
Respectful Type ConvertersJeannette M. Wing John OckerbloomMay 1998CMU-CS-98-130School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213Submitted to IEEE Transactions on Software Engineering.AbstractIn converting an object of one type to another, we expect some of the original object's behavior to remainthe same, and some to change. How can we state the relationship between the original object and convertedobject to characterize what information is preserved and what is lost after the conversion takes place?We answer this question by introducing the new relation, respects, and say that a type converter functionC : A! B respects a type T . We formally de�ne respects in terms of the Liskov and Wing behavioral notionof subtyping; types A and B are subtypes of T .We explain in detail the applicability of respectful type converters in the context of the Typed Object Model(TOM) Conversion Service, built at Carnegie Mellon and used on a daily basis throughout the world. We alsobrie
y discuss how our respects relation addresses a similar question in two other contexts: type evolutionand interoperability.This research is sponsored in part by the Defense Advanced Research Projects Agency and the Wright Laboratory,Aeronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and Rome Laboratory, AirForce Materiel Command, USAF, under agreement number F30602-97-2-0031 and in part by the National ScienceFoundation under Grant No. CCR-9523972. The U.S. Government is authorized to reproduce and distribute reprintsfor Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions containedherein are those of the authors and should not be interpreted as necessarily representing the o�cial policies orendorsements, either expressed or implied, of the Defense Advanced Research Projects Agency Rome Laboratory orthe U.S. Government.

Keywords: type converters, object repository, distributed objects, subtype, object-oriented design,abstraction function, speci�cations, semantics, Larch, type evolution, interoperability.

1 MotivationThe tremendous growth of the Internet and the World Wide Web gives millions of people access to vastquantities of data. While users may be able to retrieve data easily, they may not be able to interpret ordisplay retrieved data intelligibly. For example, when retrieving a Microsoft Word document, without aMicrosoft Word program, the user will be unable to read, edit, display, or print it. In general, the type ofthe retrieved data may be unknown to the retrieving site.Users and programs cope with this problem by converting data from one type to another, e.g., from theunknown type to one known by the local user or program. Thus, to view the Word document, we couldconvert it to ASCII text or HTML, and then view it through our favorite text editor or browser. A picturein an unfamiliar Windows bitmap type could be converted into a more familiar GIF image type. A mailmessage with incomprehensible MIME attachments could be converted from an unreadable MIME-encodedtype to a text, image, or audio type that the recipient could examine directly. In general, we apply typeconverters on (data) objects, transforming an object of one type to an object of a di�erent type.1.1 What Information Do Type Converters Preserve?In converting objects of one type to another we expect there to be some relationship between the originalobject and the converted one. In what way are they similar? The reason to apply a converter in the �rstplace is that we expect some things about the original object to change in a way that we are willing to forgo,but we also expect some things to stay the same. For example, suppose we convert a LaTEX �le to an HTML�le. We may care to ensure that the raw textual contents of the original LaTEX document are preserved, butnot the formatting commands since they do not contribute to the meaning of the document itself; here thepreserved information is the underlying semantics of the text contained in the document. Alternatively, ifwe convert a LaTEX �le to a table-of-contents document, we may care to ensure that the number, order, andtitles of chapters and sections in the original document are preserved, but not the bulk of the text; here thepreserved information is primarily the document's structure.The question we address in this paper is \How can we characterize what information is preserved by atype converter?" Our answer is given in terms of the behavior of some type T . Informally, we say a converterC : A ! B respects type T if the original object of type A and the converted object of type B have thesame behavior when both objects are viewed as a type T object. That is, from T 's viewpoint, the A and Bobjects look the same. If the converter respects a type, then it preserves that type's observable behavior.This paper formalizes this novel notion of respectful type converters.Our particular formalization of respects exploits the subtype relationship that holds among types of ob-jects. The Liskov and Wing notion of behavioral subtyping [9] conveniently characterizes semantic di�erencesbetween types. If S is a subtype of T , users of T objects cannot perceive when objects of type S are substi-tuted for T objects. Intuitively, if C respects type T , an ancestor of both A and B in the subtype hierarchy,then T captures the behavioral information preserved by C.This paper spells out how to determine whether a given ancestor T in a type hierarchy is respected bya converter C : A ! B (Figure 1). In general, A and B need not be subtypes of each other; in practice,they are often siblings or cousins in a given type hierarchy. Also, in general, T is not necessarily the leastcommon ancestor of A and B.Here is an example of why T is not just any ancestor of A and B. Suppose that the PNG image andGIF image types are both subtypes of a pixel map type (Figure 2) that speci�es the colors of the pixels ina rectangular region. GIF images are limited to 256 distinct colors; PNG images are not. Assuming thepixel map type also does not have a color limit, then a general converter from PNG images to GIF imageswould not respect the pixel map type: it is possible to use pixel map's interface to distinguish a PNG imagewith thousands of colors from its conversion to a GIF image with at most 256 colors. On the other hand,suppose pixel map is in turn a subtype of a more generic bitmap type that simply records whether a graphicalelement is set or clear (see Figure 2). Suppose further that elements in a pixel map are considered set ifthey are not black, and clear if they are black. As long as the PNG to GIF converter does not change anynon-black color to black (or black to non-black), and otherwise preserves the pixel layout, there is no wayfor the bitmap interface to distinguish the PNG image from the GIF image that results from the conversion.Here then, the PNG to GIF converter respects the bitmap type.1

A B
C: A B

... ...

TFigure 1: Does Converter C Respect Type T?
bitmap

PNG GIF

GIFC: PNG

(set or clear)

(1000’s of colors)

(1000’s of colors) (256 colors)

pixel_map

Figure 2: The PNG to GIF converter respects bitmap, but not pixel map.
2

Although we explore the idea of respectful type converters primarily in the context of �le and documentconverters, type converters show up in other contexts. Most programming languages have built-in typeconverters de�ned on primitive types, for example, ascii2integer, char2string, and string2array[char]. Thereal world is continually faced with painful, costly, yet seemingly simple conversions: the U.S. Postal Systemconverted �ve-digit zip codes to �ve+four-digit zip codes; Bell Atlantic recently added a new area codenecessitating the conversion of a large portion of phone numbers in Western Pennsylvania from the 412 areacode to 724; and payroll processing centers routinely need to convert large databases of employee recordswhenever extra �elds are added to the relevant database schema.1.2 Roadmap to Rest of PaperIn this paper we formally characterize the notion of when a converter respects a type. We �rst review inSection 2 how we specify types and determine when one type is a subtype of another, borrowing directlyfrom Liskov and Wing's behavioral notion of subtyping [9]. In Section 3 we exploit this notion of subtypingto de�ne the respects relation between a converter and a type.Armed with these formal de�nitions, in Section 4 we show how they are used in practice in the applicationof the Typed Object Model (TOM) Conversion Service, which we built at Carnegie Mellon and use on a dailybasis. In Section 5 we discuss a further extension of respects that enables us to relate the implementationof types to their speci�cations; speci�cally, the abstraction function used to show the correctness of theimplementation of abstract types �ts neatly into the way we de�ne respects. In Section 6 we brie
y discuss twoother applications of our respects relation: type evolution and reusability in the context of interoperability.Section 7 gives a status report of the TOM Conversion Service and puts it in a broader setting given TOM'senvironment. We close with a discussion of future work.2 Behavioral SubtypingThe programming language community has come up with many de�nitions of the subtype relation. The goalis to determine when this assignmentx: T := Eis legal in the presence of subtyping. Once the assignment has occurred, x will be used according to its\apparent" type T , with the expectation that if the program performs correctly when the actual type of x'sobject is T , it will also work correctly if the actual type of the object denoted by x is a subtype of T .What we need is a subtype requirement that constrains the behavior of subtypes so that users will notencounter any surprises:No Surprises Requirement: Properties that users rely on to hold of an object of a type T shouldhold even if the object is actually a member of a subtype S of T .which guarantees Liskov's substitutability principle of subtypes [8].In their 1994 TOPLAS paper \A Behavioral Notion of Subtyping" Liskov and Wing [9] formalized thisrequirement in their de�nition of subtyping. The novel aspect of their subtype de�nition is the ability tohandle mutable types. In this paper, we present a simpli�ed version of their de�nition since for all ourapplications we can ignore mutable objects. We discuss the extension of our work to mutability as futurework in Section 8.Under this simpli�cation, �rst we describe our model of objects and types and then how we specify types.Finally we de�ne the subtype relation.2.1 Model of Objects, Types, and ComputationWe assume a set of all potentially existing objects, Obj, partitioned into disjoint typed sets. Each objecthas a unique identity. A type de�nes a set of values for an object and a set of methods that provide the onlymeans to manipulate or observe that object. 3

Objects can be created and manipulated in the course of program execution. A state de�nes a value foreach existing object. It is a pair of mappings, an environment and a store. An environment maps programvariables to objects; a store maps objects to values.State = Env � StoreEnv = Var ! ObjStore = Obj ! ValGiven a variable, x, and a state, �, with an environment, �:e, and store, �:s, we use the notation x� to denotethe value of x in state �; i.e., x� = �:s(�:e(x)) When we refer to the domain of a state, dom(�), we meanmore precisely the domain of the store in that state.We model a type as a triple, hO; V;M i, where O � Obj is a set of objects, V � Val is a set of values, andM is a set of methods. Each method for an object is a constructor or an observer. Constructors of an objectof type � return new objects of type � ; observers return results of other types. Objects are immutable: theirvalues cannot change. All our types are immutable. We also allow methods to signal exceptions; we assumetermination exceptions, i.e., each method call either terminates normally or in one of a number of namedexception conditions. To be consistent with object-oriented language notation, we write x.m(a) to denotethe call of method m on object x with the sequence of arguments a.Objects come into existence and get their initial values through creators. Unlike other kinds of methods,creators do not belong to particular objects, but rather are independent operations. They are the classmethods; the other methods are the instance methods.A computation, i.e., program execution, is a sequence of alternating states and transitions starting insome initial state, �0: �0 Tr1 �1 ::: �n�1 Trn �nEach transition, Tri, of a computation sequence is a partial function on states.Objects are never destroyed: 8 1 � i � n : dom(�i�1) � dom(�i).2.2 Type Speci�cationsA type speci�cation contains the following information:� The type's name.� A description of the set of values over which objects of the type ranges.� For each of the type's methods:{ Its name.{ Its signature, i.e., the types of its arguments (in order), result, and signaled exceptions.{ Its behavior in terms of pre-conditions and post-conditions.Figure 3 gives an example of a type speci�cation for GIF images. We give formal speci�cations, writtenin the style of Larch [7], but we could just as easily have written informal speci�cations. Since thesespeci�cations are formal we can do formal proofs, possibly with machine assistance like with the LarchProver [4], to show that a subtype relation holds [11].The GIFImage Larch Shared Language trait and the invariant clause in the Larch interface type spec-i�cation for GIF images together describe the set of values over which GIF image objects can range. GIFimages are sequences of frames where each frame is a bounded two-dimensional array of colors. AppendixA contains the GIFImage trait as well as those for frame sequences, frames, colors, etc.A type invariant constrains the value space for a type's objects. In the GIF example, the type invariantsays that a GIF image can have at most 256 di�erent colors. (The colorrange function de�ned in GIFImagereturns the range of colors mapped onto by the array.) The predicate �(x�) appearing in an invariant clausefor type � stands for the predicate: For all computations, c, and all states � in c:8x : � : x 2 dom(�)) �(x�).4

GIF: typeuses GIFImage (gif for G)for all g: GIFinvariant j colorrange(g�) j� 256color get color (i, j: int)ensures result = overlay(g; i; j)frame get frame (i: int)requires 1 � i � len(g)ensures result = g[i]bool is set (i, j: int)ensures result = (overlay(g; i; j) 6= BLACK)bool equal (a: GIF)ensures result = (a = g)end GIF Figure 3: A Larch Type Speci�cation for GIF ImagesThe requires and ensures clauses in the Larch interface speci�cation state the methods' pre- andpost-conditions respectively. To be consistent with the Liskov and Wing paper and the Larch approach,pre-conditions are single-state predicates and post-conditions are two-state predicates.1 In Larch interfacespeci�cations, as shown in Figure 3, the absence of a requires clause stands for the pre-condition \true".The get color method returns the color of the (i, j)th array element of g. The overlay function de�ned inGIFImage returns the color value of the (i, j)th array element of the last frame in the sequence that givesa value for (i, j); otherwise, it returns BLACK, a distinguished color value, introduced in the LSL trait forcolors. For example, if there are three frames in the frame sequence and for a given (i, j), the �rst framemaps the array element to BLACK, the second to RED, and the third does not map (i, j) to any color(because it is not within its bounds), then RED is returned.To ensure that the speci�cation is consistent, the speci�er must show that each creator for the type �establishes � 's invariant and each of � 's methods preserves the invariant. These are standard conditions andtheir proofs are typically straightforward.The inclusion of pre- and post-conditions in the speci�cation of a type's methods allows us to relatethe behaviors of two di�erent types; this is the main di�erence between the Liskov and Wing de�nition ofsubtyping and those that rely on just signature information (e.g., Cardelli [2]). For example, two methodswith the same signature (e.g., addition and exponentiation for integers) may have dramatically di�erentbehavior. Relying on just signature information identi�es these methods that behave di�erently; thus, �nersubtyping distinctions can be made when behavioral information is used in addition to signature information.2.3 The Subtype RelationThe subtype relation is de�ned in terms of a checklist of properties that must hold between the speci�cationsof the two types, � and � . Since in general the value space for objects of type � will be di�erent from thevalue space for those of type � we need to relate the di�erent value spaces; we use an abstraction function,�, to de�ne this relationship. Also since in general the names of the methods of type � can be di�erent from1However, since we write formal speci�cations for only immutable types in this paper, to increase their readability, we takethe liberty of not qualifying variables denoting objects with pre or post subscripts since xpre = xpost for all objects x.5

those of type � we need to relate which method of � corresponds to which method of � ; we use a renamingmap, �, to de�ne this correspondence. (In a programming language like Java, this is just the identity map,as realized though method overloading.)� is a subtype of � if the following two conditions hold (informally stated):1. The abstraction function respects the invariants. If the subtype invariant holds for any subtype value,s, then the supertype invariant must hold for the abstracted supertype value �(s).2. Subtype methods preserve the supertype methods' behavior. If m is a subtype method then let n bethe corresponding �(m) method of the supertype.� Signature rules{ Arguments tom are contravariant to the corresponding arguments to n; m's result is covariantto the result of n.{ Any exception signaled by m is contained in the set of exceptions signaled by n.� Methods rules{ n's pre-condition implies m's (under the abstraction function).{ m's post-condition implies n's (under the abstraction function).The methods rules are completely analogous to the contra/covariant signature rules.The formal de�nition of the subtype relation, <, is given in Figure 4. 2 It relates two types, � and � ,each of whose speci�cations we assume respectively preserves its invariant, I� and I� . In the methods rules,since x is an object of type �, its value (xpre or xpost) is a member of S and therefore cannot be used directlyin the predicates about � objects (which are in terms of values in T). The abstraction function � is used totranslate these values so that the predicates about � objects make sense.Why does this subtype relation guarantee that the No Surprises Requirement holds? Recall that theRequirement refers vaguely to \properties." This de�nition of subtype guarantees that certain properties ofthe supertype|those stated explicitly or provable from a type's speci�cation|are preserved by the subtype.The �rst condition directly relates the invariant properties; the second condition relates the behaviors ofthe individual methods, and thus preserves any observable behavioral property of any program that invokesthose methods.This de�nition of subtyping supports multiple supertypes. If S is a subtype of both T and U , thenthe designer is obligated to show the above checklist of conditions holds between S and T and between Sand U . Implementation problems that arise because of multiple inheritance are irrelevant; subtyping is arelationship between speci�cations, not implementations.Figure 5 gives a type speci�cation for pixel map. To show that GIF is a subtype of pixel map (Figure 2,we de�ne the following abstraction function:�PMG : G ! PM8i; j : Integer . �PMG (g)[i; j] = overlay(g; i; j)Using this abstraction function, the proofs that the invariant, signature, and methods rules hold arestraightforward.3 Respects3.1 De�nition of Respectful Type ConverterSuppose we have two types A = hOA; VA;MAi and B = hOB; VB ;MBi. A converter, C, is a partial functionfrom VA to VB . Thus when we say that a converter maps from type A to type B we mean more preciselythat it maps the value space of type A to the value space of type B; for notational convenience, we continueto write the signature of C as A! B.2It is a simpli�cation of Liskov and Wing's \constraint" rule de�nition, Fig. 4 of [9], by omission of the constraint rulecondition. 6

Definition of the subtype relation, <: � = hO�; S;M i is a subtype of � = hO� ; T;N i ifthere exists an abstraction function, � : S ! T , and a renaming map, � :M ! N , such that:1. The abstraction function respects invariants:� Invariant Rule. 8s : S : I�(s)) I� (�(s))� may be partial, need not be onto, but can be many-to-one.2. Subtype methods preserve the supertype methods' behavior. If m� of � is the correspondingrenamed method m� of �, the following rules must hold:� Signature rule.{ Contravariance of arguments. m� and m� have the same number of arguments. Ifthe list of argument types of m� is ai and that of m� is bi, then 8i : ai < bi.{ Covariance of result. Either both m� and m� have a result or neither has. If thereis a result, let m� 's result type be a and m� 's be b. Then b < a.{ Exception rule. The exceptions signaled by m� are contained in the set of exceptionssignaled by m� .� Methods rule. For all x : �:{ Pre-condition rule. m� :pre[�(xpre)=xpre]) m� :pre:{ Post-condition rule. m� :post) m� :post[�(xpre)=xpre; �(xpost)=xpost]Figure 4: De�nition of the Subtype RelationLet T be a type that is a common ancestor of A and B in a given type hierarchy. T is a supertype of bothA and B. Then there exist ancestor types, A1 : : :An, between A and T such that there exist the followingabstraction functions:�0 : A! A1: : :�i : Ai ! Ai+1: : :�n : An ! TAssuming for all 1 � i � n : dom(�i) � ran(�i�1), let � be the functional composition of �i:� = �n � : : : � �0For B we similarly de�ne Bi; �i, and � for 1 � i � m. Figure 6 illustrates these constructs.Figure 7 gives the de�nition of the respects relation for a converter C : A ! B and type T . The �rstcondition requires that m's pre-condition holds for a's abstracted value under � i� it holds for the convertedvalue of a abstracted under �. Thus from T 's viewpoint, if m is de�ned for A's values, it should be de�nedfor B's values, and vice versa. The second condition requires that m's post-condition holds for a's abstractedvalue under � i� it holds for the converted value of a abstracted under �. Thus, given that m is de�ned,then its behavior must be the same for A's values and B's values from T 's viewpoint.Both conditions together guarantee that T 's behavior is preserved by the conversion of objects of typeA to those of type B. Informally, T cannot perceive a di�erence between the original A object and theconverted B object; thus C respects T .Finally, if a and C(a) abstractly map to the same value in T (that is, �(a) = �(C(a))) for all a in thedomain of C, then the respects relation trivially follows. This special case is often useful in proofs that aconverter respects a type, as we will see in the next section.7

pixel map: typeuses PixelMap (pixel map for PM)for all p: pixel mapinvariant truecolor get color (i, j: int)ensures result = p[i; j]bool is set (i, j: int)ensures result = (p[i; j] 6= BLACK)bool equal (a: pixel map)ensures result = (a = p)end pixel map Figure 5: A Larch Type Speci�cation for Pixel Maps3.2 PNG and GIF Example RevisitedLet us look at the PNG to GIF example more carefully. First, we give the type speci�cation for PNG imagesand abstraction functions that enable us to argue the remaining subtype relationships of Figure 2. Thenwe consider converters between PNG and GIF, to argue that no total converter respects pixel map but thatsome respect bitmap.The type speci�cation for PNG images is given in Figure 8. PNG images di�er from pixel map objectsin two ways: (1) they are framed and (2) associated with each PNG object, p, is a \gamma" value, denotedgamma(p), used in a gamma correction function, gc. The gamma correction function corrects for di�erencesamong monitors; some are dimmer than others and thus have di�erent color balances. We abstract from theintricacies of gamma correction functions; for our purposes here, they take as arguments a color, an inputgamma factor, an output gamma factor, and return a color. The constant, STDG, is the standard gammavalue for normal monitors. The Gammas and PNGImage traits are in Appendix A.Note to show that PNG is a subtype of pixel map we have a nontrivial application of the renaming map,�, where �(get corrected color) = get color . (Only the last three methods for PNG have correspondingsupertype methods; the rest are left unmapped by �.)We de�ne below two abstraction functions: one to show that PNG is a subtype of pixel map:�PMP : P! BM8i; j : Integer : �PMP (p)[i; j] = 8<: gc(p[i; j]; gamma(p); STDG) if xmin(p) � i � xmax(p) ^ymin(p) � j � ymax(p)BLACK otherwiseand one to show that pixel map is a subtype of bitmap:�BMPM : PM! BM8i; j : Integer : �BMPM (pm)[i; j] = � set if pm[i; j] 6= BLACKclear if pm[i; j] = BLACKConsider a converter, C : P ! G, that maps values of PNG images to GIF values.Claim 1 There is no such converter that respects pixel map, if the converter is de�ned for PNG images ofmore than 256 colors.Proof: A simple counting argument su�ces to prove this. Let p be the value of a PNG image, wherej colorrange(p) j = n and n > 256. Then the corresponding pixel map value �PMP (P) also has at least256 colors. This holds because the color value of �PMP (p) = gc(p[i; j]; gamma(p); STDG). So every arrayelement of p maps to some array element of �PMP (p). Furthermore, if two array elements in p have di�erent8

T

A n

A
1

B m

B 1

A B

... ...

β

β

β

α

α : A

: A

α 0
: A

i Ai

n
T

0
: B

Bi

T

i

m

: B

: B
m

i+1 i+1

n

A
1

B
1

α α α α
0in

=

β β β βm i 0
=Figure 6: Two Compositions of Abstraction FunctionsDefinition of respects relation: Let C : A ! B be a converter function, a partial functionmapping values of type A to values of type B. Let T be an ancestor of both A and B in a giventype hierarchy. Then converter C respects T if for each method m of T , 8a 2 dom(C):1. m:preT [�(a)=xpre], m:preT [�(C(a))=xpre] and2. m:postT [�(a)=xpre; �(a)=xpost], m:postT [�(C(a))=xpre; �(C(a))=xpost].where � and � are de�ned in text and depicted in Figure 6.Figure 7: De�nition of the Respects Relationcolors, so do the corresponding cells in �PMP (p). To prove this, we show that if two gamma corrected colorsare the same, then the original colors, c1 and c2, also had to be the same, i.e.,Suppose1. gc(c1; gamma(p); STDG) = gc(c2; gamma(p); STDG)By the \transitivity" and \re
exivity" properties of gamma correction functions (see Appendix A),we know that2. gc(gc(c1; gamma(p); STDG); STDG; gamma(p)) = c1By substitution in line 1, we get3. gc(gc(c2; gamma(p); STDG); STDG; gamma(p)) = c1Yielding4. c2 = c1So if there are n > 256 colors in p then there are also at least n in �PMP (p).The conversion of p to a GIF image C(p) can have a maximum of 256 colors, by the invariant of GIFimage. Furthermore, there is no way the abstraction mapping of C(p) to a pixel map value, �PMG (C(p)), canadd any further colors (except for BLACK), since we see from the GIF to pixel map abstraction function,�PMG that every element in the color set of �PMG (C(p)) is either BLACK or one of the colors used in oneof the frames of C(p). Therefore, some of the colors available in �PMP (p) are not available in �PMG (C(p)).So the value of get color(i, j) for some i and j will be di�erent. Therefore, the converter cannot respectpixel map. 2 9

PNG: typeuses PNGImage (PNG for P)for all p: PNGinvariant truecolor get uncorrected color(i, j: int)requires xmin(p) � i � xmax(p) ^ ymin(p) � j � ymax(p)ensures result = p[i; j]gamma get gamma ()ensures result = gamma(p)int get xmin ()ensures result = xmin(p): : : and similarly for get xmax, get ymin, and get ymax : : :color get corrected color (i, j: int)ensures xmin(p) � i � xmax(p) ^ ymin(p) � j � ymax(p)) result = gc(p[i; j]; gamma(p); STDG) ^xmin(p) � i _ i � xmax(p) _ ymin(p) � j _ j � ymax(p)) result = BLACKbool is set (i, j: int)ensures result = (gc(p[i; j]; gamma(p); STDG) 6= BLACK)bool equal (a: GIF)ensures result = (a = p)end PNG Figure 8: A Larch Type Speci�cation for PNG Images
10

It is possible, however, to have a converter from PNG images to GIF images that respects the bitmap type.Claim 2 There exist such converters that respect bitmap.Proof: By existence. Here is a simple-minded converter3:C : P ! GC(p) = g wherexmin(g) = xmin(p) ^ xmax(g) = xmax(p) ^ymin(g) = ymin(p) ^ ymax(g) = ymax(p) ^8i; j : Integer : g[i; j] = � BLACK if gc(p[i; j]; gamma(p); STDG) = BLACKWHITE otherwiseComposing the abstractions functions, �BMPM � �PMP , we get a bitmap, b, for a given PNG image p:[1] 8i; j : Integer : b[i; j] = 8<: set if xmin(p) � i � xmax(p) ^ ymin(p) � j � ymax(p) ^gc(p[i; j]; gamma(p); STDG) 6= BLACKclear otherwiseComposing the abstractions functions, �BMPM � �PMG , we get a bitmap, b, for a given GIF image C(p):[2] 8i; j : Integer : b[i; j] = � set overlay(C(p)[i; j]) 6= BLACKclear otherwiseBy substituting the de�nition of overlay, given the de�nition of C above, we get that [2] = [1]. Since thetwo bitmaps are the same, the converter C respects bitmap. 24 An Application: The TOM Conversion Service4.1 Overview of TOMAs part of his Ph.D. thesis, Ockerbloom (the second author) invented a Typed Object Model [10], a datamodel involving objects, types, and their associated metadata. The thesis includes de�nitions and explana-tions of intersubstitutability, which is like our respects relation, though formulated di�erently. The thesis alsoincludes full information about the design of TOM, and describes experience building and using TOM-basedapplications.Ockerbloom implemented an instance of the TOM model, a type broker that allows users in a distributedenvironment to store types and type conversion functions, to register new ones, and to �nd existing ones.The kinds of types TOM supports today are di�erent kinds of document types (e.g., Word, LaTEX, Power-Point, binhex, HTML) and \packages" of such document types (e.g., a mail message that has an embeddedpostscript �le, a tar �le, or a zip �le). The kinds of conversions TOM supports are o�-the-shelf converterslike postscript2pdf (i.e., AdobeDistillerTM), o�-the-Web ones like latex2html, and some home-grown ones likepowerpoint2html.Users can compose available converters to produce an object of a desired target type. For example,to make a fourteen-year old Scribe document available on the Web, the �rst author used a scribe2latexconverter to produce a LaTEX �le and then an enhanced latex2html converter to produce the Web version.This scenario is similar to that described in the introduction (Section 1.1): here, the composition of the twoconverters preserves the semantics of the original Scribe document. Ironically, the LaTEX program failed torun successfully on the intermediate LaTEX �le, but for this application, it did not matter; it was the endresult|the HTML �le|that mattered.Some of TOM's converters, especially the home-grown ones, are de�ned in terms of others. For example,the conversion of a PowerPoint document to an HTML �le is actually done through the application ofnine di�erent intermediate steps going through di�erent intermediate types like rtf, postscript, and ppm.3A more realistic converter would not map all non-BLACK colors to WHITE, but to something closer to the original color;however, the above simpli�es the proof. 11

communication package

mail_message delimited_package

parsed_mail_message uuencodingzipfile tarfile MIMEmultipart

zephyrgram

same mixed alternativesFigure 9: Part of TOM's Type HierarchyThese intermediate steps include converting postscript �les to ppm �les, resizing and rotating ppm �les, andconverting ppm �les to GIF �les. TOM users of the powerpoint2html converter see none of these intermediatesteps.We discuss TOM's usage and status in more detail in Section 7.4.2 Snippets from the TOM Type HierarchyWhen Ockerbloom designed TOM, he made the following critical design decision: All objects are immutable.The rationale behind the decision is that he wanted to treat arbitrary information in a distributed environ-ment like the Web as objects. If objects can change in value, then issues of storage, update, and concurrencycontrol must be resolved, perhaps using standard distributed �le system or distributed database techniques.If objects cannot change in value, then TOM does not have to worry about how they are stored, where theyare stored, how they are updated, if and how they are copied or replicated, and how to coordinate concurrentaccess to them. Rather, objects can live anywhere, be created by anyone, and be shipped around freely.Despite this design simpli�cation of disallowing mutable types, TOM does support an interesting sub-type hierarchy. Figure 9 gives a subgraph of the TOM type hierarchy. For example, TOM makes adistinction between a package type that has clear delimiters (delimited package) and one which is just amail message, containing a mail header and some uninterpreted contents. A parsed mail message is distinctfrom a mail message because the type of the message's contents has been determined (e.g., a postscript �le).Also TOM supports packages of packages, and so for example, a mail message can contain a forwarded mailmessage which itself contains a MIMEmultipart �le; TOM is \smart" enough to unwrap these packages andpresent their contents so that users can meaningfully interact with the individual pieces.Notice two examples of multiple supertypes in this subgraph. The parsed mail message type is a subtypeof both mail message and delimited package, and a mail message itself is a subtype of both package andcommunication.We carefully designed the TOM type hierarchy so that each subtype either only adds new methods orchanges (by overriding) old methods in a constrained way. Thus, proving that the Liskov and Wing subtypeconditions hold between types in the TOM hierarchy is relatively easy. There are two main cases:Case 1. If no changes to old methods are made then the proof is trivial. Since no old method is12

document

ASCIItroff WordHTML PowerPointLaTeXScribe

LaTeX_with_URLs

hierarchical
document

hyperlinked
document

paginated
document

PDF postscriptFigure 10: Another Part of TOM's Type Hierarchyoverridden, invariants are preserved and the behavior of old methods is preserved. In the typical case,the subtype object simply has more extra state information, e.g., more �elds in a record, more instancevariables of an object, or extra attributes. The abstraction function � is the obvious many-to-one functionthat throws away the extra state information. The behavior of the subtype methods is identical to that ofthe corresponding supertype methods and new methods (de�ned on the extra state) have no correspondingsupertype method.For example, bordered windows, colored windows, and scrollable windows are all extended subtypes ofa more generic window type [5]. In their paper, Liskov and Wing call these extension subtypes since thesubtype extends the supertype by providing additional state and correspondingly additional methods.Case 2. If changes to old methods are made, then Part 2 of the subtype de�nition applies: the con-tra/covariant rules, the exception rule, and most importantly the pre-/post-condition rules must be shown.If subtypes always only further constrain the behavior of the corresponding supertype methods, then it iseasy to show that invariants are preserved (given that Part 2 holds and that the speci�cations are consistent).The abstraction function is usually into rather than onto.For example, in Figure 2 GIF image is a subtype of pixel map by constraining the colors over which aGIF image element can range. In their paper, Liskov and Wing call these constrained subtypes because thedegree of variability is reduced in the subtype.In general, a subtype might both extend and constrain its supertype. For example, in Figure 9 uuencodingconstrains delimited package by constraining the number of items in the package to be exactly one; it extendsdelimited package by including UNIX �le protection bits as additional state.Consider another snippet of the TOM type hierarchy that deals with document types shown in Figure10. Suppose that LaTEX and HTML documents both abstractly map to a hierarchical document type thatspeci�es a hierarchy of sections and the text included in each section. The converter function latex2htmlrespects the hierarchical document type if it preserves the body text and the section hierarchy implied byLaTEX sectioning commands and HTML header levels. A looser conversion between the same two typesmight preserve the body text, but not the section hierarchy, and thus respects the generic document typebut not the hierarchical document type. Note that type conversions may involve not only siblings, butcousins, or ancestors, as well. Hence, an html2ascii converter might simply respect the generic documenttype. A converter from LaTEX with URLs to basic LaTEX, de�ned so that it follows the abstraction functionbetween the same types, respects the basic LaTEXtype, i.e., the parent type.13

5 Incorporating Concrete TypesSo far we have discussed the respects relation in terms of abstract types since the subtype relation is de�nedin terms of a relation on abstract types. It makes sense, however, to consider the respects relation in terms ofconcrete types too. For example, when we implement an abstract type in a programming language, we choosea representation type for the abstract type and de�ne the abstract type's methods in terms of methods onthe representation type.The TOM context introduces another kind of concrete type. When a user retrieves an object from aremote site, in reality that object is encoded in terms of some transmissible type, a concrete representationof the abstract object. These transmissible types are in turn represented in terms of primitive types that theunderlying communication substrate understands; for TOM, and for the purposes of this paper, it su�cesthat every transmissible object be representable in terms of sequences of bytes; part of the byte sequencemight represent metadata (e.g., the name of the abstract type) and the rest represents the data object itself.Both of these kinds of concrete types may give rise to a new kind of converter, that from a concretetype to another concrete type. For example, in programming languages, if we have an abstract point typewith two di�erent representations, one using Cartesian coordinates and one using polar, we may want toimplement a converter that takes any Cartesian point and produces the corresponding polar coordinates.Similarly, for an abstract matrix type, we may want to represent matrices in terms of both row-order andcolumn-order and de�ne converters between the two.In the TOM context, integers may be represented in terms of a 32-bit sign extension byte sequence ora twos-complement, little-endian byte sequence, or even ASCII strings. These are all plausible concreterepresentations of integers and conversions between them should respect the abstract integer type.5.1 Extending the De�nition of RespectsTo extend our de�nition of respects to accommodate converters from concrete type to concrete type, weborrow from the programming language community: we use the very same abstraction function used toprove the correctness of data representations �rst introduced by Hoare in 1974 [6].Let converter C : Aconc ! Bconc be de�ned on two concrete types Aconc and Bconc. Then if Aconcand Bconc are correct implementations of (abstract) types A and B, respectively, there exist abstractionfunctions:A : Aconc ! AB : Bconc ! BWe modify the de�nition of respects by modifying the de�nitions of � and � of Section 3.1 accordingly.Assuming that dom(�0) � ran(A) and dom(�0) � ran(B), we de�ne� = �n � : : : � �0 �A� = �m � : : : � �0 �BThat is, we �rst apply the abstraction function A on the concrete value of type Aconc to form an abstractvalue of type A; we do the same to the concrete value of type Bconc using B. C respects T if the samecondition holds as before, but using the revised � and � abstraction functions de�ned above. In the casethat the converter C maps an abstract type to a concrete one or vice versa, then we can omit the applicationof A or B as appropriate.5.2 ExamplesA degenerate example of this extension to the respects relation is the abstract point example. If we write aconversion function from Cartesian coordinates to polar coordinates, abstractly they are the same point andshould exhibit the same behavior as de�ned by the speci�cation of the abstract point type.A less degenerate example from the TOM application is in representing directories. A directory typemight be represented as a list of strings type. The list of strings type might in turn be represented by thethe sequence of bytes type, i.e., a transmissible type. A client who wishes to view the contents of a remote14

directory can do so even though the client's �le system (e.g., Window NT) may di�er from the server's (e.g.,afs).A common situation in using TOM involves a client retrieving an object from a remote server. The clientwould like to view the object, originally in type A, as an object of type B so far as it respects some type T .In the client's mind some abstract conversion from A to B is being performed. The problem is that the Aobject has to be represented in terms of something transmissible across the wire; so �rst it is encoded intosome transmissible type and then the client decodes the transmitted object into a B object. Here Aconc andBconc may very well be the same (transmissible) type, e.g., sequence of bytes, but at both the client andserver sides abstract interpretations are de�ned on Aconc and Bconc to yield respectively objects of A and B.For example, suppose a client fetches a compressed Word �le from a Web server, and wants to view it as anHTML �le in a Web browser. Both the Word �le and the HTML �le are ultimately represented as sequencesof bytes. The conversions required to uncompress and convert the Word document to HTML respect thegeneric document type, via abstraction that captures both their relations to the generic document types,and the relation of their byte-sequence representations to the abstract types Word and HTML.Finally, consider the problem of parsing integers retrieved from a text document and storing them ina packed byte array. We can model this problem as a conversion from a string-based representation ofintegers to a byte-based representation. We have an abstract type int, a concrete type ibytes, and anotherconcrete type istr. The abstraction function �: istr ! int is atoi, i.e., the standard C library function. Theabstraction function �: ibytes ! int is de�ned as follows for a given ibytes value b:b[0] + 256 � b[1] + :::256n�1 � b[n� 1]where n is the number of bytes in b. Then ��1 �� is a conversion from istr to ibytes that respects int. Thisexample illustrates a common way to �nd a conversion function: In general, if types A and B are \below"type T by a composition of subtype and representation relations, and � is the abstraction function from Ato T and � is the abstraction function from B to T , and � is invertible, then ��1 �� is a conversion from Ato B that respects T .6 Two Other Applications of the Respects RelationThe notion of a converter respecting a type shows up in other contexts besides explicit type conversion,provided by the TOM Conversion Server. We cast one critical aspect of type evolution in terms of our respectsrelationship and we show how respectful type converters enable reuse in the context of interoperability.6.1 Type EvolutionIn Clamen's survey on type evolution he states that object-oriented databases tend to rely on two adaptationstrategies for handling the evolution of database schemas (which can be modeled as types) [3]. The �rststrategy converts instances from old types to new ones. The second strategy uses emulation to allow instancesof old types to be used through interfaces of both the new types and the old type. Respectful type convertersplay a role in both strategies. For conversions, they ensure that appropriate information is preserved. Theyaid in emulation, by converting between types when an object of an old type is used through a new type'sinterface, in a way that ensures that the new type's methods, when called on the converted object, areconsistent with the old type's methods called on the original object. (We will see an example of this strategyin the next section with our zip�le2tar�le converter.)The type evolution problem arises most commonly in the context of databases. A change to a databaseschema, e.g., the addition of a new �eld in a record, necessitates changing all records consistent with the oldschema to be consistent with the new one. For example, suppose we maintain an address book of colleagues;each entry type has a name, address, o�ce phone number, home phone number, fax number, and e-mailaddress. We wish to update our address book so that each entry can contain a url also. This is a simple,but common, example of type evolution.As we have seen, a simple change like adding new state information to a type is just a simple applicationof subtyping. Here, the new address book entry type is a subtype of the old one. As before, the abstractionfunction loses the extra information de�ned by the subtype.15

Where do converters play a role? It answers in part the question of what the relationship between theorginal and evolved type is. In our example, the converter C : entry ! entry and url respects the entrytype. Here A and T of our general de�nition are the same type, entry. Intuitively, we want this converterto respect the original type because we want old code that used to work with old address book entries tocontinue to work with the new ones, even though new ones contain more state information.Consider this less trivial example of type evolution where a type converter may or may not respect agiven type, depending on the type converter's de�nition. Suppose we have a type, HMS, that keeps trackof time in terms of hours, minutes, and seconds. HMS has a subtype, HMSZ, that also includes the timezone. The abstraction function is again the obvious one that loses the time zone information. Consider twodi�erent type converters. The �rst, C1 : HMS! HMSZ, adds \Eastern Standard Time" to all HMS values.This converter respects HMS. The second, C2 : HMS! HMSZ, converts all HMS values to times accordingto Greenwich Mean Time and then adds \Greenwich Mean Time" to produce an HMSZ value. C2 does notrespect HMS since for any non-GMT time value the hours of the HMS and HMSZ values would be di�erent.Thus the respects relation helps characterize what information should be preserved when types evolve.We should not be able to evolve types without any thought as to what the relationship between the originaland evolved type should be. In other words, we have an instance of the same question as for type converters,and our answer is similar: type evolution should preserve some information between the old and new types.Our respects relation gives type evolution a correctness condition to satisfy because it is de�ned in terms ofa type, not just the evolution (conversion) function.6.2 Reuse for InteroperabilityAt the heart of the interoperability problem [1] is resolving mismatches among heterogeneous components.For n components, e.g., n di�erent types, at worst we need n2 converters to do pair-wise communicationbetween the components to achieve \point-to-point connectivity." We can reduce the number by requiringthe use of a common language or standard, thereby requiring only 2�n translation functions (n encode and ndecode functions) for full connectivity. Regardless, interoperability requires some number of type converters.If we know that the types are structured in way that preserves some information, then we can reduce thenumber of converters we need to implement by exploiting common ancestors for a group of types.Suppose type T , a virtual type, de�nes �ve methods and has two subtypes, A and B. Suppose alsothere is a converter from A to B that respects T . Then instead of implementing those �ve methods twice,we need only implement each once and rely on the single converter, to e�ect their behavior on A objects.Thus, we implement six functions (�ve methods plus one converter) rather than ten. We not only save someimplementation e�ort but we reuse the e�ort expended already for one type.In general for n heterogeneous components, each of which is to have the same m methods de�ned, if alln components are subtypes of some type T , then we need only implementm+ (n� 1) functions rather thanm�n functions. The more subtypes of T and the more methods \shared" by those subtypes, the greater thepotential reuse.In practice, there may exist o�-the-shelf converters, e.g., commercial products, between heterogeneouscomponents; moreover, these components are unlikely to be arranged in a type hierarchy. To apply our ideasin practice, we typically identify some common supertype, even if it means de�ning a virtual supertype [9],T , such that the use of these existing converters guarantee that T 's behavior is preserved. Thus we canprovide stronger, formalizable guarantees to users of these o�-the-shelf converters.Our TOM type hierarchy illustrates a real case of this scenario. There already exist zip�le2tar�le andtar�le2zip�le type converters. The package supertype of zip�le and tar�le (and the three others shown inFigure 9) is actually a virtual type that exports over one-half dozen methods, all common to its subtypes.These methods include getting the ith item from the package, returning the count of items in the package,unwrapping the ith item, getting the name of the ith item in the package, and returning a list of namesof items in the order they appear in the package. Rather than implement all the methods for both zip�leand tar�le, we implemented them for only tar�le. Note that we rely on the respects relation for it to bemeaningful to do the conversion on zip�les, treating them as tar�les.16

7 TOM Status7.1 TOM UseThe Web site for the TOM Conversion Service at Carnegie Mellon is: http://tom.cs.cmu.edu/. It supportsroughly 100 abstract data types, a few hundred concrete data types, and over 300 type converters (includingover 200 meaningful compositions of about 70 primitive converters). By July 1997, the number of accesses tothe TOM conversion service stabilized to between 2100 and 2600 per month, which is an average of between70 and 85 per day. Accesses came from over 200 sites in over 20 countries in six continents from all types oforganizations including educational, government, and commercial institutions. One class of the most popularconverters are those to unwrap mail messages with embedded �les. Another class consists of those whichtake a document of one type and produce a �le of a di�erent type, typically for viewing or printing. The mostcommon source types for converting are mail messages, Microsoft Word, PowerPoint, postscript, LaTEX, andpdf �les; the most common target types are Web sections, HTML, text, postscript, and GIF images.The TOM Conversion Service includes a Web-based user interface that hides much of the complexity oftype conversion from the user, in three important ways:� TOM is a connected network of type brokers. If a user makes a request to one instance of a TOMbroker, S, and S does not know about the data type or converter in question, but does know of anotherinstance, T, that does, then completely transparently to the user, S will contact T to process therequest. Thus, there can be multiple instances of a TOM server where each knows about a few typesand converters; collectively all the TOM servers comprise a distributed object server.� TOM can compose converters to do conversions. If the user gives TOM a source type and a targettype, TOM can �gure a plan of conversion steps to apply. It can make such plans on the
y, such aswhen it composes an rtf2html converter with an html2text converter. TOM can formulate conversionplans that respect types, since if conversion C1 respects type T1 and conversion C2 respects type T2,then C1 �C2 respects any common supertype of both T1 and T2.� Given an object (e.g., a Word document) to convert, TOM uses heuristics to guess what the type ofthe source object is. It can also tell a user when a requested conversion is unsupported or meaningless.7.2 Revisiting TOM StateRecall the model of state introduced in Section 2.1. A state consists of an environment, which maps variablesto objects, and a store, which maps objects to values.State = Env � StoreEnv = Var ! ObjStore = Obj ! ValTOM supports handles to objects; �le names and URLs are two subtypes of the handle type. Handlesare also TOM immutable objects and provide a dereference method. For example, the content of a �le is aTOM object, not the �le itself; a �le name is a TOM object, which when dereferenced, refers to the contentof a �le. These handles make up exactly the set Var, the domain of the environment.By de�nition, values of immutable objects cannot change and since TOM's objects are all immutable thestore of any TOM state never changes (except by the addition of new objects). What about the environment,which keeps track of how to access objects? It turns out that the environment may change. In particular,for a given state, � = he; si, while its store component, �:s, cannot change, its environment component, �:e,may change.More precisely, the binding between handles to TOM objects may change and these changes are e�ectedby users of TOM. More importantly,TOM has no control over these changes. In the context of programminglanguages, when a program is run, the program's environment is the machine it runs on; the implementationof the programming language's runtime system has complete control over the program's state, includingits environment. Thus, a new variable declared can be given an initial binding to an object; this binding17

can be added to the program's environment. When the program terminates, all these bindings presumablydisappear. The program and its environment are self-contained.TOM operates in an open distributed environment where users can change the bindings between handlesand objects. TOM has no control over this mapping. The consequence is that from the user's viewpoint,it looks as if these objects are mutable! In other words, the dereference method on a handle might yielddi�erent results at di�erent times, such as when someone has edited the �le being referenced. Futhermore,two di�erent handles, e.g., two di�erent URLs, may dereference to the same �le contents. TOM cannotcontrol or might not even know about this binding. For example, it is common for many di�erent URLs torefer to the same �le on a given Web site, and it is common for system administrators to export a URL forremote access but use an internal �le name for local access. Thus, from a more global perspective, TOMobjects appear to users as shared mutable objects.Unfortunately, as users of local and distributed �le systems, the Web, or publicly accessible persistentobject repositories, we have no control over the semantic guarantees that these di�erent contexts provide.UNIX-like �le systems, for example, provide no consistency guarantees; a change by one user to a �le maynot be seen by another who has a replica or cached copy of that �le. These weak consistency guaranteesmean that while the subtyping relation may hold from TOM's internal viewpoint, it can be intentionally orinadvertently violated by someone who accesses a TOM object from outside of TOM, by implicitly changingthe binding between some handle and TOM object.This situation is neither new nor surprising. For any persistent object repository that does not sit inisolation, i.e., makes its objects available through means other than that repository's interface, the samesituation will arise. Thus, this situation simply serves as a warning to the user of that persistent objectrepository and as a reminder to its designer: the potential mutability of a system's environment must betaken into consideration when accessing the repository's objects. What may be immutable in one contextmay appear to be mutable from a broader perspective.8 Summary and Future WorkIn this paper, we de�ned a novel notion of respectful type converters to capture what information a conversionfunction preserves when transforming objects of one type to another. We greatly leverage o� the Liskov andWing notion of behavioral subtyping to characterize this information succinctly. Their framework givesus the key technical tool we need, in particular, the abstraction functions, �i, to de�ne formally how twodi�erent objects can be viewed as the same. We also extended our de�nition to incorporate concrete typesby leveraging o� Hoare's abstraction functions for proving the correctness of the implementations of abstracttypes.An alternative, more general, approach to de�ning respects would neither require that types A, B, andT be related in a type hierarchy at all nor require that types Aconc and Bconc be related to A and B inany implementation hierarchy. We, however, would still need to assume the existence of some functions thatmap values of one type to another; these functions would serve the purpose of our abstraction functions, butperhaps be otherwise unconstrained.We also described the utility of respectful type converters in the context of working system: the CarnegieMellon TOM Conversion Service. We brie
y suggested the relevance of the respects relation for type evolutionand interoperability. From our application examples, we can characterize the three most common kinds ofconverters as1. Those mapping from one abstract type to another abstract type. Here the converter respects a thirdabstract type, usually a virtual type introduced in the type hierarchy. Examples include conversionsbetween di�erent document types of Section 4.2.2. Those mapping from a supertype to a subtype or vice versa; the converter respects the supertype, e.g.,the time zone example of Section 5.3. Those mapping from a concrete type to a concrete type; the converter respects the abstract type thatboth concrete types implement, e.g., the point, matrix, and integer examples of Section 5.18

By sticking to the design decision that no TOM object can be mutable, we avoid the problem of sharedaccess to mutable objects. Thus, TOM does not have to worry about what subtyping means in the presenceof mutability. As a corollary, showing the subtype relation holds of TOM's type hierarchy is simple andusually straightforward.The real power of the Liskov and Wing de�nition of subtype, however, is in handling mutable types.Though we do not exploit this power in this paper for simplicity and because our application did notdemand it, our de�nition of respects can be extended to accommodate mutable types. Type speci�cationswould include a predicate, called type constraints by Liskov and Wing, which captures what behavior maynot change from state to state; hence it captures additional \invariant" properties of mutable objects. Thede�nition of respects would additionally need to consider the preservation of type constraints and the behaviorof mutator methods.References[1] Frank Bamberger, Peter Ford, and Jeannette M. Wing. Interoperability, chapter C.8, pages 67{71.Interuniversity Communications Council, Inc. (EDUCOM), 1994.[2] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138{164, 1988.[3] Stewart Clamen. Type evolution and instance adaptation. Technical Report CMU-CS-92-133R,CarnegieMellon Computer Science Department, Pittsburgh, PA, June 1992.[4] S.J. Garland and J.V. Guttag. An overview of LP, the Larch Prover. In Proceedings of the ThirdInternational Conference on Rewriting Techniques and Applications, pages 137{151, Chapel Hill, NC,April 1989. Lecture Notes in Computer Science 355.[5] Daniel C. Halbert and Patrick D. O'Brien. Using types and inheritance in object-oriented programming.IEEE Software, 4(5):71{79, September 1987.[6] C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(1):271{281, 1972.[7] J.J. Horning, J.V. with S.J. Garland Guttag, K.D. Jones, A. Modet, and J.M. Wing. Larch : Languagesand Tools for Formal Speci�cation. Springer-Verlag, New York, 1993.[8] Barbara Liskov. Data abstraction and hierarchy. In OOPSLA'87: Addendum to the Proceedings, 1987.[9] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM TOPLAS, 16(6):1811{1841, November 1994.[10] John Ockerbloom. Mediating among diverse data formats. Technical Report CMU-CS-98-102, CarnegieMellon Computer Science Department, Pittsburgh, PA, January 1998.[11] Amy M. Zaremski. Signature and speci�cation matching. Technical Report CS-CMU-96-103, CMUComputer Science Department, January 1996. Ph.D. thesis.
19

Appendix A: Larch Traits and Type Speci�cationsThis appendix contains the following Larch speci�cations: bitmap interface type speci�cation, BitMap trait,Color trait for color literals, ColorSet trait for sets of colors, Frame trait, FrameSeq trait, GIFImage trait,Gammas trait, PNGImage trait, and PixelMap trait. Appendix A of the Larch Book [7] contains traits forBoolean, Integer, FloatingPoing, Set, Deque, and Array2, all of which we use below.bitmap: typeuses BitMap (bitmap for BM)for all b: bitmapinvariant truebool is set (i, j: int)ensures result = (b[i; j] = set)bool equal (a: bitmap)ensures result = (a = b)end bitmapBitMap: traitincludes Array2 (Bit, Integer, Integer, BM), Bitsend BitMapBits: traitincludes Boolean (Bit for Bool, set for true, clear for false)end BitsColorLiterals: trait% A trait for N colors where BLACK = 0 and WHITE = 1 and N >> 256.Color enumeration of BLACK, WHITE, 2, : : : , N-1end ColorLiteralsColorSet(Color, CS): traitincludes ColorLiterals, Set (Color, CS)end ColorSetFrame(F): traitincludes Array2 (Color, Integer, Integer, F), ColorSet (Color, CS)introducesxmin; xmax; ymin; ymax : F ! Integercolorrange : F ! CSasserts for all i; j : Integer, f : Fxmin(f) � xmax(f)ymin(f) � ymax(f)(xmin(f) � i � xmax(f) ^ ymin(f) � j � ymax(f))) f [i; j] 2 colorrange(f)end FrameFrameSeq(F, FS): traitincludes Deque (Frame, FS)introducesoverlay: FS, Integer, Integer ! Color 20

colorrange: FS ! CS[]: FS, Integer ! Fasserts for all i, j: Integer, f: F, fs: FSoverlay(fs, i, j) = if len(fs) = 0 then BLACK elseif xmin(last(fs)) � i � xmax(last(fs)) ^ ymin(last(fs)) � j � ymax(last(fs))then last(fs)[i; j]else overlay(init(fs); i; j)colorrange(empty) = fgcolorrange(fs ` f)) = colorrange [colorange(f)fs[i] = if i = len(fs) then last(fs) else fs[i-1]exempting8i : Integer : empty[i]8i � 0 : fs [i]8i � len(fs) : fs[i]end FrameSeqGIFImage: traitincludes FrameSeq (G for FS), ColorSet(Color, CS)asserts for all g: GBLACK 2 colorrange(g)end GIFImageGammas: traitincludes FloatingPoint (Gamma for F)introducesSTDG:! Gammagc : Color, Gamma, Gamma! Colorasserts for all c: Color, g, h, i: Gammagc(c; g; g) = c \re
exivity"gc(gc(c; g; h); h; i) = gc(c; g; i) \transitivity"end GammasPNGImage: traitincludes Frame (P for F), Gammasintroducesgamma: P ! Gammaend PNGImagePixelMap: traitincludes Array2 (Color, Integer, Integer, PM), ColorSet (Color, CS)introducescolorrange: PM ! CSasserts for all i, j: Integer, pm: PMBLACK 2 colorrange(pm)pm[i; j] 2 colorrange(pm)end PixelMap
21

