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Abstract

This paper presents a statistical algorithm for collaborative mobile robot localization. Our ap-
proach uses a sample-based version of Markov localization, capable of localizing mobile robots
in an any-time fashion. When teams of robots localize themselves in the same environment, prob-
abilistic methods are employed to synchronéaeh robot's belief whenever one robot detects
another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost
sensors are amortized across multiple robot platforms. The paper also describes experimental re-
sults obtained using two mobile robots, using computer vision and laser range finding for detecting
each other and estimating each other’s relative location. The results, obtained in an indoor office
environment, illustrate drastic improvements in localization speedaaadracy when compared

to conventional single-robot localization.
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1 Introduction

Sensor-based robot localization has been recognized as of the fundamental problems in mobile
robotics. The localization problem is frequently divided into two subproblétosition tracking

which seeks to identify and compensate small dead reckoning errors under the assumption that the
initial position is known, andgjlobal self-localizationwhich addresses the problem of localization

with no a priori information. The latter problem is generally regarded as the more difficult one, and
recently several approaches have provided sound solutions to this problem. In recent years, a flurry
of publications on localization—which includes a book solely dedicated to this problem [6]—
document the importance of the problem. According to Cox [15], “Using sensory information to
locate the robot in its environment is the most fundamental problem to providing a mobile robot
with autonomous capabilities.”

However, virtually all existing work addresses localization siraglerobot only. The problem
of cooperative multi-robot localization remains virtually unexplored. At first glance, one could
solve the problem of localizing/ robots by localizing each robatdependentlywhich is a valid
approach that might yield reasonable results in many environments. However, if robots can detect
each other, there is the opportunity to do better. When a robot determines the location of another
robot relative to its own, both robots can refine their internal believes based on the other robot’s
estimate, hence improve their localization accuracy. Thiato exchange information during
localization is particularly attractive in the context of global localization, where each sight of
another robot can reduce the uncertainty in the location estimated dramatically.

The importance of exchanging information during localization is particularly striking for het-
erogeneous robot teams. Consider, for example, a robot team where some robots are equipped with
expensive, high accuracy sensors (such as laser range finders), whereas others are only equipped
with low-cost sensors such as ultrasonic range finders. By transferring information across mul-
tiple robots, high-accuracy sensor information can be leveraged. Thus, collaborativeoinot
localization facilitates the amortization of high-end higbcuracy sensors across teams of robots.
Thus, phrasing the problem of localization as a collaborative one offers the opportunity of im-
proved performance from less data.

This paper proposes an efficient probabilistic approach for collaborative multi-robot local-
ization. Our approach is based ttarkov localization53, 64, 37, 9], a family of probabilistic
approaches that have recently been applied with great practical success to single-robot localiza-
tion [7, 70, 19, 29]. In contrast to previous research, which relied on grid-based or coarse-grained
topological representations, our approach adopts a sampling-based representation [17, 23], which
is capable of approximating a wide range of belief functions in real-time. To transfer informa-
tion across different robotic platforms, probabilistic “detection models” are employed to model



2 Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun

the robots’ abilities to recognizeach other. When one robot detects another, detection mod-
els are used to synchronize the individual robots’ believes, thereby reducing the uncertainty of
both robots during localization. To accommodate the noise and ambiguity arising in real-world
domains, detection models are probabilistic, capturing the reliabilityaandracy of robot detec-

tion. The constraint propagation is implemented using sampling, and density trees [42, 51, 54, 55]
are employed to integrate information from other robots into a robot’s belief.

While our approach is applicable to any sensor capable of (occasionally) detecting other
robots, we present an implementation that uses color cameras for robot detection. Color im-
ages are continuouslyfiltered, segmented, and analyzed, to detect other robots. To obtain accurate
probabilistic models of the detection process, a statistical learning technique is employed to learn
the parameters of this model using the maximum likelihood estimator. Extensive experimental
results, carried out using data collected in two indoor environments, illustrate the appropriateness
of the approach.

In what follows, we will first describe the Monte Carlo Localization algorithm for single
robots. Section 2 introduces the necessary statistical mechanisms lferabat localization,
followed by a description of our sampling-based and Monte Carlo localization technique in Sec-
tion 3. In Section 4 we present our vision-based method to detect other robots. Experimental
results are reported in Section 5. Finally, related work is discussed in Section 6, followed by a
discussion of the advantages and limitations of the current approach.

2 Multi-Robot Localization

Let us begin with a mathematical derivation of our approach to multi-robot localization. Through-
out the derivation, it is assumed that robots are given a model of the environment (e.g., a map [69]),
and that they are given sensors that enable them to relate their own position to this model (e.g.,
range finders, cameras). We also assume that robots can detect each other, and that they can
perform dead-reckoning. All of these senses are typically confounded by noise. Further below,
we will make the assumption that the environment is Markov (i.e., the robots’ positions are the
only measurable state), and we will also make some additional assumptions necessary for factorial
representations of joint probability distributions—as explained further below.

Throughout this paper, we adopt a probabilistic approach to localization. Probabilistic meth-
ods have been applied with remarkable success to single-robot localization [53, 64, 37, 9, 25, 8],
where they have been demonstrated to solve problems like global localization and localization in
dense crowds.
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2.1 Data

Let N be the number of robots, and k&t denote the data gathered by the¢h robot, with1 <
n < N. Obviously, eachl,, is a sequence of three different types of information:

1. Odometry measurements Each continuously monitors its wheel encoders (dead-reckoning)
and generates, in regular intervals, odometric measurements. These measurements, which
will be denoted:, specify the relative change of positiancording to the wheel encoders.

2. Environment measurements.The robots also queries their sensors (e.g., range finders, cam-
eras) in regular time intervals, which generates measurements denoted’bg measure-
mentse establish the necessary reference between the robot’s local coordinate frame and the
environment'’s frame of reference. In our experiments bedomi)l be laser range scans.

3. Detections.Additionally, each robot queries its sensors for the presence or absence of other
robots. The resulting measurements will be denetedRobot detection might be accom-
plished through different sensors than environment measurements. Below, in our experi-
ments, we will use a combination of visual sensors (color camera) and range finders for robot
detection.

The data of all robots is denoté@dwvith

d = diUdyU...Udy. 1)

2.2 Markov Localization

Before turning to the topic of this paper—collaborative multi-robot localization—let us first re-
view a common approach to single-robot localization, which our approach is built upon: Markov
localization. Markov localization uses only dead reckoning measurenaeatsl environment
measurements; it ignores detections. In the absence of detections (or similar information that
ties the position of one robot to another), information gathered at different platforms cannot be
integrated. Hence, the best one can do is to localize each robot individually, independently of all
others.

The key idea of Markov localization is that each robot maintains a belief over itiquos
The belief of then-th robot at timet will be denotedBel (€). Here& denotes aobot position
(we will use the termgosition poseandlocationinterchangeably), which is typically a three-
dimensional value composed of a robatig position and its heading directign Initially, at time
t =0, Bell) (&) reflects the initial knowledge of the robot. In the most general case, which is
being considered in the experiments below, the initial position of all robots is unknown, hence
Bel!” (¢) is initialized by a uniform distribution.
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Attimet, the beIiefBelff) (&) is the posterior with respect to all data collected up to time
Bel(€) = PV |d)) (2)

Wherea(f) denotes the position of the-th robot at time, anddgf) denotes the data collected by
then-the robotup totime¢. By assumption, the most recent sensor measuremelhtt) i3 either

an odometry or an environment measurement. Both cases are treated differently, so let's consider
the former first:

1. Sensing the environment: Suppose the last item il is an environment measurement,
denotedogf). Using the Markov assumption (and exploiting that the robot position does not
change when the environment is sensed), we obtain

Bel(¢) = P | d)
W | D al=y pe | aliY)
p<05;> | diY)
PO [y ped) | dY)
P | di™Y)
= a P<o5f> | €0y P(eld) | ali=D)
= a P | D) PEE D)
= a POD D) BelV(¢) 3)

wherea is a normalizer that does not depencfétﬁ. Notice that the posterior beligfel! (&)
after incorporating>7(f) is obtained by multiplying the perceptual modédogf) | fq(f)) with
the prior belief. This observation suggest therementalpdate equation:

Bel, (&) +— Pl | €D) Bel, (&) (4)

The conditional probability”(o,, | &) is called theenvironment perception moded robot

n. In Markov localization, it is assumed to be given. The probabiltty,, | &,) can be
approximated by’(o,, | o¢), which is the probability of observing, conditioned on the
expected measurementat location. The expected measurement is easily computed using
ray tracing. Figure 1 shows this perception model for laser range finders. Heratig is

the distance, expected given the world model, and thaxis is the distance, measured by

the sensor. The function is a mixture of a Gaussian density and a geometric distribution. It in-
tegrates the accuracy of the sensor with the likelihood of receiving a “random” measurement
(e.g., due to obstacles not modeled in the map [22]).
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Fig. 1: Perception model for laser range finders. F¥exis depicts the expected measurementythgis
the measured distance, and the vertical axis depicts the likelihood. The peak marks the most likely
measurement. The robots are also given a map of the environment, to which this model is applied.

2. Odometry: Now suppose the last item itf,) is an odometry measurement, denotéd.
Using the Theorem of Total Probability and exploiting the Markov property, we obtain

Bel(¢) = PV | a0
= [ PED 10 ) PED | dD) gl
- / PEW a0y Pl | =) dgl-Y (5)

which suggests thiecrementalipdate equation:
Bel(&) e [Pl d),€) Bel(s)) de. ©)

Here P(¢ | a,¢’) is called themotion modebf robotn. Figure 2 shows an example for

the mobile robots used in our experiments. The straight line represents the trajectory of the

robot, which moved straight from left to right. In the beginniﬁgléo) (€) was initialized by
a Dirac-Distribution. After 30 meters the robot is highly uncertain about its location which is
represented by the "banana-shaped™ distribuﬂhﬂmg) (€). As the figure suggests, a motion
model is basically a model of robot kinematics annotated with uncertainty.

These equations together form the basis of Markov localization, an incremental probabilis-

tic algorithm for estimating robot positions. The Markov localization algorithm consists of the
following steps:
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Fig. 2: Motion model representing the uncertainty in robot motion.

Step 1. Initialize Bel,, (£) by a uniform distribution.

Step 2.1. For each environment measurementlo
Bel, (&,) +«— Plon| &) Bel,(&,). @)
Step 2.2. For each odometry measurementdo

Bel(€) — [ Ple | ang) Bel() d, 8)

Thus, Markov localization relies on knowledge Bfo | £) and P(¢ | a,¢’), The former condi-

tional typically requires a model (map) of the environment. As noticed above, Markov localization
has been applied with great practical success to mobile robot localization. However, it is only ap-
plicable to single-robot localization, and cannot take advantage of robot detection measurements.
Thus, in its current form it cannot exploit relative information between different robots’ positions

in any sensible way.

2.3 Multi-Robot Markov Localization

The key idea of multi-robot localization is to integrate measurements taken at different platforms,
so that each robot can benefit from data gathered by robots other than itself.
At first glance, one might be tempted to maintain a single belief over all robots’ locations, i.e.,

g = {517"'751\7} (9)

Unfortunately, the dimensionality of this vector growths with the number of robotsadh robot
position is described by three values (ity position and its heading directidi, £ is of dimension
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3N. Distributions ovet are, hence, exponential in the number of robots. Thus, modeling the joint
distribution of the positions of all robots is infeasible for larger valued’of

Our approach maintainiactorial representations; i.e., each robot maintains its own belief
function that models only its own uncertainty, and occasionally, e.g., when a robot sees another
one, information from one belief function is transfered from one robot to another. The factorial
representation assumes that the distributiohisfthe product of itsV marginal distributions:

P 0 1a®y = pe® a0y, pE? ) a0y (10)

Strictly speaking, the factorial representation is only approximate, as one can easily construct
situations where the independence assumption does not hold true. However, the factorial repre-
sentation has the advantage that the estimation of the posteriors is conveniently carried out locally
on each robot. In the absence of detections, this amounts to performing Markov localization in-
dependently for each robot. Detections are used to providiti@ual constraints between the
estimated of pairs of robots, which will lead to refined local estimates.

To derive how to integrate detections into the robots’ beliefs, let us assume the last iig}n in
is a detection variable, denoteﬁ). For the moment, let us assume this is the only such detection
variable ind(?, and that it provides information about the location of theth robot relative to
robotn (with m # n). Then

Bell) = p®) | qt)
PED 1 d) PED | df)
PED 1) [ PED 10, HOPED |~ gl (11)

which suggests incremental update equation:

Bel(§n) — Bel(gn) [ PIE 1 €0.00) Bel(6,) dg, (12)

Of course, this is only an approximation, since it makes certain independence assumptions (it
excludes that a sensor reports “l saw a robot, but | cannot say which one”), and strictly speaking it
is only correct if there is only a singlein the entire run. However, this gets us around modeling the
jointdistributionP(&y, . .., &n | d), which is computationally infeasible as argued above. Instead,
each robot basically performs Markov localization with thesetamthl probabilistic constrains,
hence estimates the marginal distributid(s,.|d) separately.

The reader may notice that, by symmetry, the same detection can be used to constrdm the
robot’s position based on the belief of thethe robot. The derivation is omitted since it is fully
symmetrical.
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2.4 Additional Considerations

If the data set contains more than one constraibetween two robots: andn, the situation
becomes more complicated. Basically, repeated integration of different robots’ belief according
to (11) can lead to using the same evidence twice; hence, robots can get overly confident in their
position.

In our approach, this effect is diminished by a set of rules that basically reduce the danger
arising from the factorial distribution.

1. To diminish these effects, our approach ignonedativesights, i.e., events where a robot
doesnot see another robot.

2. It also includes timer that, once a robot has been sighted, blocks the ability to see the same
robot again for a pre-specified duration.

In practice, these two restrictions are sufficient to yield superior performance, as demonstrated
below. However, the reader should notice that they imply that detection information may not be
used. At the current point, we are not aware of an approach that would utilize more information
yet maintain the highly convenient factorial representations.

3 Sampling and Monte Carlo Localization

The previous section left open how the belief is represented. In general, the space of all robot
positions is continuous-valued and no parametric model is known that would accurately model
arbitrary beliefs in such robotic domains. However, practical considerations make it impossible to
model arbitrary beliefs using digital computers.

The key idea here is to approximate belief functions using a Monte Carlo method. More
specifically, our approach is an extension of Monte Carlo localization (MCL), which was recently
proposed in [17, 23]. MCL is a version of Markov localization that relies on sample-based rep-
resentation and the sampling/importance re-sampling algorithm for belief propagation [60]. MCL
represents the posterior belief !/, (£) by a set of K weighted random samples, particles
denotedS = {s; | i = 1..K}. A sample set constitutes a discrete distribution. However, un-
der appropriate assumptions (which happen to be fulfilled in MCL), such distributions smoothly
approximates the “correct” one at a ratelgf/K asK goes to infinity [66].

A particularly elegant algorithm to accomplish this has recently been suggested independently
by various authors. It is known alternatively as the bootstrap filter [27], the Monte-Carlo fil-
ter [40], the Condensation algorithm [35, 36], or the survival of the fittest algorithm [38]. These
methods are generically known particle filters or sampling/importance re-sampling [60], and
an overview and discussion of their properties can be found in [18].
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Start location

10 meters

Fig. 3: Sampling-based approximation of the position belief for a non-sensing
robot. The solid line displays the actions, and the samples represent the
robot’s belief at different points in time.

Samples in MCL are of the type

((z,y,0),p) (13)

where(z, y, #) denote a robot position, and> 0 is a numerical weighting factor, analogous to a
discrete probability. For consistency, we ass@{él pi = 1.

In analogy with the general Markov localization approach outlined in Section 2, MGlepds
in two phases:

1. Robot motion. When a robot moves, MCL generatBsnew samples that approximate the
robot’s position after the motion command. Each sample is generatethdgmlydrawing
a sample from the previously computed sample set, with likelihood determined bytheir
values. Lett’ denote the position of this sample. The new samgeésthen generated by
generating a single, random sample fréi€ | £, a), using the actiom as observed. The
p-value of the new sample i§ ~'.

Figure 3 shows the effect of this sampling technique for a single robot, starting at an initial
known position (bottom center) and executing actions as indicated by the solid line. As can
be seen there easily, the sample sets approximate distributions with increasing uncertainty,
representing the gradual loss of position information due to slippage and drift.

2. Environment measurementsare incorporated by re-weighting the sample set, which is anal-
ogous to Bayes rule in Markov localization. More specifically, let

(& py (14)

be a sample. Then

p «— aP]f (15)
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whereo is a sensor measurement, ans a normalization constant that enforées | p; =

1. The incorporation of sensor readings is typically performed in two phases, one inwhich
is multiplied by P(o | £), and one in which the varioysvalues are normalized. An algorithm
to perform this re-sampling process efficiently(riK') time is given in [12].

In practice, we have found it useful to add a small number of uniformly distributed, random sam-
ples after each estimation step [23]. Formally, these samples can be understood as a modified
motion model that allows, with very small likelihood, arbitrary jumps in the environment. The
random samples are needed to overcome local minima: Since MCL uses finite sample sets, it may
happen that no sample is generated close to the correct robot position. This may be the case when
the robot loses track of its position. In such cases, MCL would be unable to re-localize the robot.
By adding a small number of random samples, however, MCL can effectively re-localize the robot,
as documented in our experiments described in [23] (see also the discussion on ’'loss of diversity’
in [18]).

3.1 Properties of MCL

A nice property of the MCL algorithm is that it can universally approximate arbitrary probability
distributions. As shown in [66], the variance of the importance sampler converges to zero at a rate
of 1/4/N (under conditions that are true for MCL). Thus, at least theoretically MCL is superior
to all previous localization approaches that the authors are aware of, in that it can approximate a
much larger class of distributions. The sample set size naturally trades off accuracy and compu-
tation. The true advantage, however, lies in the way MCL places computational resources. By
sampling in proportion to likelihood, MCL focuses its computational resources on regions with
high likelihood, where things really matter.

MCL also lends itself nicely to an any-time implementation [16, 75]. Any-time algorithms
can generate an answeraatytime; however, the quality of the solution increases over time. The
sampling step in MCL can be terminated at any time. Thus, when a sensor reading arrives, or
an action is executed, sampling is terminated and the resulting sample set is used for the next
operation.

3.2 Multi-Robot MCL

The extension of MCL to collaborative multi-robot localizationnist straightforward. This is
because under our factorial representation, each robot maintains each own, local sample set. When
one robot detects another, both sample sets are synchronized using the detection model, according
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(@) (b)

Figure 4: (a) Sample set that corresponds to a detecticand (b) its approximation using a density tree.
The tree transforms the discrete sample set into a continuous distribution, whistessary to generate
new importance factors for the individual sample points representing eaolis belief.

to the update equation
Bel(gn) +— Bel(gn) [ PED €000 Bel(s,) de, (16)

Notice that this equation requires the multiplication of two densities. Since samplss (if,,)
and Bel(¢,,) are drawn randomly, it isot straightforward to establish correspondence between
individual samples iBel(&,,,) and [ P(Efi) | 57(175), m(j)) Bel(&,) d&,.

To remedy this problem, our approach transforms sample sets into density functions using
density tree$42, 51, 54, 55]. These methods approximate sample sets using piecewise constant
density functions represented by a tree. The resolution of the tree is a function of the densities of
the samples: the more samples exist in a region of space, the finer-grained the tree representation.

Figure 4 shows an example sample set along with the tree that represents this set. Our specific
algorithm grows trees by recursively splitting in the centeeach coordinate axis, terminating
the recursion when the number of samples is smaller than a pre-defined constant. After the tree is
grown, each leaf’s density is given by the quotient of the sum of all wejgbfsall samples that
fall into this leaf, divided by the volume of the region covered by the leaf. The latter amounts to
maximum likelihood estimation of (piecewise) constant density functions.

To implement the update equation above, our approach approximates the density

[ P 160,00 Bei(e,) d, a7)

using samples, just as described above. The resulting sample set is then transformed into a density
tree. These density values are then multiplied into the weights (importance factors) of the samples
in Bel(&,,,), effectively multiplying both density functions. The result is a refined density for the
m-th robot, reflecting the detection and the belief of thth robot.
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The same update rule is applied in the other direction, from rabod robotn. Since the
equations are completely symmetric, they are omitted here.

3.3 Adaptive Sampling

In practice, the best sample set sizes can vary drastically [42]. During global localization, a robot
may be completely ignorant as to where it is; hence, it's belief uniformly covers its full three-
dimensional state space. During fims tracking, on the other hand, the uncertainty is typically
small and often focused on lower-dimensional manifolds. For example, when a robot knows its
relative position to an adgent wall but does not know what hallway it is in, the belief is focused
on a one-dimensional sub-manifold similar to a road-map. Thus, many more samples are needed
during global localization to approximate the true density with high accuracy, than are needed for
position tracking.

MCL determines the sample set size on-the-fly. The idea is to use the diverggng, pand
P(&, | 0,), the beliefbeforeandafter sensing, to determine the sample sets. More specifically,
both motion data and sensor data is incorporated in a single step, and sampling is stopped whenever
the non-normalized sum of weightgbefore normalization!) exceeds a threshgpldf the position
predicted by odometry is well in tune with the sensor reading, each individisdarge and the
sample set remains small. If, however, the sensor reading carries a lot of surprise, as is typically
the case when the robot is globally uncertain or when it lost track of its position, the individual
p-values are small and the sample set is large.

MCL directly relates to the well-known property that the variance of the importance sampler
is a function of the mismatch of the sampling distribution (in our dagg,)) and the distribution
that is being approximated with the weighted sample (in our ¢&gg | o,)). The less these
distributions agree, the larger the variance (approximation error). The idea is here to compensate
such error by larger sample set sizes, to obtain approximately uniform error.

Robot position

Robot position

Fig. 5: Global localization: Fig. 6: Ambiguity due to Fig. 7: Achieved localization.

Initialization. symmetry.
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\ . \ |

Fig. 8: Training data of successful detections for the robot perception model.

3.4 A Global Localization Example

Figure 5 to 7 illustrate MCL when applied to localization of a single mobile robot. Shown there is

a series of sample sets (projected into 2D) generated during global localization of the mobile robot
Rhino operating in an office building. In Figure 5, the robot is globally uncertain; hence the sam-
ples are spread uniformly over the free-space. Figure 6 shows the sample set after approximately
1.5 meters of robot motion, at which point MCL has disambiguated the robot’s position mainly up
to a single symmetry. Finally, after another 4 meters of robot motion, the ambiguity is resolved,
the robot knows where it is. The majority of samples is how centered tightly around the correct
position, as shown in Figure 7. All necessary computation is carried out in real-time on a low-end
PC.

4 Learning Visual Detection Models

To implement the multi-robot Monte-Carlo localization technique robots must possess the ability
to sense each other. The crucial component is the detection mégel| &,., r.,) which describes
the conditional probability that robot: is at location¢,,,, given that robot: perceives robotn
with measurement,,. From a mathematical point of view, our approach is sufficiently general to
accommodate a wide range of sensors for robot detection, assuming that tiieonahdensity
P& | €0, ) Is adjusted accordingly.

We will now describe a specific detection method that integrates information from multiple
sensor modalities. This method, which integrates camera and range information, will be employed
throughout our experiments.
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4.1 Detection

To determine the relative location of other robots, our approach combines visual information ob-
tained from an on-board camera, with proximity information coming from a laser range finder.
Below, in our experiments, only one of the robots is equipped with a camera; however, despite the
asymmetry, the information conveyed by a detection enables both robots to refine their internal
belief as to where they are, utilizing the other robot’s belief.

Camera images are used to detect other robots, and laser ranger finder scans are used to deter-
mine the relative position of the detected robot and its distance. The top row in Figure 8 shows
examples of camera images recorded in the corridor. Each image shows a robot, marked by unique,
colored markers to facilitate their recognition. Even though the robot is only shown with a fixed
orientation in this figure, the markers can be detected regardless of a robot’s orientation.

To find robots in a camera image, our approach first filters the image using Gaussian color
filters tuned to the colors of the markers (see e.g., [34]). The center of the colors are then obtained
by local smoothing, and thresholding is applied to determine whether or not a robot can be seen
in the image. The small black rectangles, superimposed at the center of each marker in the images
in Figure 8, illustrate the center of the marker as identified by this visual routine. Currently,
images are analyzed at a rate of 1Hz, with the main delay being caused by the parallel port over
which images are transferred from the camera to the comptieis slow rate is sufficient for the
application at hand.

Once a robot has been detected, a laser scan is analyzed for the relative location of the robot
in polar coordinates (distance and angle). This is done by searching for a convex local minimum
in the distances of the scan, using the angle obtained from the camera image as a starting point.
We found that this method is robust and gives accurate results even in cluttered environments.

The bottom row in Figure 8 shows laser scans and the result of our analysis for the example
situations depicted in the top row of the same figure. Each scan consists of 180 distance mea-
surements with approx. 5 cm accuracy, spaced at 1 degree angular distance. The dark line in each
diagram depicts the extracted location of the robot in polar coordinates, relative to the position of
the detecting robot. All scans are scaled for illustration purposes. Based on a dataset of 54 suc-
cessful robot detections, which were labeled by the “true” positions of both robots, we found the
mean error of the distance estimation to be 88.7cm, and the mean angular error to be 2.36 degree.

4.2 Learning the Detection Model

Next, we have to devise a probabilistic detection model of the (&, | &,.,r.). To recapy,
denotes a detection event by thth robot, which comprises the identity of the detected robot (if

lwith a state-of-the-art memory-mapped frame grabber the same analysis would be feasible at frame rate.
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Fig. 9: Gaussian density representing the robot perception model. The x-axis represents the deviation of
relative angle and the y-axis the error in the distance between the two robots.

any), and its relative location in polar coordinates. The varighlés the location of the detected
robot (herem with m # n refers to an arbitrary other robot), aggl is the location of the:-th

robot. As described above, we will restrict our considerations to “positive” detections, i.e., cases
where a robot did detect a robot:. Negative detection events (a robotloesnotsee a robotn)

are beyond the scope of this paper and will be ignored.

The detection model is trained using data. More specifically, during training we assume that
the exact location of each robot is known. Whenever a robot takes a camera image, its location is
analyzed as to whether other robots are in its visual field. This is done by a geometric analysis of
the environment, exploiting the fact that the locations of all robots are known during training.
Then, the image is analyzed, and for each detected robot thétydand relative location is
recorded. This data is sufficient to train the detection maétiél,, | &,., ).

robot detected no robot detected
robot in field of view 64.3% 35.7%
no robot in field of view 6.90% 93.1%

Table 1: Rates of false-positives and false-negatives for our detection routine.

In our implementation, we employ a parametric mixture model to repre3ent | &,.,rx).
Our approach models false-positive and false-negative detections using a binary random variable.
Table 1 shows the ratios of these errors in the training set. As can be see there, our current visual
routines have a 35.7% chance of not detecting a robot in their visual field, but only a 6.9% chance
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to erroneously detecting a robot when there is none.

The Gaussian distribution shown in Figure 9 models the error in the estimation of a robot’s
location. Here thex-axis represents the angular error, and ghaxis the distance error. This
Gaussian has been obtained through maximum likelihood estimation. As is easy to be seen, the
Gaussian is zero-centered along both dimensions, and it assigns low likelihood to large errors.
The correlation between both components of the error, angle and distance, are approximately
zero, suggesting that both errors might be independent.

In our experiments, the “true” location wast determined manually; instead, MCL was ap-
plied for position estimation (with a known starting position and very large sample sets). Em-
pirical results in [17] suggest that MCL is sufficiently accurate for tracking a robot with only a
few centimeters error. The robots’ positions, while moving at speeds like 30 cm/sec through our
environment, were then analyzed geometrically to determine whether (and where) robots are in
the visual fields of other robots. As a result, data collection is extremely easy as it does not require
any manual labeling; however, the error in MCL leads to a slightly less confined detection model
that one would obtain with manually labeled data (assuming that the accuracy of maritiahpos
estimation exceeds that of MCL).

5 Experimental Results

Our approach was evaluated systematically using the two mobile robots (Robin and Marian)
shown in Figure 10. Both robots were marked optically by a colored marker, as shown in Fig-
ure 8. The central question driving our experiments Wamn cooperative multi-robot localization
improve the localization accuracy, when compared to conventional single-robot localiz&idn?
differently,can the task of global localization sped up significantly when multiple robots cooperate
during localization?

To shed light onto these questions, we operated the robots over extended periods of time in
our university building. Figure 11 shows a map of the environment which was learned using a
probabilistic mapping algorithm [69, 72]. Notice the long corridor. Due to the lack of features,
global localization is quite difficult when the robots operate in this corridor. Previous publications
(e,0,. [17, 23]) have analyzed in detail the performance of Markov localization and MCL. Thus, in
this paper we will focus on the utility of collaboration and detections in multi-robot localization.

Throughout our experiments, we consistently found that the collaboration reduced the time
required for global localization, and it also improved the overall accuracy. Figures 11 to 15 show
an example in detail, obtained in one of our experiments.

In particular, Figure 11 shows the belief state of one of the robots, Robin, at a specific point
in time while performing global localization. In this specific experiment, the robot previously
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Fig. 10: Two of the robots used for testing: Marian (left) and Robin (right).

Fig. 11: Belief state of Robin during global localization in a long corridor.

Fig. 12: Belief state of Marian operating in the room.
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Fig. 14: Sampling-based representation of the density generated by Marian according to the detection of
Robin in the current image.

Fig. 15: Belief state of robin after incorporating the measurement of Marian.
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traversed the corridor from the right to the left, developing a belief that is centered along the main
axis of the corridor. However, the robot is unaware of its exact location within the corridor; neither
does it know its global heading direction.

The second robot, Marian, operates in our lab, which is the cluttered room adjacent to the
corridor. Its belief is shown in Figure 12. Because of the non-symmetric nature of the lab, the
robot knows fairly well where it is.

The key event, illustrating the utility of cooperation in localization, is a detection event. More
specifically, Marian, the robot in the lab, detects Robin, as it moves through the corridor. Figure 13
shows the image and the laser scan, along with the estimated distance and orientation. Using the
detection model described in Section 4 Marian generates the density shown in Figure:14. It then
transmits this density to Robin which integrates it into its current belief. Robin’s resulting density
is shownin Figure 15. As this figure illustrates, this single incident resolves entirely the uncertainty
in Robin’s belief—which would have taken minutes if the robots were unable to detect each other.

Obviously, this experiment is specifically well-suited to demonstrate the advantage of detec-
tions in multi-robot localization, since the robots’ uncertainties are somewhat orthogonal, making
the detection highly effective. Nevertheless, we consistently observed similarly good performance
even when operating the robots in other parts of the environment, e.g., when they both operated in
the corridor.

6 Related Work

Mobile robot localization has frequently been recognized as a key problem in robotics with sig-
nificant practical importance. Cox [15] noted that “Using sensory information to locate the robot
in its environment is the most fundamental problem to providing a mobile robot with autonomous
capabilities.” A ecent book by Borenstein, Everett, and Feng [6] provides an excellent overview
of the state-of-the-art in localization. Localization plays a key role in various successful mobile
robot architectures [14, 26, 32, 46, 47, 52, 57, 59, 73] and various chapters in [43]. While some
localization approaches, such as those described in [33, 44, 64] localize the robot relative to some
landmarks in a topological map, our approach localizes the robot in a metric space, just like those
methods proposed in [3, 67, 71].

Almost all existing approach address single-robot localization only. Moreover, the vast ma-
jority of approaches is incapable of localizing a robot globally; instead, they are designed to track
the robot’s position by compensating small odometric errors. Thus, they differ from the approach
described here in that they require knowledge of the robot’s initial position; and they are not able
to recover from global localizing failures. Probably the most popular method for tracking a robot’s
position is Kalman filtering [30, 31, 48, 50, 61, 65], which represent uncertainty by single-modal
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distributions. These approaches are unable to localize robots under global uncertainty—a prob-
lem which Engelson called the “kidnapped robot problem” [20]. Recently, several researchers
proposedViarkov localization which enables robots to localize themselves under global uncer-
tainty [9, 37, 53, 64]. Global approaches have two important advantages over local ones: First, the
initial location of the robot does not have to be specified and, second, they provide an additional
level of robustness, due to their ability to recover from localization failures. Among the global ap-
proaches those using metric representations of the space such as MCL land [9, 8] can deal with a
wider variety of environments than those methods relying on topological maps. For example, they
are not restricted to orthogonal environments containing pre-defined features such as corridors,
intersections and doors.

In addition, most existing approaches are restricted in the type features that they consider.
Many approaches reviewed in [6], a recent book on this topic, are limited in that they require mod-
ifications of the environment. Some require artificial landmarks such as bar-code reflectors [21],
reflecting tape, ultrasonic beacons, or visual patterns that are easy to recognize, such as black
rectangles with white dots [4]. Of course, modifying the environment is not an option in many ap-
plication domains. Some of the more advanced approaches use more natural landmarks that do not
require modifications of the environment. For example, the approaches of Kortenkamp and Wey-
mouth [44] and Matad T49] use gateways, doors, walls, and other vertical objects to determine
the robot’s position. The Helpmate robot uses ceiling lights to position itself [39]. Dark/bright
regions and vertical edges are used in [13, 74], and hallways, openings and doors are used by the
approach described in [41, 62, 63]. Others have proposed methods for learning what feature to
extract, through a training phase in which the robot it told its location [28, 56, 67, 68]. These are
just a few representative examples of many different features used for localization. Our approach
differs from all these approaches in that it does not extract predefined features from the sensor
values. Instead, it directly processes raw sensor data. Such an approach has two key advantages:
First, it is more universally applicable since fewer assumptions are made on the nature of the envi-
ronment; and second, it can utilize all sensor information, typically yielding morerate results.

Other approaches that process raw sensor data can be found in [30, 31, 48].

The issue of cooperation between multiple mobile robots has gained increased interest in the
past (see [11, 1] for overviews). In this context most work on localization has focused on the
guestion how to reduce the odometry error using a cooperative team of robots. Kurazume and
Shigemi [45], for example, divide the robots into two groups. At every point in time only one
of the groups is allowed to move, while the other group remains at its position. When a motion
command has been executed, all robots stop, perceive their relative position, and use this to reduce
errors in odometry. While this method reduces the odometry error of the whole team of robots
it is not able to perform global localization; neither can it recover from significant sensor errors.
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Rekleitis and colleagues [58] present a cooperative exploration method for multiple robots, which
also addresses localization. To reduce the odometry error, they use an approach closely related to
the one described [45]. Here, too, only one robot is allowed to move at any point in time, while
the other robots observe the moving one. The stationary robots track the position of the moving
robot, thus providing more accurate fi@ estimates than could be obtained with pure dead-
reckoning. Finally, in [5], a method is presented that relies on a compliant linkage of two mobile
robots. Special encoders on the linkage estimate the relative positions of the robots while they
are in motion. The author demonstrates that the dead-reckoning accuracy of the compliant linkage
vehicle is substantially improved. However, all these approaches only seek to reduce the odometry
error. None of them incorporates environmental feedback into the estimation, and consequently
they are unable to localize roots relative to each other, or relative to their environments, from
scratch. Even if the initial location of all robots are known, they ultimately will get lost—but at

a slower pace than a comparable single robot. The problem addressed in this paper differs in that
we are interested in collaborative localization in a global frame of reference, not just reducing
odometry error. In particular, our approach addresses cooperative global localization in a known
environment.

7 Conclusion

7.1 Summary

We have presented a statistical method for collaborative mobile robot localization. At its core, our
approach uses probability density functions to represent the robots’ estimates as to where they are.
To avoid exponential complexity in the number of robots, a factorial representation is advocated
where each robot maintains its own, local belief function. A fast, universal sampling-based scheme
is employed to approximate beliefs. The probabilistic nature of our approach makes it possible
that teams of robots perforgiobal localization i.e., they can localize themselves from scratch
without initial knowledge as to where they are.

During localization, robots can detect each other. Here we use a combination of camera images
and laser range scans to determine other robot’s relative location. The “reliability” of the detec-
tion routine is modeled by learning a parametric detection model from data, using the maximum
likelihood estimator. During localization, detections are used to introduce additional probabilistic
constraints, represented by tree-like structure, that tie one robot’s belief to another robot’s belief
function. To combine different sample sets collected generated at different robots (each robot’s
belief is represented by a separate sample set), our approach transforms detections into density
trees, which transform discrete sample sets into piecewise constant density functions. These trees
are then used to refine the weighting factors (importance factors) of other robots’ beliefs, thereby
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reducing their uncertainty in response to the detection. As a result, our approach makes it possible
to amortize data collected at multiple platforms.

Experimental results, carried out in an indoor environment, demonstrate that our approach
can reduce the uncertainty in localization significantly, when compared to conventional single-
robot localization. Thus, when teams of robots are placed in a known environment with unknown
starting locations, our approach can yield much faster localization then conventional, single-robot
location—at approximate equal computation costs and relatively small communication overhead.

7.2 Implications for Heterogeneous Robot Teams

Even though the experiment reported here were carried out using homogeneous robots, the work
reported here offers some interesting perspectives for teams of heterogeneous robots. Tradition-
ally, heterogeneity has often been suggested as a means to achieve a wide range of tasks, requiring
a collection of different actuators, manipulators, or locomotion modalities (wheels, legs). In the
context of behavior-based robotics, heterogeneity has often studied the effect of different software
architectures on the overall task performance [2].

Our approach can exploit heterogeneity in the robots’ sensors. Consider, for example, a team
of robots where only a small number of robots are equipped with sensors that support high-
accuracy localization. For example, laser range finders typically provide highly accurate range
measurements, but they are bulky, expensive, and they consume significantly more energy than
comparable, low-accuracy sensors such as sonar sensors. It might therefore be desirable to equip
only a small number of robots with laser range finders.

As noted above, our approach makes it possible to amortize sensor data across multiple robotic
platforms during localization. Thus, it potentially enables a heterogeneous team of robots to main-
tain highly accurate location estimates, even if only a small number of robots are equipped with
the necessary high-accuracy sensors. In the extreme, one might think of heterogeneous robot
teams where only a small number of robots is capable of performing localization. Our approach
would enable these robots to localize other robots in the team, not capable of localizing themselves
autonomously, thereby provide a unique service to the entire heterogeneous team.

7.3 Limitations and Discussion

The current approach possesses several limitations that warrant future research.

e In our current system, only “positive” detections are procesbBld.seeing another robas
also informative, even though not as informative as positive detections. Incorporating such
negative detections is generally possible in the context of our statistical framework (using the
inverse weighting scheme). However, such an extension would drastically increase the com-
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putational overhead, and it is unclear as to whether the effects on the localization accuracy
justify the additional computation and communication.

e Another limitation of the current approach arises from the fact that our detection approach
must be able to identify individual robots—hence they must be marked appropriately. Of
course, simple means such as bar-codes can provide the necessary, unique labels. However,
from an academic stand point of view it might be interesting to devise methods that can
detect, but not identify robots. The general problem with such a setting lies in our factorial
representation, which cannot model statements such as “either robot A or robot B is straight
in front of me.” To model such situations, one would have to compute distributions over the
joint space of all robots’ coordinates, which would make it impossible that each robot carries
its own, local position estimate. In addition, the complexity of the estimation routine would
now depend super-linearly on the number of robots (as pointed out above, in the worst case it
would scaleexponentiallynstead ofinearly). In fact, the latter observation is the key reason
as to why factorial representations are chosen here.

e The collaboration described here is purely passive, in that robots combine information col-
lected locally, but they do not change their course of action so as to aid localization. In [10,
24], we proposed an algorithm based on information-theoretic principleacfive localiza-
tion, where a single robot actively explores its environment so as to best localize itself. A
desirable objective for future research is the application of the same, information-theoretic
principle, to coordinated multi-robot localization.

¢ Finally, the robots update their instantly whenever they perceive another robot. In situations
in which both robots are highly uncertain at the time of the detection it might be more appro-
priate to delay the update. For example, if one of the robots afterwards becomes more certain
by gathering further information about the environment or by being detected by another, cer-
tain robot, then the synchronization result can be much better if it is done retrospectively.
This, however, requires that the robots keep track of their actions and measurements after
detecting other robots.

Despite these open research areas, our approach does provide a sound statistical basis for informa-
tion exchange during collaborative localization, and empirical results illustrate its appropriateness
in practice. These results suggest that robots acting as a team are superior to robots acting individ-
ually. While we were forced to carry out this research on two platforms only, we conjecture that
the benefits of collaborative multi-robot localization increase with the number of available robots.
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