Processor Verification Using Efficient Reductions
of the Logic of Uninterpreted Functions
to Propositional Logic
Randal E. Bryant, Steven GermaMjiroslav N. Velev

May, 1999
CMU-CS-99-115

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

The CMU authors were supported by the Semiconductor Research Corporation under contract
98-DC-068, as well as by grants from Motorola, Intel, and Fujitsu.

1IBM Watson Research Center



Keywords: Formal verification, Processor verification, Uninterpreted functions, Decision proce-
dures



Abstract

The logic of equality with uninterpreted functions (EUF) provides a means of abstracting the ma-
nipulation of data by a processor when verifying the correctness of its control logic. By reducing
formulas in this logic to propositional formulas, we can apply Boolean methods such as Ordered
Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification.
We can exploit characteristics of the formulas describing the verification conditions to greatly
simplify the propositional formulas generated. We identify a class of terms we call “p-terms” for
which equality comparisons can only be used in monotonically positive formulas. By applying
suitable abstractions to the hardware model, we can express the functionality of data values and
instruction addresses flowing through an instruction pipeline with p-terms. A decision procedure
can exploit the restricted uses of p-terms by considering only “maximally diverse” interpretations
of the associated function symbols, where every function application yields a different value except
when constrained by functional consistency.

We present two methods to translate formulas in EUF into propositional logic. The first interprets
the formula over a domain of fixed-length bit vectors and uses vectors of propositional variables
to encode domain variables. The second generates formulas encoding the conditions under which
pairs of terms have equal valuations, introducing propositional variables to encode the equality
relations between pairs of terms. Both of these approaches can exploit maximal diversity to greatly
reduce the number of propositional variables that need to be introduced and to reduce the overall
formula sizes.

We present experimental results demonstrating the efficiency of this approach when verifying
pipelined processors using the method proposed by Burch and Dill. Exploiting positive equal-
ity allows us to overcome the exponential blow-up experienced previously [VB98] when verifying
microprocessors with load, store, and branch instructions.






1 Introduction

For automatically reasoning about pipelined processors, Burch and Dill demonstrated the value
of using propositional logic, extended with uninterpreted functions, uninterpreted predicates, and
the testing of equality [BD94]. Their approach involves abstracting the data path as a collection
of registers and memories storing data, units such as ALUs operating on the data, and various
connections and multiplexors providing methods for data to be transferred and selected. The initial
state of each register is represented by a domain variable indicating an arbitrary data value. The
operation of units that transform data is abstracted as blocks computing functions with no specified
properties other than functional consistency, i.e., that applications of a function to equal arguments
yield equal resultsz = y = f(«) = f(y). The state of a register at any point in the computation
can be represented by a symbolic term, an expression consisting of a combination of domain
variables, function and predicate applications, and Boolean operations. Verifying that a pipelined
processor has behavior matching that of an unpipelined instruction set reference model can be
performed by constructing a formula in this logic that compares for equality the terms describing
the results produced by the two models and then proving the validity of this formula.

In their 1994 paper, Burch and Dill also described the implementation of a decision procedure
for this logic based on theorem proving search methods. Their procedure builds on ones originally
described by Shostak [Sho79] and by Nelson and Oppen [NO80], using combinatorial search
coupled with algorithms for maintaining a partitioning of the terms into equivalence classes based
on the equalities that hold at a given step of the search. More details of their decision procedure
are given in [BDL96].

Burch and Dill’'s work has generated considerable interest in the use of uninterpreted functions
to abstract data operations in processor verification. A common theme has been to adopt Boolean
methods, either to allow integration of uninterpreted functions into symbolic model checkers
[DPR98, BBCZ98], or to allow the use of Binary Decision Diagrams (BDDs) [Bry86] in the
decision procedure [HKGB97, GSZAS98, VB98]. Boolean methods allow a more direct mod-
eling of the control logic of hardware designs and thus can be applied to actual processor designs
rather than highly abstracted models. In addition to BDD-based decision procedures, Boolean
methods could use some of the recently developed satisfiability procedures for propositional logic.
In principle, Boolean methods could outperform decision procedures based on theorem proving
search methods, especially when verifying processors with more complex control logic, e.g., due
to superscalar or out-of-order operation.

Boolean methods can be used to decide the validity of a formula containing terms and unin-
terpreted functions by interpreting the formula over a domain of fixed-length bit vectors. Such an
approach exploits the property that a given formula contains a limited number of function appli-
cations and therefore can be proved to be universally valid by considering its interpretation over
a sufficiently large, but finite domain [Ack54]. If a formula contains a totalofunction appli-
cations, then the set of all bit vectors of lengtforms an adequate domain fbr> log, m. The
formula to be verified can be translated into one in propositional logic, using vectors of proposi-

1



tional variables to encode the possible values generated by function applications [HKGB97]. Our
implementation of such an approach [VB98] as part of a BDD-based symbolic simulation system

was successful at verifying simple pipelined data paths. We found, however, that the computa-
tional resources grew exponentially as we increased the pipeline depth. Modeling the interactions
between successive instructions flowing through the pipeline, as well as the functional consis-
tency of the ALU results, precludes having an ordering of the variables encoding term values that
yields compact BDDs. Similarly, we found that extending the data path to a complete proces-

sor by adding either load and store instructions or instruction fetch logic supporting jumps and

conditional branches led to impossible BDD variable ordering requirements.

Goelet al.[GSZAS98] present an alternate approach to using BDDs to decide the validity of
formulas in the logic of equality with uninterpreted functions. In their formulation they introduce
a propositional variable; ; for each pair of function application termis and 7, expressing the
conditions under which the two terms are equal. They add constraints expressing both functional
consistency and the transitivity of equality among the terms. Their experimental results were
also somewhat disappointing. For all previous methods of reducing EUF to propositional logic,
Boolean methods have not lived up to their promise of outperforming ones based on theorem
proving search.

In this paper, we show that the characteristics of the formulas generated when modeling pro-
cessor pipelines can be exploited to greatly reduce the number of propositional variables that are
introduced when translating the formula into propositional logic. We distinguish a class of terms
we call p-termsfor which equality comparisons can only be used in monotonically positive for-
mulas. Such formulas are suitable for describing the top-level correctness condition, but not for
modeling any control decisions in the hardware. By applying suitable abstractions to the hardware
model, we can express the functionality of data values and instruction addresses with p-terms.

A decision procedure can exploit the restricted uses of p-terms by considering only “maximally
diverse” interpretations of the associated “p-function” symbols, where every function application
yields a different value except when constrained by functional consistency. We present a method
of transforming a formula containing function applications into one containing only domain vari-
ables that differs from the commonly-used method described by Ackermann [Ack54]. Our method
allows a translation into propositional logic that uses vectors with fixed bit patterns rather than
propositional variables to encode domain variables introduced while eliminating p-function ap-
plications. This reduction in propositional variables greatly simplifies the BDDs generated when
checking tautology, often avoiding the exponential blow-up experienced by other procedures. Al-
ternatively, we can use a encoding scheme similar to &oal [GSZAS98], but with many of the
¢; ; values set tdalse rather than to Boolean variables.

Others have recognized the value of restricting the testing of equality when modeling the flow
of data in pipelines. Bereziat al. [BBCZ98] generate a model of an execution unit suitable
for symbolic model checking in which the data values and operations are kept abstract. In our
terminology, their functional terms are all p-terms. They use fixed bit patterns to represent the
initial states of registers, much as we replace p-term domain variables by fixed bit patterns. To

2



model the outcome of each program operation, they generate an entry in a “reference file” and

refer to the result by a pointer to this file. These pointers are similar to the bit patterns we generate

to denote the p-function application outcomes. This paper provides an alternate, and somewhat
more general view of the efficiency gains allowed by p-terms.

Dammet al. consider an even more restricted logic such that in the terms describing the com-
puted result, no function symbol is applied to a term that already contains the same symbol. As a
consequence, they can guarantee that an equality between two terms holds universally if it holds
holds over the domaif, 1} and with function symbols having four possible interpretations: con-
stant functions 0 or 1, and projection functions selecting the first or second argument. They can
therefore argue that verifying an execution unit in which the data path width is reduced to a single
bit and in which the functional units implement only four functions suffices to prove its correct-
ness for all possible widths and functionalities. Their work imposes far greater restrictions than
we place on p-terms, but it allows them to bound the domain that must be considered to determine
universal validity independently from the formula size.

In comparison to both of these other efforts, we maintain the full generality of the unrestricted
terms of Burch and Dill while exploiting the efficiency gains possible with p-terms. In our proces-
sor model, we can abstract register identifiers as unrestricted terms, while modeling program data
and instruction data as p-terms. As a result, our verifications cover designs with arbitrarily many
registers. In contrast, both [BBCZ98] and [DPR98] used bit encodings of register identifiers and
were unable to scale their verifications to a realistic number of registers.

In a recent paper, Pnueéi al. [PRSS99] also propose a method to exploit the polarity of the
equations in a formula containing uninterpreted functions with equality. They describe an algo-
rithm to generate a small domain for each domain variable such that the universal validity of the
formula can be determined by considering only interpretations in which the variables range over
their restricted domains. A key difference of their work is that they examine the equation structure
after replacing all function application terms with domain variables and introducing functional
consistency constraints as described by Ackermann [Ack54]. These consistency constraints typi-
cally contain large numbers of equations—far more than occur in the original formula—that mask
the original p-term structure. As an example, comparing the top and bottom parts of Figure 6 illus-
trates the large number of equations that may be generated when applying Ackermann’s method.
By contrast, our method is based on the original formula structure. In addition, we use a new
method of replacing function application terms with domain variables. Our scheme allows us
to exploit maximal diversity by assigning fixed values to the domain variables generated while
expanding p-function application terms.

The remainder of the paper is organized as follows. We define the syntax and semantics of
our logic by extending that of Burch and Dill's. We prove our central result concerning the need
to consider only maximally diverse interpretations when deciding the validity of formulas in our
logic. As a first step in transforming our logic into propositional logic, we describe a new method
of eliminating function application terms in a formula. Building on this, we describe two meth-
ods of translating formulas into propositional logic and show how these methods can exploit the

3



term ::= ITE(formula term term)
| function-symbagterm, . . . term)

formula ::= true|false | =formula
| (formulan formula) | (formulaVv formula)
| (term=term)
| predicate-symboterm, . . . term)

Figure 1: Syntax Rules for the Logic of Equality with Uninterpreted Functions (EUF)

properties of p-terms. We discuss the abstractions required to model processor pipelines in our
logic. Finally, we present experimental results showing our ability to verify a simple, but complete
pipelined processor.

2 Logic of Equality with Uninterpreted Functions (EUF)

The logic of Equality with Uninterpreted Functions (EUF) presented by Burch and Dill [BD94]
can be expressed by the syntax given in Figure 1. In this Iégimulashave truth values while
termshave values from some arbitrary domain. Terms are formed by application of uninterpreted
function symbols and by applications of thEE (for “if-then-else”) operator. ThéTE operator
chooses between two terms based on a Boolean control valudTEétrue, z,, ;) yields z,

while ITE(false, x4, x5) yields z,. Formulas are formed by comparing two terms with equality,
by applying an uninterpreted predicate symbol to a list of terms, and by combining formulas using
Boolean connectives. A formula expressing equality between two terms is cakkgpiation We
useexpressiono refer to either a term or a formula.

Every function symbolf has an associateatder, denotedord( f), indicating the number of
terms it takes as arguments. Function symbols of order zero are referreddmas variables
We use the shortened formrather tharv() to denote an instance of a domain variable. Simi-
larly, every predicate has an associated orderd(p). Predicates of order zero are referred to as
propositional variablesand can be written rather tharu().

The truth of a formula is defined relative to a nonempty donfawf values and an interpreta-
tion / of the function and predicate symbols. Interpretaticassigns to each function symbol of
orderk a function fromD* to D, and to each predicate symbol of ordea function fromD* to
{true, false}. For the special case of order 0 symbols, i.e., domain (respectively, propositional)
variables, the interpretation assigns an elemeri? ¢fesp.,{true, false}.) Given an interpreta-
tion / of the function and predicate symbols and an expreskione can define thealuationof

4



FormFE Valuation/[F]
true true
false false
~F —I[F]

Fi A Fy I[F\] A I[F)]
p(Ty, ., Ty) | L(p)U[D], .. ., I[T])
I =T, I[13)=I[1
ITE(F, 10, T3) | ITE(L [F]J[ ] 1T3))
(T, ) | IHUTTR, - IT)

Table 1: Evaluation of EUF Formulas and Terms

F under/, denoted/[F], according to its syntactic structure. The valuation is defined recursively,
as shown in Table 1/[£] will be an element of the domain whénis a term, and a truth value
whenF is a formula.

A formula F' is said to berue under interpretatiod when/[F] = true. Itis said to bevalid
over domairD when itis true over domai® for all interpretations of the symbols ifi. F'is said
to beuniversally validwhen it is valid over all domains. A basic property of validity is that a given
formula is valid over a domai® iff it is valid over all domains having the same cardinality2s
This follows from the fact that a given formula has the same truth value in any two isomorphic
interpretations of the symbols in the formula. Another property of the logic, which can be readily
shown, is that iff" is valid over a suitably large domain, then it is universally valid [Ack54]. In
particular, it suffices to have a domain as large as the number of syntactically distinct function
application terms occurring ii'. We are interested in decision procedures that determine whether
or not a formula is universally valid; we will show how to do this by dynamically constructing a
sufficiently large domain as the formula is being analyzed.

3 Positive Equality with Uninterpreted Functions (PEUF)

We can improve the efficiency of validity checking by treating positive and negative equations
differently when reducing EUF to propositional logic. Informally, an equation is positive if it does
not appear negated in a formula. In particular, a positive equation cannot appear as the formula
that controls the value of a E term; such formulas are considered to appear both positively and
negatively.



g-term ::

p-term ::

formula ::

p-formula ::

ITE(formula g-term g-term)
| g-function-symba@p-term . . ., p-term)

g-term
| ITE(formula p-term p-term)
| p-function-symba@p-term . . ., p-term)

true | false | -formula

| (formula formula) | (formulaV formula)
| (g-term=g-term)

| predicate-symbaop-term . . ., p-term)

formula
| (p-formulaA p-formulg | (p-formulav p-formula)
| (p-term=p-term)

Figure 2: Syntax Rules for the Logic of Positive Equality with Uninterpreted Functions (PEUF)



3.1 Syntax

PEUF is an extended logic based on EUF; its syntax is shown in Figure 2. The main idea is
that there are two disjoint classes of function symbols, called p-function symbols and g-function
symbols, and two classes of terms.

General terms, og-terms correspond to terms in EUF. Syntactically, a g-term is a g-function
application or anTE term in which the two result terms are hereditarily built from g-function
applications andTEs.

The new class of terms is called positive termgp-@erms P-terms may not appear in negated
equations, i.e., equations within the scope of a logical negation. Since p-terms can contain p-
function symbols, the syntax is restricted in a way that prevents p-terms from appearing in negative
equations. When two p-terms are compared for equality, the result is a special, restricted kind of
formula called g-formula

Note that our syntax allows any g-term to be “promoted” to a p-term. Throughout the syntax
definition, we require function and predicate symbols to take p-terms as arguments. However,
since g-terms can be promoted, the requirement to use p-terms as arguments does not restrict the
use of g-function symbols or g-terms. In essence, g-function symbols may be used as freely in our
logic as in EUF, but the p-function symbols are restricted. To maintain the restriction on p-function
symbols, the syntax does not permit a p-term to be promoted to a g-term.

A formulaof the extended logic is a Boolean combination of equations on g-terms and appli-
cations of predicate symbols. Formulas in our logic serve as Boolean control expresdibBs in
terms. A formula can contain negation, alffide implicitly negates its Boolean control, so only
g-terms are allowed in equations in formulas. Since a predicate forpiila. .., 7T}), wherep
is a predicate symbol and tle are terms, is not an equation, we allow the terms in predicate
formulas to be chosen from the largest class of terms, namely the p-terms.

Finally, the syntactic clags-formulais the class for which we develop validity checking meth-
ods. P-formulas are built up using only the monotonically positive Boolean operatiand V.
P-formulas may not be placed under a negation sign, and cannot be used as the contrdlEor an
operation. As described in later sections, our validity checking methods will take advantage of the
assumption that in p-formulas, the p-terms cannot appear in negative equations.

Observe that PEUF does not extend the expressive power of EUF—we could translate any
PEUF expression into EUF by considering the g-terms and p-terms to be terms and the p-formulas
to be formulas. Instead, the benefit of PEUF is that by distinguishing some portion of a formula as
satisfying a restricted set of properties, we can radically reduce the number of different interpreta-
tions we must consider when proving that a p-formula is universally valid.

As a running example for this paper, we consider the formway = h(g(z),g9(g(z))) =
h(g(y),g(g(x))), which would be transformed into a p-formula by eliminating the implication:

ey = —(x=y) V hg(z),9(g9(x)))=h(g(y),g9(g9(z))) (1)

7



Xy

Figure 3: Schematic Representation/Qf. Domain values are shown as solid lines, while truth
values are shown as dashed lines.

Domain variables: andy must be g-function symbols so that we can consider the equation

to be a formula, and hence it can be negated to give formuta= y). We can promote the g-
termsz andy to p-terms, and we can consider function symiyoded/ to be p-function symbols,
giving p-termsg(x), g(y), g(g(x)), h(g(x),g(9(x))), andh(g(y),g(g(x))). Thus, the equation
h(g(z),g(g9(x))) = h(g(y),g(g(x))) is a p-formula. We form the disjunction of this p-formula
with the p-formula obtained by promoting = = y) giving p-formular,.

Figure 3 shows a schematic representatiofnQf using drawing conventions similar to those
found in hardware designs. That is, we view domain variables as inputs (shown along bottom) to
a network of operators. Domain values are denoted with solid lines, while truth values are denoted
with dashed lines. The top-level formula then becomes the network output, shown on the right.
The operators in the network are shared whenever possible. This representation is isomorphic to
the traditional directed acyclic graph (DAG) representation of an expression, with maximal sharing
of common subexpressions.

3.2 Diverse Interpretations

Let 7 be a set of terms, where a term may be either a g-term or a p-term. We consider two terms to
be distinct only if they differ syntactically. An expression may therefore contain multiple instances
of a single term. We classify terms as either p-function applications, g-function applications, or
ITE terms, according to their top-level operation. The first two categories are collectively referred
to as function application terms. For any formula or p-formtiladefine7 (') as the set of all
function application terms occurring if.

An interpretation/ partitions a term sef into a set of equivalence classes, where tefins
and7;, are equivalent unddr, written7} ~; T, when[T}] = I[T3]. Interpretation/’ is said to be
arefinemenof / for term set7 whenl; ~; T, = T} ~; T, for every pair of termd; and 7,
in 7. I' is aproperrefinement ofl for 7 when it is a refinement and there is at least one pair of

8



11 | {z,y}, {g1} {92}, {93}, {h1}, {ha} Inconsistent

12 | {z},{y}, {01, 92}, {93}, {1}, {h2} Inconsistent

Cl | {z}.{y},{91,92}, {93}, {h1, N2} Diverse w.r.t.z,y,h
C2 | {z, g}, {y}, {on}, {92}, {h1}, {ha} Diverse w.r.ty, h

D1 | {a}, {y}, {1}, {92}, {95}, {h1},{h2} | Diverse w.rtz, vy, g, h
D2 | {x,y}, {91,902}, {93}, {h1, ha} Diverse w.r.t.g, h

Table 2: Example Partitionings of Terms y, ¢1 = g(x), g2 = 9(y), g5 = glg(x)), b1 =
h(g(x),g(g(x))), andhy = h(g(y), g(g(x))).

terms7, T, € 7 such thatl} ~; Ty, butTy % Ts.

Let X denote a subset of the function symbols in forméilaAn interpretatiory is said to be
diversefor I with respect ta: when it provides a maximal partitioning of the function application
terms in7 (F') having a top-level function symbol froii relative to each other and to the other
function application terms, but subject to the constraints of functional consistency. Thatig, for
of the formf (7} 1,...,T1 ), wheref € X, an interpretatiod is diverse with respect t8 if / has
Ty ~; T, only in the case wher#, is also a term of the fornf(7x,1,..., T2 %), andTy; ~; Ty,
for all « such thatl < < k. If we let ¥,(F') denote the set of all p-function symbols i1 then
interpretatiory is said to bemaximally diversevhen it is diverse with respect t0,( /). Note that
this property requires the p-function application terms to be in separate equivalence classes from
the g-function application terms.

As an example, consider the p-formuta, given in Equation 1. There are seven distinct
function application terms identified as follows:

T\ Y| G 492 g3 hq ho
x|y | g(x) | gly) | glg(z)) | hlg(z),g(g(=))) | hg(y),g(g(x)))

Table 2 shows 6 of the 877 different ways to partition seven objects into equivalence classes. Many
of these violate functional consistency. For example, the partitioning |1 describes a case where
andy are equal, bug(x) andg(y) are not. Similarly, partitioning 12 describes a case whgng

andg(y) are equal, bub(g(z), g(g(x))) andh(g(y), g(g(x))) are not.

Eliminating the inconsistent cases gives 384 partitionings. Many of these do not arise from
maximally diverse interpretations, however. For example, partitioning C1 arises from an inter-
pretation that is not diverse with respectgownhile partitioning C2 arises from an interpretation
that is not diverse with respect to In fact, there are only two partitionings: D1 and D2 that
arise from maximally diverse interpretations. Partition D1 corresponds to an interpretation that
is diverse with respect to all of its function symbols. Partition D2 is diverse with respect to both
g andh, even though termg; and ¢, are in the same class, as dreand”,. Both of these
groupings are forced by functional consistency: having y forcesg(x) = ¢(y), which in turn

9



forcesh(g(x), g(g(x))) = h(g(y),9(g(x))). Sinceg andh are the only p-function symbols, D2 is
maximally diverse.

Theorem 1 A p-formulaf is universally valid if and only if it is true in all maximally diverse
interpretations.

First, it is clear that iff" is universally valid,F' is true in all maximally diverse interpretations.
We prove via the following two lemmas that/f is true in all maximally diverse interpretations it
is universally valid.

Lemma 1 If interpretation./ is not maximally diverse for p-formulé, then there is an interpre-
tation ./’ that is a proper refinement of such that/'[F| = J[F].

Proof: Let T; be a term occurring it” of the form f, (74 1, ..., 71 %, ), wheref; is a p-function
symbol. Let7’, be a term occurring it” of the form f5(75 1, ..., 15k, ), wheref, may be either a
p-function or a g-function symbol. Assume furthermore th@t;| and./[ 73] both equak, but that
either symbols; andf, differ, or J[T} ;] # J[T3,] for some value of.

Let 2’ be a value not irD, and define a new domai¥ = DU {z'}. Our strategy is to construct
an interpretatior/’ over D’ that partitions the terms i (F') in the same way ag, except that it
splits the class containing terrids and7; into two parts—one containing; and evaluating toe’,
and the other containingf, and evaluating te.

Define functiom:: D’ — D to map elements P’ back to their counterparts iR, i.e.,h(z') =
z, while all other values of give i(x) equal toz.

For p-function symbo;, defineJ'( f1) as:

T (- { ’ h(a) = ST 1 <0 <y

TG (e ). otherwise

For other function and predicate symbalsis defined to preserve the functionality of interpre-
tation./, while also treating argument values:6the same as. Thatis,//( f) for function symbol
f havingord( f) equal tok is defined such that'( f)(zy, ..., zx) = J(f)(h(z1),..., h(xy)). Sim-
ilarly, .J'(p) for predicate symbal havingord(p) equal tok is defined such that'(p) (1, . .., 2%) =
J(p)(h(z1), ..., h(zy)).

We claim the following properties for the different forms of subexpressions occurrifig in

1. For every formulas: J'[G] = J[G]

2. Forevery g-ternd’: J'[T] = J[T]

3. For every p-ternd’: h(J'[T]) = J[T]

10



4. For every p-formulds: J'[G] = J[G]

5 J'T] =z andJ'[T3] = =.

These properties can be proved by induction on the expression depths. Informally, interpreta-
tion /' maintains the values of all g-terms and formulas as occur under interprefatitbralso
maintains the values of all p-terms, except those in the class containing teransl 7. These
p-terms are split into some having valuatioand others having valuatiori. With respect to p-
formulas, consider first an equation of the fasin= 5, wheresS; andsS, are p-terms. The equation
will yield the same value under both interpretations except under the conditiof,that 5, are
split into different parts of the class that originally evaluated,to which case the equation will
yield true under./, butfalse under.J’. Thus, although this equation can yield different values
under the two interpretations, we always have that; = 5;] = J[5; = S3]. This implication
relation is preserved by conjunctions and disjunctions of p-formulas, due to the monotonicity of
these operations.

We will now present this argument formally. We define the depth of an expressidth(F),
in the familiar way:

1. depth(true) = depth(false) = 0.

2. depth(v) = 0, for domain variable.

3. depth(a) = 0, for propositional variable.
4

. For any other expressiafi, depth(F) is given byl plus the maximum depth of a subex-
pression ink.

We prove hypotheses 1 to 4 above by simultaneous induction on the depth of expressions:
For the base case of the induction, we have:

1. Formula:/'[true] = J[true], J'[false| = J[false], and.J'[a] = J]«] for any propositional
variablea.

2. G-term: Ifv a g-function symbol of zero order, thef{v) = J(v).

3. P-term: Ifv is a p-function symbol of zero order, then by the definition/f~(J'(v)) =
J(v).

4. P-formula; same as formula.

For the induction case, we assume that the inductive hypotheses 1 through 4 hold for all ex-
pressions of deptk », and show that the hypotheses hold for expressions of depth.

11



1. Formula: There are several cases, depending on the fofin of

(a) Supposér has one of the formsG,, G AG5, G1V G4, where(¢; and(G, are formulas.
By the inductive hypothesis[’[G|] = J[G4], andJ'[G3] = J[G3]. It follows that
Jl[_'Gl] — J[_'Gl] J/[Gl A GQ] — J[Gl A GQ] andJ’[G1 vV GQ] — J[Gl vV GQ]

(b) Supposé- has the fornb; = 5,, wheres, S, are g-terms. By the inductive hypothesis
on g-terms,/J'[S1] = J[S:], andJ'[S3] = J[S;]. It follows thatJ'[S; = 55] = J[S1 =
Sa).

(c) The remaining case is th@tis a predicate application of the fopS,, . .., Sk), where
p is a predicate symbol of orddr, and Sy, ..., S5, are p-terms. By the inductive
hypothesis for p-terms, we ha¥¢./'[S;]) = J[S,], fori = 1...k. By the definition of
J',

Sp(S1,.... 5] = J(p)(J[51), ., J'[SK])

(p)(h(J’[Sl]) , A(J'[Sk]))

J(p)(J[S ] J| Skl)

JIp(51,. )]

2. G-term: There are two cases.

(a) Suppos€’ has the formTE((, 51, 52), where(' is a formula, ands; and S, are
g-terms. By the inductive hypothesis, we haV@~] = J[G], J'[S:1] = J[Si], and
J'[S;] = J[Ss). ThenJ'[ITE(G, Sy, S9)] = JIITE(G, S1, 52)].

(b) Suppos€l’ has the formf(S,...,Sx), where f is a g-function symbol of ordek
and Sy, ..., S, are p-terms. By the inductive hypothesis,/'[S;]) = J[S], fori =
1,...,k. Then we have,

SISy 800 = JUNOS, - TSH)
TS h(T5:])
E()(J[Sl], o J15))

3. P-term: There are three cases.

(a) Supposq' is a g-term. By the inductive hypothesis[T| = J[T']. SinceJ[T] cannot
be equal to’, it must be the case that./J'[T]) = J[T].

(b) Suppos€’ has the formTE(G, Sy, S2), where(' is a formula, ands; and S, are p-
terms. By the inductive hypothesi$| G| = J[G], h(J'[S1]) = J[S1], andh(J'[S;] =
J[52]). It follows that

R(J'[ITE(G, S1,52)]) = if J'[G] then h(J'[S1]) else h(J'[S2])
= if J[G] then J[54] else J[S%]
— J[ITEG, 51, 5)).

12



(c) Suppose thdt has the formf (S, ..., Sk), wheref is a p-function symbol of order
andsy, ..., S are p-terms. Here, we have to consider two cases. The first case is that
the following two conditions hold: (1f is the function symbof;, i.e., the function
symbol of the tern¥; mentioned at the beginning of the proof of this lemma, and (2)
h(S;) = J[T1,], for1 < i < k. If these two conditions hold, then by the definition of
J' T fi(S, .., Se)] = #/, while J[fi(S1,...,5%)] = z. Sinceh(z') = z, we have
R(J'[f1(S1, ..., 50)]) = J[fi(S1, ..., Sk)]-

Now we consider the case that one of the two conditions mentioned above does not
hold. The proof of this case is identical to the proof of case 2(b) above.

4. P-formula: There are three cases.

(a) If the p-formulas is a formula, then by the inductive hypothesié[] = J[G], so
J'G] = J[G].

(b) Supposé&+ has one of the form&'; A G, or G V G5, whereG,, G, are p-formulas.
By the inductive hypothesid)[(/1] = J[G1], and.J'[G3] = J[G3]. Thus we have

J/[Gl A GQ] — J/[Gl] A J/[GQ]
= J[Gh] A J[GY)
— J[Gl /\ GQ],

s0.J'[G1 A G]) = J[G1 A Ga]. The proof forG v G is the same.

(c) Finally, we consider the case thatis a p-formula of the fornb; = S,, where S,
and S;, are p-terms. By the inductive hypothesis, we have thdt[if;] = -/, then
J[Si] = z, fori = 1,2. Also, by the definition of., we have that if/’[S;] does not
equalz’, thenJ'[S;] = J[S;]. Now, we consider cases depending on whetHgt, |
or J'[S;] are equal ta’. If both terms are equal td in J’, then both/[S;] and.J[S,]
must be equal te, so the equation is true in both and./. If neither./’[S;] nor J'[S;]
is equal toz’, thenJ'[S1] = J[51] and J'[S;] = J[9,], so the equation has the same
truth value inJ’ and.J. The last case is that exactly one of the p-terms is equdlito
J'. In this case, the equation is falseJf so we have/’'[G] = J[G]. This completes
the inductive proof.

Property 5 above, which implies thdt is a proper refinement, is a consequence of the defi-
nition of .J' and the inductive properties 2 and 3. First, we show #dt;| = z’. By definition,
J'NT) = () Thals ..., J'[Tix]). By property 3 on p-terms, we can assumée’[T},]) =
J[Ty,],forallzintherangda <: < k;. By the definition of/’( f,), we have/'(f1)(J'[T11],. ... )" [T\ x]) =

2.

The proof that/’[T;] = = is in two cases, depending on whetligrand 7, are applications of
the same function symbol.

13



1. FirSt, COI’lSider the case that — fl(Tl,lv . e 7T17k1) andT2 — fg(TQJ, . e ,T27k2), Wheref1
and f, are different function symbols. In this case,

S = J(
J(

J(
J]

'\H

)Tl T T2 k))

o) (h(J'[T3, 1]) ,h(J'[T21,])), by the definition of/'( f3)
2)(J [T2 1] J[Tm]), by the inductive hypothesis
(T2 TQJQ)]

11
'\H'\H

'SH

= Z.

2. Finally, we have the case th#t and f, are the same function symbol, and there is some
value of/ with 1 <[ < kq, such that/[T; ;] does not equal [T ,]. Here, we have:

Jfi(Tany. . Tog)) = (ST [Tea], - [ Ton,])

By property 3,h(.J'[T2,]) = J[T>.], for all ¢ such thatl < i < k;. SinceJ[T},] does not
equal/[T: ], the value of the above application.&f f1) is:

‘]/(fl)(‘]/[TQ,l]v SRR ‘]/[TQJQ]) = J(fl)(h(‘]/[Tll])v SR h(‘]/[TQJQ]))
‘](fl)(‘][TQ,l]v SRR J[TQJQ])
‘][fl(TQ 1 . 7T2,k2)]

= Z

Lemma 2 For any interpretation/ and p-formulaf’, there is a maximally diverse interpretation
[ for F' such that/*[F] = I[F].

Proof: Starting with interpretation, equal to/, we define a sequence of interpretations
Iy, I, ... by repeatedly applying the construction of Lemma 1. That is, we derive each inter-
pretation/;;; from its predecessof; by letting.J = [, and letting/;.; = J'. Interpretation
1,41 is a proper refinement of its predecessosuch that/;.;[F'] = [,[£]. At some step:, we
must reach a maximally diverse interpretatibn because our séf(F') is finite and therefore
can only be properly refined a finite number of times. We theridbe /,,. We can see that
[*[F) = 1,[F]= --- = L[F] = I[F],and hencd*[F']| = [[F]. O

The completion of the proof of Theorem 1 follows directly from Lemma 2. That is, if we start
with any interpretatiort for p-formula#’, we can construct a maximally diverse interpretation
such that/*[F] = I[F]. Assuming/' is true under all maximally diverse interpretatiofg, /]
must hold, and sincé&*[F'] = I[F], I[F] must hold as well.

14



3.3 Exploiting Positive Equality in a Decision Procedure

A decision procedure for PEUF must determine whether a given p-formula is universally valid.
The procedure can significantly reduce the range of possible interpretations it must consider by
exploiting the maximal diversity property. Theorem 1 shows that we can consider only interpreta-
tions in which the values produced by the application of any p-function symbol differ from those
produced by the applications of any other p-function or g-function symbol. We can therefore con-
sider the different p-function symbols to yield values over domains disjoint with one another and
with the domain of g-function values. In addition, we can consider each application of a p-function
symbol to yield a distinct value, except when its arguments match those of some other application.

4 Eliminating Function Applications

Most work on transforming EUF into propositional logic has used the method described by Ack-
ermann to eliminate applications of functions of nonzero order [Ack54]. In this scheme, each
function application term is replaced by a new domain variable and constraints are added to the
formula expressing functional consistency. Our approach also introduces new domain variables,
but it replaces each function application term with a nest&dstructure that directly captures the
effects of functional consistency. As we will show, our approach can readily exploit the maximal
diversity property, while Ackermann’s cannot.

4.1 Function Application Elimination Example

We demonstrate our technique for replacing function applications by domain variables using
p-formula ., (Equation 1) as an example, as illustrated in Figure 4. First consider the three
applications of function symbat ¢(z), g(y), andg(g(x)), which we identify as term$;, 7, and
T3, respectively. Letg,, vg,, andvg, be new domain variables. We generate new tarms/,,
andU; as follows:

Ul = Vg4 (2)
U2 = ITE(y:l’,Ugl,ng)
Us = ITE(vgi ==, vg,,ITE(vg1 =y, vgs, vg3))

Observe that we use variableg,, the translation ofy(x), to represent the argument to the outer
application of function symba} in the termg(g(x)). In general, we must always process nested
applications of a given function symbol working from the innermost to the outermost. Given
termsl,, U,, andUs;, we eliminate the function applications by replacing each instandé iof

15



Initial formula:

! © ® O
0——@—0 (=}~
©
Xy
After removing applications of function symbel
O R
— s
(h) 7).
| 3 -0
B S 1: 0
O]
—
F

Xy Vgl vgzvg3
After removing applications of function symbi

Xy vg vg,vg, vh, vh,
Figure 4: Removing Function Applications frof,.

16



{ep {yh {g(a)} | 1
{z,y}, {g(x)} 1
{2} {y, g(2)} 1
{2, 9(2)}, {y} 1

{z,y,9(x)} 1

N DN DN T
S
— = B WO |~
&

Table 3: Possible valuations of terms in Equation 2 when each variabie assigned value

the formula byU; for 1 < ¢ < 3, as shown in the middle part of Figure 4. We use multiplexors in
our schematic diagrams to represHrt operations.

Observe that as we consider interpretations with different values for variahles;,, andvg,
in Equation 2, we implicitly cover all values that an interpretation of function symlooformula
F., may yield for the three arguments. The nedf€éH structure shown in Equation 2 enforces
functional consistency. For example, Table 3 shows the possible valuations of the three terms of
Equation 2 for an interpretatioft assigning values, 2, and3 to domain variablesg,, vg,, and
vg 5, respectively. For each possible partitioning/byf arguments:, y, andg(x) into equivalence
classes, we get matching valuations precisely for equivalent arguments.

We remove the two applications of function symldby a similar process. That is, we intro-
duce two new domain variabled, andvh,. We replace the first application a6fby v, and the
second by atTE term that compares the arguments of the two function applications, yielding
if they are equal andh, if they are not. The final form is illustrated in the bottom part of Figure
4. The translation of predicate applications is similar, introducing a new propositional variable for
each application. After removing all applications of function and predicate symbols of nonzero
order, we are left with a formul&;, containing only domain and propositional variables.

4.2 Algorithm for Eliminating Function and Predicate Applications

The general translation procedure follows the form shown for our example. It iterates through the
function and predicate symbols of nonzero order. On each iteration it eliminates all occurrences of
a given symbol. At the end we are left with a formula containing only domain and propositional
variables.

The following is a detailed description of the process required to eliminate all instances of a
single function symbolf having orderk > 0 from a formulaG. We use the variant of formula
F., shown schematically at the top of Figure 5. In this variant, we have replaced function symbol
g with f. In the sequel, i/ is an expression anl andU are terms, we will writels[T" + U]
for the result of substitutingy for each instance df in E. LetT,. .., T, denote the syntactically
distinct terms occurring in formul& having the application of as the top level operation. We

17



Initial formula showingf-order contours:

N 3
0/1/2/3
Xy
After removing applications of function symbgi
C
DO I e— BN

Figure 5: Illustration of Function Application Removal

18



refer to these asf-application” terms. Let the argumentsftan f-application tern¥; be the terms
Sits---y Sk SO thatl; has the formf(S;1,..., 5 x). Assume the term$,...,7, are ordered
such that if7; occurs as a subexpressionigfthen: < j. In our example thg-application terms
are:Ty = f(z), T, = f(y) andTs = f(f(z)). These terms have argument§;, = =, S = v,
andSs; = f(x).

The translation Erocesses thieapplication terms in order, such that on stepreplaces all
occurrences of thé application of function symbof by a nestedTE term. Letuvf,,...,uf,
be a new set of domain variables not occurring‘inWe use these to encode the possible values
returned by the'-application terms.

For any subexpressiafi in ¢ define its integer-valuegi-order, denoted;( F'), as the highest
index: of an f-application tern¥;; occurring in¥. If no f-application terms occur iRy, its f-order
is defined to be 0. By our ordering of tifeapplication terms, any argumesit; to f-application
term7; must haveo;(5;;) < os(T;), and therefore,(1;) = i. For example, the contour lines
shown in Figure 5 partition the operators according to tlfiesrder values.

The transformations performed in replacing applications of function sybah be expressed
by defining the following recurrence for any subexpresdioof G-
EO ~ B
6 =
E .

G0 ], 1<i<n ()

E K3

B wherem = o;(E)

In this equation, terrﬂ”i(i_l) is the form of the'h f-application terni/; after all but the topmost
application off have been eliminated. Terti is a nestedTE structure encoding the possible
values returned by; while enforcing its consistency with earlier applicatiofisdoes not contain
any applications of function symbgl. For a subexpressiofi with o;(E) = m, its form £(™)
will contain no applications of function symbgl We denote this form a&. Observe that for any
i > o;(E), termT{" does not occur i2®), and hencez) = £ for all i > o;(E). Observe

also that forf-application terni}, we havel} = 7" = 1.
U; is defined in terms of a recursively-defined te¥in as follows:

Vie = oy I<i<n
‘/2'7]‘ = |TE(C¢7]‘, Ufja‘/i,j-l—l)a 1 S] <1< n (4)
U = Vi, I<i<n

where for eachy < ¢, formulac; ; is true iff the (transformed) arguments to the top-level applica-
tion of f in the terms/; and7’; have the same values:

Cij = N\ Si,lzgj,l (%)
1<I<k

Observe that the recurrence of Equation 4 is well-defined, since for all argument terms of the form
S;iforl <j <iandl <[ <k, wehaveos(S;,) < i, and hence terms of the forff); and.S;,
as well as ternV; ;,, are available when we defing;.

19



The lower part of Figure 5 shows the result of removing the three application$rof our
example formula. First, we havé, = uvf,, giving translated function argumenté‘.l,l = z,
Sy1 =y, andSs; = of,. The comparison formulas are thefl; ; = (y =), Ca; = (vf, =),
andCs, = (vf, =y). From these we get translated terms:

U, = |TE(y:=’1?7“flavf2)
Us = |TE(Uf1:$,Uf1,|TE(Uf1:y,Uf2,Uf3))

We can see that [ormulﬁ = ¢ will no longer contain any applications of function symbol
f. We will show that’/ is universally valid if and only if+ is.

In the following correctness proofs, we will use a fundamental principle relating syntactic
substitution and expression evaluation:

Proposition 1 For any expressiott, pair of terms/’, U/, and interpretatiory of all of the symbols
in E,T,andU, if I[T] = I[U] thenI[E[T « U]] = I[E].

We will also use the following characterization of Equation 4. For valgech thatl <
: < n and for interpretation of the symbols inl/;, we define thdeast matching valuef :
under interpretatiod, denotedm, (i), as the minimum valug in the rangel < j < i such that

I[S;.] = I[5:,] for all [ in the rangel < | < k. Observe that this value is well defined, sirice
forms a feasible value fgrin any case.

Lemma 3 For any interpretation/, /[U;] = I(vf;), wherej = lm(z).

Proof: For valuem in the rangel < m <. definelm(m, ) as the minimum value of in the
rangem < j < ¢ such that/[S;;] = [[S;,] for all [ in the rangel < [ < k. By this definition
Im(i) = Imy(1,2). Observe also that if = Im;(m,:) thenl[C; ;] = true. In addition, for any

valuerm' in the rangen < m' <4, if Im(m,i) > m/, thenlm;(m,¢) = Im(m’,1).

We prove by induction om» that I[V; ,,] = I(uvf;), wherej = Im;(m,:). The base case of
m = ¢ is trivial, sincelm(i,¢) = 1, andV;; = uf,.

Assuming the property holds fet + 1, we consider two possibilities. First,lif.;(m,1) = m,
we have/[C; ,,| = true, and hence the top-levelE operation inV; ,,, (Equation 4) will select its
first term argumentf ., giving I[V; ] = I(vf,,). On the other hand, #fn;(m,:) > m, we must
have[C;,,] = false, and hence the top-levélTE operation inV; ,, will select its second term
argumentV; .1, giving I[V; .| = I[Vi.41], which by the inductive hypothesis equdlsf ;) for
J = Imi(m+1,17). Sincelmr(m,1) > m + 1, we must also havén;(m,:) = im;(m + 1,17), and
hencel[V; .| = I(vf;), wherej = Im(m,1).

Since U; is defined asV;;, our induction argument proves thatl;] = I(vf;) for j =
lm[(l,l) = lm[(l) O

20



Lemma 4 Any interpretation/ of the symbols i can be extended to anAinterpretatidAmf the
symbols in botli7 and ' such that for every subexpressiénof &, J[F] = J[E] = J[E].

Proof: We provide a somewhat more general constructios tifan is required for the proof
of this lemma in anticipation of using this construction in the proof of Lemma 6. Giveefined
over domairD, we define/ over a domairD such thatd O D.

We define/ for the function and predicate symbols occurringased on their definitions in
J. For any function symbaof in ' havingord(f) = k, and any argument values, . . .,z € D,
we defineJ (f)(z1,...,24) = J(f)(x1,...,z). For argument values,. ..., z; € D such that
for somes, «; € D, we |etj(f)(:1;1, ..., ) be an arbitrary domain value. Similarly, for predicate
symbolp, we defineJ(p) to yield the same value a#(p) for arguments ifD and to yield an
arbitrary truth value when at least one argument is n@.in

One can readily see thdfE] = J[E] for every subexpressiofl of 7. This takes care of
the second equality in the statement of the lemma, and hence we can concentrate on the relation
between/[ /2] and.J[ ] for the remainder of the proof.

Recall thatuf,, . . ., vf,, are the domain variables introduced when generating the ngdted
termsUy,...U,. Our strategy is to define interpretations of these variables such thatlgach
mimics the behavior of the origingtapplication terni’; in .

We consider two cases. For the case wherg(i) = i, we defineJ(vf;) = J[T], i.e., the
value of the/t" f-application term in7 under./. Otherwise, we Ieﬁ(vfi) be an arbitrary domain
value—we will show that its value does not affect the valuation of any expreﬁ’sinr@ having a
counterpari in G.

We argue by induction onthat J[E)] = J[E] for any subexpressiof of (7. For the case

)
whereo () < 1, this hypothesis implies thal{ 2] = .J[[Z]. The base case of= 0 is trivial, since
%) is defined to bev.

Suppose that for everyin the rangel < j < 7 and every subexpressian of G we have
J[DW] = J[D], and consequently that[ D] = .J[D] for the case where;(D) < i. We must
show that for every subexpressiéhof (¢, we have/[E()] = J[E].

We first focus our attention on terifj in G and its counterpatt; in ¢, showing that/[U;] =
JIT3). The f-application terms for alj such thatj < : haveo;(T;) = j < ¢, and hence we can
assume that[l/;] = J[T}] for these values of. Furthermore, any argumefif, toan f- appllcatlon
term forj < iandl </ < k hasos(S;;) < j <1, and hence we can assumie; ;| = J[5;.].

We consider two caseén j(z) = ¢, andim j(z) < . In the former case, we have by Lemma 3
that J[U;] = J(uf ;). Our definition ofJ(vf,) gives.J[U;] = J(uvf;) = J[T}]. Otherwise, suppose
that im;(z) = j < 4. Lemma 3 shows thal[U;] = J(vf;). We can see thain;(j) = j,
and hence/(uf ;) is defined to be/[T;]. By the definition ofim we have/[S;,] = J[S;,] for
1 <[ < k. By the induction hypothesis we havésS;,] = J[5;,], sinceo;(S;;) < i, and similarly

21



thatJ[S;,] = J[S.,]. By transitivity we have/[S;,] = .J[S;,] forall  such thatt < <k, i.e., the
arguments tg'-application termg’; and7; have equal valuations undér Function consistency
requires that/[T;] = J[T;]. From this we can conclude tha{t;] = J[U,] = J[T}] = J[T}].
Combining these cases givé/;] = A[Ti].

For any subexpressiof its form £ differs from £~ only in that all instances of term

) have been replaced uy We have just argued thaf(/;] = J[ ;], and by the induction

hypothesns we have thaﬁ[TZ ) ] J[T}], giving by transitivity that/ [T’ T~ )] = J[U]. Proposi-
tion 1 implies that/[£()] = J[£(~Y], and our induction hypothesis glvd@(i—l)] = J[E]. By
transitivity we have/[E9)] = J[E].

To complete the proof, we observe that our induction argument implies that for any subexpres-
sionE of G, J[E(™)] = J[E], including for the case where = o;(E), giving J[£] = J[E™)] =
J[E]. O

Lemma 5 Any ipterpretationf of the symbols iit; can be extended to an interpretatigrof the
symbols in botli7 and ' such that for every subexpressiénof &, J[F] = J[F] = J[E] .

Proof: We defineJ to be identical to/ for any symbol occurring in?. This implies that
J[E] = J[E] for every subexpressioll of . This takes care of the second equality in the
statement of the lemma, and hence we can concentrate on the relation b&fwéand./| £] for
the remainder of the proof.

For function symbolf, we define/(f)(zy, ..., ) for domain elements,, ..., z; as follows.
Suppose there is some valpsuch that:; = J[5;,] for all / such thatl <! < k, and such that
J = Ilmj(j). Then we define/(f)(xy,...,x) to beJ(uvf;). If no such value ofi exists, we let
J(f)(x1,..., ) be some arbitrary domain value.

We argue by induction onthat J[E] = J[E®] for any subexpressiofy of ;. For the case
whereo;(E) < i, this hypothesis implies thatl ] = J[F]. The base case of= 0 is trivial, since
%) is defined to bev.

Suppose that for everyin the rangel < j < : and every subexpressidn of -, we have
J[D] = J[DW], and consequently thaf D] = .J[D] for the case where; (D) < i. We must show
that for every subexpressidn of ¢, we have/[E] = J[E)].

We focus initially on terni’; in ¢ and its counterpalt; in ¢, showing that/[T}] = J[U;]. Any
f-application terni’; for j < i haso(T}) = j < i, and hence we can assume th&f;] = J[7}].
Furthermore, any argumeRft; to an f-application term fory < : andl <[ < k hasos(95;,;) <
j <1, and hence we can assume tHi&t;,] = J[5,.].

We consider two casesin ;(¢) = ¢, and/m;(i) < i. In the former case, we have by Lemma
3 thatJ[U] = J(vf, ) In addition,.J( f) is defined such that[T;] = J(f)(J[Sia],.. ., J[Sik]) =
J(HT[Sial - J[Sik]) = J(ufy), giving J[T}] = J(uf;) = J[U;]. Otherwise, suppose that
Im;(1) = j < i. Lemma 3 shows that[U;] = J(vf;). We can see thdin ;(j) = j, and hence

22



J(f) is defined such that (f)(J[S;1],-..,J[S;4]) = J(uf;). Foranyl such thatl < [ < k,

N N

we also have by the definition éf: that.J[S;;] = J[S;,]. By the induction hypothesis we have
J[S;1] = J[S;], sinceos(S;,) < i, and similarly that/[S;,] = J[S;,]. By transitivity we have
J[S;:] = J[S:], i.e., the arguments tp-application termd’; and7; have equal valuations under
J. Functional consistency requires thia?;] = J[7;]. Putting this together give§[7;] = J[T}] =
JNISals -5 J1S5e]) = ST [Ssals -5 JS5]) = S (uf ;) = J[UI].

For any subexpressiofi its form £ differs from £¢=1 only in that all instances of term
TZ»(H) have been replaced ly;. We have just argued thaf7;] = J[U;], and by the induction
hypothesis we have thaf7;] = J[T"~"], giving by transitivity that/[T\"""] = J[U};]. Proposi-
tion 1 implies that/[E(-Y] = J[E®], and our induction hypothesis givé$r] = J[E(~Y)]. By
transitivity we have/[E] = J[E].

To complete the proof, we observe that our induction argument implies that for any subexpres-
sion £ of GG, J[E] = J[E™)], including for the case where = o;(E), giving J[E] = J[E(™)] =
J[E]. O

An application of a predicate symbol having nonzero order can be removed by a similar pro-
cess, using newly generated propositional variables to encode the possible values returned by the
predicate applications. By an argument similar to that made in Lemma 4, we can extend an in-
terpretation to include interpretations of the propositional variables such that the original and the
transformed formulas have identical valuations. Conversely, by an argument similar to that made
in Lemma 5, we can extend an interpretation to include an interpretation of the original predicate
symbol such that the original and the transformed formulas have identical valuations.

Suppose formul@’ contains applications different function and predicate symbols of nonzero
order. Starting with/y, = F', we can generate a sequence of formlasty, . . ., F,,. Each for-
mula F; is generated from its predecessor; by lettingGG = F; andF;,; = G in our technique
to eliminate all instances of th# function or predicate symbol. Lét* = F,,, denote the formula
that will result once we have eliminated all applications of function and predicate symbols having
nonzero order.

Theorem 2 For EUF formulaF’, the transformation process described above yields a formtila
such that/" is universally valid if and only i#™ is universally valid.

Proof: This theorem follows by simply inducting on the number of function and predicate
symbols inF" having nonzero order. That is, for any interpretatiaof the function and predicate
symbols ofF’, we construct a sequence of interpretations /o, I4, ..., I,,. Each interpretation
I; is generated by extending its predecessor by letting.J = I,_; and/; = .J in Lemma 4 or a
similar one for predicate applications. The effect is to includé imterpretations of the domain
or propositional variables introduced when eliminating efunction or predicate symbol. We
then define interpretatioft to be identical td/,,, for every variable appearing ifi*. By induction,

23



we havel*[F™*] = I[F]. If F*is universally valid, we havé[F'| = [*[F*] = true. Since this
construction can be performed for any interpretatiph’ must also be universally valid.

Conversely, starting with an interpretatidhof the domain and propositional variablesfof,
we can define a sequence of interpretatibhs- /,,, [,,_1, ..., Iy, using the construction in the
proof of Lemma 5 (or a similar one for predicate applications) to generate an interpretation of
each function or predicate symbol i We then define interpretatiahto be identical tal, for
every function or predicate symbol appearinginBy induction, we have[F| = I*[F~]. If F'is
universally valid, we havé*[f™*] = [[F] = true. Since this construction can be performed for
any interpretatiod*, /" must also be universally validl

4.3 Assigning Distinct Values to Variables Representing P-Function Appli-
cations

We can exploit the maximal diversity property by considering only interpretations that assign dis-
tinct values to the domain variables generated when replacing p-function applications by nested
ITE terms.

For example, by using an interpretatiohthat assigns distinct valueés2, and3 to variables
of 1, vf 5, @anduf 5 in Equation 2, we generate distinct values for the tetmd/,, andUs;, except
when there are matches between the argumants,, andxs. On the other hand, our encoding
still considers the possibility that the arguments to the different applicatiohsnafy match under
some interpretations, in which case the function results should match as well.

To show this formally, consider the effect of replacing all instances of a function syfbol
in a formulaG by nestedTE terms, as described earlier, yielding a formGlavith new domain
variablesof ;,..., vf .. We first show that when we generate these variables while eliminating
p-function applications, we can assume they have a diverse interpretation.

Lemma 6 Let Y. be a subset of the symbolsdh and let( be the result of eliminating function
symbol f from ¢ by introducing new domain variableg,,...,vf .. If f € X, then for any
interpretation./ that is diverse fors with respect ta, there is an interpretationy that is diverse
for G with respect to&2 — {f} U {vf,, ..., vf,} such that/[(] = J[G].

_ Proof: Given interpretatiory defined over domai®, we define interpretatiosh over a domain
D =DUA{z,...,z,}. Eachz is a unique value, i.ez; # z; forany: # j, andz; ¢ D.

The proof of this lemma is based on a refinement of the proof of Lemma 4. Whereas the
construction in the earlier proof assigned arbitrary values to the new domain variables in some
cases, we select an assignment that is diverse in these variables. As in the construction in the proof
of Lemma 4, we defing for any function or predicate symbol ii to be identical to that off
when the arguments are all elementgofWhen some argument is not, we let the function
(respectively, predicate) application yield an arbitrary domain (resp., truth) value.

24



For domain variablef, introduced when generating terif), we consider two cases. For the
case Wherém ;(i) = 7, we define/ (vf;) = J[T}], i.e., the value of the" f-application term ir
under.J. For the case wherkn ;(i) < i, we define/(vf;) = z;. We saw in the proof of Lemma
4 that we could assign arbitrary values in this latter case and still m&}s: J[G]. In fact, for
every subexpressioh of ¢, we have that its counterpaitin (i satisfies/[E] = J[E].

We must show that/ is diverse for(; with respect tos — {f} U {vf,,...,uf,}. We first
observe that is identical toJ for all function application terms if¥, and hencel must be diverse
with respect ta for (. We also observe thatassigns to each variabl¢. either a unique value
z; or the value yielded by-application tern¥; in G under./.

Suppose there were distinct vanablég anduf ; such that/[vf;] = j[vfj]. This could only

occur for the case thak(vf,) = J[T}] = J[T;] = J(vf ), but this would imply thatm ;(:) =
Im 3(7). We cannot have bothw ;(:) =« and/m ;(j) = j, and hence eitherf or vf ; would have

been assigned unique valugor z;, respectively. Thus, we can conclude thiatf,] # j[vfj] for
distinct variablesf; anduvf ;.

In addition, we must show that interpretatiafrdoes not create any matches between a new
variableuf; and a function application terffi in (¢ that does not havg¢ as the topmost function
symbol. Since/ is diverse with respect ti for & and f € X, any function application terrff
in ¢ that does not have function symbplas its topmost symbol must havéT'] # J[T;] for all
1 < i < n. In addition, we have/[T] # = forall 1 < i < n. Hence, we must havd{T] # J(uf,).

0

We must also show that the variables introduced when eliminating g-function applications do
not adversely affect the diversity of the other symbols.

Lemma 7 Let. be a subset of the symbolsdh and let(¥ be the result of eliminating function
symbol f from ¢ by introducing new domain variableg,,...,vf .. If f &€ X, then for any
interpretation./ that is diverse fol7 with respect td., there is an interpretatior:f that is diverse
for (¢ with respect ta” such that/[(7] = J[G].

Proof: The proof of this lemma is based on a refinement of the proof of Lemma 4. Whereas the
construction in the earlier proof assigned arbitrary values to some of the new domain variables, we
select an assignment such that we do not inadvertently violate the diversity of the other function
symbols.

We defineJ to be identical to/ for any symbol occurring ii7. For each domain variable,
introduced when generating tei, we define/(vf,) = J[T}]. This differs from the interpretation
defined in the proof of Lemma 4 only in that give fixed interpretations of domain variables that
could otherwise be arbitrary, and hence we have Ue@(l@ J[G]. In fact, for every subexpres-
sion £ of (7, we have that its counterpaitin (¢ satisfies/[ /] = J[E].

We must show thaf is diverse for(; with respect ta. We first observe thaf is identical
to J for all function application terms 6/, and hence/ must be diverse fof; with respect to

25



. We also observe that assigns to each variabl¢, the value off-application termi;. For
term7" having the application of function symbgle ¥ as the topmost operation, we must have
J[T] = J[T] # J[T}] = J[vf,]. Hence, we are assured that the values assigned to the new variables
under.J do not violate the diversity of the interpretations of the symbolS.ir0

Suppose we apply the transformation process of Theorem 2 to a p-fofmigdagenerate a
formula F*, and that in this process, we introduce a set of new domain varigbteseplace the
applications of the p-function symbols. LE}(F) be the union of the set of domain variables in
¥,(F) andV'. Thatis,X( F') consists of those domain variables in the original fornfuthat were
p-function symbols as well as the domain variables generated when replacing applications of p-
function symbols. LeL’(F') be the domain variables i~ that are not irt;( /). These variables
were either g-function symbols ifi or were generated when replacing g-function applications.

We observe that we can generate all maximally diverse interpretatiofshyf considering
only interpretations of the variables i that assign distinct values to the variable&iji /')

Theorem 3 PEUF formulaf’ is universally valid if and only if its translatiofn™ is true for every
interpretation/* that is diverse oveE:(F).

Proof: By Theorem 2, the universal validity df implies that of#*. The theorem follows
by inducting on the number of function and predicate symbolg' inaving nonzero order. For
the induction step we use Lemma 6 when eliminating all applications of a p-function symbol, and
Lemma 7 when eliminating all applications of a g-function symbol. When eliminating a predicate
symbol, we do not introduce any new domain variables.

4.3.1 Discussion

Ackermann also describes a scheme for replacing function application terms by domain variables
[Ack54]. His scheme simply replaces each instance of a function application by a newly-generated
domain variable and then introduces constraints expressing functional consistency as antecedents
to the modified formula. As an illustration, Figure 6 shows the result of applying his method to
formulaf, of Equation 1. First, we replace the three applications of function symiath new

domain variablesy,, vg,, andvg,. To maintain functional consistency we add constraints

(r=y = vg,=vg,) A (x=vg, = vg,=vg3) A (y=vg, = vg,=vg3)
as an antecedent to the modified formula. The result is shown in the middle of Figure 6, using
Boolean connectives, V, and- rather than=-. In this diagram, the three constraints listed above
form the middle three arguments of the final disjunction. A similar process is used to replace the
applications of function symbal, adding a fourth constrainty, = vg, A vgy = vgs = vhy = vh,.
The result is shown at the bottom of Figure 6.

There is no clear way to exploit the maximal diversity with this translated form. For example,
if we consider only diverse interpretations of variables, vg,, anduvg,, we will fail to consider
interpretations of the original formula for whichequalsy.

26



Initial formula:

After removing applications of function symbel

D O *:—@1:
— oo-0-0°

‘:E
I )
N
7
- |
PO - |

| =2

Xy vgl ngvg3
After removing applications of function symbii

-

¥

Q@

7
S

X Yy vg vg,vg,vh, vh,

Figure 6: Ackermann’s Method for Replacing Function Applicationgin

27



4.4 Using Fixed Interpretations of the Variables inX’(F')

We can further simplify the task of determining universal validity by choosing particular domains
of sufficient size and assigning fixed interpretations to the variablé (if'). The next result
follows from Theorem 3.

Corollary 1 LetD, andD, be disjoint subsets of domalmsuch thaiD,| > |¥7(F)| and|D,| >

|X5(F)|. Leta be any 1-1 mapping: ¥5(F') — D,. PEUF formulaF is universally valid if
and only if its translation¥™ is true for every interpretatiod™ such that/*(v,) = «a(v,) for every
variablev, € ¥7(F'), andl*(v,) € D, for every variabley, € ¥>(F).

Proof: Consider any interpretatiof of the variables irt; (/) U ¥7(F) that is diverse over
¥x(F'). We show that we can construct an isomorphic interpretdtidhat satisfies the restrictions
of the corollary.

Let D, (respectivelyD; ) be the range of * considering only variables i’ () (resp. X ( F)).
The function/*: ¥*(F) — D, must be a bijection and hence have an invefse: D, — 7 (F).
Furthermore, we must hay®; | < |¥%(F')| < [D,|. Leto, be the 1-1 mapping,: D, — D,
defined for any in D/, aso,(z) = a(J*"'(2)). Leto, be an arbitrary 1-1 mapping: D), — D,.
We now define/ such that for any variablein ¥>( ) (respectivelyX” (")) we havel*(v) equal
too,(J*(v)) (resp.,o,(J*(v))). Finally, for any propositional variable we let/*(«) equal/*(a).

For any EUF formula, isomorphic interpretations will always yield identical valuations, giving
I*[F*] = J*[F*]. Hence the set of interpretations satisfying the restrictions of the corollary form
a sufficient set to prove the universal validity 6f. O

5 Reductions to Propositional Logic

We present two different methods of translating a PEUF formula into a propositional formula
that is tautological if and only if the original formula is universally valid. Both use the function
and predicate elimination method described in the previous section so that the translation can be
applied to a formulad™ containing only domain and predicate variables. In addition, we assume
that a subset of the domain variableg /') has been identified such that we only need to encode
interpretations that are diverse over these variables.

5.1 Translation Based on Bit Vector Interpretations
A formula such ag™ containing only domain and propositional variables can readily be translated

into one in propositional logic, using the set of bit vectors of some leagjteater than or equal
to log, m as the domain of interpretation for a formula containinglomain variables [VB98].

28



Domain variables are represented with vectors of propositional variables. In this formulation, we
represent a domain variable as a vector of propositional variables, where trutlialatuencodes

bit value 0, and truth valutrue encodes bit value 1. In [VB98] we described an encoding scheme
in which theith domain variable is encoded as a bit vector of the foom. ., 0,a; p—1,...,a0)
wherek = [log,i|, and each;; is a propositional variable. This scheme can be viewed as
encoding interpretations of the domain variables over the integers whei® themain variable
ranges over the sdb,...,: — 1} [PRSS99]. That is, it may equal any of its predecessors, or it
may be distinct.

We then recursively translaté* using vectors of propositional formulas to represent terms.
By this means we then reduéé to a propositional formula that is tautological if and onlyif,
and consequently the original EUF formwais universally valid.

We can exploit positive equality by using fixed bit vectors, rather than vectors of propositional
variables when encoding variablesirj( /). Furthermore, we can construct our bit encodings
such that the vectors encoding variable&jii /') never match the bit patterns encoding variables
in X*(F). As anillustration, consider formulé., given by Equation 1 translated into form
as diagrammed at the bottom of Figure 4. We need only encode interpretations of the vatiables
Y, vg,, Vg4, Vg5, vhy, andvh, that are diverse respect to the last five variables. Therefore, we can
assign 3-bit encodings to the seven variables as follows:

X

(0,0,0
y 1(0,0,a
vgy | (0,1,0
vgy | (0,1,1
vgs | (1,0,0
ohy | (1,0, 1
vhy | (1,1,0

wherea, o is a propositional variable. This encoding uses the same scheme as [VB98] for the
variables in¥»( /') but uses fixed bit patterns for the variableif{ /'). As a consequence, we
require just a single propositional variable to encode forniija

As a further refinement, we could apply methods devised by Patalito reduce the size of
the domains associated with each variablgja/") [PRSS99]. This will in turn allow us to reduce
the number of propositional variables required to encode each domain variabjlefin.

5.2 Translation Based on Pairwise Encodings of Term Equality
Goelet al. [GSZAS98] describe a method for generating a propositional formula from an EUF
formula, such that the propositional formula will be a tautology if and only if the EUF formula is

universally valid. They first use Ackermann’s method to eliminate function applications of nonzero

29



order [Ack54]. Then they introduce a propositional variahlefor each pair of domain variables
v; andv; encoding the conditions under which the two variables have matching values. Finally,
they generate a propositional formula in terms ofdhevariables.

The propositional formula they generate does not enforce constraints amang Waeiables
due to the transitivity of equality, i.e., constraints of the form A e; . = ;. As a result, in
attempting to prove the formula is a tautology, they may generate false “counterexamples.” They
express the set of potential counterexamples as a BDD and then systematically eliminate those that
contain transitivity violations.

We provide a modified formulation of their approach that exploits the properties of p-formulas
to encode only valuations under maximally diverse interpretations. As a consequence, we require
e; ; variables only to express equality among those domain variables that represent g-term values
in the original formula.

We describe a method of expressing the transitivity constraints in our formulas that exploits the
sparse structure of the; variables. In practice, we have actually found that our processor models
can be verified without enforcing any transitivity constraints. Apparently the transitivity conditions
that caused problems for Goet al. correspond to p-terms in our verifications and hence do not
require any propositional variables.

5.2.1 Construction of Propositional Formula

Starting with p-formulaF’, we apply our method of eliminating function applications to give a
formula /™ containing only domain and propositional variables. The domain variablEs are
partitioned into set&( '), corresponding to p-function applicationsfinand¥; ( /') correspond-

ing to g-function applications ifi". Let us identify the variables i (/') as{vy, ..., vy}, and the
variables in¥»(F') as{vn 41, - -, vntarf. We need only encode interpretations that are diverse in
this latter set of variables.

For values of: andj such thatl < : < ;5 < N, define propositional variables; encoding
the equality relation between variablesandv;. We require these propositional variables only
for indices less than or equal t9. Higher indices correspond to variablesip( /'), and we can
assume for any such variahlgethat it will equal variable>; only when: = ;.

For each term¥" in F*, and each,; with 1 <: < N + M, we generate formulas of the form
enct;(1) for 1 <i < N 4+ M to encode the conditions under which the control formulas in the
ITEs in termT will be set so that value df' becomes that of domain variahle In addition, for
each formula we define a propositional formulacf () giving the encoded form afl. These

30



formulas are defined by mutual recursion. The base cases are:

encf(true) = true
encf(false) = false
encf(a) = a, a 1S a propositional variable
enct;(v;) = true
enct;(v;) = false, Fori#j

For the logical connectives, we definecf in the obvious way:

encf (—G1) = —encf(Gh)
encf (G1 N Gy) = encf(Gh) A encf (Gy)
encf (G1V Gy) = encf(Gh) V encf (Gy)

ForITE terms, we definenct as:
enct,(ITE(G,T1,T2)) = encf(G) Nenct;(T1) V —encf(G) N enct;(Tz)

For equations, we defingicf (71 =1T3) to be

encf (Ty="T,) = \/ encti(Th) A ep ) A enct;(T3) vV \/ enct;(Ty) A enct;(T5)
1<i,j<N NA1<<N+M
(6)
whereey; ; is defined forl <:,7 < N as:
true 1=
€[, 4] = € ; 7 <j
€4 ) >j

Informally, Equation 6 expresses the property that there are two ways for a pair of terms to be
equal in an interpretation. The first way is if the two terms evaluate to the same variable, i.e.,
we have bothenct;(7;) and enct;(13) hold for some variable,. Forl < : < N, the left hand

part of Equation 6 will hold sincef;;; = true. For N +1 < ¢ < N, the right hand part of
Equation 6 will hold. The second way is that two terms will be equal under some interpretation
when they evaluate to two different variablesandv; that have the same value. In this case we
will have enct;(Ty), enct;(T3), andep ; hold, wherel < :,57 < N. Observe that Equation 6
encodes only interpretations that are diverse ¢ver,, ..., vny1a}. It makes use of the fact that
whenN + 1 <1 < N + M, variablev; will only equal variablev; only if : = ;.

As an example, Figure 7 shows an encoding of formiitagiven in Figure 4, which was
derived from the original formuld’ shown in Figure 3. The variables Ky;(/~) arex andy.
These are renamed asandv,, giving N = 2. The variables irt’;( /™) arevg,, vg,, vgs, vhy, and

31



[4:T]

Vl V2 V3 \

Figure 7: Encoding Example Formula in Propositional Logic. Each tErisrepresented as a list
giving the nonfalse values ofenct; (7).

vhy. These are relabeled agthroughv;, giving M = 5. Each formula in the figure is annotated
by a (simplified) propositional formula, while each tefhis annotated by a list with entries of the
form: enct; (1), for those entries such thatct,;(7') # false. We use the shorthand notation “T”
for true and “F” for false. Our encoding introduces a single propositional variable It can
be seen that our method encodes only the interpretatiorfsftabeled as D1 and D2 in Table 2.
Whene, , is false, we encode interpretation D2, in which# y and every function application
term yields a distinct value. When ; is true, we encode interpretation D1, in which= y and

hence we have(z) = g(y) andh(g(x), g(g())) = h(g(y), 9(g(v)))-

In general, the final result of the recursive translation will be a propositional formufd 7).
The variables in this formula consist of the propositional variables that occhr ias well as
a subset of the variables of the form;. Nothing in this formula enforces the transitivity of
equality. We will discuss in the next section how to impose transitivity constraints in a way that
exploits the sparse structure of the equations. Other than transitivity, we claim that the translation
encf (F*) captures validity of'*, and consequently the original p-formwfa For an interpretation
J over a set of propositional variables, including variables of the farpfor 1 <: < j < N,
we say that/ obeys transitivitywhen for all¢, 7, and % such thatl < 7,5,k < N we have
Jlepal A Jlegul = Jleginl.

To formallze the intuition behind the encoding, letbe an interpretation of the variables in
the translated formul@™. For interpretation’*, definesel;«(7') to be a function mapping each

32



term7' in £ to the index of the unique domain variable selected by the values &7 Eheontrol
formulas in7. That is,sel;«(v;) = ¢, while sel;«(ITE(G, Ty, Ts)) is defined asel;«(T1) when
I*[G] = true and assel;«(T2) whenl*[(7] = false.

Proposition 2 For all interpretations/* of the variables inf™* and any terni’ occurring in /7, if
selp«(T) =1, thenl*[T] = I*(v;).

Lemma 8 For any interpretation/* of the variables in/™* that is diverse fo(F), there is an
interpretation./ of the variables irencf (F*) that obeys transitivity and such thadencf (F*)] =
I*[F™].

Proof: For each propositional variabteoccurring inf™*, we define/(a) = I*(«). For each
pair of variablesy; andv; such thatl < : < j < N, we define/(e; ;) to betrue iff [*(v;) =
I*(v;). We can see thal must obey transitivity, because it is defined in terms of a transitive
relation in/*.

We prove the following hypothesis by induction on the expression depths:
1. Forevery formuld in F*: J[encf(G)] = I*[G].

2. For every termil" in F* and all: such thatl < i < N + M: Jlenct;(T)] = true iff
selp(T) = 1.

The base cases hold as follows:

1. Formulas of the fornirue, false, anda haveencf (G) = G and.J[G] = [*]G].
2. Termu; hasJ[enct;(v;)] = trueiff j = ¢, andsel«(v;) = ¢ iff j = 1.

Assuming the induction hypothesis holds for formulasand(,, one can readily see that it
will hold for formulas—G4, Gy A G, andGy V (G, by the definition ofencf

Assuming the induction hypothesis holds for formGland for termd; and7,, consider term
T of the formITE(G, T4, T,). For the case wherE[(G] = true, we havel*[T'] = [*[T}], and also
selp«(T') = sel;«(T7). The induction hypotheses @ gives.J[enct;(T1)] = trueiff sel;«(T1) =
i. The induction hypothesis fa¥ gives./[encf(G)] = [*[G] = true, and hence/[enct,(T')] =
Jenct;(T)]. From all this, we can conclude thétenct,(7')] = true iff sel;«(T) = . A similar
argument holds whefr[(¢] = false, but based on the induction hypothesisfor

Finally, assuming the induction hypothesis holds for tefimsnd7,, consider the equation
Ty =T,. Suppose thatel;«(T1) = ¢ andsel;«(Ty) = j. Our induction hypothesis fdf; andT’
give Jlenct;(T1)] = J[enct;(T;)] = true. Suppose either > N or j > N. Then we will have
I*(v;) = I*(v;) iff ¢ = j. In addition, the right hand part of Equation 6 will hold undeiff : = ;.
Otherwise, suppose that< :,;7 < N. We will have I*(v;) = I*(v;) iff Jlep ;)] = true. In
addition, the left hand part of Equation 6 will hold undgiff .Je[; ;;] = true O

33



3.b.ii

3.b

Figure 8: Case Analysis for Part 3b of Proof of Lemma 9. Solid lines denote equalities, while
dashed lines denote inequalities.

Lemma 9 For every interpretatiory/ of the variables irencf (£*) that obeys transitivity, there is
an interpretation/* of the variables inF™ such that/ [ F'*] = J[encf (F™)].

Proof: We define interpretatiof* over the domain of integefd., ..., N + M }. For proposi-
tional variable:, we define/*(«) = J(a). Forl < j < N we let!/*(v;) be the minimum value of
such that/[ef; ;;] = true. ForN < j < N+ M we let/*(v;) = ;5. Observe that this interpretation
gives/*(v;) < jforall j < N, sincee; ;) = true, and/*(v;) = j for j > N.

We claim that for: < N, if [*(v;) = 1, then we must havé*(v;) = ¢ as well. If instead we
hadl*(v;) = k < 1, then we must havé|ef; 4] = true. Combining this with/[e[; ;] = true, the
transitivity requirement would givé[e;. ;)] = true, but this would imply that*(v;) = k # 1.

We prove the following hypothesis by induction on the expression depths:

1. Forevery formuld in F*: [*[G] = J[encf (G)).

2. Foreveryterm¥'in £ and all: such thatl < ¢ < N 4+ M: sel«(T) = 1 iff J[enct;(T)] =
true.

The base cases hold as follows:

1. Formulas of the fornirue, false, anda haveGG = encf (G)) andI*[G] = J[G].

2. Termu; hasselj«(v;) =1 iff j = ¢ and.J[enct;(v;)] = trueiff j = 1.

Assuming the induction hypothesis holds for formGland for termd; and7,, consider term
T of the formITE(G, Ty, T:). For the case wheré[encf ()] = true, we haveJ[enct;(T)] =
J[enct;(Ty)]. The induction hypothesis fdf, givessel;«(Ty) = ¢ iff J[enct;(T1)] = true. The
induction hypothesis fof/ gives I*[;] = J[encf((G)] = true, giving I*[T] = I*[Ty], and also
sel«(T) = sel«(17). Combining all his givesel«(T) = i iff J[enct;(T)] = true. A similar
argument can be made whéfencf (G)] = false, but based on the induction hypothesisTor

Finally, assuming the induction hypothesis holds for teffm&nd7;, consider the equation
Ty =1T,. Leti = sel;«(T)) andy = sel=(1%). In addition, letk = I*(v;) andl = [*(v;). Our

34



induction hypothesis giveg[enct;(1)] = true, andJ[enct;(1;)] = true. Proposition 2 gives
I*[T)] = k andI*[15,] = [. By our earlier argument, we must also hdvév;) = k and/*(v;) = [.
We consider different cases for the values,qgf, £, and!.

1. Suppose > N. Then we must have = [*(v;) = . EquationT} =T, will hold under 7*
iff I*(v;) = [ = k, and this will hold iffj) = [ = k& = ¢. In addition, the right hand part of
Equation 6 will hold undey iff « = ;.

2. Suppose > N. By an argument similar to the previous one, we will have equaticaT:
holding under interpretatiofi and Equation 6 holding under interpretationf : = ;.

3. Supposé < :,7 < N. Sincel*(v;) = k = I"(v) we must have/ e, ;] = true. Similarly,
sincel/*(v;) = [ = I*(v;) we must have/ e ;)] = true.

(a) Supposé = [, and hencd; =T, holds under*. Then we have/[e[; ;] = Jlep, )] =
true. Our transitivity requirement then give$ey; ;)] = true, and hence the left hand
part of Equation 6 will hold under.

(b) Supposé: # [, and hencd’; =75 does not hold undef*. We must have/[ej; ] =
false. This condition is illustrated in the left hand diagram of Figure 8. In this figure
we use solid lines to denote equalities and dashed lines to denote inequalities. We argue
that we must also havé[c|; ;| = false by the following case analysis fey;, ;:

i. ForJ[ep ;] = true, we get the case diagrammed in the middle of Figure 8 where
the diagonal line creates a triangle with just one dashed line (inequality). This
represents a violation of our transitivity requirement, since it indicafes ;] =
Jleg ) = true, butJ{ey y] = false.

ii. For Jlep ;] = false andJ[ej; j] = true, we have the case diagrammed on the
right side of Figure 8. Again we have a triangle with just one dashed line indicating
a violation of our transitivity requirement, with[e ;] = J[ep ;] = true, but
Jlep, ;1] = false.

With Jej; ;1] = false, Equation 6 will not hold undey.

From this case analysis we see tlhat 75 holds under * iff Equation 6 holds undey. O

5.2.2 Transitivity Constraints

We may need to constrain our top level formula to only consider interpretations of the variables
of the forme; ; that preserve the transitivity of equality. For example, if we have variahlgs
es2,3, ande; 3, we want to avoid interpretations that assign valttiase to two of these variables,
but false to the third. On the other hand, there is no need add transitivity constraints for cases
where the equality of two subexpressions has no bearing on the truth of our top-level formula.

35



Red Chord Black Chord

Figure 9: Case Analysis for Proof of Lemma 10. Solid lines denote black edges (equalities), while
dashed lines denote red edges (inequalities).

We therefore propose a method of enforcing transitivity that exploits the sparse structure of the
equality comparisons. We view this task as one of generating a set of constfaints where

each constraint is a formula over the variables. Our final verification condition is then expressed

as the formulaA e 100, G] = encf (F7).

Let X denote the set of all variables of the foryy occurring inencf (£*). Create an undi-
rected graph having a vertex for evérguch thatl <: < N, and an edgé, j) for every variable
of the forme, ; in X. For an interpretation of the variables inX, color edge(7, j) red when
J(x;;) is false and color it black wher/(z; ;) is true. One can see that this interpretation will
violate transitivity if and only if there is some cycle in the graph containing exactly one red edge.
This generalizes the case for triangles we saw in Figure 8, where red edges are denoted with dashed
lines. We must add constraints 1@ans that eliminate such interpretations.

Rather than enumerating all of the cycles in the graph, we augment thewéh additional
variables of the fornz; ; such that the resulting graph beconoé®rdal. [Rose70]. That is, the
graph has the property that for every cycle of length greater than 3, there is an edge (catietl a
of the cycle) connecting two vertices that are not adjacent in the cycle. Such graphs have been
studied extensively in the context of sparse Gaussian elimination. In fact, the problem of finding
a minimum set of additional variables to add to our set is identical to the problem of finding an
elimination ordering for Gaussian elimination that minimizes the amount of fill-in. Although this
problem is NP-complete [Yan81], there are good heuristic solutions.

Lemma 10 If a chordal graph contains no triangle having exactly one red edge, then it contains
no cycles containing exactly one red edge.

Proof: The proof proceeds by induction on the cycle length, with cycles of length 3 forming the
trivial base case. Assume some cy€l®f lengthk greater than 3 contains exactly one red edge,
but no smaller cycles have this property. CyClenust have a chord splitting it into two cyclé§
andC’, both of which are smaller than and both containing the chord. Assume without loss of
generality that the red edge 6fis in ;. Consider the two cases illustrated in Figure 9. If the

36



chord is colored red (left), this would be the only red edge in cgglef the chord is colored black
(right), then cycleC’; would contain the only red edge that occurs’in In either case, we have
found a cycle of length less th@&ncontaining exactly one red edge, contradicting our assumption
aboutC'. O

Assume this augmentation yields a set of variabtés Then for every value of, j, andk,
such that < j andj < k, and such that there are variabtes, ¢, , ande; 5 in X', we add three
transitivity constraints tdrans: €, ; A ejr = €ir, €ix N €k = €, ande; j A e; = €. These
constraints guarantee that any interpretation of the variabl&$ gives an edge coloring that has
no cycle of length 3 containing exactly one red edge. By Lemma 10 this property guarantees that
no larger cycle can have exactly one red edge, either, and hence the interpretation must satisfy
transitivity.

Theorem 4 P-formulaf is universally valid iff the propositional formul@ ¢ 7,.,, G] = encf (F*)
is a tautology.

Proof: This theorem follows directly from Lemmas 6, 7, and 10.

As mentioned earlier, we have found in practice that we can verify our microprocessor designs
without enforcing any transitivity constraints. The soundness of this optimization can be expressed
as follows:

Corollary 2 If propositional formuldA ;¢ 7.4, G] = encf (F*) is a tautology for som@rans’ C
Trans, then p-formulal’ is universally valid.

5.2.3 Discussion

In the formulation by Goeekt al, a propositional variable would be required for every pair of
function applications occurring in the original formula. In our case, we need only introduce these
variables for a subset of the pairs of g-function applications. For example, their method would
require 8 variables to encode the transformed version of forfylahown in Figure 6, whereas

we require only 1 using either of our two encoding schemes. In addition, they found that adding
transitivity constraints to the propositional formula directly caused a blow-up of the BDDs when
evaluating the formula. In our case, we have far fewer variables, and we have proposed an approach
to add only a minimal number of additional variables and transitivity constraints.

6 Modeling Microprocessors in PEUF

Our interest is in verifying pipelined microprocessors, proving their equivalence to an unpipelined
instruction set architecture model. We use the approach pioneered by Burch and Dill [BD94] in

37



which the abstraction function from pipeline state to architectural state is computed by symboli-
cally simulating a flushing of the pipeline state and then projecting away the state of all but the
architectural state elements, such as the register file, program counter, and data memory. Opera-
tionally, we construct two sets of p-terms describing the final values of the state elements resulting
from two different symbolic simulation sequences—one from the pipeline model and one from
the instruction set model. The correctness condition is represented by a p-formula expressing the
equality of these two sets of p-terms.

Our approach starts with an RTL or gate-level model of the microprocessor and performs a
series of abstractions to create a model of the data path using terms that satisfy the restrictions
of PEUF. Examining the structure of a pipelined processor, we find that the signals we wish to
abstract as terms can be classified as follows:

Program Data: Values generated by the ALU and stored in registers and data memory. These
are also used as addresses for the data memory.

Register Identifiers: Used to index the register file
Instruction Addresses: Used to designate which instructions to fetch

Control values: Status flags, opcodes, and other signals modeled at the bit level.

By proper construction of the data path model, both program data and instruction addresses can
be represented as p-terms. Register identifiers, on the other hand, must be modeled as g-terms,
because their comparisons control the stall and bypass logic. The remaining control logic is kept
at the bit level.

In order to generate such a model, we must abstract the operation of some of the processor
units. For example, the data path ALU is abstracted as an uninterpreted p-function, generating
a data value given its data and control inputs. Formally, this requires extending the syntax for
function applications to allow both formula and term inputs. We model the PC incrementer and
the branch target logic as uninterpreted functions generating instruction addresses. We model the
branch decision logic as an uninterpreted predicate indicating whether or not to take the branch
based on data and control inputs. This allows us to abstract away the data equality test used by the
branch-on-equal instruction.

To model the register file, we use the memory model described by Burch and Dill [BD94],
creating a nestetilE structure to encode the effect of a read operation based on the history of
writes to the memory. That is, suppose at some point we have perfdrnveite operations with
addresses given by terms;, ..., A, and data given by termB1, ..., D;. Then the effect of a
read with address term is a the term:

ITE(A= Ay, Dy, ITE(A= Ay_y, Dy, -+ ITE(A= Ay, Dy, f1(A))--)) )

where f; is an uninterpreted function expressing the initial memory state. Note that the presence
of these comparison an@E operations requires register identifiers to be modeled with g-terms.

38



Since we view the instruction memory as being read-only, we can model the instruction mem-
ory as a collection of uninterpreted functions and predicates—each generating a different portion
of the instruction field. Some of these will be p-functions (for generating immediate data), some
will be g-functions (for generating register identifiers), and some will be predicates (for gener-
ating the different bits of the opcode). In practice, the interpretation of different portions of an
instruction word depends on the instruction type, essentially forming a “tagged union” data type.
Extracting and interpreting the different instruction fields during processor verification is an inter-
esting research problem, but it lies outside the scope of this paper.

The data memory provides a greater modeling challenge. Since the memory addresses are
generated by the ALU, they are considered program data, which we would like to model as p-terms.
However, using a memory model similar to that used for the register file requires comparisons
between addresses alitE operations having the comparison results as control. Instead, we must
create a more abstract memory model that weakens the semantics of a true memory to satisfy the
restrictions of PEUF. Our abstraction models a memory as a generic state machine, computing a
new state for each write operation based on the input data, address, and current state. Rather than
Equation 7, we would express the effect of a read with address Aeafter £ write operations
as f.(Sk, A), wheref, is an uninterpreted “memory read” function, asidis a term representing
the state of the memory after tlkhewrite operations. This term is defined recursivelysas= s,
wheres, is a domain variable representing the initial state, anek f,,(5;-1, A;, D;) fori > 1,
wheref, is an uninterpreted “memory update” function. In essence, we view write operations as
making arbitrary changes to the entire memory state.

This model removes some of the correlations guaranteed by the read operations of an actual
memory. For example, although it will yield identical operations for two successive read operations
to the same address, it will indicate that possibly different result could be returned if these two reads
are separated by a write, even to a differentaddress. In addition, if we writ®dat@addresst and
then immediately read from this address, our model will not indicate that the resulting value must
be D. Nonetheless, it can readily be seen that this abstraction is a conservative approximation of
an actual memory. As long as the pipelined processor performs only the write operations indicated
by the program, that it performs writes in program order, and that the ordering of reads relative to
writes matches the program order, the two simulations will produce equal terms representing the
final memory states.

The remaining parts of the data path include comparators comparing for matching register
identifiers to determine bypass and stall conditions, and multiplexors, model€& aperations
selecting between alternate data and instruction address sources. Since register identifiers are
modeled as g-terms, these comparison and control combinations obey the restrictions of PEUF.
Finally, such operations as instruction decoding and pipeline control are modeled at the bit level
using Boolean operations.

39



7 Experimental Results

In [VB98], we described the implementation of a symbolic simulator for verifying pipelined sys-
tems using vectors of Boolean variables to encode domain variables, effectively treating all terms
as g-terms. This simulation is performed directly on a modified gate-level representation of the
processor. In this modified version, we replace all state holding elements (registers, memories,
and latches) with behavioral models we call Efficient Memory Models (EMMs). Intiaddall
data-transformation elements (e.g., ALUs, shifters, PC incrementers) are replaced by read-only
EMMSs, which effectively implement the transformation of function applications into nd$ted
expressions described in Section 4.2. One interesting feature of this implementation is that our
decision procedure is executed directly as part of the symbolic simulation. Whereas other im-
plementations, including Burch and Dill's, first generate a formula and then decide its validity,
our implementation generates and manipulates bit-vector representations of terms as the symbolic
simulation proceeds. Modifying this program to exploit positive equality simply involves having
the EMMs generate expressions containing fixed bit patterns rather than vectors of Boolean vari-
ables. All performance results presented here were measured on a 125 MHz Sun Microsystems
SPARC-20.

We constructed several simple pipeline processor design based on the MIPS instruction set
[KH92]. We abstract register identifiers as g-terms, and hence our verification covers all possible
numbers of program registers including the 32 of the MIPS instruction set. The simplest version
of the pipeline implements ten different Register-Register and Register-lmmediate instructions.
Our program could verify this design in 48 seconds of CPU time and just 7 MB of memory using
vectors of Boolean variables to encode domain variables. Using fixed bit patterns reduces the
complexity of the verification to 6 seconds and 2 MB.

We then added a memory stage to implement load and store instructions. An interlock stalls
the processor one cycle when a load instruction is followed by an instruction requiring the loaded
result. Treating all terms as g-terms and using vectors of Boolean variables to encode domain
variables, we could not verify even a 4-bit version of this data path (effectively red|ijrg
16), despite running for over 2000 seconds. The fact that both addresses and data for the memory
come from the register file induces a circular constraint on the ordering of BDD variables encoding
the terms. On the other hand, exploiting positive equality by using fixed bit patterns for register
values eliminates these variable ordering concerns. As a consequence, we could verify this design
in just 12 CPU seconds using 1.8 MB.

Finally, we verified a complete CPU, with a 5-stage pipeline implementing 10 ALU instruc-
tions, load and store, and MIPS instructipn§ump with target computed from instruction word),
jr (jJump using register value as target), dvety (branch on equal). This design is comparable
to the DLX design [HP96] verified by Burch and Dill in [BD94], although our version contains
more of the implementation details. We were unable to verify this processor using the scheme of
[VB98]. Having instruction addresses dependent on instruction or data values leads to exponential
BDD growth when modeling the instruction memory. Modeling instruction addresses as p-terms,

40



on the other hand, makes this verification tractable. We can verify the full, 32-bit version of the
processor using 169 CPU seconds and 7.5 MB.

8 Conclusions

Eliminating Boolean variables in the encoding of terms representing program data and instruction
addresses has given us a major breakthrough in our ability to verify pipelined processors. Our BDD
variables now only encode control conditions and register identifiers. For classic RISC pipelines,
the resulting state space is small and regular enough to be handled readily with BDDs.

We believe that there are many optimizations that will yield further improvements in the per-
formance of Boolean methods for deciding formulas involving uninterpreted functions. We have
found that relaxing functional consistency constraints to allow independent functionality of dif-
ferent instructions, as was done in [DPR98], can dramatically improve both memory and time
performance. We look forward to testing our scheme for generating a propositional formula using
Boolean variables to encode the relations between terms. Our method exploits positive equality
to greatly reduce the number of propositional variables in the generated formula, as well as the
number of functional consistency and transitivity constraints. We are also considering the use of
satisfiability checkers rather than BDDs for performing our tautology checking

We consider pipelined processor verification to be a “grand challenge” problem for formal
verification. We have found that complexity grows rapidly as we move to more complex pipelines,
including ones with out-of-order execution and register renaming. Further breakthroughs will be
required before we can handle complete models of state-of-the art processors.

References

[Ack54] W. Ackermann,Solvable Cases of the Decision ProbleNorth-Holland, Amster-
dam, 1954.

[BDL96] C. Barrett, D. Dill, and J. Levitt, “Validity checking for combinations of theories with
equality,” Formal Methods in Computer-Aided Design (FMCAD '9B). Srivas and
A. Camilleri,eds, LNCS 1166, Springer-Verlag, November, 1996, pp. 187-201.

[BBCZ98] S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu, “Combining symbolic model check-
ing with uninterpreted functions for out of order processor verificatidiofmal
Methods in Computer-Aided Design (FMCAD '96). Gopalakrishnan and P. Wind-
ley, eds, LNCS 1522, Springer-Verlag, November, 1998, pp. 187-201.

[Bry86] R. E. Bryant, “Graph-based algorithms for Boolean function manipulatittZE
Transactions on Computergol. C-35, No. 8 (August, 1986), pp. 677-691.

41



[BD94] J. R. Burch, and D. L. Dill, "Automated verification of pipelined microprocessor con-
trol,” Computer-Aided Verification (CAV '94D. L. Dill, ed, LNCS 818, Springer-
Verlag, June, 1994, pp. 68-80.

[Bur96] J. R. Burch, “Techniques for verifying superscalar microprocess8ssgd Design
Automation Conference (DAC '96)une, 1996, pp. 552-557.

[DPR98] W. Damm, A. Pnueli, and S. Ruah, “Herbrand automata for hardware verification,”
9th International Conference on Concurrency Theory (CONCUR, '&ringer-
Verlag, September, 1998.

[GJ79] M. R. Garey, and D. S. Johnsddomputers and Intractabilityv. H. Freeman and
Company, 1979.

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD based procedures for a
theory of equality with uninterpreted function§omputer-Aided Verification (CAV
'98), A. J. Hu and M. Y. Vardi,eds, LNCS 1427, Springer-Verlag, June, 1998,
pp. 244-255.

[HP96] J. L. Hennessy, and D. A. Patters@pmputer Architecture: A Quantitative Ap-
proach 2nd edition Morgan-Kaufmann, San Francisco, 1996.

[HKGB97] R. Hojati, A. Kuehimann, S. German, and R. K. Brayton, “Validity checking in the
theory of equality with uinterpreted functions using finite instantiations,” Unpub-
lished paper presented at timernational Workshop on Logic Synthesi9®97.

[KH92] G. Kane, and J. HeinrictMIPS RISC ArchitecturePrentice Hall, 1992.

[NO8O] G. Nelson, and D. C. Oppen, “Fast decision procedures based on the congruence
closure,”J. ACM Vol. 27, No. 2 (1980), pp. 356—-364.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding equality formulas by
small-domain instantiationsComputer-Aided Verification CAV '92999.

[Rose70] Rose, D., “Triangulated graphs and the elimination procg&ss;hal of Mathemati-
cal Analysis and Application&/ol. 32 (1970), pp. 597-609.

[Sho79] R. E. Shostak, “A practical decision procedure for arithmetic with function symbols,”
J. ACM \ol. 26, No. 2 (1979), pp. 351-360.

[VB98] M. N. Velev, and R. E. Bryant, “Bit-level abstraction in the verification of pipelined
microprocessors by correspondence checkihgrinal Methods in Computer-Aided
Design (FMCAD '98) G. Gopalakrishnan and P. Windlegds, LNCS 1522,
Springer-Verlag, November, 1998, pp. 18-35.

42



[Yan81] M. Yannakakis, “Computing the minimum fill-in is NP-complet8JAM Journal of
Algebraic and Discrete Mathematicgol. 2 (1981), pp. 77—79.

43



