rst. For every epoch that the Q-learner

was allowed to run, a test was run on the Q-table that had been learned up to

that point. In particular, this test consisted of �xing the Q-table and allowing

the agent to follow the policy de�ned by the current Q-table (in the case that

several actions were equally maximum valued, an action was randomly selected

with uniform probability among all such actions). This was done 100 times,

again allowing the agent up to 10,000 moves each time. Of the times the agent

reached the goal, the average number of moves before reaching the goal was

noted.

We have run a large number of empirical tests with successful results. Fig-

ure 2 shows the results for two di�erent sized grids. Each graph shows the

results for two di�erent placements of the ball and destination location. The

y-axis is the average number of steps before a goal state is reached. If upon

any test, none of the hundred runs is successful in reaching the goal, then no

data is plotted. The placement of the agent is random with each test, hence

the average number of steps in these graphs may not be constant even after the

Q-table has converged, which accounts for expected graph oscillations.

As shown in the graphs, the learner converges signi�cantly faster when using

the learned neural network. In all cases, the experience-based reinforcement

learner also converged to a policy that was no worse or better than the standard

learner without using the neural network as an exploration bias.

As a second test, a Q-learner was run on a set of 12 more complex grids of

size 20 � 20 containing a number of blocked locations. We used a single ball

8

Open 8x8

Grid 1 with NN
Grid 2 with NN
Grid 1 without NN
Grid 2 without NN

ave. # steps

epochs
10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00
28.00
30.00

0.00 10.00 20.00 30.00 40.00 50.00

Open 16x16
Grid 1 with NN
Grid 2 with NN
Grid 1 without NN
Grid 2 without NN

ave. # steps

epochs
40.00
41.00
42.00
43.00
44.00
45.00
46.00
47.00
48.00
49.00
50.00
51.00
52.00
53.00
54.00
55.00

0.00 100.00 200.00 300.00 400.00

Figure 2: Tests on Open Grids

(see Figure 1(b) for an example grid).

The examples that were collected on these grids were combined with the

examples generated from the open grids described above. This combined set of

examples was then used to train a new neural network. Two grids of size eight

by eight and containing some blocked locations were used as test problems. The

results are shown in Figure 3 and are similar to the results obtained for the open

grids.

Notice that in every test, the Q-learner using the learned neural network

was able to �nd a good policy in less than half the number of epochs that the

unbiased Q-learner required. This indicates that the neural network was able

to provide a bias that signi�cantly helped improve the performance on solving

new problems.

9

Grid 1 with NN

Grid 2 with NN

Grid 1 without NN

Grid 2 without NN

ave. # steps

epochs
15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

25.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Figure 3: Tests on 8x8 Grids with Blocked Locations

5 Related Work

In other e�orts in the area of life-long learning (e.g., [13]), solutions to earlier

related tasks are used to make solving the next related task easier. The algo-

rithm discussed here also achieves this same goal. It uses solutions to several

problems in the form of learned policies to build a classi�er that helps bias ex-

ploration in new problems in such a way that avoids or reduces the selection

of actions that are not worth exploring. Some of the previous life-long learning

algorithms for reinforcement learning have required that at least some of the

states in the previous tasks also appear in the new task. This is a restriction

that the algorithm in this paper does not impose; in fact, it was designed with

the idea that there are many related tasks that should bene�t from previous

solutions even though the state space may be totally di�erent.

State abstraction or generalization is a common method for reducing the

search space in reinforcement learning (e.g., [2, 4, 6, 7, 11]). In an equivalent

way to state abstraction, the algorithm presented here groups states together

that have the same local state feature values. However, the algorithm runs the

reinforcement learner on the entire set of states instead of reducing all states

with the same feature values together into one state. The local state features

are used to help bias the selection of actions in each state but are not used to

change the actual states the reinforcement learner sees. So, the algorithm does

not gain from a reduction in the number of states that state abstraction usually

provides, but it does not su�er from not being able to choose di�erent actions

in states that have been grouped together.

Action abstraction and macro-operator methods (e.g., [9, 14, 10]) learn a

sequence of actions which are applicable as a unit in a set of states. While these

methods try to learn what single sequence of actions should be taken in a set of

states, the algorithm here tries to �nd what actions are not worth exploring and

thus a set of actions worth exploring. The algorithm has signi�cant
exibility

10

as to what can be learned and when this learned knowledge can be applied, but

requires the reinforcement learner to still �nd the best action to take in every

state.

Hierarchical abstraction (e.g., [3, 8, 12]) is a method of decomposing a task

into smaller and smaller subtasks. While the method is very appealing, sev-

eral suggested algorithms within the context of reinforcement learning require

that the hierarchy be hand designed. Although not hierarchical in nature, the

algorithm in this paper does use an extra source of knowledge in the form of

a learned classi�er. Unlike the often hand designed hierarchies, the algorithm

automatically learns the classi�er that it uses to guide exploration.

6 Conclusion

In this paper, we presented our work towards the improvement of the e�ciency

of reinforcement learning in complex problems, as a function of previously solved

simple problems. The idea is that di�erent problems in the same domain can

share domain invariants, if these exist.

Our experience-based reinforcement learning contributes the following steps:

�rst a standard reinforcement learner solves simple problems; then local state

features are introduced to be used to generate state-action training examples

combined with the result of the initial learning phase; classi�ers are built which

capture the domain invariant state-action mappings; �nally, the classi�ers are

integrated as an exploration bias for new episodes of reinforcement learning in

more complex problems.

We have reported empirical results within the Sokoban domain to validate

this algorithm.

Acknowledgements

Special thanks to Sebastian Thrun for several initial discussions that started us

down this path of research.

References

[1] Michael Bowling and Manuela Veloso. Bounding the suboptimality of

reusing subproblems. In Proceedings of the NIPS Workshop on Abstrac-
tion in Reinforcement Learning, December 1998.

[2] Justin A. Boyan and Andrew W. Moore. Generalization in reinforce-

ment learning: Safely approximating the value function. In G. Tesauro,

D. Touretzky, and T. Leen, editors, Advances in Neural Information Pro-
cessing Systems, volume 7, pages 369{376. The MIT Press, 1995.

[3] Peter Dayan and Geo�rey E. Hinton. Feudal reinforcement learning. In

Stephen Jos�e Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances

11

in Neural Information Processing Systems, volume 5, pages 271{278. Mor-

gan Kaufmann, San Mateo, CA, 1993.

[4] Thomas Dean and Shieu-Hong Lin. Decomposition techniques for planning

in stochastic domains. In Proceedings of the Fourteenth International Joint
Conference on Arti�cial Intelligence (IJCAI-95), 1995.

[5] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier.

Hierarchical solution of markov decision processes using macro-actions. In

Proceedings of the Fourteenth Annual Conference on Uncertainty in Arti-
�cial Intelligence (UAI-98), 1998.

[6] Andrew Kachites McCallum. Reinforcement Learning with Selective Per-
ception and Hidden State. Phd. thesis, Department of Computer Science,

University of Rochester, Rochester, NY, 1995.

[7] Andrew W. Moore and Christopher G. Atkeson. The parti-game algorithm

for variable resolution reinforcement learning in multidimensional state-

spaces. Machine Learning, 21:199, 1995.

[8] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies

of machines. In Advances in Neural Information Processing Systems, vol-
ume 10. The MIT Press, 1998.

[9] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Planning with

closed-loop macro actions. In Working notes of the 1997 AAAI Fall Sym-
posium on Model-directed Autonomous Systems, 1997.

[10] Jette Randl�v. Learning macro-actions in reinforcement learning. In M. S.

Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Informa-
tion Processing Systems, volume 11. The MIT Press, 1999. In Press.

[11] Richard S. Sutton. Generalization in reinforcement learning: Successful

examples using sparse coarse coding. In David S. Touretzky, Michael C.

Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information

Processing Systems, volume 8, pages 1038{1044. The MIT Press, 1996.

[12] Prasad Tadepalli and Thomas G. Dietterich. Hierarchical explanation-

based reinforcement learning. In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, pages 358{366.Morgan Kaufmann

Publishers, San Francisco, 1997.

[13] Sebastian Thrun and Lorien Pratt, editors. Learning to Learn. Kluwer

Academic Publisher, 1997.

[14] Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement

learning. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances
in Neural Information Processing Systems, volume 7, pages 385{392. The

MIT Press, 1995.

12

[15] G. Wilfong. Motion planning in the presence of moving obstacles. In

Proceedings of the Fourth Annual ACM Symposium on Computational Ge-
ometry, 1988.

13

