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Abstract

In certain contexts, maximum entropy (ME) modeling can be viewed as maximum likelihood train-

ing for exponential models, and like other maximum likelihood methods is prone to over�tting of

training data. Several smoothing methods for maximum entropy models have been proposed to

address this problem, but previous results do not make it clear how these smoothing methods com-

pare with smoothing methods for other types of related models. In this work, we survey previous

work in maximum entropy smoothing and compare the performance of several of these algorithms

with conventional techniques for smoothing n-gram language models. Because of the mature body

of research in n-gram model smoothing and the close connection between maximum entropy and

conventional n-gram models, this domain is well-suited to gauge the performance of maximum

entropy smoothing methods. Over a large number of data sets, we �nd that an ME smoothing

method proposed to us by La�erty [1] performs as well as or better than all other algorithms under

consideration. This general and e�cient method involves using a Gaussian prior on the parame-

ters of the model and selecting maximum a posteriori instead of maximum likelihood parameter

values. We contrast this method with previous n-gram smoothing methods to explain its superior

performance.



Keywords: language models, maximum entropy, smoothing



1 Introduction

Maximum entropy (ME) modeling has been successfully applied to a wide range of domains, in-

cluding language modeling as well as many other natural language tasks [2, 3, 4, 5]. For many

problems, this type of modeling can be viewed as maximum likelihood (ML) training for exponen-

tial models, and like other maximum likelihood methods is prone to over�tting of training data.

While several smoothing methods for maximum entropy models have been proposed to address this

problem [6, 1, 7, 5], previous results do not make it clear how these smoothing methods compare

with smoothing methods for other types of related models.

However, there has a been great deal of research in smoothing n-gram language models, and

it can be shown that maximum entropy n-gram models are closely related to conventional n-gram

models. Consequently, this domain is well-suited to gauging the performance of maximum entropy

smoothing methods relative to other smoothing techniques.

In this work, we survey previous work in maximum entropy smoothing and compare the perfor-

mance of several of these algorithms with conventional techniques for smoothing n-gram language

models. Evaluating the perplexity of each method over a large number of data sets, we �nd that

the ME smoothing method proposed to us by La�erty [1] performs as well as or better than all

other algorithms under consideration. In this method, a Gaussian prior on model parameters is

applied and maximum a posteriori instead of maximum likelihood parameter values are selected.

While simple and e�cient, this method exhibits all of the behaviors that have been observed by

Chen and Goodman to be bene�cial for n-gram smoothing [8].

In the remainder of this section, we present an introduction to maximum entropy modeling

and discuss why smoothing ME models is necessary. In Section 2, we introduce n-gram language

models and summarize previous work on smoothing these models. We list the desirable properties

of smoothing algorithms observed by Chen and Goodman. In Section 3, we introduce maximum

entropy n-gram models and discuss their relationship with conventional n-gram models. In Sec-

tion 4, we survey previous work in smoothing maximum entropy models and in Section 5, we

present La�erty's Gaussian prior method. We contrast this method with smoothing algorithms for

conventional n-gram models and show that it satis�es all of criteria of Chen and Goodman. In

Section 6, we present results of experiments comparing a number of maximum entropy and con-

ventional smoothing techniques on n-gram language modeling. Finally, in Section 7 we discuss our

conclusions.

1.1 Maximum Entropy Modeling

Consider the task of estimating a probability distribution q(x) over a �nite set x 2 
 given some

training data set X = fx1; : : : ; xNg. Intuitively, our task is to �nd a distribution q(x) similar to

the empirical distribution ~p(x) given by the training data

~p(x) =
cX(x)

N

where cX(x) denotes the number of times x occurs in X and where N is the size of the X . In the

extreme case, we can take q(x) to be identical to ~p(x), but this will typically lead to over�tting to

the training data. Instead, it would be better to require that q(x) match only those properties of

~p(x) that we deem to be signi�cant and that can be reliably estimated from the training data.
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For example, consider x = (w1; w2) where w1 and w2 are English words, and let the training

data X be the list of consecutive word pairs, or bigrams, that occur in some large corpus of English

text. Thus, the task is estimating the frequency of English bigrams. Consider a bigram that does

not occur in the training data, say pig dog. We have ~p(pig dog) = 0, but intuitively we want

q(pig dog) > 0 since this bigram has some chance of occurring. This is an example of a property

of ~p(x) that we do not deem signi�cant and thus do not want to match exactly with q(x). However,

let us assume that we observe that the word the occurs with frequency 0.05 in the training data,

i.e., X
w2

~p(the w2) =
X
w1

~p(w1 the) = 0:05 :

Because of the abundance of the word the, this is presumably an accurate estimate of this fre-

quency and it seems reasonable to require that our selected distribution q(x) satis�es the analogous

constraint X
w2

q(the w2) =
X
w1

q(w1 the) = 0:05 : (1)

More generally, we can select a number of nonnegative random variables or features ~f =

ff1(x); : : : ; fF (x)g and require that the expected value of each feature over the model q(x) is

equal to that of the empirical distribution ~p(x):X
x

q(x)fi(x) =
X
x

~p(x)fi(x); i = 1; : : : ; F : (2)

The constraint expressed in equation (1) can be expressed with two such features,

fj(w1; w2) =

(
1 if wj = the

0 otherwise

for j = 1; 2.

The constraints given in equation (2) do not generally specify a unique model q(x), but a set

of models Q~f
. The maximum entropy principle states that we should select the model q(x) 2 Q~f

with the largest entropy H(q) = �
P

x q(x) log q(x) [9]. Intuitively, models with high entropy are

more uniform and correspond to assuming less about the world. The maximum entropy model can

be interpreted as the model that assumes only the knowledge that is represented by the features

derived from the training data, and nothing else.

The maximum entropy paradigm has many elegant properties [2, 3]. The maximum entropy

model is unique and can be shown to be an exponential model of the form

qME(x) =
1

Z�
exp(

FX
i=1

�ifi(x)) (3)

where Z� =
P

x exp(
PF

i=1 �ifi(x)) is a normalization factor and � = (�1; : : : ; �F ) are the parame-

ters of the model. Furthermore, the maximum entropy model is also the maximum likelihood model

in the class of exponential models given by equation (3).1 Finally, the log-likelihood of the training

1These properties hold when constraining feature expectations to be equal to those found on a training set. When

constraining expectations to alternate values, the maximum entropy model will not be the maximum likelihood model,

and the ME model will not exist if the constraints are inconsistent.
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data is concave in the model parameters �, and thus it is relatively easy to �nd the unique maxi-

mum entropy/maximum likelihood model using algorithms such as generalized iterative scaling [10]

or improved iterative scaling [3].

While models with high entropy tend to be rather uniform or smooth and we may only constrain

properties of q(x) we consider signi�cant, a maximum entropy model can still over�t training data

even with small numbers of constraints. For example, consider constraints on the frequency of the

word Mateo and the bigram San Mateo, and assume that the word Mateo only occurs after

the word San in the training data. Then, we will haveX
w1

q(w1 Mateo) =
X
w1

~p(w1 Mateo) = ~p(San Mateo)

and

q(San Mateo) = ~p(San Mateo)

which implies q(w1 Mateo) = 0 for all w1 6= San. Intuitively, we want q(x) > 0 for all x 2 
 since

all bigrams have some chance of occurring. Zero probabilities lead to in�nite loss in log-loss objective

functions and can lead to poor performance in many applications, e.g., when q(x) represents a

language model to be used in speech recognition. Thus, it is desirable to smooth maximum entropy

models, or adjust parameter values away from their maximum likelihood estimates.

2 Smoothing N-Gram Language Models

While there has been relatively little work in smoothing maximum entropy models, there has

been a great deal of work in smoothing n-gram language models. A language model is a probability

distribution q(s) over word sequences s that models how often each sequence s occurs as a sentence.

Language models have many applications, including speech recognition, machine translation, and

spelling correction [11, 12, 13].

For a word sequence s = w1 � � �wl, we can express its probability Pr(s) as

Pr(s) = Pr(w1)� Pr(w2jw1)� � � � � Pr(wljw1 � � �wl�1)� Pr(endjw1 � � �wl)

=
l+1Y
i=1

Pr(wijw1 � � �wi�1)

where the token wl+1 = end signals the end of the sentence. The most widely-used language

models, by far, are n-gram language models. In an n-gram model, we make the approximation that

the identity of a word depends only on past words through the identity of the last n � 1 words,

giving us

Pr(s) =
l+1Y
i=1

Pr(wijw1 � � �wi�1) �
l+1Y
i=1

Pr(wijw
i�1
i�(n�1))

where the notation w
j
i denotes the sequence wi � � �wj and where w�n+2; : : : ; w0 are all taken to be

some distinguished beginning-of-sentence token.

The maximum likelihood estimate qML(wijw
i�1
i�(n�1)) of the probabilities Pr(wijw

i�1
i�(n�1)) over

some training data X can be calculated by simply counting how often the token wi follows the
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history or context wi�1
i�(n�1)

and dividing by the total number of times the history occurs, i.e.,

qML(wijw
i�1
i�(n�1)

) =
cX(w

i
i�(n�1))

cX(w
i�1
i�(n�1)

)
=

cX(w
i
i�(n�1))P

wi
cX(w

i
i�(n�1)

)
:

However, the maximum likelihood estimates of these probabilities typically lead to over�tting, and

instead it is desirable to use smoothed estimates of these values. For example, one simple smoothing

technique is to linearly interpolate the maximum likelihood estimate of the n-gram probability

qML(wijw
i�1
i�(n�1)

) with an estimate of the (n� 1)-gram probability Pr(wijw
i�1
i�(n�2)

) [14, 15]:

qint(wijw
i�1
i�(n�1)

) = � qML(wijw
i�1
i�(n�1)

) + (1� �) qint(wijw
i�1
i�(n�2)

); 0 � � � 1 : (4)

The lower-order estimate can be de�ned analogously, and the recursion can end with a unigram

or uniform distribution. Since the lower-order distributions are less sparsely estimated from the

training data, their interpolation generally reduces over�tting. A large number of other smoothing

methods for n-gram models have been proposed, e.g., [16, 8, 14, 17, 18, 19].

We present a brief overview of past work in n-gram model smoothing. One basic observation is

that the maximum likelihood estimate of the probability of an n-gram that does not occur in the

training data is zero and is thus too low, and consequently the ML probabilities of n-grams with

nonzero counts are generally too high. This dichotomy motivates the following framework for ex-

pressing smoothing methods, which can be used to express most existing smoothing techniques [18]:

qsm(wijw
i�1
i�(n�1)) =

(
�(wijw

i�1
i�(n�1)) if cX(w

i
i�(n�1)) > 0


(wi�1
i�(n�1))qsm(wijw

i�1
i�(n�2)) if cX(w

i
i�(n�1)) = 0

: (5)

That is, if an n-gram wi
i�(n�1) occurs in the training data, the estimate �(wijw

i�1
i�(n�1)) is used;

this estimate is generally a discounted version of the maximum likelihood estimate. Otherwise,

we back o� to a scaled version of the (n� 1)-gram distribution qsm(wijw
i�1
i�(n�2)), where the lower-

order distribution is typically de�ned analogously to the higher-order distribution. The scaling

factor 
(wi�1
i�(n�1)) is chosen to assure that each conditional distribution sums to 1. The algorithm

described by equation (4) can be placed in this framework with the following relations:

�(wijw
i�1
i�(n�1)) = qint(wijw

i�1
i�(n�1))


(wi�1
i�(n�1)) = 1� �

qsm(wijw
i�1
i�(n�2)) = qint(wijw

i�1
i�(n�2)) :

There are three primary distinctions between smoothing algorithms: whether an algorithm is

interpolated or backed-o�, what type of discounting is applied to the ML estimate to calculate

�(wijw
i�1
i�(n�1)), and how lower-order distributions are computed.

In interpolated models, the probability estimate �(wijw
i�1
i�(n�1)) of an n-gram wi

i�(n�1) with

nonzero count depends on the probability assigned to the corresponding (n� 1)-gram wi
i�(n�2), as

in equation (4). In backed-o� models, the probability estimate of an n-gram with nonzero count is

determined while ignoring information from lower-order distributions. Interpolated models include

Jelinek-Mercer smoothing [14] and Witten-Bell smoothing [16]; backed-o� models include Katz

smoothing [17], absolute discounting [19], and Kneser-Ney smoothing [18].
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To describe the di�erent types of discounting, we write �(wijw
i�1
i�(n�1)

) as

�(wijw
i�1
i�(n�1)

) =
cX(w

i
i�(n�1))� d(w

i
i�(n�1))

cX(w
i�1
i�(n�1)

)
+ �(wi

i�(n�1))

where d(wi
i�(n�1)) can be viewed as the discount in count space from the ML estimate and where

�(wi
i�(n�1)) is the contribution from lower-order distributions. The value �(wi

i�(n�1)) is zero for

backed-o� models and typically 
(wi�1
i�(n�1)

)qsm(wijw
i�1
i�(n�2)

) for interpolated models. In linear

discounting, the discount d(wi
i�(n�1)) is taken to be proportional to the original count cX(w

i
i�(n�1)),

as in equation (4) where the discount is (1��)�cX(w
i
i�(n�1)). In absolute discounting, d(w

i
i�(n�1)) is

taken to be a constant 0 � D � 1. In Good-Turing discounting, the discount is calculated using the

Good-Turing estimate [20], a theoretically-motivated discount that has been shown to be accurate

in non-sparse data situations [17, 21]. A brief description of the Good-Turing estimate is given in

Section 4.1. Jelinek-Mercer smoothing and Witten-Bell smoothing use linear discounting; Kneser-

Ney smoothing uses absolute discounting, and Katz smoothing and Church-Gale smoothing [21]

use Good-Turing discounting.

The �nal major distinction between smoothing algorithms is how the lower-order probability es-

timates are calculated. While most smoothing methods de�ne the lower-order model qsm(wijw
i�1
i�(n�2))

analogously to the higher-order model qsm(wijw
i�1
i�(n�1)), in Kneser-Ney smoothing a di�erent ap-

proach is taken. The (n� 1)-gram model is chosen to satisfy certain constraints derived from the

training data, namely X
w
i�(n�1)

cX(w
i�1
i�(n�1))qsm(wijw

i�1
i�(n�1)) = cX(w

i
i�(n�2)) (6)

for all (n� 1)-grams wi
i�(n�2). This constraint can be rephrased as: The expected number of times

wi
i�(n�2) occurs in the training data given the model qsm(wijw

i�1
i�(n�1)) and the history frequencies

cX(w
i�1
i�(n�1)) should equal the actual number of times it occurs. Kneser-Ney smoothing can be

applied recursively to lower-order distributions, in which case the constraints (6) are not satis�ed

exactly. Instead, the right-hand side of the constraints are discounted with absolute discounting.

Chen and Goodman [8] provide an extensive comparison of all of the widely-used smoothing

techniques. They evaluate each algorithm on a wide range of training sets through its perplexity on

test data. The perplexity PPq(X
0) of a model q on a test set X 0 is the reciprocal of the geometric

average probability that the model assigns to each word in the test set. They also use the derivative

measure cross-entropy Hq(X
0) = log2PPq(X

0), which can be interpreted as the average number of

bits needed to code each word in the test set using the model q. Chen et al. [8, 22] also conducted

experiments investigating how the cross-entropy of a language model is related to its performance

when used in a speech recognition system. They found a strong linear correlation between the two

metrics when comparing models that only di�er in smoothing.

In terms of perplexity, Chen and Goodman found that Kneser-Ney smoothing and variations

consistently outperform all other algorithms. More speci�cally, they present four main conclusions:

� The factor that a�ects performance the most is the use of a modi�ed lower-order distributions

as in Kneser-Ney smoothing. This is the primary reason for the excellent performance of this

algorithm.
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Figure 1: Ideal average discount for n-grams with given count in training data for 1 million word

training set and 200 million word training set, bigram and trigram models

� Absolute discounting is superior to linear discounting. For n-grams with a given count r in

the training data, they calculate the average discount in count space d(wi
i�(n�1)) from the

ML estimate that would cause the expected number of these n-grams in a test set to be equal

to their actual number (assuming �(wi
i�(n�1)) = 0). This ideal average discount is displayed

in Figure 1 for counts r � 13 for two training sets for bigram and trigram models. From this

graph, we see why a �xed discount works well. While Good-Turing discounting is actually

better than absolute discounting at predicting the average discount, it has yet to be used in

such a way as to predict the correct discounts in individual distributions well.

� Interpolated models outperform backed-o� models when considering performance on just n-

grams with low counts in the training data. This is because lower-order models provide

valuable information for estimating the probabilities of n-grams with low counts.

� Adding free parameters to an algorithm and optimizing these parameters on held-out data

can improve the performance of an algorithm.

Based on these observations, Chen and Goodman propose an algorithm named modi�ed Kneser-

Ney smoothing that is found to outperform all other methods considered. It is an interpolated

variation of Kneser-Ney smoothing with an augmented version of absolute discounting. Instead of

using a single discount D for all n-grams, three separate discounts D1, D2, and D3+ are used for

n-grams with one count, two counts, and three or more counts, respectively. This is motivated by

the observation that the ideal discount for one-counts and two-counts is signi�cantly smaller than

the ideal discount of larger counts, as shown in Figure 1.

3 Maximum Entropy N-Gram Models

We can construct language models very similar to conventional n-gram models within the maximum

entropy framework. The maximum entropy models described in Section 1.1 are joint models; to

create the conditional distributions used in conventional n-gram models we use the framework

introduced by Brown et al. [23]. Instead of estimating a joint distribution q(x) over samples x, we
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estimate a conditional distribution q(yjx) over samples (x; y). Instead of constraints as given by

equation (2), we have constraints of the formX
x;y

~p(x)q(yjx)fi(x; y) =
X
x;y

~p(x; y)fi(x; y) : (7)

This can be interpreted as replacing q(x; y) in the joint formulation with ~p(x)q(yjx). That is,

we assume that history frequencies ~p(x) are taken from the training data, and we only estimate

conditional probabilities. Conditional ME models share many of the same properties as joint

models, including being maximum likelihood models, and have computational and performance

advantages over joint models in language modeling [24, 5]. A conditional maximum entropy model

has the form

qME(yjx) =
1

Z�(x)
exp(

FX
i=1

�ifi(x; y)) : (8)

To construct a maximum entropy n-gram model, we take x = wi�1
i�(n�1)

to be the history and

y = wi to be the following word. For each m-gram � = wi
i�(m�1) with m = 1; : : : ; n that occurs in

the training data, we include a constraint that forces the conditional expectation of � according to

q to be the same as its frequency in the training data. The corresponding features f�(x; y) are

f�(x; y) =

(
1 if (x; y) = wi

i�(n�1) ends in �

0 otherwise
:

Substituting these features into equation (7) and simplifying, we arrive at constraints of the formX
wi
i�(n�1)

:su�x(wi
i�(n�1)

)=�

~p(wi�1
i�(n�1))q(wijw

i�1
i�(n�1)) = ~p(�) : (9)

In fact, the only solution to these constraints is q(yjx) = qML(yjx). Consequently, the maximum

entropy model is identical to the maximum likelihood n-gram model and it will be bene�cial to

smooth the estimates of the model parameters � = f��g.

Remarkably, the set of models given by equation (8) with n-gram features is identical to the set

of models described by equation (5), which we used to express most existing smoothing algorithms

for conventional n-gram models. To see this, let us de�ne a set ofm-gram models qME(wijw
i�1
i�(m�1))

for m = 1; : : : ; n as in equation (8), where eachm-gram model only contains features corresponding

to word sequences up to length m, and where all models share the same parameter set �. Then,

to describe the maximum entropy model form in terms of equation (5), we take

�(wijw
i�1
i�(n�1)) = qME(wijw

i�1
i�(n�1))

= exp(�wi
i�(n�1)

)�
Z�(w

i�1
i�(n�2))

Z�(w
i�1
i�(n�1))

� qME(wijw
i�1
i�(n�2))


(wijw
i�1
i�(n�1)) =

Z�(w
i�1
i�(n�2))

Z�(w
i�1
i�(n�1))

qsm(wijw
i�1
i�(n�2)) = qME(wijw

i�1
i�(n�2)) :
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For any model of the form (5), we can choose �� using the above equations starting from lower-

order models to higher-order to construct an equivalent exponential model.2 Because smoothing ��
estimates in maximum entropy n-gram models and smoothing conventional n-gram models both

consider the same class of models, these two tasks are closely related.

4 Smoothing Maximum Entropy Models

In this section and Section 5, we survey previous work in maximum entropy model smoothing.

Here, we discuss Good-Turing discounting, fuzzy maximum entropy, and fat constraints; in the

following section, we present the Gaussian prior method proposed by La�erty. In describing these

methods, we sometimes use the joint maximum entropy formulation for simplicity. All of these

techniques apply equally well to conditional ME models; the analogous conditional ME equations

can be derived by replacing x with (x; y) and q(x) with ~p(x)q(yjx).

4.1 Good-Turing Discounting

Good-Turing discounting has been proposed by Lau [7] and Rosenfeld [5] and can be viewed as

the maximum entropy analog to Katz smoothing for conventional n-gram models. They observe

that the marginals of the model q(yjx) should not be constrained to be exactly those of the empir-

ical distribution ~p(yjx), but instead target values should be discounted as in conventional n-gram

smoothing. Instead of constraints as given by equation (9), they propose the following constraintsX
wi
i�(n�1)

:su�x(wi
i�(n�1)

)=�

~p(wi�1
i�(n�1))q(wijw

i�1
i�(n�1)) = ~pGT(�)

where ~pGT(�) is the Good-Turing estimate of the frequency of �.

The Good-Turing estimate [20] is a theoretically motivated method for estimating the average

discount for an event based on its count in the training data. For an event that occurs r times in

N samples, in contrast with the maximum likelihood estimate r
N
, the Good-Turing estimate of the

event's true frequency is r�

N
where

r� =
nr+1

nr
(r + 1)

and where nr is the number of members of the population with exactly r counts. Katz [17] suggests

applying this estimate to each joint m-gram distribution, m = 1; : : : ; n, separately. Furthermore,

as nr can be very low or zero for large r, Katz proposes a method where n-grams with large counts

are not discounted and discounts for low counts are adjusted to compensate. Lau and Rosenfeld

use the Katz variation of Good-Turing discounting.

However, when constraining marginals of a model to Good-Turing discounted marginals of the

training data, the constraints may no longer be consistent and a maximum entropy model may

not exist. For example, in a trigram model consider features that constrain the frequencies of the

n-grams tic tac toe and tac toe and assume that the word tac only follows the word tic in

the training data. Then, we will have the constraints

~p(tic tac)q(toejtic tac) = ~pGT(tic tac toe)

2The equivalence is not exact as exponential models cannot express probabilities equal to zero or one. In addition,

for the equivalence to hold the unigram model given by equation (5) must assign the same probability to all words

not occurring in the training data. This is generally the case with existing smoothing algorithms.

8



and

X
wi�2

~p(wi�2 tac)q(toejwi�2 tac) = ~p(tic tac)q(toejtic tac) = ~pGT(tac toe) :

In general, we will have ~pGT(tic tac toe) 6= ~pGT(tac toe) since discounts for n-grams of di�erent

length are calculated independently; consequently, these constraints will be inconsistent. In prac-

tice, there are no dire consequences to having inconsistent constraints. While training algorithms

such as iterative scaling may not converge, a reasonable procedure is to stop training once perfor-

mance on some held-out set stops improving. However, inconsistency is symptomatic of constraints

that will lead to poor parameter estimates.

Lau [7] compares the performance of Good-Turing discounting for smoothing ME n-grammodels

with deleted interpolation [14], a variation of Jelinek-Mercer smoothing, for conventional n-gram

models. For a 5 million word training set of Wall Street Journal text, deleted interpolation yielded a

perplexity of 225 on a 870,000word test set. The maximum entropy model yielded a slightly superior

perplexity of 221, where all n-grams that occurred only once in the training data were excluded

from the ME model. However, later results by Chen and Goodman [8] strongly indicate that other

smoothing methods for conventional n-grammodels, such as modi�ed Kneser-Ney smoothing, would

outperform deleted interpolation by a much larger margin.

4.2 Fuzzy Maximum Entropy

In the fuzzy maximum entropy framework developed by Della Pietra and Della Pietra [25], instead

of requiring that constraints are satis�ed exactly, a penalty is associated with inexact constraint

satisfaction. Finding the maximum entropy model is equivalent to �nding the model q(x) satisfying

the given constraints that minimizes the Kullback-Leibler distance D(q k punif) from the uniform

model punif(x). In fuzzy maximum entropy, the objective function is taken to be

D(q k punif) + �U(q) (10)

where U(�) is a penalty function minimized when constraints are satis�ed exactly and � is a weight-

ing parameter. Della Pietra and Della Pietra suggest a penalty function of the form

U(q) =
1

2

FX
i=1

1

�2i

"X
x

q(x)fi(x)�
X
x

~p(x)fi(x)

#2
:

This penalty function can be interpreted as the logarithm of a Gaussian distribution with diagonal

covariance centered around the target constraint values. The variance �2i associated with feature

fi(x) can be estimated from the empirical distribution of fi(x) in the training data. Della Pietra

and Della Pietra describe a variant of generalized iterative scaling that can be used to �nd the

optimal model under this objective function [26].

We can interpret this algorithm from the viewpoint of maximum a posteriori (MAP) estimation.

In MAP estimation, we attempt to �nd the model q with the highest posterior probability given

the training data X :

argmax
q

Pr(qjX) = argmax
q

Pr(q)Pr(X jq) = argmax
q

[log Pr(q) + log Pr(X jq)] : (11)
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The MAP objective function has two terms, a prior term log Pr(q) and a likelihood term log Pr(X jq).

The fuzzy ME objective function given in equation (10) is analogous to the MAP objective function.

The �rst term in equation (10) encourages the model q to have high entropy, and can be thought of

as taking the role of a prior distribution favoring more uniform models. The second term encourages

q to satisfy the given constraints, i.e., to �t the training data well. This term plays a similar role as

the likelihood term in MAP estimation. However, both terms in the fuzzy ME objective function

are very di�erent than their MAP counterparts. In La�erty's Gaussian prior method to be discussed

in Section 5, a traditional MAP objective function is used, and we contrast the two approaches in

that section.

Lau [7] constructed a fuzzy maximum entropy n-gram model excluding all n-grams with only

one count using the data sets described in Section 4.1, yielding a perplexity of 230. This is slightly

worse than the perplexities achieved by the deleted interpolation and Good-Turing discounted ME

models.

4.3 Fat Constraints

Other methods for relaxing constraints include work by Newman [27] and Khudanpur [28]. In these

algorithms, instead of selecting the maximum entropy model over models q(x) that satisfy a set of

constraints exactly, they only require that the given marginals of q(x) fall in some range around

the target values. Newman suggests a constraint of the form

FX
i=1

Wi

"X
x

q(x)fi(x)�
X
x

~p(x)fi(x)

#2
� �2

with feature weights Wi for the task of estimating power spectra. Khudanpur suggests constraints

of the form

�i �
X
x

q(x)fi(x) � �i; i = 1; : : : ; F :

Both of these approaches can be viewed as instances of the fuzzy maximum entropy framework.

Instead of a smooth function, the penalty U(q) is taken to be zero if q satis�es the relaxed constraints

and in�nite otherwise. These types of methods have yet to be applied to language modeling.

5 A Gaussian Prior

La�erty [1] proposes applying a Gaussian prior on the parameters � to smooth maximum entropy

models. This technique has been applied previously in [6]. Recall that a maximum entropy model

is the maximum likelihood model among the set of models given by equation (3). By perform-

ing maximum a posteriori instead of maximum likelihood estimation, we can apply a Gaussian

prior centered around � = ~0 to smooth the ML model toward the uniform model, thus hopefully

ameliorating over�tting.

More precisely, we can equate �nding the maximum entropy model with �nding parameters �

that maximize the log-likelihood LX(�) of the training data X

LX(�) =
X
x

~p(x) log q�(x) :

10



With the Gaussian prior, which we take to have diagonal covariance, our objective function L0

X(�)

then takes the form given in equation (11),

L0

X(�) = LX(�) +
FX
i=1

log
1q
2��2i

exp(�
�2i
2�2i

) (12)

= LX(�)�
FX
i=1

�2i
2�2i

+ const(�) ; (13)

where the �2i are the variances of the Gaussian.

We contrast this objective function with the objective function in equation (10) for fuzzy max-

imum entropy. Both functions have two terms, one which prefers models that are more uniform

and one which prefers models similar to the training data. In the La�erty framework, the term

that prefers models similar to the training data is a log-likelihood value, while the analogous term

in fuzzy ME is a sum of squared constraint errors. The suitability of either function ultimately

depends on the application. However, for language modeling it has been found that likelihood, or

the derivative measure perplexity, is a useful performance metric.

As to the Gaussian prior method used in the La�erty framework, the analogous term in fuzzy

ME that favors more uniform models is D(q k punif). The former function penalizes models that

have many large �i values, while the latter function penalizes models far from uniform. While the

correct function to use will again depend on the application, we argue that the former function

is generally more appealing. For example, a model with a single nonzero �i parameter should

intuitively receive a small penalty, regardless of how far from uniform this model is. Thus, we

hypothesize that the Gaussian prior method is preferable to fuzzy maximum entropy.

The Gaussian prior method adds little computation to existing maximum entropy training

algorithms. Since the logarithm of the Gaussian prior is concave, the objective function is still

concave in � and it is reasonably easy to �nd the optimal model. We can make a simple modi�cation

to improved iterative scaling [3] to �nd the MAP model. The original update of each �i in this

algorithm is to take

�
(t+1)
i  �

(t)
i + �

(t)
i

where �
(t)
i satis�es the equation

X
x

~p(x)fi(x) =
X
x

q�(t)(x)fi(x) exp(�
(t)
i f#(x)) (14)

and where f#(x) =
P

i fi(x). With the Gaussian prior, equation (14) is replaced with

X
x

~p(x)fi(x) =
X
x

q�(t)(x)fi(x) exp(�
(t)
i f#(x)) +

�
(t)
i + �

(t)
i

�2i
: (15)

As the right-hand side of this equation is strictly monotonic in �
(t)
i , it is relatively easy to �nd its

solution using a search algorithm. We derive this modi�ed update rule in the appendix.
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5.1 The Gaussian Prior Method and Conventional N-Gram Smoothing

In Section 2, we listed four factors that were found by Chen and Goodman to signi�cantly a�ect

n-gram smoothing performance. It is informative to assess the Gaussian prior method according

to these four criteria.

First, they point out that the modi�ed lower-order distributions of Kneser-Ney smoothing is the

primary reason for its superiority among conventional n-gram smoothing algorithms. Recall that

these distributions are chosen to satisfy marginal constraints as given in equation (6). However,

this set of constraints is identical to the corresponding maximum entropy constraints for (n� 1)-

grams, as given by equation (9). Thus, maximum entropy n-gram models have similar modi�ed

lower-order distributions as in Kneser-Ney smoothing.

However, MAP models under the Gaussian prior no longer satisfy the ME constraints exactly.

Instead, the constraints that are satis�ed have the form

X
x

~p(x)fi(x)�
�i

�2i
=
X
x

q�(x)fi(x) : (16)

That is, the empirical expectations
P

x ~p(x)fi(x) are now \discounted" by the amount �i=�
2
i . (In

ME n-gram models, most �i are positive.) Qualitatively, this is even more desirable than meeting

the targets exactly, as empirical frequencies tend to be higher than true frequencies for events

with nonzero counts. Analogous behavior is produced with Kneser-Ney smoothing when applied

recursively to lower-order distributions. In this case, target counts are discounted through absolute

discounting. A derivation of equation (16) is given in the appendix.

Second, Chen and Goodman point out that absolute discounting is superior to the other types

of discounting considered, and that using a di�erent discount for one-counts and two-counts and

a 
at discount thereafter as in modi�ed Kneser-Ney smoothing performs even better. With the

Gaussian prior, the discount for an n-gram � is linear in �� as can be seen from equation (16).

As the probability assigned to � by q� grows exponentially in ��, �� grows logarithmically as a

function of the target probability or count. In other words, roughly speaking the Gaussian prior

method translates to logarithmic discounting. This is a qualitatively appealing model of the ideal

average discount displayed in Figure 1 and is more elegant than using multiple 
at discounts.3

Third, Chen and Goodman report that interpolated models outperform backed-o� models on

n-grams with low counts, as lower-order models provide valuable information for estimating these

probabilities. Happily, the Gaussian prior behaves like an interpolated model as n-gram probability

estimates depend on lower-order information. This follows trivially from the observation that the

probability q� assigns to an n-gram � depends on the parameter values ��0 for all n-grams �
0 that

are su�xes of �. However, the Gaussian prior method uses the information from lower-order models

in a meaningful way. For any n-gram �, the Gaussian prior method tends to adjust �� towards

zero; when �� is zero, the corresponding feature has no e�ect on the model, and the lower-order

n-gram probability estimate is used. In other words, the prior adjusts n-gram probabilities towards

the lower-order probability estimate, as is desirable.

Finally, Chen and Goodman note that additional tunable parameters can improve current

smoothing methods. For the Gaussian prior, the natural free parameters are the variances �i.

3We can contrast a Gaussian prior on � parameters with previous work in n-gram smoothing where priors have

been applied directly in probability space. MacKay and Peto [29] use a Dirichlet prior and N�adas [30] uses a Beta
prior, both resulting in linear discounting which has been shown to perform suboptimally.
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In the basic version of the Gaussian prior method that we implemented, we had n free parameters

�m, m = 1; : : : ; n, where all m-grams of the same length were constrained to have the same variance

�2m.

As the Gaussian prior method satis�es all of the desiderata listed by Chen and Goodman, it

may perform competitively in n-gram smoothing. The experiments in Section 6 show that this is

indeed the case.

6 Experiments

To compare the performance of maximum entropy and conventional n-gram smoothing techniques,

we ran experiments over many training set sizes using several di�erent text corpora for both bigram

and trigram models.

6.1 Methodology

Of the conventional n-gram smoothing techniques, we implemented Katz smoothing [17], which is

perhaps the most popular algorithm in practice, and modi�ed Kneser-Ney smoothing [8], which

has been shown to outperform all other widely-used techniques. In addition, we implemented the

variation of Jelinek-Mercer smoothing given by equation (4) where instead of a single � parameter

a di�erent �m is used for each level of the n-gram model. This method does not perform partic-

ularly well, but is used as a baseline algorithm for expository purposes. We refer to these three

implementations with the mnemonics katz, kneser-ney-mod, and baseline, respectively.

We also implemented several maximum entropy smoothing techniques. For each technique, all

�� parameters are initialized to zero and improved iterative scaling is applied to train the model.

Iterative scaling is terminated when the perplexity of a held-out set no longer decreases signi�cantly.

Cluster expansion [31] is employed to reduce computation. In the implementation ME-no-smooth,

no smoothing is performed. (Since training is terminated when performance on a held-out set no

longer improves, no probabilities will converge to zero as in the case where training is continued

to convergence.) The algorithm ME-disc-katz is an implementation of Good-Turing discounting

as described in Section 4.1. The algorithm ME-gauss is an implementation of La�erty's Gaussian

prior method as described in Section 5. As mentioned earlier, this method has n free parameters

�m, one for each level of the n-gram model.

We used data from four sources: the Brown corpus, which contains text from a number of mis-

cellaneous sources [32]; Wall Street Journal (WSJ) newspaper text [33]; the Broadcast News (BN)

corpus, which contains transcriptions of television and radio news shows [34]; and the Switchboard

(SWB) corpus, which contains transcriptions of telephone conversations [35]. In each experiment,

we selected a training set of a given length from one source, and two held-out sets from the same

source. The �rst held-out set was used to optimize the parameters of each smoothing algorithm,

e.g., the �m parameters of ME-gauss or the discounts D� of modi�ed Kneser-Ney smoothing. Pa-

rameters were selected to minimize the perplexity of the held-out set; Powell's search algorithm [36]

was used to perform this search. This held-out set was also used to decide when to terminate iter-

ative scaling for the ME models. The second held-out set was used to evaluate the �nal perplexity

of each smoothing algorithm.

For each data source, we ran experiments using training sets from 100 sentences (about 2,000

words) to around 100,000 sentences (about 2 million words). Held-out sets were 2,500 sentences.
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Figure 2: Cross-entropy of baseline smoothing algorithm on test set over multiple training set sizes

on Brown, Switchboard, and Wall Street Journal corpora

While training sets for language models may reach hundreds of millions of words in practice,

we were unable to consider larger training sets than we did due to computational limitations.

Training maximum entropy n-gram models requires a great deal more computation than training

conventional n-gram models. In addition, when considering multiple parameter settings in the

Powell search (as for the �m parameters in ME-gauss), the iterative scaling algorithm must be

applied separately for each parameter setting. To train a single model using method ME-gauss for

a 2 million word training set required around six hours of computation on a 400 MHz Pentium II

computer. Substantially larger training sets are feasible if parameter optimization is not used.

Our data sets are identical to those used by Chen and Goodman [8] and consequently our results

are directly comparable to the analogous results presented by Chen and Goodman. More details

of our methodology can be found in that work.

6.2 Results

In Figure 2, we display the cross-entropy of the baseline Jelinek-Mercer smoothing algorithm over

a range of training set sizes on several corpora. In the graphs to follow, we display the performance

of each algorithm as the di�erence of its cross-entropy on the test set from the cross-entropy of

the baseline method (using the same training set), to facilitate visualization. Each point in the

graphs presented here represents a single experiment; for an analysis of the standard error of these

observations refer to Chen and Goodman [8]. To give a rough idea of the statistical error involved,

in Figures 4 and 5, the di�erence between kneser-ney-mod and ME-gauss may not be signi�cant,

while the di�erence between these two algorithms and all of the others almost certainly is for almost

every data point.

In Figure 3, we compare the performance of the various maximum entropy smoothing algorithms

over multiple training set sizes using Wall Street Journal data. The left graph is for bigram models

and the right graph is for trigram models. We see that ME-no-smooth is outperformed by the other

algorithms by a large margin, demonstrating the necessity of smoothing for maximum entropy

models. Of the remaining algorithms, the Gaussian prior method signi�cantly outperformed Good-

Turing discounting. Though not shown here, we see similar behavior in experiments on the other
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Figure 3: Performance relative to baseline of various maximum entropy smoothing algorithms over

multiple training set sizes on the Wall Street Journal corpus, bigram and trigram models

three corpora.4

In Figures 4 and 5, we compare the performance of maximum entropy smoothing algorithms with

conventional n-gram smoothing algorithms over several corpora.5 Of the conventional smoothing

methods, we see that Katz smoothing generally outperforms the baseline and that modi�ed Kneser-

Ney smoothing is signi�cantly better. Of the maximum entropy methods, we see that ME-disc-katz

performs comparably to Katz smoothing for bigram models, and somewhat worse for trigram

models, though it does better on larger data sets. The method ME-gauss performs about as well

as modi�ed Kneser-Ney smoothing, and is slightly better over most data sets. Thus, the Gaussian

prior method performs as well as or better than all other widely-used algorithms for smoothing

n-gram models.

To investigate how the logarithmic discounting of the Gaussian prior compares to the multiple

absolute discounts of modi�ed Kneser-Ney smoothing, we computed how closely the expected num-

ber of certain n-grams in a test set according to each model matched the actual number of those

n-grams in the test set. In particular, for all n-grams occurring r times in a 750,000 word training

set X for some r, we computed the ratio of the expected number of times these n-grams occurred

in a 10,000,000 word test set X 0 to the actual number of times they occurred:

P
wi
i�(n�1)

:c
X
(wi

i�(n�1)
)=r cX 0(wi�1

i�(n�1))q(wijw
i�1
i�(n�1))P

wi
i�(n�1)

:c
X
(wi

i�(n�1)
)=r cX 0(wi

i�(n�1))
:

These ratios are displayed for r < 40 in Figure 6 for bigram and trigram models. The Gaussian

prior achieves ratios closer to the ideal value of one than modi�ed Kneser-Ney smoothing for most r,

which is evidence that the Gaussian prior method is superior to multiple 
at discounts at predicting

correct average discounts.

We also investigated how the number of independent variance parameters used with the Gaus-

sian prior a�ects performance. In the original implementation ME-gauss, a di�erent �m is used

4We also ran experiments using complemented n-grams [5], where each n-gram feature is nonzero only when no

longer n-gram feature is nonzero. This resulted in signi�cantly inferior performance.
5The large spikes in the Switchboard graphs are discussed by Chen and Goodman [8]. They are caused by a

duplicated segment of text in the corresponding training set.

15



-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e 

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, 2-gram

baseline

katz

kneser-ney-mod

ME-gauss

ME-disc-katz

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e 

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, 3-gram

baseline

katz

kneser-ney-mod

ME-gauss

ME-disc-katz

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e 

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Brown corpus, 2-gram

baseline

katz

kneser-ney-mod
ME-gauss

ME-disc-katz

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e 

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Brown corpus, 3-gram

baseline

katz

kneser-ney-mod

ME-gauss

ME-disc-katz

Figure 4: Performance relative to baseline of various smoothing algorithms over multiple training

set sizes on the Broadcast News and Brown corpora, bigram and trigram models
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Figure 5: Performance relative to baseline of various smoothing algorithms over multiple training

set sizes on the Switchboard and Wall Street Journal corpora, bigram and trigram models
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training data, 750,000 word Wall Street Journal training set, bigram and trigram models
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Figure 7: Performance relative to baseline of di�erent parameterizations of Gaussian prior over

multiple training set sizes on the Wall Street Journal corpus, bigram and trigram models

for each level of the n-gram model.6 We also considered using a single � over the whole model

(ME-gauss-1), and using three parameters �m;1, �m;2, and �m;3+ for each level of the n-gram model,

to be applied to m-grams with 1, 2, or 3 or more counts in the training data, respectively. This

latter parameterization (ME-gauss-3n) is analogous to the parameterization of modi�ed Kneser-

Ney smoothing. The performance of these three variations on the Wall Street Journal corpus is

displayed in Figure 7. The variations ME-gauss and ME-gauss-3n yield almost identical perfor-

mance, and the variation ME-gauss-1 performs slightly worse.7 As having separate variances for

each n-gram level leads to improved performance, this is a useful distinction to make. We also

investigated many other parameter-tying schemes, but none signi�cantly outperformed this simple

technique.

7 Discussion

It has been argued that maximum entropy models do not require smoothing because they are

already as uniform or smooth as possible given the constraints. However, maximum entropy models

can be viewed as maximum likelihood exponential models, and have similar properties as other

maximum likelihood methods. For example, as can be seen in Figure 3, when data is plentiful,

smoothing has a smaller e�ect, and when data is sparse, smoothing is essential.

In many tasks including language modeling, it has been found that superior performance can

be achieved by constructing very large models (so parameters are sparsely estimated) and then

smoothing them. Thus, for maximum entropy models to be competitive with other techniques in

these domains, we need e�ective maximum entropy smoothing algorithms.

In this work, we showed that a Gaussian prior can be used to smooth maximum entropy

n-gram models to achieve performance equal to or superior to that of all other techniques for

6The optimal variances N�2
m

for the Gaussian prior found by the Powell search were mostly in the range 1:5 <

N�
2
m
< 5, where N is the size of the training set. Multiplying by N converts the variances from probability space

to count space, and discounts are relatively constant in count space over di�erent training set sizes. The discounts

tended to grow with data set size and shrink with m.
7The reason that a variation with more parameters may not outperform a variation with fewer parameters is due

to search errors in parameter optimization.
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smoothing n-gram models, a �eld which has an extensive body of associated research. This is

the �rst clear demonstration that a maximum entropy smoothing method can be as e�ective as

smoothing techniques for other types of models, and makes it possible to construct maximum

entropy models in sparse data situations without loss of performance. Furthermore, it adds virtually

no computational cost to the maximum entropy training procedure. However, because of the large

underlying computational cost of maximum entropy algorithms, building maximum entropy models

for very large data sets is still a challenging problem.

While this smoothing method can be expressed very simply, we show that it possesses all of

the desirable qualities of n-gram smoothing noted by Chen and Goodman from empirical analysis.

In addition, it achieves its excellent performance using fewer parameters than the comparably

performing modi�ed Kneser-Ney smoothing.

The Gaussian prior and the Kneser-Ney methods consistently outperform other smoothing tech-

niques. The distinction between these algorithms and the others is their use of modi�ed lower-order

distributions as described in Sections 2 and 5.1. These distributions are chosen to satisfy certain

marginal constraints derived from the training data. Thus, the use of marginal constraints may be a

powerful technique for designing novel smoothing algorithms, whether for language modeling or for

other domains. Enforcing marginal constraints would mark a signi�cant departure from traditional

techniques used in smoothing.

In addition, the Gaussian prior is a qualitatively di�erent prior than has been used previously

in n-gram smoothing. As touched on in Section 5.1, linear discounting can be motivated through

a Dirichlet or Beta prior on probabilities [29, 30], but it has been shown to perform poorly. While

absolute discounting yields better performance, it is unclear how to elegantly express this technique

through a prior distribution. In contrast, the Gaussian prior is applied to �� parameters which are

linear in log-probability, and leads to logarithmic discounting. This simple prior yields discounting

that is qualitatively and quantitatively similar to the empirical ideal.

Not only can the Gaussian prior be applied to maximum entropy modeling, but it can also be ap-

plied in the more general minimum divergence paradigm [37, 38]. Maximizing entropy is equivalent

to �nding the model with the smallest Kullback-Leibler divergence from the uniform distribution.

In minimum divergence modeling, one selects the model satisfying the given constraints closest to

some default distribution q0(x). The model q0(x) can be used to express prior knowledge about

the domain. Minimum divergence models have the form

qMD(x) =
1

Z�
q0(x) exp(

FX
i=1

�ifi(x)) :

The analysis in Section 5 applies to these models without modi�cation.

Maximum entropy modeling has advantages over competing approaches in terms of elegance,

generality, and performance, and the Gaussian prior is a powerful tool for smoothing general ME

models. Whether the Gaussian prior proves superior to other algorithms in domains other than n-

gram modeling is still an open empirical question. In n-gram models, no features partially overlap

each other, and this is not the case in general. In addition, how parameters should be tied in

other domains has yet to be explored.8 Nonetheless, our results and analysis justify the choice of a

Gaussian prior for use in n-gram modeling, and strongly suggest its use in other situations as well.

8With n-gram models, we found that a single variance � for the whole model worked quite well, though using

separate �m for each level of the n-gram model worked slightly better. However, this partitioning is not applicable

in general.
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A Derivation of Modi�ed Constraints and Modi�ed Iterative Scal-

ing for the Gaussian Prior

In this section, we derive the modi�ed constraints given in equation (16) and the modi�ed update

for improved iterative scaling given in equation (15) for the Gaussian prior method suggested by

La�erty. We use the conditional ME formulation. For further details about improved iterative

scaling such as proof of convergence, refer to [3].

To derive the modi�ed constraints, we take the partial derivatives of the objective function

given in equation (13) with respect to the parameters �i and set them to zero.

L0

X(�) =
X
x;y

~p(x; y) logq�(yjx)�
FX
i=1

�2i
2�2i

+ const(�)

=
X
x;y

~p(x; y)
X
i

�ifi(x; y)�
X
x;y

~p(x; y) log
X
y0

exp(
X
i

�ifi(x; y
0))�

FX
i=1

�2i
2�2i

+ const(�)

@L0

X(�)

@�i
=
X
x;y

~p(x; y)fi(x; y)�
X
x;y

~p(x; y)
X
y0

exp(
P

i �ifi(x; y
0))

Z�(x)
fi(x; y

0)�
�i

�2i

=
X
x;y

~p(x; y)fi(x; y)�
X
x;y

~p(x; y)
X
y0

q�(y
0jx)fi(x; y

0)�
�i

�2i

=
X
x;y

~p(x; y)fi(x; y)�
X
x

~p(x)
X
y0

q�(y
0jx)fi(x; y

0)
X
y

~p(yjx)�
�i

�2i

=
X
x;y

~p(x; y)fi(x; y)�
X
x;y

~p(x)q�(yjx)fi(x; y)�
�i

�2i

Equation (16) follows simply from the last line.

The derivation of the modi�ed improved iterative scaling update is identical to the original

derivation except for the presence of extra terms for the prior. In each iteration, we try to �nd

� = f�ig that maximizes the increase in the objective function:

L0

X(� +�)� L0

X(�) =
X
x;y

~p(x; y)
X
i

�ifi(x; y)�

X
x

~p(x) log
X
y

q�(yjx) exp(
X
i

�ifi(x; y))�
1

2�2i

X
i

(2�i�i + �2i ) :

As it is not clear how to maximize this function directly, we �nd an auxiliary function B(�) that

we can maximize that bounds this function from below. We would like the maximum of B(�) to

be larger than zero whenever � is not optimal, i.e., whenever � does not satisfy the constraints in

equation (16).

Using the inequality log x � x� 1, we get

L0

X(�+ �)� L0

X(�) �
X
x;y

~p(x; y)
X
i

�ifi(x; y) + 1�

X
x

~p(x)
X
y

q�(yjx) exp(
X
i

�ifi(x; y))�
1

2�2i

X
i

(2�i�i + �2i ) = A(�) :
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Substituting in f#(x; y) =
P

i fi(x; y) and applying Jensen's inequality, we arrive at

A(�) �
X
x;y

~p(x; y)
X
i

�ifi(x; y) + 1�

X
x

~p(x)
X
y

q�(yjx)
X
i

fi(x; y)

f#(x; y)
exp(�if

#(x; y))�
1

2�2i

X
i

(2�i�i + �2i ) = B(�) :

Taking the partial derivative of B(�) with respect to �i, we get

@B(�)

@�i
=
X
x;y

~p(x; y)fi(x; y)�
X
x

~p(x)
X
y

q�(yjx)fi(x; y) exp(�if
#(x; y))�

�i + �i

�2i
:

Equation (15) follows by setting these derivatives to zero. Notice that B(~0) = 0 and thatrB(~0) = ~0

only if � satis�es the constraints. It follows that the maximum of B(�) will be larger than zero

when � is not optimal, as desired.

References

[1] J. La�erty, personal communication, 1997.

[2] A. Berger, S. Della Pietra, and V. Della Pietra, \A maximum entropy approach to natural

language processing," Computational Linguistics, vol. 22, no. 1, pp. 39{71, 1996.

[3] S. Della Pietra, V. Della Pietra, and J. La�erty, \Inducing features of random �elds," IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 3, 1997.

[4] A. Ratnaparkhi, Maximum Entropy Models for Natural Language Ambiguity Resolution, Ph.D.

thesis, University of Pennsylvania, Philadelphia, PA, 1998.

[5] R. Rosenfeld, \A maximum entropy approach to adaptive statistical language modeling,"

Computer, Speech, and Language, vol. 10, pp. 187{228, 1996, longer version published as

\Adaptive Statistical Language Modeling: A Maximum Entropy Approach," Ph.D. thesis,

Computer Science Department, Carnegie Mellon University, TR CMU-CS-94-138, Apr. 1994.

[6] A. Berger and R. Miller, \Just-in-time language modeling," in ICASSP-98, Seattle, WA, 1998.

[7] R. Lau, \Adaptive statistical language modelling," M.S. thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,

1994.

[8] S. F. Chen and J. Goodman, \An empirical study of smoothing techniques for language

modeling," Tech. Rep. TR-10-98, Harvard University, 1998.

[9] E. Jaynes, \Information theory and statistical mechanics," Physics Reviews, vol. 106, pp.

620{630, 1957.

[10] J. Darroch and D. Ratcli�, \Generalized iterative scaling for log-linear models," The Annals

of Mathematical Statistics, vol. 43, pp. 1470{1480, 1972.

21



[11] L. R. Bahl, F. Jelinek, and R. L. Mercer, \A maximum likelihood approach to continuous

speech recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-

5, no. 2, pp. 179{190, Mar. 1983.

[12] P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. La�erty, R. L.

Mercer, and P. S. Roossin, \A statistical approach to machine translation," Computational

Linguistics, vol. 16, no. 2, pp. 79{85, Jun. 1990.

[13] M. Kernighan, K. Church, and W. Gale, \A spelling correction program based on a noisy

channel model," in Proc. of the Thirteenth International Conf. on Computational Linguistics,

1990, pp. 205{210.

[14] F. Jelinek and R. L. Mercer, \Interpolated estimation of Markov source parameters from

sparse data," in Proc. of the Workshop on Pattern Recognition in Practice, Amsterdam, The

Netherlands: North-Holland, May 1980.

[15] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, J. C. Lai, and R. L. Mercer, \An estimate

of an upper bound for the entropy of English," Computational Linguistics, vol. 18, no. 1, pp.

31{40, Mar. 1992.

[16] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice Hall, Englewood Cli�s,

N.J., 1990.

[17] S. M. Katz, \Estimation of probabilities from sparse data for the language model component of

a speech recognizer," IEEE Trans. on Acoustics, Speech and Signal Processing, vol. ASSP-35,

no. 3, pp. 400{401, Mar. 1987.

[18] R. Kneser and H. Ney, \Improved backing-o� for m-gram language modeling," in Proc. of

the IEEE International Conf. on Acoustics, Speech and Signal Processing, 1995, vol. 1, pp.

181{184.

[19] H. Ney, U. Essen, and R. Kneser, \On structuring probabilistic dependences in stochastic

language modeling," Computer, Speech, and Language, vol. 8, pp. 1{38, 1994.

[20] I. Good, \The population frequencies of species and the estimation of population parameters,"

Biometrika, vol. 40, no. 3 and 4, pp. 237{264, 1953.

[21] K. W. Church and W. A. Gale, \A comparison of the enhanced Good-Turing and deleted

estimation methods for estimating probabilities of English bigrams," Computer, Speech, and

Language, vol. 5, pp. 19{54, 1991.

[22] S. F. Chen, D. Beeferman, and R. Rosenfeld, \Evaluation metrics for language models," in

DARPA Broadcast News Transcription and Understanding Workshop, 1998.

[23] P. Brown, S. Della Pietra, V. Della Pietra, R. Mercer, A. Nadas, and S. Roukos, \A maximum

penalized entropy construction of conditional log-linear language and translation models using

learned features and a generalized csiszar algorithm," Internal IBM Report, 1992.

[24] R. Lau, R. Rosenfeld, and S. Roukos, \Adaptive language modeling using the maximum

entropy principle," in Proc. of the ARPA Workshop on Human Language Technology, 1993,

pp. 108{113.

22



[25] S. Della Pietra and V. Della Pietra, \Statistical modeling by maximum entropy," unpublished

report, 1993.

[26] R. Lau, R. Rosenfeld, and S. Roukos, \Trigger-based language models: A maximum entropy

approach," in Proc. of ICASSP-93, Apr. 1993, pp. II{45 { II{48.

[27] W. Newman, \Extension to the maximum entropy method," IEEE Trans. on Information

Theory, vol. IT-23, no. 1, pp. 89{93, Jan. 1977.

[28] S. Khudanpur, \A method of maximum entropy estimation with relaxed constraints," in

1995 Johns Hopkins University Language Modeling Workshop Proc., Center for Language and

Speech Processing, Johns Hopkins University, Baltimore, 1995.

[29] D. J. C. MacKay and L. C. Peto, \A hierarchical Dirichlet language model," Natural Language

Engineering, vol. 1, no. 3, pp. 1{19, 1995.

[30] A. Nadas, \Estimation of probabilities in the language model of the IBM speech recognition

system," IEEE Trans. on Acoustics, Speech and Signal Processing, vol. ASSP-32, no. 4, pp.

859{861, Aug. 1984.

[31] J. La�erty and B. Suhm, \Cluster expansions and iterative scaling for maximum entropy

language models," in Maximum Entropy and Bayesian Methods, K. Hanson and R. Silver,

Eds. Kluwer Academic Publishers, 1995.

[32] H. Kucera and W. Francis, Computational Analysis of Present-Day American English, Brown

University Press, Providence R.I., 1967.

[33] R. M. Stern, \Speci�cation of the 1995 ARPA hub 3 evaluation: Unlimited vocabulary NAB

news baseline," in Proc. of the DARPA Speech Recognition Workshop, 1996, pp. 5{7.

[34] A. Rudnicky, \Hub 4: Business Broadcast News," in Proc. of the DARPA Speech Recognition

Workshop, 1996, pp. 8{11.

[35] J. Godfrey, E. Holliman, and J. McDaniel, \SWITCHBOARD: Telephone speech corpus for

research and development," in Proc. of ICASSP-92, 1992, vol. I, pp. 517{520.

[36] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C, Cambridge

University Press, Cambridge, 1988.

[37] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.

[38] D. Beeferman, A. Berger, and J. La�erty, \A model of lexical attraction and repulsion," in

Proc. of the ACL, Madrid, Spain, 1997.

23


