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Abstract

Elimination of data and control passing overheads in I/O has been a long-

sought goal. Researchers have often proposed changing the semantics of I/O

data passing, so as to make copying unnecessary, or the structure of the oper-

ating system, so as to reduce or eliminate data and control passing. However,

most such changes are incompatible with existing applications and therefore

have not been adopted in conventional systems. My thesis is that, in network

I/O, optimizations that preserve data passing semantics and system struc-

ture can give end-to-end improvements competitive with those of data and

control passing optimizations that change semantics or structure. Moreover,

current technological trends tend to reduce di�erences in such improvements.

To demonstrate the thesis, I introduce new models of I/O organization,

optimization, and data passing, emphasizing structure and compatibility

rather than implementation. I review previous network I/O optimizations

and propose many new ones, including emulated copy, for data passing with-

out copying but with copy semantics between application and system bu�ers,

and I/O-oriented IPC , for e�cient data passing to and from user-level server

bu�ers. I examine in detail network adapter requirements for copy avoidance.

I describe the implementation of the di�erent optimizations in Genie, a new

I/O framework.

Using Genie, I experimentally compare the optimizations on a variety of

platforms and with di�erent levels of hardware support. The experiments

con�rm the thesis, showing that: (1) Emulated copy performs competitively

with data passing schemes with move or share semantics; (2) Emulated copy

performs competitively with data and control passing optimizations enabled

by extensible kernels; and (3) I/O-oriented IPC gives user-level I/O servers

performance approaching that of kernel-level ones. In all tests, network I/O

performance was determined primarily by limitations of the physical I/O

subsystem and presence or absence of data copying, and not by semantics or

structure of the operating system. Moreover, end-to-end di�erences among

optimizations varied inversely to the processor's SPECint95 benchmark.

The experiments also demonstrate that emulated copy interoperates ef-

�ciently with mapped �le I/O, allowing applications to pass data without

copying between networks and �le systems.
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Chapter 1

Introduction

To preserve protection, multiuser systems usually do not allow applications

to access input/output (I/O) devices directly: Applications can perform I/O

only indirectly, by explicit or implicit request to an authorized kernel- or

user-level server or pager and ultimately to an authorized driver. However,

requests and their respective replies may involve signi�cant data and control

passing overheads, such as copying and context switching.

A long line of research has aimed at alleviating I/O data and control

passing overheads, often proposing:

1. Changing the semantics of data passing between applications and the

operating system, so as to avoid data copying; or

2. Changing the structure of the operating system, so that data passing

and control passing between applications and operating system can be

reduced or eliminated.

Contrary to much previous work, this dissertation's thesis is that, in

network I/O, optimizations that preserve data passing semantics and sys-

tem structure can give end-to-end improvements competitive with those of

data and control passing optimizations that change semantics or structure.

Moreover, current technological trends tend to reduce di�erences in such

improvements.

The rest of this chapter characterizes the problem in more detail, sum-

marizes previous work and possible approaches, states the thesis more fully,

and outlines its demonstration in the rest of the dissertation.

1



CHAPTER 1. INTRODUCTION 2

1.1 I/O organization

Direct application access to I/O devices can be unsafe. For example, unre-

stricted access to a disk controller or network adapter might allow an unau-

thorized application to access or modify data of other applications or shut

the device down, compromising system protection or integrity.

To preserve protection and integrity, multiuser operating systems nor-

mally allow only authorized drivers to access I/O devices directly. Applica-

tions and drivers usually run in separate protection domains. A protection

domain establishes what privileges code running in it has, that is, which ob-

jects and memory addresses such code can access. Unprivileged applications

typically can perform I/O only indirectly, ultimately by request to a privi-

leged driver. However, requests and their respective replies may introduce

considerable overhead.

This section characterizes such overhead. Subsection 1.1.1 describes how

operating systems of di�erent structures implement protection domains. Sub-

sections 1.1.2 and 1.1.3 then show how protection domains are used in the

two most common I/O models, explicit and memory-mapped , respectively,

and discuss how di�erent system structures and I/O models may result in

di�erent data and control passing overheads.

1.1.1 Operating system structures

Drivers have to access device controller registers and other data structures

that generally should not be accessible by applications. Therefore, the pro-

tection domains of drivers and applications usually must be di�erent.

The assignment of separate protection domains for applications and driv-

ers depends on the structure of the operating system. Such structure estab-

lishes how system implementation is decomposed into modules, how protec-

tion domains are implemented, and how protection domains are assigned to

system modules and applications so as to preserve system protection and

integrity.

To implement protection domains, most operating systems rely on two

hardware-supported processor features: virtual memory (VM) management

and privilege modes . VM hardware treats memory addresses issued by pro-

cesses as virtual and automatically translates such addresses into physical

ones. Physical addresses are used to access physical memory. In the most

common scheme, physical memory is split into �xed-size blocks, called pages .
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To translate virtual addresses into physical ones, VM hardware consults the

current page table . If a process issues a virtual address for which no valid

translation exists in the page table, control of the processor is automatically

transferred to system's VM fault handler (this control transfer is called a VM

fault trap). In systems such as Mach [67] and those derived from 4.4 BSD

Unix, such as NetBSD, allocated pages belong to a memory object . Each

memory object is backed by a pager . On a VM fault, the handler allocates

a physical page and invokes the object's pager to retrieve the contents of

the virtual page into the physical page. When the pager returns, the VM

fault handler maps the physical page to the faulted process, that is, modi�es

the page table so that the faulted virtual address translates into the physi-

cal address of the page. The handler then makes the faulted process again

runnable.

Because the number of pages in physical memory is limited, each page

allocation necessitates, in general, a counterbalancing page deallocation. A

kernel-level process, called the pageout daemon, scans and deallocates cur-

rently allocated pages when the number of free pages in the system is low.

If the daemon selects for deallocation a page that was modi�ed after being

last retrieved from its pager, the daemon invokes the pager to save the page's

contents. When the pager returns, the daemon unmaps the page and places

it in a list of free pages. Pagers usually save and retrieve page contents

to and from storage devices, but may also do so remotely, over a network.

In Mach and related systems, applications can supply their own user-level

pagers when allocating a region, that is, memory spanning a given range of

virtual addresses. The correspondence between virtual addresses and pages

in physical memory and backing storage devices is called an address space.

Page allocation and retrieval is also called paging in, whereas page saving

and deallocation is also called paging out .

The instruction to switch the current page table (like other instructions

that can jeopardize system protection or integrity, such as enabling/disabling

interrupts) is usually privileged , that is, can be executed only in the proces-

sor's kernel mode. By running each application in its own address space, in

user mode, systems can prevent applications from gaining direct access to

each other's or the system's data (including, for example, device controller

registers). Code running in kernel or user mode is also called kernel-level or

user-level code, respectively.

To switch into kernel mode, applications typically have to execute a spe-

cial instruction, the system call , which jumps to a well-de�ned address. The
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system installs its own code at such address, and sets up application address

spaces so that applications cannot otherwise access (or corrupt) the memory

occupied by system code. Most processors can address a wider range of vir-

tual addresses in kernel mode than in user mode. The system address space,

therefore, can be implemented as a complement to every application's address

space, and no address space switching is necessary to cross the kernel/user

protection boundary.

The assignment of protection domains to systemmodules varies according

to the system structure. The two most common alternatives are:

1. Monolithic: All system modules (including drivers) run in kernel mode,

in a single protection domain. Applications run in user mode, each in

its own protection domain.

2. Microkernel : Only system modules that implement fundamental sys-

tem abstractions, such as processes and inter-process communication

(IPC), run in kernel mode. Other system modules, including drivers,

run each in its own address space, in user mode, much like applications.

The microkernel structure has several advantages relative to a mono-

lithic one, including: (1) greater maintainability, because user-level code

can usually be modi�ed and debugged more easily than kernel-level code,

and (2) better fault isolation, because user-level system modules are each

implemented in a separate protection domain. However, microkernel sys-

tems have typically had worse I/O performance than do monolithic systems.

Consequently, few systems have a pure monolithic or microkernel structure.

Unix [49], for example, is generally considered a monolithic system and in-

tegrates in the kernel all modules directly involved in processing most I/O

requests. However, Unix also installs several auxiliary servers at user level

(such servers are called daemons and include, for example, inetd, named,

routed, and ftpd). Mach [37], on the other hand, is generally considered

a microkernel system, but integrates in the kernel several non-fundamental

modules, including many drivers. Windows NT [26] also has elements both

of monolithic and microkernel structures: It currently integrates most I/O

modules in the kernel, but employs user-level servers to emulate non-native

application programming interfaces (APIs).

Operating system structure is an area of active research. Other alterna-

tives currently being considered include librarized [74, 52, 34] and extensible

kernel [9, 69] structures. In the librarized structure, some system modules
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are linked as libraries with applications and execute at user level in the same

protection domains as the respective applications. In the extensible kernel

structure, both system and applications can run in kernel mode; protec-

tion domains are implemented in software, using a type-safe language [9]

or software fault isolation [69]. These alternatives are further discussed in

Sections 1.2.2 and 1.2.4.

The concept of operating system structure de�ned in this dissertation

does not per se include or imply extensibility . Operating system extensi-

bility is the ability of unprivileged applications to add or modify services

provided by the system [9, 69, 34]. Those additions or modi�cations are

called extensions . The requirements of extensibility include:

1. Protection domains for extensions, distinct from each other and from

those of at least certain critical system modules.

2. A mechanism for transferring control and data from the system to

extensions.

3. A policy interface that allows applications to specify when such trans-

fers should occur.

4. A run-time library that allows extensions to request resources and ser-

vices from the system.

5. One or moremechanisms to prevent extensions from hoarding resources,

such as CPU and memory.

Both the policy interface and the run-time library need to check each call to

make sure that it preserves system protection and integrity.

Operating system structure de�nes only the �rst of the above require-

ments. A system with extensible kernel structure is extensible , in the sense

de�ned here, only if the system also satis�es the other requirements of exten-

sibility. On the other hand, systems with other structures, e.g. librarized [45]

or microkernel [51], can also be extensible.

This dissertation studies I/O data and control passing overheads and ways

to reduce them, including changing the system structure. Consequently,

this work concerns only parts of the �rst two of the above requirements.

The remaining requirements for extensibility are beyond the scope of this

dissertation.
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Figure 1.1: Explicit I/O model.

Regarding the bene�ts of extensibility, this dissertation examines only two

optimizations that are closely related to I/O data and control passing. Those

optimizations, data passing avoidance and scheduling avoidance, are de�ned

in Sections 1.2.4 and 1.2.5, further discussed in Chapter 11, and evaluated in

Chapter 12. There are many other potential uses of extensibility to improve

I/O performance. An application might use extensibility, for example, to

rede�ne disk layout or protocol implementation so as to better match the

application's needs [45]. A broad characterization and evaluation of how

applications might exploit and bene�t from extensibility is, however, beyond

the scope of this dissertation.

1.1.2 Explicit I/O

In multiuser systems, applications usually can perform I/O only according to

either the explicit or the memory-mapped I/O model. In the explicit model,

unprivileged applications perform I/O as clients that request each I/O service

from a suitably privileged I/O server (client and server are also called the

parties to a request). The server processes the request and returns a reply

to its client, as shown in Figure 1.1. Requests and replies are mediated by

an I/O interface. Clients or servers can execute at kernel or user level.

If processing of the client does not continue until the server replies, the

request is called synchronous ; otherwise, the request is called asynchronous.

In the latter case, the server may return an interim reply indicating to the

client that the request is pending and that the client should check comple-

tion later. Certain servers may return an anticipated reply before request

processing completion, when the server can guarantee that it will carry out
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Figure 1.2: I/O subcontracting.

the request successfully. For example, a TCP/IP server may return a success-

ful reply to an output request as soon as it has checked request parameters

(e.g., connection) and has a reference to the request data, but well ahead

of actually physically outputting the data. An anticipated reply suppresses

generation of the respective reply at request processing completion time
1
.

A client can make a synchronous 
ush request to obtain con�rmation that

processing of one or more previous requests has actually completed.

To process parts of an I/O request, I/O servers may subcontract other

I/O servers. For example, a �le system server will usually subcontract a disk

driver, and a TCP/IP server will usually subcontract a network driver, as

shown in Figure 1.2. Drivers are servers that access devices directly and

that, therefore, typically do not have to subcontract other servers.

In a subcontract, a contractor (server acting as a client) requests a ser-

vice from a subcontractor (another server), which processes the request and

returns a reply to its client. The subcontract requests made by a contractor

in order to process a given request are called the latter's originated requests .

A request that is not originated of any other is called an original request ,

and the client of such request, usually an unprivileged application, is called

an original client . A subcontract graph is a directed acyclic graph that links

each request to its pending originated requests.

Requests and replies usually involve passing control and data between the

parties. Both clients and servers hold I/O data in bu�ers. The type of bu�er

used by the server may a�ect data passing between client and server bu�ers.

1In such cases, the reply time is de�ned as the request processing completion time.
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Servers normally use in-host bu�ers, allocated from host memory. Drivers,

however, may also use outboard bu�ers and pass data between such bu�ers

and in-host ones. Outboard bu�ers are allocated from outboard memory, e.g.

that of a video card. In-host bu�ers can be ephemeral or cached . Ephemeral

bu�ers are allocated at request time and deallocated at the corresponding

reply time. Cached bu�ers, on the contrary, may remain allocated after

reply time. Data passing between client and ephemeral server bu�ers can

be optimized by exploiting the fact that ephemeral bu�ers remain allocated

only until request processing completion. Similar optimizations may not

be appropriate for cached server bu�ers because such bu�ers may remain

allocated for an unbounded amount of time.

In BSD Unix [49], ephemeral bu�ers include those used by the socket

interface, network protocols, network interface drivers, raw disk interface,

raw and cooked tty interfaces, and character device drivers
2
. Cached bu�ers

include those used by the �le system, cooked disk interface, and block device

drivers.

Cached bu�ers are most often used to improve the performance of storage-

related servers. To process a request, such servers always look for the re-

quested data in their cache. If the data is found in the cache (an event that

is called a cache hit), no physical I/O is performed. To maximize the hit

ratio, storage servers often prefetch data, that is, bring into the cache data

that is expected to be requested soon. If the hit ratio is high, cached bu�ers

can approximate the performance of storage servers to that of memory rather

than the typically much lower performance of disks and tapes. For an 8 MB

cache, hit ratios of 80% or more have been reported in studies of �le systems

for microcomputers, minicomputers, and mainframes [40].

Using more memory for the cache often results in greater hit ratios and

better performance. However, the amount of memory used for such purpose

is necessarily limited. When a request does not hit in the cache, one or more

cached bu�ers may have to be deallocated to make room for the request's

data. A cache policy determines which bu�ers should be deallocated. Servers

often use a least-recently used (LRU) policy. The adequacy of such policy

depends on the client's access pattern , that is, sequence of requests. LRU is a

reasonable policy, for example, for random accesses, but often not for sequen-

2Some character device drivers, e.g. those of graphical devices, may statically allo-

cate in-host bu�ers and cache I/O data. More commonly, however, such drivers use a

combination of outboard bu�ers and ephemeral in-host bu�ers.
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tial accesses. However, explicit I/O interfaces usually do not allow clients to

disclose their access patterns. Several recent studies have demonstrated that

large performance improvements are possible when the explicit I/O interface

is expanded so as to make such disclosure possible [19, 65]. The server can

then �ne-tune both its prefetch and cache policies.

The data passing problem

In explicit I/O, a party's bu�ers may be unsuitable for another party because,

for example, the other party cannot access the bu�ers, or the bu�ers are

pageable but the other party requires unpageable bu�ers. An unpageable

bu�er has all its pages always in physical memory, whereas a pageable one

may have, at any given time, only some or none of its pages in physical

memory. Normally, the bu�ers of unprivileged applications are pageable.

On the contrary, servers, and especially drivers, often require unpageable

bu�ers, because:

1. If the server faults on a page whose pager (possibly supplied by an un-

trusted party) subcontracts the server (whether directly or indirectly),

the server may deadlock.

2. Even if the server is not required for paging, its throughput will su�er

while it waits for paging.

In general, therefore, as part of a request, the explicit I/O interface must

pass data from client output bu�ers to server input bu�ers, and, as part of

a reply, the explicit I/O interface must pass data from server output bu�ers

to client input bu�ers.

Explicit data passing often involves system (kernel-level) bu�ers. In

monolithic systems, server bu�ers usually are system bu�ers and are ac-

cessible by multiple servers integrated in the kernel. Bu�ers of unprivileged

applications normally are distinct from system bu�ers. Data passing between

application and system bu�ers typically is by copying, as shown in Figure 1.3.

In microkernel systems, client, server, and system bu�ers often are all

distinct. Explicit data passing between client and server bu�ers may be by

copying, and often involves two data copies { once between each party's and

system bu�ers, as shown in Figure 1.4.

Despite its popularity as a data passing technique, copying can impose

signi�cant performance penalties [63]. For example, among all personal com-

puters and workstations used in the experiments reported in Chapter 8, the
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Figure 1.3: Explicit data passing by copying in monolithic systems.
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Figure 1.4: Explicit data passing by copying in microkernel systems.

maximum main memory copy bandwidth was 351 Mbps. If data passing is

by copying and any such computer is connected to a fast network that trans-

mits at 512 Mbps, the end-to-end bandwidth will be limited by data passing

overheads to a value well below what the network would allow.

The relative cost of the memory accesses necessary for copying has been

increasing dramatically. CPU performance has been improving over 50%

per year [40], and local area network (LAN) point-to-point bandwidth, as

shown in Table 1.1, has been increasing by roughly an order of magnitude

each decade. In contrast, access times for DRAMs, the almost universal

option for main memory, have been improving by roughly only 7% per year

or twofold per decade [40]. These di�erent rates of performance improvement

over time may result in signi�cant imbalances.

Fast page mode, a widely used technique, improves DRAM cycle times

by about a factor of four [40]. Beyond that, memory bandwidth can be

improved, for sequential accesses, by widening the memory bus (memory
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LAN Year introduced Bandwidth (Mbps)

Token ring 1972 1, 4, or 16

Ethernet 1976 3 or 10

FDDI 1987 100

ATM 1989 155, 622, or 2488

HIPPI 1992 800 or 1600

Table 1.1: Approximate year of introduction and point-to-point bandwidth

of several popular LANs.

bandwidth will be roughly proportional to width) or interleaving word-width

memory banks (accessed in parallel and transferring one word per clock cy-

cle).

Unfortunately, memory widening and interleaving become too costly or

impractical beyond some factor. For a given total capacity, both techniques

require a greater number of lower-density, possibly earlier-generation mem-

ory chips, which usually cost more because of the fast rate of growth in

capacity per memory chip (about 60% per year [40]). Both techniques may

also result in excessive minimum memory size and minimum memory expan-

sion. Therefore, memory bandwidth has become relatively scarce in all but

high-end machines.

The control passing problem

Request processing often involves passing control from client to server and,

after completion, from server back to the client. Control passing can signi�-

cantly add to I/O latency. Such overhead is most noticeable for short data.

For long data, data passing overheads usually dominate.

Monolithic systems implement control passing of original requests as sys-

tem calls. On the other hand, given that all I/O servers are integrated in the

kernel, subcontract requests can be implemented as simple function calls.

Therefore, the total control passing overhead introduced by a monolithic

structure can be approximated by the cost of a null system call.

Microkernel systems normally implement all requests to and replies from

user-level servers as IPC. IPC is typically much more expensive than a system

call, because IPC usually requires, in addition to a system call, rescheduling

the CPU and switching address spaces. Therefore, the total control passing

overhead of a microkernel structure is normally much higher than that of a
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monolithic structure on the same hardware.

1.1.3 Memory-mapped I/O

The memory-mapped I/O model uses VM techniques to enable clients to

perform I/O without explicit requests. There are two main forms of memory-

mapped I/O, mapped device I/O and mapped �le I/O .

For mapped device I/O, the memory-mapped I/O interface maps device

registers just like physical pages to a process's address space. The process can

then access device registers as if they were in memory. Explicit I/O requests

and replies are not necessary, and there are no data or control passing over-

heads. This is how drivers perform I/O. However, to preserve system pro-

tection and integrity, multiuser systems typically do not allow unprivileged

applications to map devices such as network adapters and disk controllers.

Memory-mapped I/O interfaces also allow clients to map a �le (or part

of it) to a region in the client's address space. In the explicit I/O model,

the request to map a �le is equivalent to that of allocating a new region and

inputting �le data into it. Likewise, the request to unmap a �le is equivalent

to that of outputting the region's data to the �le and deallocating the region
3
.

In spite of the functional equivalence, the implementation of mapped �le

I/O can be quite di�erent from that of explicit I/O involving the same �les.

On the �rst request to map a given �le, the memory-mapped I/O interface

may allocate a new memory object, move the �le's cached bu�ers (if any)

from the �le system server to that memory object, and set up a pager that

retrieves and stores page contents directly from or to the �le, in the backing

storage device. Additionally, for each request to map the �le, the interface

allocates a region backed by the �le's memory object. On each request to

unmap the �le, the interface deallocates the corresponding region. On the

last request to unmap the �le, the memory-mapped I/O interface may simply

move pages from the �le's memory object to the cached bu�ers of the �le

system server, and deallocate the �le's memory object and pager
4
.

3This description corresponds to a �le mapped in shared mode. If multiple clients map

the �le in shared mode, the region is shared among them, and the output of the region's

data to the �le occurs when the last such client unmaps the �le. It is often also possible

to map a �le in private mode, in which case the region's data is not output back to the

�le.
4This description assumes that cached bu�ers and VM pages are allocated from the

same pool. This is the case in many contemporary systems, but was not originally true
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Using mapped �les, clients make an implicit synchronous request when

they access a page not currently in main memory. The VM fault handler

converts the implicit request into an explicit one, and invokes the pager. The

pager is simply a specialized server. Pagers can subcontract other servers or

drivers, and can use explicit or memory-mapped I/O.

Mapped �les allow data to be input lazily, when actually accessed by a

client. Output may occur eagerly (and perhaps too much so), because the

pageout daemon can select any of the �le object's pages for pageout before the

�le is unmapped. To allow good performance, many memory-mapped I/O

interfaces include calls that allow clients to disclose their expected access

pattern. Unix's madvise call, for example, allows clients to specify whether

they will access mapped regions randomly or sequentially and point to pages

that no longer are needed or that will be needed in the near future. Such

calls allow pagers to optimize their prefetch and cache policies. A recent

study has shown that access disclosures can be generated automatically by

a compiler, improving the execution time of several application by a factor

of two or more [58].

Data and control passing

Data passing overheads can be much lower in mapped �le I/O than in explicit

I/O. In mapped �le I/O, pages can passed to or from client bu�ers by

mapping and unmapping. In explicit �le I/O, on the contrary, it is normally

necessary to copy data, because the server caches I/O data. Mapping and

unmapping typically cost much less than copying pages.

Control passing overheads of mapped �le I/O are often similar to those

of explicit I/O. In a monolithic structure, the control passing overhead of

mapped �le I/O can be approximated by that of a VM fault trap, which costs

about the same as a system call. In a microkernel structure (i.e., user-level

pager), control passing overhead corresponds to a VM fault trap and address

space switching. However, a pager will typically only be invoked to retrieve

or save a page from or to a backing storage device. Given the latency of such

devices, the overhead of passing control to the pager may not be signi�cant.

in Unix [49]. When pools are separate, �le mapping and unmapping may require copying

data between pages from each pool.
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1.2 Data and control passing optimization ap-

proaches

The previous section described the explicit and memory-mapped I/O models,

both of which are available in most contemporary systems. As explained in

that section, data and control passing overheads are much more signi�cant

in explicit I/O than in memory-mapped I/O. However, not all explicit I/O

can be converted into memory-mapped I/O: In general, memory-mapped I/O

can be used only by privileged clients (mapped device I/O) or when server

bu�ers are cached (mapped �le I/O).

For I/O involving unprivileged clients and ephemeral server bu�ers, most

multiuser systems support only the explicit I/O model. In BSD Unix [49],

for example, I/O with ephemeral server bu�ers can be performed only using

explicit interfaces: sockets (e.g., for networking) or character device interfaces

(e.g., for raw disk I/O, printing, or writing to high-speed graphics devices).

This section broadly classi�es the possible approaches for reduction of data

and control passing overheads in such cases.

1.2.1 Copy avoidance

Data passing techniques or optimizations imply a certain data passing se-

mantics that applications may rely on. For example, Unix [49] and many

other systems pass explicit I/O data by copying and, therefore, are said to

have an explicit I/O interface with copy semantics. In programming lan-

guage terminology, this corresponds to passing data by value . Applications

written for copy semantics, e.g., Unix's ftp, may reuse and modify output

bu�ers while a previous output request is still being processed, without con-

cern about corrupting the previous request's data, because the system is

known to automatically copy data of application output bu�ers to system

bu�ers at the time of an output request. Similarly, applications can access

input bu�ers during or after processing of an input request without concern

that the data there may be inconsistent or erroneous, because the system is

known to copy data from system to application input bu�ers only at the time

of a successful reply. If the data passing semantics change, such applications

may no longer execute correctly.

Copy avoidance optimizations pass data without copying, reducing data

passing overheads without changing operating system structure. As ex-
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Figure 1.5: In-place data passing.

plained in the next subsections, many copy avoidance optimizations change

data passing semantics, e.g. to share or move semantics, while others pre-

serve copy semantics and, therefore, compatibility with the many applications

written for such semantics.

Changing data passing semantics

Under share semantics, client bu�ers double as server bu�ers during the

processing of a request. I/O occurs in-place, that is, directly to or from client

bu�ers, without distinct intermediate server bu�ers, as shown in Figure 1.5.

In programming language terminology, this corresponds to passing data by

reference.

The explicit I/O interface promotes client bu�ers at request time and

demotes them at reply time. Promotion may require VM manipulations,

such as: (1) mapping client bu�ers to the server's address space, and (2)

wiring the bu�ers, that is, making them unpageable. Inverse manipulations

achieve demotion. For bu�ers larger than a certain minimum size, the cost of

VM manipulations is usually equal to a small fraction of that of the avoided

copying. Moreover, VM manipulations for in-place I/O can be eliminated

by requiring client bu�ers to be located in a special region that is statically

mapped to both client and server and, if necessary, unpageable.

Share semantics can o�er the same explicit I/O interface as that of copy

semantics, but does not guarantee the integrity of the contents of client

bu�ers. Consequently, share semantics may be incompatible with applica-

tions, such as Unix's ftp, which reuse output bu�ers. Share semantics may

also require special hardware support: The device controller must be able to

input or output data directly to or from client bu�ers, with arbitrary location

and length, as opposed to bu�ers from the device's own bu�er pool.
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Figure 1.6: Data passing with move semantics.

Undermove semantics, the explicit I/O interface passes data by removing

a party's output bu�ers from that party's address space and inserting the

bu�ers in freshly allocated regions in the other party's address space, as

shown in Figure 1.6.

A party's output bu�er becomes the other party's input bu�er, and its

pages carry the data without copying, being simply unmapped from one ad-

dress space and mapped to another address space. These VM manipulations

are usually more e�cient than copying, but also imply that the owner of

an output bu�er cannot access the bu�er after the I/O interface passes the

data, and the owner of an input bu�er cannot choose the bu�er's location or

layout. Consequently, move semantics requires an explicit I/O interface dif-

ferent from that of copy semantics and is incompatible with all applications

written according to the latter.

Weak move semantics combines characteristics of move and share seman-

tics. Weak move semantics passes data in-place, but also conveys ownership

of the respective bu�ers from one party to the other. This conveyance is

purely logical, unlike move semantics, which actually unmaps bu�ers from

their previous owners. The explicit I/O interface is the same as that of move

semantics, and the integrity guarantees and hardware requirements are the

same as those of share semantics.

Chapter 2 develops a structured model of data passing semantics. Se-

mantics changes can optimize both monolithic and microkernel systems. For

example, to optimize data passing in the case of kernel-level servers, Fire
y
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RPC [68] uses share semantics, and the exposed bu�ering interface [12] uses

both share and weak move semantics. Volatile cached fbuf output [29] uses

share semantics, and both cached fbuf and volatile cached fbuf input use weak

move semantics. LRPC [7] and URPC [8] copy data into and from statically

shared regions for data passing between user-level clients and servers. Move

semantics is used in several IPC mechanisms, including Tzou and Anderson's

DASH [76], fbufs [29], and container shipping [64].

Preserving copy semantics

Data of length multiple of the page size in a page-aligned server output

bu�er can be passed to a client input bu�er of matching alignment and

length by swapping pages between the bu�ers. The I/O interface swaps each

pair of pages at the same o�set from the beginning of the respective bu�er

by invalidating all mappings of both pages, removing both pages from the

respective memory object, inserting each page in the previous memory object

of the other page, and mapping each page to the virtual address and address

space where the other page was mapped. After swapping, the contents of the

client input bu�er is the same as if the data had been copied, but the contents

of the server output bu�er changes (it becomes equal to the contents of the

client input bu�er before swapping). Page swapping appears to have been

used only in monolithic systems, such as IRIX, HP-UX, and Solaris [23].

Output bu�er data can be passed in-place while preserving copy semantics

by making the region that contains the data copy-on-write (COW). The

I/O interface removes write permissions from all mappings of the pages in

the region. A party's attempt to overwrite any such page will cause a VM

fault. The system recovers from this fault by copying the page's data to

a new page, swapping pages in the memory object of the faulted page, and

mapping the new page to the virtual address of the faulted page in the party's

address space, with writing enabled. Parties cannot overwrite output pages,

which preserves integrity of the data, and copying only occurs if a party does

attempt overwriting.

A page-level alternative to COW, reported to have better performance

for network IPC [6], is sleep-on-write : The I/O interface removes write per-

missions from all mappings of pages in the region and marks the pages busy

during the processing of the request. A party's attempt to overwrite any such

page will cause the party to fault and stall until processing of the request

completes. Therefore, this scheme can be used for data passing only from
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client to server, and may deadlock if the server attempts to overwrite the

region.

Another alternative to COW is abort-on-write , which requires bu�ers

to be allocated and deallocated using a special interface. To pass data,

the I/O interface removes write permissions from all mappings of the bu�er

pages. A party's attempt to overwrite the latter will cause a protection

violation exception and normally will abort the party. The bu�er remains

read-only until both parties explicitly deallocate it. When that occurs, the

bu�er becomes eligible for reuse. Finally, when a party allocates a bu�er,

the previously deallocated bu�er is again mapped to that party, with read

and write permissions.

COW and abort-on-write can optimize both monolithic and microkernel

systems. Mach IPC, for example, provides a selection of copy semantics (with

or without COW) or move semantics [67]. Peregrine [43] uses COW for client

output bu�ers, copying for client input bu�ers, and move semantics for server

input and output bu�ers. Abort-on-write is used in cached fbuf output [29].

Sleep-on-write has been used only in user/kernel data passing [6].

Relationship with the memory-mapped I/O model

Mapped device I/O usually has share or weak move semantics.

File mapping can have copy, move, share, or weak move semantics. Rel-

ative to the client, mapping has copy semantics if the client speci�es for

mapping an appropriate region (usually between the end of the heap and

start of the stack, with page-aligned start address and o�set from the be-

ginning of the �le and length that are multiples of the page size); otherwise,

mapping has move semantics. However, if multiple clients map the same �le

in shared mode, then mapping semantics relative to those clients becomes

share or weak move, respectively. Relative to the server, if the �le is not

currently mapped in shared mode, mapping has copy semantics if the client

selects mapping in private mode (which may be implemented by copying

or COW), or move semantics if the client selects mapping in shared mode

(the terminology may appear confusing; the �le cache is passed from server

to client with move semantics, but may be shared among multiple clients).

After the �le is mapped in shared mode, further mappings are simply VM

operations, and do not cause data passing relative to the �le server
5
.

5This assumes that cached server bu�ers and VM pages are allocated from the same
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Relative to the client, implicit requests on a mapped �le, made by ac-

cessing a page that is not currently in physical memory, normally have copy

semantics (i.e., input data exactly to the address accessed by the client).

However, if the �le is mapped by multiple clients in shared mode, the seman-

tics becomes share. Relative to the pager, such requests always have move

semantics, regardless of whether the �le is mapped by multiple clients and

whether the pager is implemented in kernel or user level.

File unmapping only causes data passing if the �le was mapped in shared

mode and no other shared mapping of the �le exists. In that case, �le un-

mapping has move semantics relative to both client and server.

In explicit I/O with cached server bu�ers (e.g., using a �le server), input

with move semantics or page swapping and I/O with share semantics may

not be appropriate. Explicit input with move semantics or page swapping

would deplete the server's cache, eliminating cache hits in future requests

for the same data; explicit I/O with share semantics would allow clients to

corrupt the server's cache. What makes �le mapping in shared mode e�cient

is, more than its data passing semantics, the fact that the �le cache is moved

from server to client
6
. Explicit I/O, however, passes only the data, and not

the cache, and therefore does not allow the same optimizations.

1.2.2 IPC avoidance

IPC avoidance reduces both control and data passing overheads in microker-

nel systems by changing the operating system structure so as to make IPC

unnecessary.

IPC can be avoided by server kernelization , that is, moving user-level

servers into the kernel. This optimization was employed, for example, in

a recent release of the Windows NT GDI [18]. Kernelization usually lowers

both data and control passing overheads, but at the cost of adopting a mono-

lithic structure and forsaking bene�ts of a microkernel structure relative to

a monolithic one.

Another alternative for IPC avoidance is to adopt a librarized operating

system structure. In such structure, drivers are installed in the kernel and

pool, as is the case in many contemporary systems. If the pools are separate, mapping

semantics relative to the server may always be copy.
6An interesting analogy is that moving a cache from server to client, over a network,

is also a key ingredient in the performance and scalability of AFS [41], a distributed �le

system.



CHAPTER 1. INTRODUCTION 20

each remaining user-level server is decomposed into a fastpath component,

which is linked as a library with user applications and processes common

input and output requests, and a slowpath component, which remains a sep-

arate user-level server and ideally processes only exceptions. This goal has

been achieved in the case of a TCP/IP server [52, 74], resulting in perfor-

mance comparable to that of a kernel-level server.

However, librarized server organization and interfaces (and, consequently,

design, implementation, debugging, and maintenance) are considerably more

complex than those of comparable monolithic or microkernel servers.

Moreover, depending on the server, it can be quite hard to extract a fast-

path component that does not depend on or modify global server state and

is self-su�cient for input and output requests. For example, [53] has shown

that such extraction was not possible for a �le system. Some implementations

allow libraries to access and modify global state, but thereby compromise sys-

tem protection. In the library-based emulation of the Unix API in [45], for

example, any application can corrupt certain system data structures of other

applications. To prevent such corruption, the library would need to contact

a server that manages or at least guards access to global state and is imple-

mented in a separate protection domain. That, however, would reintroduce

IPC, or at least a system call.

1.2.3 Operating system avoidance

I/O devices with special hardware support may allow mapped device I/O by

unprivileged clients without compromising system protection or integrity [30,

33, 11, 17]. In the case of a network adapter with suitable hardware support,

for example, the operating system can retain the processing of operations

that a�ect the global operation of the device, but allow applications to open

a channel to the device. A channel consists of control/status registers in

the card and a bu�er for data passing between application and card. The

registers and bu�er are mapped exclusively to the application that opened

the channel; VM hardware maintains protection in all accesses. While the

channel is open, the application can write directly into channel registers,

without system call overheads, requests for input into or output from the

channel bu�er [30].

By avoiding indirection through the operating system, this scheme elim-

inates both data passing and control passing overheads in the common case.

However, several di�culties make it hard to adopt this scheme in production
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systems:

1. Data passing in channel bu�ers without copying does not preserve copy

semantics and therefore causes incompatibilities with many existing

applications, as explained in Section 1.2.1.

2. For applications that use multiple devices, it may be necessary to copy

data between channel bu�ers of each device. Similarly, in an application

that uses both mapped �le I/O (for access to �les) and mapped device

I/O (for access to a network), it may be necessary to copy data between

the �le's mapped region and the network's channel bu�er. Such copying

would negate performance improvements of mapped device I/O
7
.

3. Given that the application accesses the device directly, the functional-

ity of any required servers and driver must be linked as a library to the

application. As discussed in Section 1.2.2, library-based, decomposed

servers can be considerably more complex than equivalent monolithic

or microkernel servers and may not always be feasible or safe. For ex-

ample, for quality of service guarantees, network drivers must schedule

packets globally, which may be unsafe in code linked with user appli-

cations.

4. Few devices have channel registers. In devices that do have them, the

number of channel registers is necessarily limited. Also, channel bu�ers

must be unpageable, given that they are used by a device; unpageable

memory is also a limited resource. It is not clear how the system would

prevent the hoarding of channel registers and unpageable memory by

applications.

1.2.4 Data passing avoidance

Explicit I/O requests and replies usually require data passing between client

bu�ers and server bu�ers. Data passing avoidance consists in processing

I/O requests without such data passing, or with only a reduced amount of

it. Data passing avoidance involves changes in data passing semantics, and

possibly also in operating system structure.

7This dissertation contributes a new technique, user-directed page swapping , that may

help avoid such copying. User-directed page swapping is described in Section 10.1.
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(a) Client buffering (b) Multiserver buffering (c) Outboard buffering

Client

Servers

I/O devices

Figure 1.7: Data passing to and from client bu�ers (a) can be eliminated by

using multiserver (b) or outboard (c) bu�ers.

Data passing avoidance uses special kinds of server bu�ers, multiserver

and outboard . Multiserver bu�ers reside in host memory, are accessible by

multiple servers, and can be used to pass data between servers without pass-

ing data to and from client bu�ers. Like other in-host server bu�ers, mul-

tiserver bu�ers can be ephemeral or cached. Outboard bu�ers reside in a

device controller's outboard memory, can be allocated and deallocated by

the device's driver, and can likewise be used to pass data directly between

devices, without storage in host memory or data passing to and from client

bu�ers.

A possible use for multiserver or outboard bu�ers would be, for example,

transferring data directly from a video digitizer/compression card to a net-

work driver for a networked multimedia application, as shown in Figure 1.7.

Multiserver bu�ers can also be used, as shown in Figure 1.8, for multicast

clients, which output the same data to multiple servers. Data passing can be

reduced by passing the data once from client to multiserver bu�er, and then

using that bu�er for multiple output requests to servers that can access the

bu�er.

Because data passing avoidance reduces or eliminates data passing, rather

than merely making the latter more e�cient, data passing avoidance can be

expected to provide greater I/O performance improvements than those of

copy avoidance. However, data passing avoidance is also likely to require

signi�cant changes in the explicit I/O interface, and particularly in the server

bu�er allocation and naming schemes. Conventionally, explicit I/O requests

and replies pass all I/O data between explicit client bu�ers and implicit

server bu�ers. Each server bu�er is automatically deallocated at the time of
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(a) Conventional server buffers (b) Multiserver buffers

Figure 1.8: Multicast with a multiserver bu�er reduces data passing between

client and server bu�ers.

the respective reply (ephemeral bu�er) or when another server bu�er needs

to be allocated (cached bu�er). Multiserver and outboard bu�ers, however,

must remain allocated for the processing of a certain number of I/O requests.

Programming interfaces for data passing avoidance may:

1. Let the client explicitly allocate and deallocate server bu�ers, name

them using capabilities in explicit I/O requests, and move data between

client and server bu�ers. This is the solution used in the container

shipping [64] facility, with kernel-level drivers.

2. Let the client specify, in an explicit I/O request, an input and an output

operation using the same server bu�er. This is the solution used in the

splice [36] interface, with kernel-level servers.

3. Allow the client to run as an extension to the server, so that the client

can directly access server bu�ers and use them in multiple explicit

I/O requests. If the server is integrated in the kernel, this amounts

to adopting an extensible kernel operating system structure, as imple-

mented, for example, in SPIN [9], VINO [69], and facilities such as

ASHs [34, 77].

1.2.5 Scheduling avoidance

Data passing avoidance, as explained in the previous subsection, makes it

possible to use a given multiserver or outboard bu�er to process multiple

explicit I/O requests. An important question is how to schedule the process-

ing of these requests. For example, after a multiserver or outboard bu�er

is �lled with data from a video digitizer/compression card, that bu�er may
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be submitted to a network driver for data transmission. The transmission

request to the network driver may occur in the context of:

1. a regularly scheduled process (e.g., the client itself), as in the container

shipping interface [64];

2. a callout or software interrupt, as in the splice interface [36]; or

3. the interrupt that signals completion of the previous I/O request (e.g.,

video capture and compression), as in the ASHs facility [77].

The latter two alternatives are examples of scheduling avoidance optimiza-

tions, which, by eliminating context switching, reduce control passing over-

heads and may improve I/O performance. However, such unscheduled pro-

cessing may also disrupt system scheduling, if, for example, the next re-

quested server is integrated in the kernel and takes a long time processing.

1.3 Thesis

For storage-related and other I/O involving cached server bu�ers, mapped

�le I/O provides an interface that is widely adopted and o�ers low data and

control passing overheads.

For network-related and other I/O involving ephemeral server bu�ers,

however, no comparable alternative has been available. Conventional inter-

faces for such forms of I/O have high overheads. Most alternative interfaces,

as discussed in Section 1.2, require changes in data passing semantics and/or

operating system structure, and therefore are incompatible with many ex-

isting applications and systems. Consequently, they have not been widely

adopted.

This dissertation's thesis is that, regarding network-related and other I/O

with ephemeral server bu�ers:

1. Data and control passing optimizations that preserve data passing se-

mantics and system structure can give end-to-end improvements com-

petitive with those of data and control passing optimizations that

change semantics or structure; and

2. Current technological trends tend to reduce di�erences in such improve-

ments.
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Speci�cally, this dissertation describes two novel copy avoidance schemes,

emulated copy and I/O-oriented IPC , and shows that, in addition to preserv-

ing an explicit I/O interface with copy semantics and interoperating correctly

and e�ciently with mapped �le I/O:

1. Emulated copy performs almost as well as or better than data passing

schemes with non-copy semantics; and

2. I/O-oriented IPC gives user-level I/O servers performance approaching

that of kernel-level ones.

The practical corollary of the thesis is that emulated copy and I/O-

oriented IPC can signi�cantly improve the performance of network-related

and other I/O with ephemeral server bu�ers in conventional monolithic and

microkernel systems, such as Unix and Windows NT. Coupled with mapped

�le I/O, emulated copy and I/O-oriented IPC provide a broadly applica-

ble solution that preserves both the semantics of existing interfaces and the

structure of existing systems and can result in I/O data and control passing

overheads almost as low as those of optimal (but incompatible)modi�cations.

1.4 Outline of the dissertation

This Introduction presented models of I/O organization and approaches for

reducing I/O data and control passing overheads. Chapter 2 expands this

discussion by introducing a new data passing model that permits analyzing,

in a structured way, data passing in systems of arbitrary structure. Analysis

of new data passing optimizations is important for ensuring compatibility

with existing I/O interfaces.

Chapters 3 and 4 present new copy avoidance optimizations for non-

copy and copy semantics, respectively, for the case of kernel-level servers

and ephemeral server bu�ers. New optimizations for in-place data passing

are described (Section 3.2) that have broad applicability, enabling in-place

implementations of data passing with move and weak move semantics (Sec-

tion 3.3) and output with copy semantics (Section 4.2). Emulated copy,

described in Chapter 4, can provide transparent copy avoidance in explicit

I/O interfaces with copy semantics for network-related I/O. Input alignment

enables emulated copy to input data by page swapping even when client

bu�ers have arbitrary alignment and length (Section 4.1).
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Chapter 5 describes I/O-oriented IPC , which expands the copy avoidance

optimizations of the previous two chapters to the case of user-level servers.

I/O-oriented IPC o�ers to user-level servers data passing semantics similar

to that of kernel-level interfaces, enabling easy server migration between

kernel and user level. I/O-oriented IPC exploits the asymmetric semantic

requirements of clients and servers to pass input data to client bu�ers by

page swapping. I/O-oriented IPC is possibly the �rst IPC facility to o�er a

client interface with copy semantics and avoid copying both on output and

on input.

Chapter 6 discusses network adapter support for copy avoidance. For each

level of hardware support, compensating software techniques for copy avoid-

ance are discussed. A new feature, bu�er snap-o� , allows copy avoidance

under very general conditions.

Chapter 7 describes an I/O framework, Genie, that implements the opti-

mizations described in the previous chapters on the NetBSD operating sys-

tem. Genie was used in the experiments of the following chapters.

Chapter 8 evaluates the performance of emulated copy in end-to-end com-

munication over a fast network. Experiments show that emulated copy per-

forms almost as well as or better than other copy avoidance schemes, includ-

ing those with move or share semantics. Analysis of the results on multiple

platforms and at di�erent transmission rates suggests that current technolog-

ical trends tend to increase the performance bene�ts of copy avoidance while

also decreasing performance di�erences among copy avoidance schemes.

Chapter 9 evaluates I/O-oriented IPC. Experiments show that I/O-orient-

ed IPC gives user-level servers performance approaching that of kernel-level

ones. Results on di�erent platforms indicate that, when I/O-oriented IPC

is used, performance di�erences between user- and kernel-level servers are

scaling roughly inversely to the processor's integer performance.

Chapter 10 shows that the new copy avoidance optimizations of Chap-

ters 3 to 9, which are speci�c to ephemeral server bu�ers, interoperate ef-

�ciently with mapped �le I/O. Mapped �le I/O allows copy avoidance in

the case of cached server bu�ers. Consequently, combined use of the latter

and this dissertation's new copy avoidance optimizations allow data passing

between networks and �le systems without copying and preserving the se-

mantics of existing interfaces and the structure of existing systems. This is

experimentally demonstrated in that chapter.

Chapter 11 presents a new interface, iolets , that o�ers an alternative I/O

model, with data passing avoidance, in systems with monolithic or micro-
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kernel structure. Iolets enable limited hijacking , a safe form of scheduling

avoidance.

Chapter 12 evaluates iolets and limited hijacking. Experiments show

that, for device-to-device data transfers and for multicast applications, data

passing avoidance can greatly reduce overheads when compared to conven-

tional data passing by copying. However, the improvements are much less

when compared to copy avoidance. In fact, for multicast applications, copy

avoidance alone gives greater bene�ts than those of data passing avoidance

alone. Analysis of the results suggests that, in many cases, performance

di�erences between data passing avoidance and copy avoidance would not

be observable because of application processing or saturation of the physi-

cal I/O subsystem. Performance improvements due to scheduling avoidance

were modest.

Finally, Chapter 13 summarizes the dissertation's contributions, makes

recommendations based on the dissertation's results, and points to future

work.
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Chapter 2

Data Passing Model

A good model of data passing can be a valuable tool for describing and an-

alyzing data passing schemes and revealing sources of incompatibility. How-

ever, most previous models have not provided such tool. Some models have

been descriptive only (e.g., [29]) and do not provide an analytical framework

that can be generally applied. Other models have been analytical, but at a

level excessively close to implementation techniques (e.g., [64]), and therefore

do not clearly scrutinize or reveal incompatibility between schemes. Finally,

certain models have described and analyzed compatibility, but only for sys-

tems of a particular structure (e.g., the model in [13] is applicable only to

monolithic systems).

This chapter introduces a new data passing model that captures in a

structured way those essential features of a data passing scheme that must

be retained, for a desired level of compatibility, in proposed optimizations of

that scheme | regardless of implementation. The new model can be used

to describe and analyze data passing schemes encompassing a broad range

of data passing semantics and system structures.

2.1 Semantics

For two data passing schemes to be compatible with each other, they must

implement the same data passing semantics. As shown in Figure 2.1, data

passing schemes can be analyzed according to three orthogonal character-

istics: bu�er allocation, bu�er integrity, and optimization conditions. The

following subsections discuss each dimension in turn.

29
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Figure 2.1: Taxonomy of data passing schemes. Bu�er allocation and in-

tegrity de�ne the semantics of a scheme. The quali�ed semantics also takes

into account the scheme's optimization conditions.

2.1.1 Bu�er allocation

The most fundamental requirement for compatibility between data passing

schemes is that they have the same strategy for bu�er allocation and deal-

location. Data passing may or may not imply allocation and deallocation

of the bu�ers that contain the data; each alternative determines a di�erent

programming interface.

Strategies for bu�er allocation and deallocation establish a distinction

between migrant and native bu�ers. Migrant bu�ers are those allocated and

deallocated through an I/O interface. Native bu�ers are those otherwise

allocated and deallocated. A given bu�er can be simultaneously native with

respect to one party and migrant with respect to another party. The owner

of a migrant bu�er can choose neither the location nor the layout of the

bu�er. The owner of a native bu�er, on the contrary, generally can specify

both. Bu�er layout is how the data is distributed in memory, e.g. whether all

contiguous or scattered, and can be represented by a vector of (o�set, length)

pairs, with each pair corresponding to one data segment of the bu�er.

In migrant-mode data passing, the I/O interface automatically allocates

input bu�ers and deallocates output bu�ers; the owner of an input bu�er

cannot choose the location or layout of the bu�er, and the owner of an output

bu�er cannot or should not access the bu�er after data passing. Such is the
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case, for example, of the move semantics of Tzou and Anderson's DASH

system [76].

In native-mode data passing, on the contrary, the I/O interface does not

allocate or deallocate bu�ers; the owner of an input bu�er determines its

location and layout before data passing, and the the owner of an output

bu�er can still access the bu�er after data passing. Such is the case, for

example, of the copy semantics of the Unix explicit I/O interface [49].

Migrant-mode and native-mode data passing semantics necessitate di�er-

ent programming interfaces. The main di�erence regards input bu�ers: In

migrant-mode interfaces, the location and layout of input bu�ers are output

parameters, returned by the interface; in native-mode interfaces, the location

and layout of input bu�ers are input parameters, passed to the interface.

Migrant-mode interfaces also include primitives for explicit migrant bu�er

allocation and deallocation. Parties with balanced amounts of input and

output may be able to avoid explicit bu�er allocation and deallocation by

reusing input bu�ers as output bu�ers.

Migrant-mode interfaces should accept as output bu�ers only migrant

bu�ers. This restriction prevents native regions that must be kept contigu-

ous, such as the stack or the heap, from becoming discontiguous because a

migrant-mode interface accepts part of the region as an output bu�er and

deallocates it, making the region discontiguous. Native-mode interfaces can

accept as input or output bu�ers both native and migrant bu�ers.

Compared to native-mode data passing, migrant-mode data passing im-

poses more constraints on the parties and fewer constraints on the interface,

which therefore can be more easily optimized. However, parties that require

access to output bu�ers after data passing or that are sensitive to data lay-

out, e.g., those using data structures such as arrays, may not be able to use

migrant-mode interfaces without copying between migrant bu�ers and native

bu�ers or data structures. This copying may defeat eventual performance

advantages of a migrant-mode interface.

2.1.2 Bu�er integrity

A second, more subtle requirement for compatibility between data passing

schemes regards bu�er integrity. For a data passing scheme s
0
to be compat-

ible with programs written for data passing scheme s, s
0
must make bu�er

integrity guarantees at least as strong as those of s.

Bu�er integrity guarantees can be strong or weak . Strong-integrity data
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passing guarantees that: (1) the owner of an output bu�er cannot, by over-

writing the bu�er after data passing, a�ect the contents of the other party's

input bu�er; and (2) the owner of an input bu�er can access the bu�er only

in the states as of before an input request or after successful reply, but no

intermediate, inconsistent, or erroneous state. Weak-integrity data passing

makes no such guarantees.

Copy and move semantics provide strong integrity because each party

cannot directly access the other party's bu�ers.

Weak integrity allows in-place data passing, that is, data passing using

bu�ers that can be accessed by both parties. The client can access these

bu�ers while its request is being processed and, consequently, can corrupt

output data or observe input data in inconsistent states.

Native-mode weak-integrity data passing is called share semantics, where-

as migrant-mode weak-integrity data passing is called weak move semantics.

Under weak move semantics, an output bu�er remains physically accessible

to its previous owner after data passing, but this previous owner should not

access the bu�er because the other party logically becomes the owner of the

bu�er and may reuse it.

For weak-integrity, in-place input, requests have to be made before input

physically occurs. If this condition is not met (e.g., when a packet is received

unexpectedly from a network), input can be completed according to the

strong-integrity semantics with the same bu�er allocation scheme (i.e., share

reverts to copy semantics, and weak move reverts to move semantics).

For correctness, clients should not access an input bu�er during input

request processing with weak-integrity semantics. Clients should also not

overwrite an output bu�er during output request processing with share se-

mantics, or access an output bu�er after making an output request with weak

move semantics.

2.1.3 Optimization conditions

The dimensions bu�er allocation and bu�er integrity de�ne the semantics

of a data passing scheme. Therefore, there are four data passing semantics:

copy, move, share, and weak move.

Each semantics may admit many di�erent optimizations, some of which

may depend on special conditions. The quali�ed semantics of a data passing

scheme is de�ned by the scheme's semantics and special optimization condi-

tions. Contrary to the other two dimensions, which each have two discrete
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points, this dimension admits a spectrum of possibilities, including many not

discussed here.

Optimization conditions may be as important as semantics for compati-

bility between data passing schemes. For a scheme s
0
to be compatible with

applications written for scheme s, s
0
may have less conditions than those of

s, but must not mandate any new conditions.

Some optimization conditions may be spatial , restricting, for example,

bu�er location, alignment, or length. Other optimization conditions may be

temporal , restricting, for example, when requests should occur or when a

party may access its bu�ers. The spatial restrictions of migrant-mode data

passing, explained in Section 2.1.1, and the temporal restrictions of weak-

integrity data passing, explained in Section 2.1.2, are intrinsic to the respec-

tive semantics and not special optimization conditions. Likewise, the spatial

restrictions of memory-mapped I/O, noted in Section 1.1.3, are intrinsic to

that I/O model.

The restrictiveness of an optimization is the likelihood that an applica-

tion not aware of the optimization will not meet the optimization's special

conditions. Hard conditions are those that are met by practically no applica-

tion not aware of the optimization. Hard conditions usually require changes

or additions to I/O programming interfaces and modi�cations in previously

written applications. Soft conditions are those that are not hard. Soft con-

ditions may involve additions to I/O programming interfaces, but do not

generate incompatibility with previously written applications.

The criticality of an optimization is the degree to which non-conformance

with the optimization's conditions causes performance to worsen relative to

the base case against which the optimization is claimed. At one end of the

criticality spectrum are mandatory conditions, those that must be met for

data passing to occur or that impose heavy penalties if not met. At the other

end of the spectrum are advisory conditions, which if not met do not cause

substantial penalty.

For example, interfaces such as those of fbufs [29], exposed bu�ering [12],

and operating system avoidance (Section 1.2.3) use optimizations that require

client bu�ers to be located in special regions. Data passing fails if the data

location does not conform to such requirement, which therefore is mandatory.

Moreover, virtually no application not aware of such regions place their data

in them, which makes such requirement hard.

Incompatibilities such as these can often be alleviated by a user-level

library that copies I/O data between application bu�ers and bu�ers that
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conform to the quali�ed semantics of the underlying data passing scheme. If

incompatibility between schemes s
0
and s is due only to disagreements re-

garding implicit bu�er allocation/deallocation and optimization conditions,

the library can, by copying and explicitly allocating and deallocating bu�ers,

convert s
0
into a new scheme s

00
that is compatible with s. This would be

necessary, for example, to run existing applications that expect copy seman-

tics under a data passing facility, such as fbufs [29], that does not provide

such semantics. However, given the library's copying overheads, s
00
may not

provide, for existing applications, any performance improvements relative to

s. Moreover, incompatibility due to weaker bu�er integrity guarantees may

not be fully �xed by copying: Even with copying, misbehaved applications

may still be able to corrupt I/O data.

Optimization conditions can also hurt copy avoidance in the interopera-

tion of di�erent I/O subsystems. For example, applications that use mapped

�les for �le access and fbufs [29] or operating system avoidance (Section 1.2.3)

for network access may have to copy data between mapped �le regions and

fbufs or channel bu�ers. Because of special conditions, the bene�ts of opti-

mizations in each I/O subsystem may not be fully realized when the subsys-

tems have to interoperate
1
.

This dissertation describes and evaluates the implementation of one stan-

dard and one optimized explicit data passing scheme for each of the data pass-

ing semantics, as shown in Figure 2.1. All schemes other than copy avoid

copying. The optimized schemes are called emulated because they have at

most only soft, advisory optimization conditions and therefore do not re-

quire a \compatibility library" that may negate performance improvements.

Moreover, they interoperate e�ciently with each other and with mapped �le

I/O.

2.2 Protection

If a data passing scheme s
0
has quali�ed semantics compatible to that of s,

programs written for s will run correctly under s
0
. However, data protection

may be di�erent under s and s
0
.

The protection model of a data passing scheme speci�es what client data

a server can access by virtue of a request, whether for reading and/or writing,

1This dissertation contributes a new technique, user-directed page swapping , that may

help such interoperation. User-directed page swapping is described in Section 10.1.
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and whether the data is pageable with backing by a client-supplied pager.

No distinction is made regarding client access to server data, because no data

passing scheme should allow clients to access any server data.

The prototypical fully protected data passing scheme is IPC between user-

level clients and servers with data passing by copying: A server can strictly

only read from the client's output bu�ers at the time of the request, can only

write into the client's input bu�ers at the time of the reply, and the server's

copy of client data is not backed by a client-supplied pager.

On the other hand, the prototypical unprotected (in this particular sense)

data passing scheme is any scheme that passes data to or from a kernel-level

server: The server can read or write any client data at any time, and such

client data may be pageable and backed by a client-supplied pager.

IPC facilities with copy avoidance usually o�er a protection model that is

somewhat weaker than fully protected but stronger than unprotected. Copy

avoidance can weaken IPC protection in the following ways:

1. Page-sized granularity | Copy avoidance techniques typically use VM

manipulations to avoid copying. For that reason, protection granularity

with copy avoidance often is page-sized, whereas with copying it is byte-

sized. With copy avoidance, servers usually can access any other client

data on the same pages as client bu�ers.

2. Read access to client input bu�ers | In facilities that pass data to

client input bu�ers in-place or by page swapping (Sections 1.2.1, 4.1,

5.2), the server can often not only write into client input bu�ers but

also read them.

3. Paging by client-supplied pager | If data passing is in-place (e.g., by

COW) or migrant-mode and client data is passed in a bu�er that is

pageable, the server may take a VM fault on an access to the data.

If the bu�er is backed by an untrusted client-supplied pager, then the

server may never recover from such fault.

Clients that do not trust a given user-level server may choose to rearrange

the layout of their bu�ers or use IPC with data passing by copying. Untrusted

client-supplied pagers, however, pose a more fundamental safety problem: In

general, to protect their own integrity, servers would need to refuse IPC with

copy avoidance on pageable client bu�ers.
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2.3 Symmetry

A data passing facility is called symmetrical when it handles both output

and input bu�ers of both client and server with the same quali�ed seman-

tics. Symmetry makes programming interfaces simpler and more uniform.

However, many facilities, especially optimized ones, are asymmetrical.

IPC facilities with copy, move, or weak move semantics often are sym-

metrical | e.g., Mach IPC (in the cases of move or copy semantics without

COW) [37], DASH (move semantics) [76], and container shipping (move se-

mantics) [64].

On the other hand, facilities with in-place native-mode data passing, in-

cluding COW, COW variants, and share semantics usually are asymmetrical:

To avoid copying, the facility migrates a client's in-place bu�ers to and from

the server (i.e., the server does not choose the location or layout of its bu�ers

and cannot access its output bu�ers after processing of the request completes)

even if the client passes the data with native-mode semantics (i.e., the client

retains access to its output bu�ers and determines the location and layout

of its input bu�ers). Examples of asymmetrical facilities include Mach IPC

(in the so-called out-of-line case of output with COW/input with move se-

mantics) [37], Peregrine RPC (where client bu�ers have copy semantics and

server bu�ers have move semantics) [43], and cached fbufs and volatile cached

fbufs (where output is with abort-on-write and share semantics, respectively;

input is with weak move semantics) [29].

Data passing between original clients and kernel-level servers in mono-

lithic systems is normally asymmetric. The I/O interface often copies data

between client and system bu�ers (e.g., mbufs in Unix [49]), butmigrates sys-

tem bu�ers to and from servers, with weak integrity (even if they shouldn't,

servers can access system bu�ers before input or after output). Therefore,

the semantics for clients is copy, but for servers, the semantics is weak move.

Data passing in subcontracts in monolithic systems usually can also be

asymmetric. Output bu�ers can be handled with weak move semantics (e.g.,

in Unix, when a protocol layer does not gain an extra reference to an mbuf

before passing it to another layer) or with share semantics (e.g., in Unix,

when TCP allocates a reference to an mbuf before passing it to IP). Input

bu�ers are handled with weak move semantics.
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2.4 Summary

For a data passing scheme s
0
to be compatible with programs written for

another scheme s, it is necessary that:

1. s
0
agree with s on whether data passing implies allocation and deallo-

cation of the bu�ers that contain the data | either option determines

a fundamentally di�erent programming interface;

2. s
0
provide bu�er integrity guarantees at least as strong as those of s |

otherwise, I/O data may be corrupted; and

3. s
0
mandate no optimization conditions not also mandated by s.

Emulated copy (Chapter 4) is a new data passing scheme that preserves

both the bu�er allocation strategy and bu�er integrity guarantees of copying.

Emulated copy does have optimization conditions not mandated by copying,

but such conditions are soft and advisory only. Consequently, emulated copy

can optimize many unmodi�ed applications, and does not signi�cantly pe-

nalize non-conforming applications.

Data passing between user-level client bu�ers and kernel-level server bu�-

ers usually has asymmetric semantics. I/O-oriented IPC is a new IPC facil-

ity, described in Chapter 5, that exploits similar asymmetry for data passing

between user-level client and server bu�ers, thereby achieving easy server

migration and similar performance for kernel- and user-level servers.

IPC with pageable in-place client bu�ers can be unsafe because of un-

trusted client-supplied pagers. I/O-oriented IPC makes in-place client bu�ers

unpageable during I/O requests, safeguarding servers from untrusted client-

supplied pagers.
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Chapter 3

Copy Avoidance

Copy avoidance can signi�cantly improve I/O performance without changing

the structure of the operating system. Mapped �le I/O already provides copy

avoidance in storage-related and other I/O involving cached server bu�ers.

This and the next four chapters introduce new optimizations for network-

related and other I/O involving ephemeral server bu�ers, using the explicit

I/O model. The interoperation of these new optimizations with mapped �le

I/O is discussed in Chapter 10.

Copy avoidance may or may not change data passing semantics. Conven-

tional explicit I/O interfaces, such as those of Unix [49] and Windows NT [26],

usually have copy semantics. This chapter describes new techniques for data

passing with non-copy semantics, while the next chapter describes emulated

copy, a new scheme that preserves copy semantics.

The emphasis in this dissertation is in preserving existing interfaces and,

consequently, copy semantics. The inclusion in this dissertation of new opti-

mizations for non-copy semantics serves two purposes. First, these optimiza-

tions remove bias: It would be unfair to compare emulated copy, a highly

optimized scheme with copy semantics, only with unoptimized implementa-

tions of non-copy semantics. Second, optimizations for in-place data passing

(e.g., share semantics) can also be used for emulated copy output.

The identi�cation of copy avoidance techniques that have broad applica-

bility, such as those for in-place I/O, is actually an important goal of this

dissertation. Copy avoidance schemes are described in terms of the individ-

ual techniques used to implement them, so as to highlight similarities and

di�erences among copy avoidance alternatives. Chapter 7 shows how the

di�erent techniques are composed to implement copy avoidance according to

39
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the various semantics.

3.1 System bu�ers

This dissertation's optimizations assume that system bu�ers are unpageable.

Some system bu�ers could, in principle, be pageable, while others, especially

those used by drivers, must be unpageable. The option to make all sys-

tem bu�ers unpageable is common in monolithic systems (e.g., Unix [49]);

it a�ords simplicity and avoids the costs of building the VM data structures

necessary for pageability and of dynamically wiring/unwiring bu�ers. In a

microkernel system or any system where a server may execute in a context

other than the client's (e.g., at interrupt level, in an extensible-kernel sys-

tem with scheduling avoidance), the option of making system bu�ers (and,

consequently, also promoted in-place or migrant client bu�ers) unpageable

can safeguard servers or the system from client attacks with untrusted client-

supplied pagers, as explained in Section 2.2.

The rest of this section describes how unpageable system bu�ers can be

made e�cient and safe without imposing special optimization conditions.

3.1.1 Unmapped access

In-place and migrant-mode data passing generally require mapping and un-

mapping to the server bu�ers that are, were, or will be owned by the client.

To avoid such mapping and unmapping operations, many previous optimiza-

tions require client bu�ers to be located in special regions, e.g., fbuf re-

gions [29] or exposed bu�er areas [12], permanently mapped to both parties.

Unmapped access is an optimization that makes it unnecessary to map

or unmap system bu�ers to or from the kernel address space, regardless of

their location. In some processors (e.g., Alpha, MIPS), unmapped access

is a hardware feature that allows kernel-mode accesses to physical memory

using virtual addresses equal to physical addresses plus a �xed o�set that

bypasses the page table. In such cases, unmapped access may reduce TLB

contention. In processors that do not provide this feature (e.g., Pentium), the

I/O interface can emulate it by inserting, in the kernel's page table, aliasing

entries mapping the entire physical memory and, in the machine-independent

representation [67] (if any) of the kernel address space, a region serving as a

placeholder for the corresponding virtual addresses. These aliasing entries are
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not noted in any other VM data structures (e.g., physical-to-virtual tables),

so that they are never invalidated. The placeholder region does not refer to

any underlying memory objects.

Unmapped access eliminates server-side mapping and unmapping over-

heads for servers integrated in the kernel. Given that in-place bu�ers remain

mapped to the client throughout processing of a request, the total map-

ping and unmapping overhead is the same as that of a special permanently

co-mapped region, but without the location restrictions. As explained in

Section 3.3, migrant-mode data passing can also be performed in-place and

therefore bene�t from this optimization.

3.1.2 Request eviction

Certain precautions are necessary to prevent user-level clients or servers from

hogging physical memory. Clients can, for example, request input of packets

that never arrive, and such requests may use in-place bu�ers. In-place bu�ers

are promoted to system bu�ers and therefore are unpageable for the duration

of the respective requests. Likewise, clients may make requests to user-level

servers that never reply. As explained in Chapter 5, the I/O interface maps

system bu�ers to user-level servers for processing. If the I/O interface held

such requests inde�nitely, the system could run out of physical memory,

system bu�ers, or both.

The I/O interface, therefore:

1. Enforces per-process and global limits on the amount of physical mem-

ory occupied in pending I/O requests. If the interface determines that

a given request would exceed one of these limits, the interface blocks

the client and enqueues the request for later retrial, if the request is

synchronous, or returns an indication of bu�er exhaustion, if the re-

quest is asynchronous. Processes can request adjustment of their limit

up to a hard limit imposed by the interface. This mechanism is similar

to that of Unix's socket interface.

2. Enforces a con�gurable maximum timeout interval for every original

request. If a given request times out, the interface evicts it, as explained

below.

3. Maintains per-process lists of pending I/O requests. When a process

terminates, the interface evicts all of the process's pending requests.
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d
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Figure 3.1: If request a originates request b, which in turn originates requests

c and d, then c and d are evicted �rst, followed by b, and �nally by a.

To evict a request, the interface aborts every request in its subcontract
graph in postorder fashion (that is, for each request in the graph, the interface

aborts the request after all its originated requests), as shown in Figure 3.1.
The interface aborts a request r by making an abort request r0 to the

server of r. Abort is a service that every server must provide. Abort requests
are timed out. If request r0 to abort request r times out, and the server of
r executes at user level, the interface unilaterally unmaps the system bu�ers
of r from that server's address space.

Eviction of the subcontract graph in postorder has the following advan-
tages:

� It prevents race conditions between each request to abort a request
r and completion of the originated requests of r. For example, in
Figure 3.1, abortion of a before b could be premature, occurring exactly
when b is completing successfully. In such case, abortion in postorder,
of b before a, might allow the successful completion of b to propagate to

a, which then might also complete successfully, rather than be aborted.

� It makes it unnecessary for the server of each aborted request r to

make new subcontract requests to abort the originated requests of r or

to reply to r.

� It ensures that all subcontract requests are aborted, including those
whose contractor is an untrusted user-level server. This guarantees

that the original request's bu�ers are actually freed.
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3.2 In-place data passing

A major alternative for copy avoidance is to pass data with weak integrity

guarantees (e.g., share semantics). Weak integrity guarantees allow data to

be passed in-place, without copying.

In-place data passing may require, at request time, the wiring and map-

ping of client bu�ers to the server's address space, and, at reply time, the

unwiring and unmapping of those bu�ers from the server's address space. To

avoid wiring/unwiring and mapping/unmapping costs, several previous opti-

mizations require client bu�ers to be located in special regions, e.g., exposed

bu�er areas [12], that are permanently wired and mapped to the address
spaces of both client and server.

Special regions are not, however, necessary for optimization of in-place
data passing. This section describes new techniques that make it possible to
safely and e�ciently promote and demote client bu�ers regardless of their
location, for the case of kernel-level servers. Chapter 5 extends these tech-
niques to the case of user-level servers.

3.2.1 Page referencing

In-place data passing schemes described in this dissertation all use page ref-
erencing . Page referencing consists in keeping counts of input and output

references to each physical page in the system in pending I/O requests (i.e.,
how many times each page appears in a client's input or output bu�er).

At request time, the I/O interface combines in page referencing the activ-
ities of verifying access rights, obtaining the physical address, and increment-
ing the input or output reference count of each page in in-place client bu�ers.

Page referencing usually consults only the page table entry corresponding to

each page. If an entry doesn't exist, is invalid, or provides insu�cient access

rights, page referencing invokes a VM fault, which may allocate a fresh new
page, page in the data from the backing storage device, update the page

table with respect to the machine-independent description of the client's ad-
dress space, or return an error code [67]. At reply time, the I/O interface

unreferences in-place pages by decrementing their reference counts.
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3.2.2 I/O-deferred page deallocation

In the case of kernel-level servers, the mapping and unmapping overheads

of in-place data passing can be avoided by using unmapped access (Sec-

tion 3.1.1). However, unmapped access does not dynamically gain references

to clients' memory objects. If a region in a client's address space holds

the only reference to a memory object, the object's pages will be deallo-

cated when the client terminates or explicitly deallocates the region, even if

a server is, at the time, using the pages for in-place I/O. If the system then

reallocated any such page with pending I/O to another party, there might

be corruption of the other party's memory (when input occurs) or of output
data (when the other party overwrites the page).

To make unmapped-access in-place I/O safe, the explicit I/O interface

enforces I/O-deferred page deallocation. The system's page deallocation rou-
tine is changed to refrain from placing pages with nonzero input or output
reference count in the list of free pages, whence they might be reallocated to
other parties. When returning the reply to an I/O request, if a given page no
longer has any input or output references, the I/O interface veri�es whether

the page is still allocated to a memory object; if not, the I/O interface as-
sumes that the page was deallocated during I/O, and enqueues it in the list
of free pages for reutilization.

In this dissertation, I/O-deferred page deallocation is used for all in-place
I/O.

3.2.3 Input-disabled pageout

The wiring and unwiring overheads of in-place data passing can be avoided
by using input-disabled pageout . Input-disabled pageout consists in changing
the system's pageout daemon so that it refrains from paging out pages with

nonzero input reference count. Such pages are poor candidates for pageout,

because:

1. Pending input would modify these pages after pageout, making paged

out data inconsistent; and

2. The owners of the input bu�ers containing these pages are likely to
access them after completion of the corresponding requests.

The daemon is allowed to page out pages with zero input count normally,
regardless of their output reference count.
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This optimization adds no overhead to page referencing and makes it

unnecessary to wire input and output bu�ers, in the usual sense of removing

their pages from lists where the pageout daemon might �nd them.

In this dissertation, input-disabled pageout is used for all optimized in-

place data passing schemes. It is not used for the unoptimized share and

weak move schemes, which rely on region wiring and unwiring.

3.2.4 Input-disabled copy-on-write

COW is frequently used to optimize IPC or memory inheritance with copy

semantics [67]. However, it may not implement copy semantics correctly if
there is a pending in-place input operation in the region. Indeed, if the input
is by DMA, the input will modify memory without generating any write

faults, even though the pages are mapped read-only. Consequently, changes
may be observed by processes other than the one that issued the input, and
COW in this case actually implements share rather than copy semantics.

Input-disabled COW maintains COW correctness by monitoring the total
number of input references to pages of each memory object in pending I/O

requests. The explicit I/O interface updates these counts at page referencing
and unreferencing. The system's COW set-up routine is modi�ed to perform
a physical copy, instead of setting up COW, if any of the region's backing
memory objects has nonzero input count.

The reverse case, when a region is marked COW before in-place input,

does not require special handling, because input page referencing veri�es
write access rights, which will automatically fault-in a private, writable copy
of the data.

In this dissertation, input-disabled COW is used for all in-place input.

3.3 Migrant-mode data passing

Another major alternative for copy avoidance is to pass data with migrant
(move or weak move) semantics. Migrant bu�ers accompany the data they

contain, and therefore do not require copying.

Migrant bu�ers can be represented as regions that are marked immigrant

when owned by the client, whereas all other regions are marked native when

allocated. The migrant-mode interface accepts only immigrant regions as
output bu�ers or for explicit deallocation. As explained in Section 2.1.3, such
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restrictions are intrinsic to migrant semantics, and not special optimization

conditions.

The prototypical migrant-mode data passing scheme, move, passes data

by unmapping bu�ers from one party and mapping them to the other party.

This section describes new techniques that implement migrant-mode data

passing in-place, without mapping/unmapping overheads, and with weak or

strong integrity.

3.3.1 Region caching

Region caching implements weak-integrity migrant-mode data passing (i.e.,
weak move semantics) in-place as follows: The explicit I/O interface marks
immigrant regions that correspond to output bu�ers or are explicitly deallo-

cated weak emigrant and enqueues them in the corresponding list, per client,
where the I/O interface can �nd them for later reuse. To allocate a weak-
integrity migrant bu�er for a client, the explicit I/O interface dequeues a
weak emigrant region from the client's list and marks the region again im-

migrant .

In this dissertation, region caching is used in the weak move and emulated

weak move data passing schemes.

3.3.2 Region hiding

Region hiding implements strong-integrity migrant-mode data passing (i.e.,
move semantics) in-place as follows: The explicit I/O interface invalidates all
mappings of pages of immigrant regions that correspond to output bu�ers
or are explicitly deallocated, marks such regions emigrant , and enqueues
them in the corresponding list, per client, where the I/O interface can �nd

them for later reuse. The system's VM fault handler is modi�ed to recover

from faults only in native or immigrant regions. Attempts by a client to
access an output bu�er after data passing will therefore cause unrecoverable

VM faults, as would be the case if the region had actually been removed,
but the region and its pages remain allocated to the client's address space.

To allocate a strong-integrity migrant bu�er for a client, the explicit I/O

interface dequeues an emigrant region from the client's list. The interface
then makes the region again accessible by reinstating read and write access
permissions to the region's pages and marking the region immigrant .
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In this dissertation, region hiding is used in the emulated move data

passing scheme.

3.4 Summary

This chapter describes new optimizations for explicit I/O with share, move,

and weak move semantics, for the case of kernel-level servers and ephemeral

server bu�ers. None of these optimizations require special conditions. The

next chapter describes new optimizations for explicit I/O with copy seman-

tics. Chapter 5 extends these techniques to the case of user-level servers.
This dissertation's new optimizations assume unpageable system bu�ers,

which simplify or eliminate server-side mapping/unmapping overheads. De-

pletion of system bu�ers is avoided by: (1) per-process and global limits in
the amount of physical memory in pending I/O requests, and (2) request
eviction in cases of timeout or process termination.

Data can be passed in-place (e.g., with share semantics), without map-
ping/unmapping and wiring/unwiring overheads, by using page referencing,

I/O-deferred page deallocation, input-disabled pageout, and input-disabled
COW.

Migrant bu�ers can also be passed in-place, without mapping/unmapping
and wiring/unwiring overheads, by using region hiding (move semantics) or
region caching (weak move semantics) in addition to the techniques for in-
place data passing.



CHAPTER 3. COPY AVOIDANCE 48



Chapter 4

Emulated Copy

Copy avoidance does not imply non-copy semantics. This chapter describes
a new scheme, emulated copy, that passes data to or from client bu�ers
without copying but with copy semantics. Emulated copy is speci�cally

designed for network-related and other explicit I/O with ephemeral server
bu�ers (i.e., server bu�ers that are allocated at request time and deallocated
at the corresponding reply time). Because emulated copy preserves copy
semantics, it can be used to optimize the explicit I/O interfaces of systems
such as Unix [49] and Windows NT [26], which also have copy semantics.

Emulated copy uses a new technique, input alignment , for input by page
swapping even when the client bu�er is not page-aligned or is of length that
is not multiple of the page size (Section 4.1). Another new optimization,
transient output copy-on-write (TCOW), allows emulated copy to output
data in-place and with strong integrity guarantees (Section 4.2).

The analysis in Section 4.3 shows that the optimization conditions of

input alignment and TCOW are soft and advisory only. Consequently, emu-
lated copy can improve the performance of unmodi�ed existing applications
and does not signi�cantly penalize non-conforming applications.

The network adapter support necessary for emulated copy is discussed

in Chapter 6. Experiments in Chapter 8 demonstrate that emulated copy

performs almost as well as or better than data passing schemes with non-copy

semantics, including move and share.

49
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4.1 Input alignment

In-place data passing to client input bu�ers may corrupt the latter and there-

fore cannot be used to implement copy semantics. For example, if network

packet data is received directly into a client bu�er, and the packet CRC is

determined to be wrong, the client bu�er ends up corrupted with incorrect

data. To guarantee client bu�er integrity, it is necessary to input data into

a separate server bu�er and, only after successful input completion, pass the

data to the client bu�er.

Integrity guarantees on client bu�ers do not, however, mandate copying.

If client and server bu�ers are distinct but start at the same page o�set, it is
possible to pass data from server to client bu�er by swapping pages between

them. After swapping, the contents of the client bu�er are the same as if data
had been copied. The contents of the server bu�er, however, are modi�ed as
a side e�ect. Because the bu�ers of kernel-level servers are usually migrant
(Section 2.3), the side e�ect of page swapping is normally inconsequential for
such servers: Bu�ers are modi�ed at reply time, when they are also being

implicitly deallocated. Chapter 5 shows that user-level servers can also use
migrant bu�ers and therefore bene�t from data passing by input alignment
and page swapping.

Page swapping has been used before for data passing from kernel-level
server bu�ers to user-level client bu�ers (Section 1.2.1). However, contrary
to what has been commonly assumed [23], it is not necessary that client

bu�ers be page-aligned or of length multiple of the page size. Pages partially
occupied by bu�er data can be handled as follows. Let ti be a con�gurable
threshold for emulated copy input and l be the length of bu�er data on the
page. If l is shorter than ti, it is more e�cient to copyout the data from server
to client page, as shown in item 1 of Figure 4.1. If l is longer than ti, however,

it costs less to complete the server page with the complementary data of the
corresponding client page, using reverse copyout , that is, copying from client

to server page, and then swap pages between the bu�ers, as illustrated in
items 3 and 4 of Figure 4.1.

If the cost of page swapping is s, the cost of copying is cl (where l is

the length of the data copied), the data lengths in corresponding client and
server pages are lc and ls, respectively, ld = min(lc; ls), and p is the page
size, copying data from server to client page costs less than swapping the two

pages if:

cld < s+ c(p � ld) + c(ls � ld)
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Server Buffer Client Buffer

Copyout

1. Copyout

4. Swap

3. Reverse Copyout

2. Swap

Conventional

Aligned

Figure 4.1: Conventionally, both client and server bu�ers are allocated with-

out concern for alignment, and all data needs to be copied. Input alignment
enables page swapping.

where (p � ld) is the length of data that needs to be copied from client to
server page, by reverse copyout, before swapping, and (ls � ld) is the length
of server data, beyond the end of client data, that the server needs to save
before reverse copyout. If lc = ls, this relation reduces to:

lc < ti =
s

c
+ p

2

where ti is usually only slightly greater than p=2 (half the page size).
Alignment between server and client bu�ers can be achieved in one of two

ways:

1. Server-aligned bu�ering { The server allocates bu�ers starting at the
same page o�set and having the same length as the corresponding client

bu�ers. This requires that:

(a) The client inform the server about the alignment and length of

client input bu�ers before input occurs (possibly using a preposted,
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asynchronous input request) or, in the case of networking, the

sender inform input bu�er location in packet headers [17, 73] or

implicitly by the connection used [59]; and

(b) Any directly or indirectly subcontracted servers and underlying

device controllers can customize input bu�ers for any selected

alignment and length.

2. Client-aligned bu�ering { The client queries the server (e.g., protocol

stack) about the preferred alignment and length of client input bu�ers

and lays out client bu�ers accordingly. The preferred alignment may

be nonzero, for example, because of unstripped packet headers, and the

preferred length may not be a multiple of the page size, for example,
because of network maximum transmission units.

In the terminology of Section 2.1.3, server-aligned bu�ering imposes a

temporal condition, while client-aligned bu�ering imposes a spatial condition.
Depending on the particular workload, compared to client-aligned bu�ering,
server-aligned bu�ering may be less restrictive (because client bu�ers have
arbitrary alignment and length) or more restrictive (because input requests
do not occur before physical input). Existing APIs typically do not have

calls for querying the preferred alignment and length. However, examination
of existing Unix programs (especially system libraries and utilities) shows
that client bu�ers often are allocated via malloc, have length multiple of
the page size, and therefore are page-aligned. Several commercially available
copy avoidance schemes (e.g., [23]) optimize assuming such client-aligned

bu�ering. Both server-aligned and client-aligned bu�ering impose only advi-
sory conditions: With a properly tuned ti, the cost of data passing is never
greater than that of copying.

4.2 Transient output copy-on-write (TCOW)

Systems derived from 4.4 BSD Unix, such as NetBSD, have VM system
similar to that of Mach [67]. In such systems, conventional COW can be

too expensive for copy avoidance in I/O data passing [6]. Page referencing

(Section 3.2.1), however, enables a specialized form of COW, transient output
copy-on-write (TCOW), that is highly e�cient for such purpose.

TCOW di�ers in two ways fromMach's conventional COW. First, TCOW
is transient | after having been set, Mach COW persists inde�nitely, while
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TCOW only lasts during processing of an I/O request, which is when it is

actually useful. Second, TCOW operates at page level instead of at region

level. This allows TCOW to prevent the proliferation of regions on each

I/O request and reduce the number of VM data structures that it needs to

manipulate.

TCOW optimizes output as follows. Let to be a con�gurable threshold for

emulated copy output. At request time, for each page in the client output

bu�er, if the data length is less than to, TCOW allocates a system page

and copies the data to it; otherwise, TCOW references (i.e., increases the

output reference count) and removes write permissions from all mappings of
the client page. The system routine that maps a page to a virtual address
also has to be modi�ed as follows: If the page has nonzero output reference
count, then the routine maps the page without write access permissions.

Likewise, the system routine that changes access permissions to a page has
to be modi�ed to refrain from allowing write access permission to a page that
has nonzero output reference count.

Client pages with nonzero output reference count serve as system pages
during request processing; the result is the same as if data had been copied

because any attempt to overwrite such pages causes a VM fault. In systems
that have Mach's VM organization [67], such as NetBSD, the VM fault han-
dler is modi�ed as follows, for the case of write faults in regions for which
the faulted party has write permissions:

� If the page is found in the top memory object, which is directly refer-
enced by the region (i.e., the region itself is not COW, and the page is
in physical memory):

{ If the output count of the page is nonzero, the system recovers

from the fault by invalidating all mappings of the page, copying

the contents of the page to a new page, swapping pages in the

memory object, and mapping the new page to the same virtual

address, in the party's address space, with writing enabled.

{ Otherwise, the system recovers by simply reenabling writing on
the page (no copying). A zero output count implies that all output

requests that referenced the page have already completed.

� Otherwise, the fault is a conventional COW fault and is handled nor-
mally.
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In systems with VM organization di�erent from that of Mach, similar oper-

ations would achieve the same purpose.

Whether a system page is especially allocated or is actually an in-place

client page, it can be used as an ephemeral server bu�er by kernel-level

servers. Chapter 5 describes techniques that make that possible also for

user-level servers.

At reply time, for each page in the client output bu�er, if the data length

is less than to, TCOW deallocates the respective system page; otherwise,

TCOW unreferences the client page. For data longer than to, TCOW there-

fore adds to page referencing only the cost of removing page write permis-
sions, which is arguably the minimum necessary overhead for strong-integrity,
safe in-place output.

In cases of asynchronous requests or servers that return anticipated replies,

TCOW imposes a temporal, soft optimization condition: It is more e�cient
not to overwrite a client output bu�er until request processing completion.
The next section analyzes the impact of this condition on TCOW's criticality
and restrictiveness.

4.3 Output bu�er reuse

The criticality and restrictiveness of TCOW depend on whether and how
clients overwrite their output bu�ers during output request processing, as
well as on the setting of to.

Examination of existing Unix applications reveals that often output bu�-
ers are overwritten not by the client itself, but by a server processing an input
request on behalf of the client. For example, many applications iteratively

input data, perhaps process the data, and then output data always using the
same circular bu�er.

A simple analysis shows that TCOW and input alignment interact syn-
ergistically to eliminate copying in such cases. For the part of a client bu�er

that is page-aligned and has length multiple of the page size, input alignment
and page swapping will cause pages with outstanding output to be simply

swapped out of the client bu�er, with deallocation deferred until completion

of the output request. No copying at all occurs for data output or input.

Analysis for pages only partially occupied by the client bu�er is more

complicated but provides valuable insight. If l is the data length, p is the
page size, the cost of copying is cl, and the cost of swapping pages is s, then
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the cost of output with TCOW is: for l < to, cl, and for l >= to, cto. The cost

of input with input alignment is: for l < ti, cl, and for l >= ti, c(p � l) + s.

Therefore, the combined cost of output and input with TCOW and input

alignment is:

1. l < to and l < ti: 2cl

2. l < to and l � ti: cp+ s

3. l � to and l < ti: c(to + p+ l) + s

4. l � to and l � ti: c(to + p � l) + s

Substituting above the de�nition of ti, ti =
s

c
+p

2
, and considering that the

cost of input and output by copying is 2cl, it can be veri�ed that TCOW and

input alignment, compared with copying, break even in the �rst condition,
give lower cost in the second and fourth conditions, but give higher cost in
the third condition (to � l < ti: output makes page read-only and input by
copyout causes a write fault). The third condition can easily be avoided by
requiring that to be tuned with to � ti.

Alternatively, it is also clear from the above equations that when output
is performed with copy avoidance (third and fourth conditions), the total cost
is always less when input is e�ectively by reverse copyout and page swapping
(fourth condition). Therefore, input alignment should be re�ned as follows:
If the client page has an outstanding output reference, then input should be

by reverse copyout and page swapping and never by copyout, regardless of
the data length. With this modi�ed input alignment rule, TCOW and input
alignment will give higher cost than that of copying only for to � l < to+2ti

3
.

Therefore, in the common cases where clients do not overwrite output
bu�ers during output or do so by reusing them as input bu�ers, TCOW has

low criticality.

In the remaining case, clients themselves (and not input servers on their
behalf) overwrite bu�ers with outstanding output. In such case, compared

to copying, TCOW with to = p gives output data passing costs that are the
same for pages only partially occupied by client bu�ers, and that are greater

by s for fully occupied pages. If s � cp, as is the case, for example, of all

computers used in the experiments reported in Chapter 8, then TCOW has
low criticality even in this case.

If copying is expensive, however, it may be desirable to more aggressively

optimize, setting to < p. Two alternative additional conditions can make
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TCOW's temporal condition still advisory even with such tuning, but at

the cost of making TCOW more restrictive. The �rst condition is to re-

quire that a client, before overwriting an output bu�er, make a synchronous


ush request to the server, so as to ensure that processing of the previous

output request actually completed. The second, alternative condition is to

have clients use a circular bu�er, overwriting and synchronously outputting,

successively at each time, only a fraction of size f of the bu�er. The client

sets its limit on amount of physical memory in pending I/O requests (as

explained in Section 3.1.2) to a value less than the total size of the circular

bu�ers by at least f . In that case, the fraction that is being overwritten at
any given time is sure not to have pending output | the client would block
on an output before it would have the opportunity to overwrite parts of the
bu�er with pending output.

4.4 Related work

TCOW and sleep-on-write [6] are both page-level techniques and perform

very similarly for clients that do not overwrite their output bu�ers during
processing of their I/O requests. Both schemes add to the cost of removing
write permissions only that of the same number of updates to �elds (output
reference count or busy bit, respectively) of the page data structure. TCOW
o�ers the added bene�ts of supporting multiple concurrent output references
to a given page and not stalling user-level clients that do overwrite output

bu�ers during output.
Another page-level COW scheme is that of Solaris, but it di�ers in im-

portant aspects from TCOW. According to the description in [23], the So-

laris scheme eagerly reinstates write permissions on completion of the I/O
request. Eager reinstatement can be incorrect if the status of the region

containing the page changes after the I/O request. The client may, for ex-
ample, change region protection to read-only, deallocate the region, or fork

another process that inherits the region by copy-on-write. Additionally, if
more than one I/O request references the same page, requests other than the

�rst one either require data copying or may output corrupted data after the

�rst request completes, as the client may then overwrite the page. Finally,

[23] does not describe whether or how the Solaris scheme prevents the page

from being reallocated during output if the client explicitly deallocates the
page or terminates. Apparently, the Solaris scheme does not have an I/O-
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deferred page deallocation scheme that would allow its page swapping and

COW mechanisms to combine synergistically, as they do in emulated copy,

without program modi�cation: To avoid COW faults, test programs in [23]

had to be modi�ed to use a circular bu�er and limit socket window sizes.

4.5 Summary

Emulated copy passes data between client and ephemeral server bu�ers with

copy avoidance, preserving, however, copy semantics for client bu�ers.

Emulated copy uses input alignment and page swapping to pass data
into client input bu�ers. Client bu�ers do not have to be page-aligned or
of length multiple of the page size for page swapping. A new optimization,

reverse copyout, guarantees that no more than about half a page at each end
of the client bu�er needs to be copied; the rest of the data can be passed
by swapping. Input alignment can be achieved by either client- or server-
aligned bu�ering: Either the client or the server aligns its bu�ers with respect
to those of the other party. Input alignment imposes only soft, advisory

optimization conditions.
Emulated copy uses TCOW to pass data from client output bu�ers in-

place. TCOW keeps references to client pages during request processing, so as
to prevent them from being deallocated before request processing completion.
TCOW also removes write permissions from client output pages, so that
attempts to overwrite such pages cause VM faults. On a fault, TCOW copies

and replaces the faulted page only if there still are output references to the
page; otherwise, TCOW simply reenables writing on the faulted page, and
no copying occurs.

The performance of TCOW depends on whether and how clients overwrite
output bu�ers before request processing completion. If an output bu�er is

overwritten by being reused as an input bu�er, no copying happens at all:
input alignment causes client pages to be simply swapped out of the bu�er,

with deallocation deferred until completion of the last respective output re-
quest. With an appropriate con�guration, TCOW has only soft, advisory

optimization conditions even in the worst case, where the client itself over-

writes output bu�ers with pending output.

The optimization conditions of emulated copy are special only relative

to copy semantics. They are less restrictive and/or critical than conditions
that are intrinsic to non-copy semantics. TCOW's temporal condition, for



CHAPTER 4. EMULATED COPY 58

example, is as restrictive as and less critical than that of output with share

semantics, where overwriting during output request processing causes errors.

TCOW's temporal condition is also both less restrictive and less critical than

that of migrant semantics, where overwriting at any time after the output

request causes an error. Likewise, the temporal condition of server-aligned

bu�ering is as restrictive as and less critical than that of input with share

semantics, where, if the request does not happed before input, no input can

occur unless converted to copy semantics. The spatial condition of client-

aligned bu�ering is as restrictive as and less critical than that of input with

migrant semantics, where, if the client must specify alignment and length of
input bu�ers, no input can occur unless copying is also performed.



Chapter 5

I/O-oriented IPC

The previous two chapters introduced new optimizations for copy avoidance

with each data passing semantics, in the case of kernel-level servers and
ephemeral server bu�ers. However, in systems with microkernel structure,
servers execute at user level, not at kernel level. User-level servers are usually
much easier to debug and maintain than kernel-level ones. This chapter
describes I/O-oriented IPC , a new copy avoidance scheme that extends the

optimizations of the previous two chapters to also support user-level servers.
I/O-oriented IPC o�ers di�erent explicit I/O interfaces for, respectively,

user-level clients and servers. The client interface supports all four data pass-
ing semantics and their optimizations discussed in the previous two chapters.
In particular, the client interface supports emulated copy, allowing transpar-
ent emulation of existing APIs, such as Unix's sockets , without copying.

The server interface, on the contrary, o�ers data passing semantics similar
to that of the kernel-level socket interface. As discussed in Section 2.3, data
passing between user-level clients and kernel-level servers is usually asym-

metric. To allow easy server migration between kernel and user level, it is
important to preserve compatibility with existing kernel-level interfaces, not

user-level ones.
I/O-oriented IPC uses selective transient mapping to make system bu�ers

accessible by user-level servers. Relative to servers, such data passing has
move semantics. Before mapping, to preserve protection, I/O-oriented IPC

zero-completes system bu�ers not �lled with client data (e.g., on input with

the emulated copy scheme). To avoid zero-complete overheads, I/O-oriented

IPC allows user-to-user input alignment and page swapping directly between

address spaces of client and server. User-level servers can pass fragments of
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a request's system bu�ers to other user- or kernel-level servers, using frag-

ment subcontracting . Relative to contractors, such data passing has share

semantics.

The greatest novelty in I/O-oriented IPC is to show that the asymmetric

semantic requirements of clients and servers can be exploited to pass in-

put data by page swapping. This allows bi-directional copy avoidance even

though the client interface has copy semantics and preserves compatibil-

ity with existing applications. Experiments in Chapter 9 demonstrate that

I/O-oriented IPC gives user-level servers performance approaching that of

kernel-level ones.

5.1 Selective transient mapping

When delivering a request to a user-level server, the IPC facility maps the
request's system bu�ers to the server, and, when the server noti�es request
processing completion, the IPC facility unmaps those bu�ers from the server.
Consequently, relative to the server, such data passing has move semantics.

Mapping is transient : a user-level server can access a request's system bu�ers
only while processing the request.

Mapping is also selective . When a user installs a user-level server, the
user also speci�es read , write , and physical mapping 
ags for each service
provided by the server. The IPC facility uses these 
ags as follows, when
delivering to a user-level server a request for a given service:

� Services that do not require access to I/O data and that are imple-
mented by subcontracting may have no mapping 
ags set. In such

cases, the IPC facility passes only the length of each bu�er to the
server.

� If the physical 
ag is set, the IPC facility passes the physical addresses

of each bu�er to the server. This option may be su�cient for user-level

drivers of devices that transfer data by DMA, in cases where the driver

itself does not need to access I/O data.

� If the read or write 
ag is set, the IPC facility maps the bu�ers and
passes their virtual addresses to the server. Output bu�ers are mapped

read-only. Input bu�ers are mapped with access permissions according
to the read and write 
ags.
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The read 
ag is necessary for any service that requires direct access to I/O

data. The write 
ag is usually required only in input services of drivers

of programmed-I/O devices (since DMA devices typically can write into

memory regardless of access permissions). Other servers normally modify

only headers or trailers. Headers and trailers can be freshly allocated and

prepended or appended to fragments of bu�ers received in requests, without

modifying the latter, as explained in Section 5.3.

The IPC facility maps system bu�ers to transient mapping regions which,

to minimize virtual address calculations, start at the same virtual address

and have the same length in all user-level servers. The length is equal to
the global limit on the amount of physical memory in pending I/O requests
(Section 3.1.2).

The IPC facility maintains a stack of transient virtual addresses (TVAs),

each corresponding to an unassigned page-aligned address in the transient
mapping region. When �rst mapping a system bu�er page to a user-level
server, the IPC facility pops a TVA and assigns it to the page. In subsequent
subcontracts, all transient mappings of the page use the same virtual address.
The IPC facility pushes the TVA back when unmapping the page from the

initial user-level server.
Because system bu�ers are unpageable, the IPC facility can reduce map-

ping and unmapping overheads by updating only the server's page table,
as opposed to also updating a machine-independent representation of the
server's address space. The system's VM fault handler is modi�ed to treat

faults in the transient mapping region as unrecoverable.
To preserve protection, before mapping to a user-level server a system

page that is not an in-place client page, the IPC facility completes with zero
those parts of the page not yet �lled with zero or with data of the request's
client. System pages that are not in-place client pages occur when data

passing between client and system bu�ers is by copying (output or input)

or with the emulated copy or move schemes (input only). In general, such

system pages may be allocated from the VM pool of free pages and contain
data of clients who do not trust the particular server to which the page needs

to be mapped.
Because zero completion can be expensive, the IPC facility may pass data

to and from user-level servers by copying, instead of mapping and unmapping.
Let tm be a con�gurable threshold for selective transient mapping. The IPC

facility maintains separate pools of free pages mapped to each user-level

server. The IPC facility may, when delivering a request to a server s, instead
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of zero-completing and mapping a system page p to s, assign to p a page p0

allocated from the pool of s. Such cases occur when the data length in p

is less than tm; the IPC facility then passes to s the virtual address of p0,

rather than the mapped address of p. If the requested service has read 
ag

set, the IPC facility copies data from p to p0 when delivering the request.

If the requested service has write 
ag set, the IPC facility copies data from

p0 to p when s noti�es request processing completion. The IPC facility also

deallocates p0 at request processing completion.

5.2 User-to-user copying and input alignment

To avoid both zero-completion and copying costs, the IPC facility allows

clients to specify, for each client bu�er that is not in-place, the lender of
the corresponding system bu�er. If a lender is not speci�ed, the IPC fa-
cility assumes the lender to be the server of the client's request. The IPC
facility allocates system bu�ers, if the lender is a user-level server, from the
lender's pool1; otherwise, from the VM pool of free pages. Data passing

has weak move semantics relative to the lender. The IPC facility does not
zero-complete, map, or copy to or from a server a page lent by that server.

In requests to a user-level server that subcontracts a kernel-level driver,
the default speci�cation of the user-level server as the lender avoids all zero-
complete costs. In requests to a user-level server that subcontracts a user-
level driver, zero-complete costs can be minimized by specifying as the lender

the driver (input or output) or the server (output only).
If the lender is a user-level server, the IPC facility copies data or swaps

pages directly between the address spaces of client and lender. Before page
swapping, reverse copyout guarantees that server pages are �lled with client

data, and therefore no zero completion is necessary to preserve protection.

In the terminology of Section 2.1.3, indication of a lender is a soft condi-
tion: The default lender is often one that reduces data passing costs. With

a properly tuned tm, relative to copying, lender speci�cation is also advisory
only.

1Except in input with the move scheme, where system bu�ers become net memory

gains for the client, and therefore allocation must be from the VM pool of free pages.

Allocation from the lender's pool would cause a net loss for the lender.
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5.3 Fragment subcontracting

In a request, neither the client nor the server interface allows a party to

specify by virtual address the location of a bu�er in the transient mapping

region. Such location can be speci�ed only by reference to the request that

passed the bu�er to the party. Let r be a request that passes a bu�er b to a

server s. In a subcontract request r0, s speci�es the location of a fragment b0

of b by a triple containing the identi�er of r, the index of b within r, and the

o�set of b0 from the start of b. The identi�er of r is an integer passed by the

IPC facility to s when delivering the request. s uses this same identi�er to

notify request processing completion. To preserve protection, the interface
checks that the caller (s) is indeed the server of r. Indication of location by

such triple o�ers the following advantages:

1. It indicates that b0 already has corresponding system bu�ers and that
no further data passing may be required to pass data between b0 and
system bu�ers. Relative to s, b0 is passed with share semantics.

2. It allows also services whose read and write 
ags are not set, and that
therefore are not passed mapped system bu�ers, to be subcontracted
to other servers or drivers.

3. It provides the information necessary for updating the subcontract
graph of r, linking r and r0. If r needs to be evicted (Section 3.1.2),
this link indicates that r0 should also be evicted, so as to eliminate the
references of r0 to the system bu�ers of r.

s may include in r0, in addition to b0, other bu�er elements, possibly not
located in the transient mapping region. If s is a TCP/IP server, for example,

it may prepend to b0 a bu�er element h native to s, to hold the packet header.

The data in h can be passed to and from system bu�ers using, for example,
the emulated copy scheme.

5.4 Related work

Most previous IPC facilities with copy avoidance provide interfaces with non-
copy semantics (e.g., Tzou and Anderson's DASH [76], fbufs [29], container

shipping [64]) and therefore are incompatible with the many applications

written according to that semantics.
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I/O-oriented IPC is possibly the �rst IPC facility to o�er a client inter-

face with copy semantics (using emulated copy) and pass data with copy

avoidance both on output and on input. Previous IPC facilities that have

an interface with copy semantics typically pass data by copying (e.g., Unix-

domain sockets [49]) or by COW (e.g., Mach out-of-line IPC [37]). Copying

provides poor performance. In general, COW can avoid copying, while pre-

serving copy semantics, only on output. The main novelty in I/O-oriented

IPC is that it passes input data by page swapping. There does not appear

to be a precedent to the latter in IPC facilities. Local Peregrine RPC [43],

for example, comes very close to the I/O-oriented IPC solution, passing data
out of client bu�ers by COW and passing data into and out of server bu�ers
by mapping and unmapping. However, unlike I/O-oriented IPC, Peregrine
inputs data into client bu�ers by copying. This dissertation's careful analysis

of the semantics of data passing between user-level clients and kernel-level
servers provides the missing conceptual link for the use of page swapping
also in IPC. The modi�cation of the data in the server bu�er, which occurs
as a side e�ect of page swapping, has no consequence in I/O-oriented IPC,
because the server bu�er is migrant: The bu�er is modi�ed when it is also

being implicitly deallocated, at reply time. Page swapping allows a client
interface that has both copy semantics and bi-directional copy avoidance.

Fbufs [29] are passed to or from servers by mapping and unmapping, like
system bu�ers in I/O-oriented IPC. However, the fbuf facility updates also
a machine-independent description of the server's address space, incurring

greater overhead than that of selective transient mapping. On the other hand,
cached fbufs and volatile cached fbufs are passed to or from servers without
mapping and unmapping, but require client bu�ers to be located in a special
fbuf region, permanently mapped to the server. That is a hard optimization
condition, which, as explained in Section 2.1.3, causes incompatibility with

previously written applications.

Fbufs are pageable, unlike the bu�ers used in I/O-oriented IPC. Al-

though [29] does not make this point clear, the safety of fbufs against attacks
with untrusted client-provided pagers (Section 2.2) probably hinges on the

hard condition that client bu�ers be in the fbuf region: The fbuf facility can
impose a trusted pager for that region. The Mach IPC facility [37] also uses

pageable bu�ers but, contrary to fbufs, allows client bu�ers to be arbitrar-
ily located. However, Mach IPC with COW is unsafe relative to untrusted

pager attacks. Indeed, it appears that all IPC facilities that use pageable

bu�ers have been either unsafe, like Mach IPC with COW, or have had hard
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optimization conditions and attendant incompatibility, like fbufs, or have

required copying. I/O-oriented IPC uses unpageable bu�ers (with request

eviction, as explained in Section 3.1.2) so that it can be safe, can avoid hard

optimization conditions, and can avoid copying while maintaining compati-

bility with applications that use copy semantics.

Container shipping [64] allows something similar to a service with no

mapping 
ag set, that is, a subcontracted service whose contractor passes to

a subcontractor a bu�er that the contractor itself cannot access. Like the

I/O-oriented IPC facility, fbufs map most bu�ers read-only (in fbufs, except

in the case of producers { driver on input, client on output). DASH [76]
and fbufs also use a region that starts at the same virtual address in every
address space, so as to reduce virtual memory calculations.

IPC facilities that pass data by copying usually copy the data twice, once

between each party's and system bu�ers. User-to-user copying reduces the
number of copies to one. It does so by unmapped access (Section 3.1.1)
from the client address space to the unpageable, ephemeral server bu�ers.
LRPC [7] and URPC [8] also reduce the number of copies to one, but require
a statically shared region for each pair of client and server. L4 [50, 51] reduces

the number of copies to one using a communication window that temporarily
maps one party's region to the other party's address space. Relative to data
passing2 with user-to-user copying, that with LRPC or URPC has greater
space overhead, while that with L4 has greater time overhead. Neither LRPC,
nor URPC, nor L4 have anything analogous to user-to-user input alignment.

5.5 Summary

An asymmetric IPC facility can provide bi-directional copy avoidance while

o�ering to clients an interface with copy semantics and to servers an inter-

face with semantics similar to that of kernel-level interfaces. Such asymmetry

extends to IPC (and microkernel systems) data passing optimizations previ-
ously available only in system calls (and monolithic systems). In particular,

judicious exploitation of semantic asymmetry allows input data passing by
page swapping. Page swapping provides the missing link for copy avoidance

in IPC facilities that have client interface with copy semantics.

2Note that the comparison is not about context switch time, which has not been opti-

mized in the implementation of I/O-oriented IPC described here.
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Chapter 6

Network Adapter Support for

Copy Avoidance

The ability to gather data, now common in most network adapters, is suf-
�cient to support in-place output with copy or share semantics, without
copying. However, the converse is not true: The ability to scatter data, now
also common, does not by itself support, in the general case, input with copy
avoidance and copy or share semantics. In that general case, client input

bu�ers can have any alignment and length. For copy avoidance to be pos-
sible, the network adapter must be able to customize its input bu�ers for
each input request. In the case of copy semantics, for server-aligned bu�er-
ing, adapter bu�ers have to start at the same page o�set and have the same
length as the corresponding client bu�ers. In the case of share semantics, for
in-place input, the adapter must be able to use, as adapter bu�ers, promoted

client bu�ers. However, packets may arrive in an order di�erent from that

in which clients make their requests. If the adapter has a single scatter list,
packets and bu�ers may be mismatched.

Moreover, adapters receive data fragmented into packets. Fragmentation

may make it hard to correctly and directly input client data into server-

aligned or in-place bu�ers because data is in general received in packets of
arbitrary length, each containing header and trailer that contain extraneous

data and that therefore need to be stripped.
Lack of checksumming support may also signi�cantly reduce the perfor-

mance advantage of copy avoidance. If data passing is by copying, check-

summing can be integrated with it at little extra cost [24]. On the contrary,
if data passing is performed with copy avoidance, checksumming cannot be
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integrated. If the adapter does not checksum I/O data, the host processor

has to read all the data to checksum it, which can be expensive if memory

bandwidth is low.

This chapter describes di�erent levels of network adapter support for copy

avoidance, and highlights, for each case, compensating software techniques.

In particular, two new optimizations are contributed: header patching , a

software technique that allows stripping headers of arbitrary length even

with only the lowest level of adapter support, and bu�er snap-o� , a new

adapter feature that enables copy avoidance under very general conditions

(including headers of arbitrary length).

6.1 Pooled in-host bu�ering

Network adapters with pooled in-host bu�ering receive packets into bu�ers
allocated from a single scatter list shared among multiple reception ports.
The elements of the scatter list are resident in host memory and are called
bu�er segments . Each segment is speci�ed by a (pointer, length) pair. The

host enqueues segments at the tail of the scatter list when preparing for
reception, and the adapter dequeues segments from the head of the scatter
list when receiving packets. Reception ports are the objects from which
clients receive data; they are identi�ed in packet headers and can be, for
example, ATM virtual connections or TCP ports.

In hosts with physically addressed DMA, the length of each segment

is such that the segment does not cross page boundaries unless pages are
physically contiguous; commonly, each segment is a page. In hosts with
virtually addressed DMA, the length of each segment is normally equal to

the network maximum transmission unit (MTU); commonly, all segments are
page-aligned. In either case, at the end of a packet the adapter drops the

remainder of the current segment, so that storage of the next packet starts
at the next segment.

Because it uses a single, shared scatter list, pooled in-host bu�ering can-
not support server-aligned or in-place bu�ering. Input alignment is possible,

however, if clients use client-aligned bu�ering. Speci�cally, if:

1. Packet headers have �xed lengths;

2. Data lengths of all packets in a data transfer have a known length L

(�MTU minus header and trailer lengths), except possibly for the last
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Figure 6.1: Copy avoidance with pooled in-host bu�ering and client-aligned
bu�ering.

packet, which may have data length of at most L; and

3. Either:

(a) For each data transfer, the length of client input bu�ering matches
that of the data transfer; or

(b) All data transfers and client input bu�ers have lengths that are
integral multiples of L, although not necessarily equal;

then copying can be avoided by setting the preferred alignment equal to the

header length and the preferred length equal to L.

Figure 6.1 shows how data would be passed to a client-aligned bu�er in a

data transfer of length �ve times the page size, when L is twice the page size.
The data of the �rst packet, by itself, would occupy two pages. However,

because of the header, the packet is received into three pooled pages. The
data in the �rst pooled page is o�set from the start of the page by the header

length. Given that the client bu�er also starts with the same o�set, the data
can be passed by reverse copyout, from the start of the client page to the area

containing the header in the pooled page, and then swapped. The second

page is simply swapped. The third page contains only data of length equal to
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Figure 6.2: Separate header and data/trailer scatter lists.

the header, and therefore is simply copied out. Data passing for the following

packets is analogous. Because L is an integral multiple of the page size, the

data ends up virtually contiguous in the client's address space.
With pooled in-host bu�ering, copy avoidance can also be achieved by

migrant-mode data passing: The I/O interface can simply remove a �lled
adapter bu�er from the adapter's bu�er pool, insert the bu�er without align-
ment constraints in the client's address space, pass the resulting bu�er lo-

cation and layout to the client, and replenish the adapter's bu�er pool with
the same number of newly allocated pages.

6.2 Header/data splitting

A re�nement of pooled in-host bu�ering is to have the adapter use separate
header and data/trailer scatter lists, shared among multiple reception ports,
as depicted in Figure 6.2. The initial portion of a packet is stored in a
segment allocated from the header list, while the remainder of the packet
is stored in segments allocated from the data/trailer list [47]. If segments

in the header list have length equal to that of packet headers, this scheme

normalizes the preferred bu�er alignment to page boundaries.
Solaris zero-copy TCP [23] uses this technique with L set to the largest

integral multiple of the page size not greater than the MTU minus TCP/IP

header length. Input copying is thereby avoided if packet headers do not

contain options (so that TCP/IP headers have �xed length), client input
bu�ers are page-aligned, and both client input bu�ers and data transfers

have lengths that are integral multiples of the page size.
Figure 6.3 shows how data would be passed to a page-aligned client bu�er

in a data transfer of length �ve times the page size, when L is twice the

page size. Because the header is received into a segment from the header
list, the data of the �rst packet is received into exactly two pages from the
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Figure 6.3: Copy avoidance with header/data splitting and page-aligned

client bu�ering.

data/trailer list. Given that the client bu�er is page-aligned, all data can be
passed simply by swapping, with no copying. Data passing for the following
packets is analogous. Because L is multiple of the page size, the data ends

up virtually contiguous in the client's address space.

6.3 Header patching

An adapter cannot by itself provide page-aligned input data if it supports

only pooled in-host bu�ering. Even if the adapter supports header/data
splitting, it may still not be able to provide page-aligned input data if headers
have variable length or data is preceded by application -level headers not

stripped by the adapter. However, many clients do require data to be received

in page-aligned bu�ers. For example, VM-based distributed shared memory
systems [1] transfer page-sized data blocks between nodes connected by a

network. For e�cient data passing to a client, by mapping instead of copying,
data blocks have to be received in page-aligned bu�ers.

Header patching is a new software technique that allows stripping headers
of arbitrary length with minimal copying, resulting in page-aligned data even

if the adapter has only pooled in-host input bu�ering. Header patching does
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Figure 6.4: Header patching allows stripping headers of arbitrary length even

if the adapter supports only pooled in-host input bu�ering.

require, however, end-to-end agreement on its use.
Let h0 be the preferred alignment for input from the network (usually

equal to the length of any unstripped protocol headers below the application
level), h be the length of the application-level header, and l be the data length
(less than or equal to the preferred length minus h). h0 must be �xed and
known by both sender and receiver. On the contrary, h and l can vary from
packet to packet. Header patching requires transmission of the application-
level header followed by the data d1 that corresponds to o�set h

0+h from the

beginning of the application data and has length l � h0
� h, followed by the

data d0 that corresponds to the beginning of the application data and has

length h0 + h (to achieve this out-of-order transmission, the sender may use,

e.g., Unix's writev call with a gather list). After decoding the application-
level header (if any), the receiving client copies the data at o�set l from

the beginning of the input bu�er and of length h0 + h to the beginning of
the input bu�er, thereby patching data d0 over application- and lower-level

headers. After patching, the input bu�er starts at a page boundary with the

beginning of the application data and runs uninterrupted for length l with
the remainder of the application data in correct order.

Figure 6.4 shows how data of length equal to the page size p would be
received into a page-aligned bu�er. The client requests input of the �rst
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p � h0 bytes starting at an o�set h0 (the preferred alignment) from the �nal

page-aligned destination of the data, followed by h0+h bytes to an unrelated

client input bu�er (the client may use, e.g., Unix's readv call with a scatter

list). The �rst p � h0 bytes are passed to the client by reverse copyout and

page swapping. The following h0 + h bytes are simply copied out. The client

decodes the application-level header at o�set h0 from the �nal destination

of the data, and then copies the initial data d0, which has length h0 + h,

onto the �nal destination of the data. Receiving d0 in a separate, unrelated

client input bu�er preserves the client data that may be adjacent to the

page being received (otherwise, such data would be \spilled over"). Alterna-
tively, the client may receive d0 directly to its �nal destination if: (1) h = 0
(no application-level header), or (2) the client peeks at the application-level
header (using, e.g., Unix's recv with MSG PEEK 
ag) and decodes it before

inputting the packet.

6.4 Early demultiplexing

Network adapters with early demultiplexed input bu�ering maintain a sepa-
rate scatter list for each reception port. When receiving the beginning of a
new packet, the adapter demultiplexes the packet header to determine which
scatter list to use for reception of the packet [4], as shown in Figure 6.51. If
the reception port's scatter list is empty (e.g., because the client did not re-
quest input before packet arrival), the adapter uses instead a pooled scatter

list (i.e., early demultiplexing degenerates into pooled in-host bu�ering).
Early demultiplexing supports server-aligned bu�ering: The I/O inter-

face can enqueue, in the scatter list of each reception port, segments with

alignment and length matching those of the respective client bu�ers. Each
segment may have di�erent alignment or length, and consequently, it must

be possible for the host to reclaim (dequeue) speci�c bu�er segments in case
of exceptions such as timeout of the corresponding I/O request. Early de-

multiplexing analogously supports in-place bu�ering. Copy avoidance with
client-aligned bu�ering or migrant-mode data passing are also possible.

If packet header, data, and trailer lengths are predictable by the receiving

1ATM adapters that reassemble packets from ATM cells must implement at least a

primitive form of early demultiplexing, keeping track of the di�erent segments being re-

assembled per reception port, but possibly allocating segments from a pooled (rather than

per-port) list.
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Figure 6.5: Early demultiplexing.

system (not necessarily �xed), proper alignment of input data can be main-
tained by interspersing header and trailer segments at the appropriate points
in the scatter list of the respective reception port. Header and trailer seg-
ments allow the remaining data segments to end up concatenated in virtual

memory in spite of data packetization.
The length of data transfers may be known by previous arrangement

between the end clients. Packet header, data, and trailer lengths are then
predictable if the header and trailer lengths are �xed or easily computable
and the protocol used follows some simple deterministic rule, such as send-

ing all packets except possibly the last one with length equal to the MTU.
Knowledge of the total data transfer length is necessary to avoid enqueue-
ing more bu�er segments than necessary to hold the data. The MTU can
be estimated by MTU tracking , that is, monitoring the maximum length of

packets received at the given reception port, or may be determined by path

MTU discovery [55]. The MTU may be also known because it is �xed (for

example, in a LAN serving a cluster of workstations) or con�gurable (for

example, using the TCP MSS option [66]).
Figure 6.6 shows how data would be passed to a client bu�er of arbitrary

page o�set using server-aligned bu�ering, when the client requests input be-
fore it physically happens, in a data transfer of length �ve times the page

size, with MTU equal to 9180 bytes. Headers and data are scattered to dif-

ferent segments. The data of the �rst packet is received into three pages,
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Figure 6.6: Copy avoidance with server-aligned bu�ering.

beginning at a page o�set that is the same as that of the start of the client
bu�er. Likewise, headers of the second and third packets are scattered away
from the pages where the data is received, so that the data of both packets
is concatenated. In this example, the client bu�er starts close to the end of
a page, and therefore the data of the �rst page is simply copied out. Other

pages, except the last, are simply swapped. The last page is completed, by
reverse copyout, with data from the last page of the client bu�er, and then
swapped.

6.5 Bu�er snap-o�

Early demultiplexing does not by itself support bu�er boundaries. Conse-

quently, it enables server-aligned and in-place bu�ering only if the length of
each data transfer over the network matches that of the corresponding input

request bu�ering. A novel adapter feature, bu�er snap-o� , can be used to
remove this restriction.

An adapter with bu�er snap-o� executes input requests that include spec-
i�cations of reception port (p), length of packet headers (h) and trailers (t),

and data bu�ering. If p corresponds to an adapter-level connection (e.g.,
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Figure 6.7: Data bu�er representation alternatives.

ATM virtual connection), it can be speci�ed by a constant. Likewise, if h
and t are �xed, they can be speci�ed by constants. In general, however, p, h,
and t have to be speci�ed by a program that processes packet headers and

computes, in addition to p (as in early demultiplexing), also h and t. Such
programs can be written in a non-Turing-complete language similar to that
of a packet �lter [54, 4] and be executed by adapter hardware when packets
are received (as in [4]). After processing an input request, the adapter signals
completion to the host and indicates the length of the data actually received
and a list of headers and trailers received.

The adapter maintains separate header, data, and trailer scatter lists.
The �rst h bytes of each packet are stored in a segment allocated from the

header list, the last t bytes are stored in another segment from the trailer

list, and the remaining data is stored in segments allocated from the data
scatter list (header/data/trailer splitting). The header and trailer lists can

be shared among multiple reception ports. If h is �xed, the segments of the
header list have length h, and likewise for t and the trailer list. If h and

t have variable length, the header and trailer lists can be merged and have
segments with length greater than or equal to the largest allowed h and t (in

which case header and trailer segments may be incompletely �lled).

The adapter maintains separate data scatter lists per reception port. Each

input request's data bu�ering is appended to the data scatter list of the re-
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Figure 6.8: Bu�er snap-o�. Data from an incoming packet occupies the
shaded area in (a). The rest of the bu�er is then dequeued (b) or snapped

o� (c).

spective reception port. If, when a packet is received, the respective reception
port's data scatter list is empty (e.g., because the client did not request in-
put before packet arrival), the adapter allocates data segments from a pooled
data scatter list (i.e., bu�er snap-o� degenerates into a more sophisticated

form of header/data splitting). Each port's data scatter list can be repre-
sented by a hierarchical list of bu�er segments, or more simply by a list of
bu�er segments, where each segment contains an end-of-bu�ering (EOB) bit
set only at the last segment of the bu�ering of an input request. These
alternatives are shown in Figure 6.7.

There are two snap-o� modes, selectable per reception port: single-packet
and multiple-packet . Single-packet mode is suitable for datagram service,
whereas multiple-packet is especially suitable for byte-stream service, as

shown in Figure 6.8.
In single-packet mode, on end-of-packet, the adapter should dequeue and

deallocate the remaining segments of the current data bu�ering and signal
completion of the input request. Conversely, if EOB is reached before end-

of-packet, the adapter should allocate additional segments from the pooled
data scatter list and, on end-of-packet, signal completion of the input request.

The additional segments are in general necessary to check CRC and/or check-
sum. Many interfaces (e.g., Unix's sockets [49]) would, however, truncate the

bu�ering, dropping the additional segments and passing to the client only

the data that �t in the input request bu�ering.



CHAPTER 6. NETWORK ADAPTER SUPPORT 78

On the contrary, in multiple-packet mode, on end-of-packet, the adapter
should snap o� the remainder of the current data bu�er segment and place it
at the head of the data scatter list of the current reception port. This way, the
data of successive packets for the same reception port will be concatenated
in the adapter input bu�er, as is required for byte streams, even if packet
data lengths are not integral multiples of the page size (as, for example, in
maximally-sized Ethernet, FDDI, or ATMAAL5 packets). In this mode, each
input request remains pending until the respective bu�ering is completely
�lled. Packets may span the bu�ering of multiple input requests; end of
the bu�ering of an input request (EOB) simply marks the completion of the
request, deferred until successful end of the last packet using it.

Consequently, in multiple-packet mode, on end-of-packet, the adapter
should signal completion of all requests whose bu�ering was completely used,
and partial completion of the request whose bu�ering was snapped o� (if
any). The case of partial completion of the last outstanding request r in
an adapter's reception port can be handled as follows, if the bu�ering of
r is server-aligned (i.e., emulated copy input). Let r0 be a request that
directly or indirectly originated r, r00 be the request that originated r0, s be
the server of r00 (e.g., Unix's socket layer), and c be the client of r00 (e.g.,
a user-level application). Partial completion with nonzero data length is
an interim reply that propagates from each subcontractor to its contractor,
and that therefore reaches s. s may then reply successful completion of
r00 with the data length already received. In so doing, s converts r0 into
an original (and speculative) request for the remainder of the data2. If c
then requests input of the remainder of the data (common case), s does not
make another subcontract request (presumably, such input may already be
occurring). However, if c requests input to bu�ering of di�erent alignment
or length, s amends its request r0. The amendment reaches the adapter,
which computes the length ls of the data already received in the reception
port (if any), dequeues and deallocates the remaining segments of the port's
data scatter list, snaps o� and deallocates ls bytes from the beginning of the
amendment's data bu�ering, places the resulting bu�ering in the port's data
scatter list, and replies that the amendment is pending, with ls bytes already
received with the previous bu�ering. If ls is nonzero, copying of ls bytes will
be necessary.

Out-of-order reception (not possible in ATM) in multiple-packet mode

2
s can disable speculation by aborting r

0 before replying to r
00.
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is dealt with as an exception, in software, by copying. In case of server-
aligned bu�ering (emulated copy input), adapter bu�ers and client bu�ers are
distinct, and therefore out-of-order data in adapter bu�ers can be copied to
client bu�ers directly. That is not possible, however, with in-place bu�ering
(e.g., share or emulated share input). If, for example, d0 and d1 are received
in-place out of order (where the length of d1 is greater than or equal to that
of d0), it is necessary to copy d1 to an area d0, copy d0 into the area previously
of d1, and �nally copy d0 into the area previously of d0. Therefore, in out-
of-order reception, compared with conventional data passing, emulated copy
requires the same amount of copying, but share and emulated share require
more copying.

Existing adapters do not implement bu�er snap-o� and instead simply
drop the remainder of the current bu�er segment at the end of a packet. This
behavior jeopardizes copy avoidance, because:

1. In single-packet mode, if the current segment at the end-of-packet is not
the last segment of the current request's bu�ering, storage for the next
packet will incorrectly start in a segment that is not the �rst segment
of the next request's bu�ering; and

2. In multiple-packet mode, the un�lled remainder of the current segment
creates a gap in adapter bu�ers with respect to client bu�ers, caus-
ing data in subsequent segments to become misaligned and therefore
require copying.

If the adapter supports early demultiplexing with header/data splitting
per reception port, h is �xed, and t is null, host software may be able to ap-
proximate snap-o� when processing a reply by dequeuing remaining segments
of the request's bu�ering (single-packet mode) or enqueuing the remainder
segment at the head of the data scatter list (multiple-packet mode). This
software approximation does not work, however, if packets are received back-
to-back, which doesn't give the host opportunity to �x the data scatter list
before arrival of the next packet.

6.6 Outboard bu�ering

Network adapters with outboard bu�ering allocate input bu�ers from a pool
in outboard memory. Data in outboard bu�ers can be transferred directly
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into client bu�ers after successful input completion, providing strong integrity
regardless of the semantics of data passing between client and system bu�ers,
client bu�er alignment or length, packet lengths, and whether the input
request happens before packet arrival.

However, outboard bu�ering adds complexity and cost to the adapter.
Unlike pooled in-host bu�ering, early demultiplexing, and bu�er snap-o�,
which are examples of \cut-through" architectures, outboard bu�ering has a
\store-and-forward" architecture, which typically imposes higher latency.

6.7 Checksumming

Network adapter hardware may checksum data while it is transferred (by
DMA or other block move mechanism) into or out of host memory, thereby
relieving the host processor (and memory) of this task. In the case of the
emulated copy scheme, the adapter inputs data not into client bu�ers, but
rather into server-aligned bu�ers. Consequently, if the checksum is incorrect,
the previous contents of client bu�ers can be left intact, thus fully preserving
copy semantics.

If checksums are transmitted in packet headers, as is the case in TCP/IP,
hardware output checksumming requires packets to be staged in outboard
bu�ers. Such staging allows the checksum �eld in the header to be inserted
after data transfer from host memory and before transmission to the network.
The amount of outboard memory necessary for staging all output may be
non-trivial. A low-cost alternative may be to use hardware checksumming
only for input , which does not require outboard memory, and for output use
TCOW and checksumming by the host processor.

6.8 Related work

Carter and Zwaenepoel [20] show how driver software can approximate early
demultiplexing for blast protocols on adapters with pooled in-host bu�ering.
Blast protocols transmit long data in blasts , that is, multiple back-to-back
packets, the last of which is acknowledged by the receiver. In [20], the driver,
on receiving the �rst packet in a blast of more than two packets, replaces
data segments at the head of the (single) scatter list by segments that point
directly to the receiving client's memory beyond the data of the �rst two
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packets in the blast. Data of the �rst two packets is copied, while the rest
of the data is input directly from the network into the corresponding client
memory, if the blast is not interrupted by packets destined to other recep-
tion ports. Interruptions by an unrelated packet require copying the data of
that and the remaining blast packets to their correct destinations. [20] gives
experimental evidence that such interruptions are very rare in practice; how-
ever, they constitute a potential protection leak. Additionally, the scheme
supports in-place bu�ering but not emulated copy. The protection leak could
be eliminated and emulated copy could be supported by making replacement
segments point to server-aligned bu�ers and swapping pages only after input
completion.

O'Malley et al. [62] modify Carter and Zwaenepoel's scheme so that each
blast is preceded by a control packet describing the blast, and a 150 �s delay.
The delay allows the receiving host to insert, at the head of the scatter list,
appropriate header and data segments for all packets in the blast, so that
blast data ends up concatenated in an adapter bu�er. After receiving the
last packet of the blast, the adapter bu�er is mapped to a new region in the
client's address space. This scheme eliminates the protection leak but does
not support emulated copy; it implements move semantics.

The considerable e�ort to avoid copying demonstrated in [62] for an in-
terface with move semantics reveals a little-appreciated fact about migrant-
mode data passing: It makes copy avoidance easy only if the I/O interface
can set both the location and layout of client input bu�ers. If clients can
impose the layout constraint of, for example, input bu�ers being virtually
contiguous, then the copy avoidance problem, in the multiple-packet case,
can become as hard as in native-mode data passing.

The Nectar protocol processor [25] and, more recently, the Charisma [60]
adapter allow clients to directly map outboard bu�ers, in a truly zero-copy
arrangement that may be bene�cial if the host processor can access outboard
memory as e�ciently as it can access host memory. Unfortunately, adapters
normally connect to the host via an I/O bus. In most current architectures,
this makes outboard memory uncacheable and imposes relatively high arbi-
tration overheads for word-sized accesses by the host. Consequently, clients
that actually access the I/O data (not the case in [60]) may very well run
more slowly with the data outboard than in a more conventional arrange-
ment, where I/O data is transferred to and from host memory. Compatibility
may also be a problem because the zero-copy arrangement does not provide
copy semantics. Additionally, outboard memory is normally not pageable,
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making the scheme particularly susceptible to resource management prob-
lems when confronted with malicious or buggy clients that hog outboard
bu�ers.

Depending on when data is checksummed, outboard bu�ering may result
in semantics other than copy and introduce considerable jitter in transport-
level acknowledgements. The Medusa [5] and Afterburner [27] adapters, for
example, checksum while transferring data from outboard bu�ers to client
bu�ers. Consequently, the latter may be corrupted with incorrect data, mak-
ing the semantics share (weak integrity) rather than copy (strong integrity).
Additionally, those adapters require packet acknowledgements to be delayed
until the receiving client is scheduled to run and the client decides to receive
the data. This can introduce considerable variability in round-trip times
(RTT), which may interfere with transport-level algorithms that depend on
precise RTT estimates. By checksumming while receiving data from the net-
work into outboard bu�ers, the Gigabit Nectar WCAB [46] adapter is able to
both guarantee copy semantics and maintain the usual decoupling between
transport-level acknowledgements and client processing.

6.9 Summary

Table 6.1 summarizes the optimization conditions for native-mode input copy
avoidance with each di�erent type of input bu�ering in the adapter. Each
successively higher level of network adapter support reduces native-mode
copy avoidance restrictiveness.
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Condition Pooled Early Bu�er Outboard
in-host demux snap-o�

Input request before
physical input x x
Client bu�ers of
preferred alignment
and length x
Fixed-length headers x
All packets except last
one have data length L x
Client bu�ers and
transfers multiple of L y
Known transfer lengths y x
Header, data and trailer
lengths predictable given
transfer length x

Table 6.1: Optimization conditions for native-mode input copy avoidance
according to adapter input bu�ering (x = is required; y = either is required).
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Chapter 7

Copy Avoidance

Implementation in the Genie

I/O Framework

Genie is a new I/O framework that implements the copy avoidance optimiza-
tions discussed in Chapters 3 to 6. This chapter describes Genie's interfaces
and how Genie composes the di�erent optimizations to implement each copy
avoidance scheme.

This dissertation's experiments use an implementation of Genie on the
NetBSD operating system. The implementation of Genie modi�es the VM
system and adds several system calls to NetBSD. However, Genie is not
speci�c to that system; similar modi�cations could be made in other systems.

As an experimental testbed, Genie contains features that may not be
suitable for production use. The intention is that optimizations and fea-
tures found to be valuable in Genie may be transferred to conventional I/O
frameworks, such as sockets [49].

7.1 Client interface

To allow direct comparisons among the many data passing schemes, Genie
de�nes a client interface that is much more general than would be necessary
if a single scheme were used. In production, the client interface could be a
conventional explicit I/O interface, such as that of sockets. The emulated
copy scheme is compatible with such interfaces, and therefore could be used
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by default.
The Genie call for making a request is:

io_request(server, service,

bufc, bufv,

timeout, handlep)

where server speci�es the server of the request (for example, a protocol
stack or device driver), service speci�es the requested service (for example,
to input or output data or to open or close a connection), bufc is the number
of bu�ers for the request, bufv is a vector of pointers to the descriptors of
the bu�ers (explained in Section 7.3), timeout is the maximum time allowed
for completion of the request, and handlep points to a request identi�er
returned by the interface. The client can use that identi�er to synchronize
with request completion or to abort the request. A null handlep makes
the request synchronous. io request returns the result of the request (for
example, whether success or pending).

Clients can synchronize with completion of an asynchronous request by
calling:

io_sync(handle, delivery, bufc, bufv, timeout)

where delivery can be normal , peeked , or redirected , bufc and bufv have
the same meanings as in io request, and timeout speci�es the maximum
time allowable for request completion. It timeout is null, io sync polls
the status of the request and does not block. If delivery is normal , bufc
and bufv are ignored. If delivery is peeked and the request completed
successfully, the interface copies data from each input bu�er of the request
to the corresponding peeking bu�er speci�ed by bufc and bufv (the amount
of data copied is determined by the shortest of the two bu�ers); however, the
request remains pending. If delivery is redirected , scatter-gather elements
of client bu�ers speci�ed in the original request are replaced by those speci�ed
by bufc and bufv. Only elements originally of input bu�ers and with copy
or emulated copy data passing schemes are replaced.

Clients can abort an asynchronous request by calling:

io_abort(handle)

The client interface also includes calls to allocate and deallocate migrant
bu�ers.
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7.2 Server interface

The server interface allows any application to install itself as a user-level
server, using the following call:

io_server_register(device, number_services,

service_mappingv, pool_size,

private_pool_size, private_poolp,

serverp)

where device is the device of which the server will be the driver (if any);
number services is the number of services o�ered by the server;
service mappingv is a vector with one element per service, de�ning the
read , write, and physical mapping 
ags for each service; pool size is the
number of physical pages in the server's pool (used for data passing by copy-
ing, lending, or by the server itself); private pool size is the number of
pages of the server's pool that should be private, that is, not used for copying
or lending; private poolp points to a vector with the virtual and physical
addresses of each page in the server's private pool (returned by the interface);
and serverp points to the identi�er of the server (returned by the interface).
If, before the call, the application points serverp to a nonzero value, the
interface will attempt to assign that value (if it is still unassigned) as the
server's identi�er.

In Unix, device is the �le descriptor of the corresponding device, obtained
by opening the device. For protection, devices such as network adapters and
disk controllers usually can be opened only by privileged users. A driver may
use a private pool (returned in private poolp) to implement, for example,
pooled in-host bu�ering (Section 6.1).

A given application can install itself as one or more servers. A server can
unregister itself implicitly, by exiting, or explicitly, by calling:

io_server_unregister(server)

While a server is registered, it sends and receives messages using the call:

io_server(server, out_msg, in_msg, blocking)

where server is the identi�er of the server, out msg points to an output mes-
sage (if any), in msg points to an input message (returned by the interface, if
any), and blocking indicates whether the server would like to block if there
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is no input message. The interface checks that the caller indeed is registered
as the indicated server. io server returns the status code resulting from
processing the output message.

The output message is processed before the input message. An output
message can contain any of the calls available to clients, including io request,
io sync, and io abort; or the reply to a request processed by the server.
In the latter case, the interface checks that the caller indeed is the request's
server.

An input message can be an interrupt noti�cation (in case the server is
registered as the driver of a device); a request to the server; or an asyn-
chronous reply to a previous io requestmade by the server using an output
message. Interrupt noti�cations of a given device are coalesced and deliv-
ered before any other messages. Other input messages are delivered in FIFO
order.

7.3 Bu�er representation

A client bu�er is described by a header and a scatter-gather list. Bu�er
headers are structures of the following type:

struct io_buffer_header {out_arg_length, out_arg,

in_arg_length, in_arg,

first_sg, direction,

actual_lengthp}

where out arg points to an argument of length out arg length that is set
by the client and should be passed to the server, in arg points to an ar-
gument of length in arg length that is set by the server and should be
passed to the client, first sg points to the �rst scatter-gather element in
the bu�er, direction speci�es the direction in which data speci�ed by the
scatter-gather list should be passed to or from the client (in or out), and
actual lengthp points to the data length actually input or output (returned
by the interface).

Each element in the scatter-gather list is a structure of type:

struct io_scatter_gather {scheme,

location,

length,

next_sg}
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where scheme, location, and length specify the data passing scheme, loca-
tion and length of the data, and next sg points to the next element in the
list. The data passing scheme can be:

1. Native-mode (copy, emulated copy, share, or emulated share), in which
case location is set by the client and gives: (1) the virtual address
where data starts, and (2) the lender of corresponding system bu�ers
(if element is not passed in-place);

2. Migrant-mode (move, emulated move, weak move, emulated weak move),
in which case location points to a structure containing the number
of virtually contiguous data segments in the element, set by the client,
followed by pairs specifying the virtual address where data starts and
the data length of each successive data segment. The data segments
are set by the client, when bu�er direction is out , or by the interface,
when bu�er direction is in.

3. Fragment , in which case location speci�es the identi�er of a request
r, the index of a bu�er b of r, and an o�set from the start of b. The
interface veri�es that the caller indeed is the server of r.

Elements on the same scatter-gather list may have di�erent semantics.
The interface links a system bu�er to each scatter-gather element of a

client bu�er. The only cases in which scatter-gather element and corre-
sponding system bu�er refer to di�erent physical memory are those where
data passing is by copying or, on input, by the emulated copy scheme. System
bu�ers are denoted by lists of structures of type:

struct io_seg_v {last_seg,

vec[SEG_V_SIZE],

next_sv}

where last seg is the index of the last occupied element of vec, next sv

points to the next list element, and vec is a vector of structures of type:

struct io_seg {length, pa, va}

where pa and va are physical and virtual addresses of data in the system
bu�er, and length is the data length, guaranteed not to cross page bound-
aries.
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System bu�ers become server bu�ers when they are passed to servers.
In the case of kernel-level servers, the virtual addresses va are unmapped,
as explained in Section 3.1.1. In the case of user-level servers, each virtual
address va corresponds to the transient virtual address (TVA) assigned to
the given page, as explained in Section 5.1.

7.4 Native- and migrant-mode data passing

schemes

This section describes, in terms of primitive operations, how Genie imple-
ments each native-mode and migrant-mode data passing scheme. The break-
down into primitive operations is used in the analysis of experimental results
in Chapter 8.

In Genie, data passing involves operations at request and reply times. For
client input bu�ers, some request-time system bu�er allocation operations
may be deferred until ready time, which is when a server actually needs
those bu�ers.

Genie takes advantage of the fact that copying usually is very e�cient
for short data. If data is shorter than con�gurable thresholds, Genie auto-
matically converts the data passing scheme from emulated copy or emulated
share to copy.

7.4.1 Client output bu�ers

The operations for passing data from client output bu�ers to system bu�ers
are summarized in Table 7.1, where \read-only" means \remove write per-
missions", and \invalidate" means \remove all access permissions" from all
mappings (page table entries) corresponding to a given physical page.

Genie does not remove a migrant region until reply time in order to
guarantee that the corresponding virtual addresses will not be reassigned
during request processing, thus allowing graceful recovery in case of error.

7.4.2 Client input bu�ers and customized system

bu�ers

The system bu�ers that Genie links to client input bu�ers at request or
ready time are called customized system bu�ers . Such bu�ers reside in host
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Request Reply

Copy Allocate system bu�er. Deallocate system bu�er.
Copyin data.

Emulated Reference client pages. Unreference client pages.
copy Read-only client pages.
Share Reference client pages. Unwire region.

Wire region. Unreference client pages.
Emulated Reference client pages. Unreference client pages.
share

Move Reference client pages. Unwire region.
Wire region. Unreference client pages.
Mark region emigrating . Remove region.
Invalidate client pages.

Emulated Reference client pages. Unreference client pages.
move Mark region emigrating . Mark region emigrant

Invalidate client pages. and enqueue.
Weak move Reference client pages. Unwire region.

Wire region. Unreference client pages.
Mark region emigrating . Mark region weak emigrant

and enqueue.
Emulated Reference client pages. Unreference client pages.
weak move Mark region emigrating . Mark region weak emigrant

and enqueue.

Table 7.1: Operations for data passing from client output bu�er to system
bu�er.

memory and are customized to each request so as to allow streamlined data
passing to client input bu�ers. When the data passing scheme is emulated
copy, customized bu�ers are server-aligned; when the data passing scheme is
share, emulated share, emulated move, weak move, or emulated weak move,
customized bu�ers are in-place.

For a device controller to be able to use customized bu�ers, special hard-
ware features may be required. Network adapters, for example, must have
early demultiplexing or bu�er snap-o�, as explained in Chapter 6. In addi-
tion, customized system bu�ers require that the input request occur before
physical input of the data. Table 7.2 summarizes the data passing operations
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under such conditions.
To maintain protection, the move data passing scheme has to complete

with zero the unused portions of a system bu�er before mapping it to a
user-level client. If the data passing scheme is emulated move, weak move,
or emulated weak move and at request time no suitable cached region can
be found in the appropriate queue, Genie allocates a new region and marks
it immigrating . For the same three schemes, Genie checks that the cached
region that was linked as a system bu�er at request time and was used
for input is still present in the client address space at reply time. If it was
removed (perhaps inadvertently) by the client, Genie maps the corresponding
pages to a new region, guaranteeing that the location information returned
to the client correctly points to the input data.

7.4.3 Client input bu�ers and overlaid in-host bu�ers

If a device controller does not support customized system bu�ers (for ex-
ample, in the case of a network adapter with pooled in-host or outboard
bu�ering) or the request does not happen before physical input, then the
controller inputs data into a bu�er allocated from the device's own bu�er
pool. At ready time, the device's driver overlays such a bu�er on the client
input bu�er, and, if the pool is outboard, data passing continues as discussed
in the next subsection. Otherwise, at reply time, Genie passes data from the
overlay bu�er to the client input bu�er, makes an auxiliary request to the
driver to deallocate the overlay bu�er, and the driver returns the overlay
bu�er to the device's bu�er pool for reuse, as shown in Figure 7.3.

In the move data passing scheme, Genie migrates overlay pages to the
client address space and therefore needs to re�ll the overlay bu�er with the
same number of newly-allocated pages to avoid depletion of the device's
bu�er pool.

7.4.4 Client input bu�ers and overlaid outboard bu�ers

If the device controller allocates input bu�ering in outboard memory, Genie
alters the operations in Table 7.2 as follows: For all data passing schemes
other than emulated copy, at ready time, after the operations in Table 7.2,
make an auxiliary request to the driver to DMA the data from outboard
bu�er to host memory and deallocate the outboard bu�er. For emulated
copy data passing, Genie does not allocate a system bu�er at ready time
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and, at reply time, references the client pages, makes an auxiliary request to
the device's driver to DMA the data from the outboard bu�er to the client
pages and deallocate the outboard memory, and, when the driver replies, un-
references the client pages. Consequently, with outboard bu�ering, emulated
copy is implemented much as emulated share.

7.5 Fragment data passing scheme

The client, in the fragment scheme, is a contractor making a request r0 that
is originated of some other request r. The fragment is a part b0 of a bu�er b
of r. Genie links and uses as system bu�ers for b0 a part of the system bu�ers
of b.

On output, no data passing is necessary, because the system bu�ers for b
already contain the data of b0. On input, however, some operations may be
necessary at reply time to pass the system bu�ers of b0 to the contractor or
to b:

1. If: (1) b0 had system bu�ers whose allocation had been deferred at
the request time of r, and (2) these bu�ers were allocated during the
processing of r0, then Genie passes these bu�ers to the contractor and
to b.

2. If the subcontractor overlaid an in-host bu�er bo on b0, Genie: (1)
overlays bo on b on behalf of the contractor, and (2) passes bo to the
contractor.

3. If the subcontractor overlaid an outboard bu�er bo on b0, then: If the
service requested in r does not have a mapping 
ag set, Genie overlays
bo on b on behalf of the contractor; otherwise, Genie: (1) allocates any
system bu�ers in b0 whose allocation had been deferred, (2) makes an
auxiliary request to the driver that overlaid bo to DMA data from bo
to b0 and deallocate b

o
, and (3) passes b0 to the contractor.

Genie passes bu�ers to the contractor using selective transient mapping. Ac-
cording to the mapping 
ags of the service requested in r, selective transient
mapping may result in mapping, copying, passing physical addresses, or just
passing the length of bu�ers to the contractor, as explained in Section 5.1.
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7.6 Summary

Genie is a new I/O framework that provides di�erent explicit I/O interfaces
for, respectively, clients and servers. The main novelty in the client interface
is the bu�er representation, which allows data passing according to various
schemes. This feature is used in this dissertation's experiments for direct
comparisons between di�erent schemes. In production, however, a conven-
tional client interface, such as sockets, could be used. The server interface
allows receiving interrupt noti�cations and requests, sending replies, making
subcontract requests, and receiving replies to subcontract requests.

In addition to Genie's explicit I/O interfaces, this chapter describes how
Genie composes the optimizations described in the previous chapters to im-
plement native- and migrant-mode data passing schemes (used in original
requests) and the fragment scheme (used in subcontract requests). Genie's
input data passing is a�ected by whether the input request occurs before
physical input and by the level of hardware support provided by the device.

Genie also supports the optimizations discussed in Sections 1.2.4 and 1.2.5,
data passing avoidance and scheduling avoidance, respectively. Chapter 11
describes how Genie implements such optimizations.
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Request Ready Reply

Copy Allocate Copyout data.
system Deallocate system bu�er.
bu�er.

Emulated Allocate Swap pages.
copy aligned Deallocate aligned bu�er.

bu�er.
Share Reference client pages. Unwire region.

Wire region. Unreference client pages.
Emulated Reference client pages. Unreference client pages.
share

Move Allocate Create region.
system Zero-complete system
bu�er. pages and �ll region.

Map region and mark
immigrant .

Emulated Dequeue emigrant region, Check region, unreference
move mark region immigrating , client pages, reinstate

and reference client pages. page accesses, and mark
region immigrant .

Weak Dequeue weak emigrant Check region.
move region, mark region Unwire region.

immigrating , and Unreference client pages
reference client pages. and mark region
Wire region. immigrant .

Emulated Dequeue weak emigrant Check region,
weak region, mark region unreference client pages,
move immigrating , and and mark region

reference client pages. immigrant .

Table 7.2: Operations for data passing from customized system bu�er to
client input bu�er.
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Ready Reply

Copy Allocate overlay Copyout data.
bu�er. Deallocate overlay bu�er.
Overlay bu�er.

Emulated Allocate overlay If aligned, swap pages, else copy out.
copy bu�er. Deallocate overlay bu�er.

Overlay bu�er.
Share Allocate overlay Unwire region. Unreference client pages.

bu�er. If aligned, swap pages, else copy out.
Overlay bu�er. Deallocate overlay bu�er.

Emulated Allocate overlay Unreference client pages.
share bu�er. If aligned, swap pages, else copy out.

Overlay bu�er. Deallocate overlay bu�er.

Move Allocate overlay Create region.
bu�er. Zero-complete overlay pages,
Overlay bu�er. �ll region and re�ll overlay bu�er.

Map region and mark immigrant.
Deallocate overlay bu�er.

Emulated Allocate overlay Check region. Unreference client pages.
move bu�er. Swap pages. Mark region immigrant .
Emulated Overlay bu�er. Deallocate overlay bu�er.
weak
move
Weak Allocate overlay Check region. Unwire region.
move bu�er. Unreference client pages.

Overlay bu�er. Swap pages. Mark region immigrant .
Deallocate overlay bu�er.

Table 7.3: Ready- and reply-time operations for data passing from overlaid
in-host bu�er to client input bu�er.



Chapter 8

Evaluation of Emulated Copy

This chapter evaluates the performance of emulated copy in end-to-end com-
munication over a fast network. For such evaluation, experiments were con-
ducted with di�erent data passing schemes and levels of network adapter
support. Experiments were repeated using di�erent platforms and network
transmission rates. In all experiments, user-level clients communicated by
making requests directly to a kernel-level network driver.

The results show that emulated copy greatly improves performance rel-
ative to that of the copy scheme. Performance di�erences were small be-
tween emulated copy and other copy avoidance schemes, which have non-
copy semantics. Analysis of the performance on various platforms at dif-
ferent network transmission rates suggests that current technological trends
tend to increase the performance advantages of copy avoidance. Moreover,
current trends tend to reduce performance di�erences among copy avoidance
schemes.

8.1 Experimental set-up

The experiments were performed on computers of the types shown in Ta-
ble 8.1. The cache and memory copy bandwidths reported are the peak
values observed in bcopy benchmarks at user level. The integer rating taken
as upper bound for the Gateway P5-90 is the listed SPECint95 of the Dell
XPS 90, which has a bigger and faster L2-cache. The rating taken as upper
bound for the AlphaStation is its listed SPECint base95 because the version
of NetBSD used on it could not be compiled with optimizations.

97
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Model Gateway P5-90 Micron P166
CPU Pentium 90 MHz Pentium 166 MHz
SPECint95 < 2.88 (Dell XPS 90) 4.52 (Dell XPS 166s)
L1-cache 8 KBI + 8 KBD, 1910 Mbps 8 KBI + 8 KBD, 3560 Mbps
L2-cache 256 KB, 244 Mbps 256 KB, 486 Mbps
Memory 32 MB, 4 KB page, 146 Mbps 32 MB, 4 KB page, 351 Mbps

Model DEC AlphaStation 255/233
CPU 21064A 233 MHz
SPECint95 < 3.48 (255/233 base)
L1-cache 16 KBI + 16KBD, 2860 Mbps
L2-cache 1 MB, 1366 Mbps
Memory 64 MB, 8 KB page, 350 Mbps

Table 8.1: Characteristics of the computers used in the experiments. The
integer rating used for each model is the listed SPECint95 of the related
system indicated in parenthesis, which has the same CPU.

All computers ran the NetBSD 1.1 operating system with the VM modi�-
cations described in Chapters 3, 4, and 5. Conditional compilation directives
were also inserted in NetBSD's pmap (physical VM) module for the Intel
family of processors (including Pentium). These directives cause the pmap
module to invalidate individual TLB entries instead of invalidating the whole
TLB, when the CPU is i486 or later (the i386 lacks such instruction). This op-
timization signi�cantly reduces the overhead of Genie's VM manipulations.
New system calls were also added in order to support Genie's interfaces,
which are summarized in Chapter 7. Clients used the Genie interfaces to
request services of drivers implemented at kernel level.

In all experiments, clients requested data input and output through a
Credit Net ATM adapter [47]. Two versions of the adapters were used,
supporting transmission rates of 155 Mbps or 512 Mbps, respectively. Credit
Net adapters transfer data between main memory and the physical medium
by burst-mode DMA over the PCI I/O bus and support both pooled in-
host bu�ering and early demultiplexing. The adapters perform ATM AAL5
segmentation and reassembly and automatically generate and check CRCs,
but do not provide IP checksumming. The 155 Mbps cards automatically
depad (i.e., remove the AAL5 trailer of) packets of length l such that (l mod
48) � 40. The 512 Mbps cards do not have automatic depadding, causing,
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in the case of early demultiplexing, some additional CPU utilization in the
receiving host.

All experiments involved measuring latencies by capturing the value of
the CPU on-chip cycle counter at appropriate points while running the code.
Unless otherwise noted, all measurements were on otherwise idle computers
and network. Each measurement run consisted of a \warm up" measurement,
discarded, followed by measurements for data of increasing lengths. The
data for the warm up measurement had length equal to the page size except
in experiments for short data, where that length was 256 bytes. Reported
measurements are the averages of �ve runs.

End-to-end latency was measured directly, while I/O processing time was
estimated. The latter is the time spent by the CPU processing I/O, which
is roughly inversely proportional to the maximum I/O throughput that the
CPU is able to support before the CPU saturates. To estimate I/O processing
times, the idle loop of the system's scheduler was instrumented to measure
idle time during the measurements of end-to-end latency. I/O processing
times were estimated by subtracting from end-to-end latency the time the
CPU was idle. This yields only an estimate because systems were in multiuser
mode and were subject to asynchronous activity, such as timer interrupts.
The coe�cient of variation (COV) was less than 3% for all end-to-end latency
measurements and less than 20% for all I/O processing time measurements
(and, respectively, less than 1.5% and 12.5% for 90% of the measurements).

All �gures correspond to measurements on Micron P166 PCs and, unless
otherwise stated, at 512 Mbps1.

8.2 Single-packet end-to-end latency

This section examines the impact of the data passing scheme and input
bu�ering on single-packet end-to-end latencies. Models of how latencies de-
pend on the costs of primitive data passing operations and scale with pro-
cessor, memory, and network speeds are presented and validated.
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Figure 8.1: Single-packet end-to-end latency with early demultiplexing. Per-
formance di�erences among schemes other than copy were small.

8.2.1 Measurements

Figure 8.12 shows single-packet end-to-end latencies, using early demultiplex-
ing, for page-aligned client bu�ers and data lengths equal to a multiple of
the page size. Data lengths varied up to 60 KB, the largest such multiple
that �ts in a single ATM AAL5 packet. For these data lengths, copy gave
much higher latency than did any of the other schemes, which pass data
using VM manipulations instead of copying. The di�erences among schemes
other than copy were small. The most striking di�erence is that between the
copy and emulated copy schemes, which implement the same data passing
semantics. Using TCOW and input alignment, emulated copy reduced la-

1For corresponding measurements at 155 Mbps, please refer to [13].
2In all �gures in this chapter, the legend lists data passing schemes in the same order

as the respective curves. For �ne discrimination among curves that appear cluttered in

the �gure, please refer to the fourth column of Table 8.6.
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tencies for 60 KB datagrams by 60% relative to copy. For all data lengths,
emulated copy also resulted in a latency lower than that of the move scheme
and very close to that of the share scheme. Emulated copy bene�ts from
its use of input-disabled pageout, which makes it unnecessary to wire and
unwire regions, as is done in the move and share schemes. Emulated move
gave slightly lower latencies than those of emulated copy because it simply
invalidates and reinstates page table entries instead of fully swapping pages,
which also requires updating the respective memory object. Latency was still
lower, but only slightly, with the emulated weak move and emulated share
schemes, which do not require page table updates. In this experiment, the
equivalent throughput for single 60 KB datagrams was 135 Mbps for copy,
328 Mbps for move, 338 Mbps for emulated copy, 341 Mbps for share, 348
Mbps for weak move, 356 Mbps for emulated move, 372 Mbps for emulated
weak move, and 379 Mbps for the emulated share scheme3.

Figure 8.2 shows single-packet end-to-end latencies for short page-aligned
data, using early demultiplexing. The move scheme gave by far the highest
latency for short datagrams because it has to complete with zero the part
of the page not occupied by client data. The emulated move scheme gave
much lower latencies because it performs I/O in place, using region hiding,
and therefore does not need to complete with zero the remainder of the page.
The copy scheme gave close to the the lowest (120 �sec, practically tied with
emulated copy and emulated share) but also the most rapidly rising latency
because of the high incremental cost of copying.

In this experiment, output thresholds were set so that Genie automat-
ically converted output of data shorter than 2048 bytes with the emulated
copy scheme (to) or 280 bytes with the emulated share scheme to the copy
scheme. The reverse copyout threshold (t

i
) was set at 2304 bytes. (Per-

formance is only moderately sensitive to these settings; these values were
empirically determined to give good results.) With these settings, emulated
copy had about the same latency as that of copy for data up to half a page
long; above that, reverse copyout and swapping signi�cantly reduced the la-
tency of emulated copy relative to that of copy. Emulated share had, for
all data lengths, the lowest latency, because its data passing overhead con-
sists solely of page referencing and unreferencing. The di�erence between
latencies with the emulated copy and emulated share schemes was maximal

3By pipelining data passing between client and server and network transmission, byte-

stream protocols may achieve higher throughputs than those for single packets.
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Figure 8.2: Single-packet end-to-end latency for short data, using early de-
multiplexing. Using reverse copyout, emulated copy avoids copying more
than about half a page.

at half page size: 220 vs. 154 �sec. Weak move and emulated weak move
gave slightly higher latencies than those of share and emulated share, respec-
tively, because of region caching costs avoided in native-mode schemes. The
slightly higher latency of the emulated move scheme relative to that of em-
ulated weak move is due to region hiding. The higher latencies of share and
weak move relative to their emulated counterparts are due to region wiring
and unwiring, which are unnecessary in the emulated schemes because of the
input-disabled pageout optimization.

Figure 8.34 shows single-packet end-to-end latencies with pooled in-host
bu�ering and client-aligned input bu�ers. Copy and emulated copy had
latencies only very slightly higher than the respective latencies with early
demultiplexing, corresponding to the same operations plus bu�er overlay

4For �ne discrimination among curves, please refer to the third column of Table 8.7.
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Figure 8.3: Single-packet end-to-end latency with client-aligned pooled in-
host bu�ering. If there is alignment, native-mode schemes other than copy
give performances similar to those of migrant-mode schemes.

overhead. The share, move, and weak move schemes had higher latencies
than those of emulated copy because of region wiring and unwiring overheads.
All other schemes had latencies very close to that of emulated copy. In this
experiment, the equivalent throughput for single 60 KB datagrams was 133
Mbps for copy; 312 Mbps for share; 313 Mbps for move; 317 Mbps for weak
move; 331 Mbps for emulated move; 332 Mbps for emulated copy; 335 Mbps
for emulated weak move; and 339 Mbps for emulated share.

Figure 8.45 shows single-packet end-to-end latencies with pooled in-host
bu�ering and unaligned client input bu�ers. Without alignment, emulated
copy, share, and emulated share have to copy data to pass it to client in-
put bu�ers, whereas the copy and migrant-mode schemes are una�ected.
This �gure shows the impact of data copying, splitting the data passing

5For �ne discrimination among curves, please refer to the fourth column of Table 8.7.
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Figure 8.4: Single-packet end-to-end latency with unaligned pooled in-host
bu�ering. Without alignment, native-mode schemes require copying to client
input bu�ers.

schemes into a group with no copies (migrant-mode schemes), another with
two copies (copy scheme, with one copy from client output bu�ers and an-
other to client input bu�ers), and the remaining group, between the other
two, with one copy (to client input bu�ers only). In this experiment, the
equivalent throughput for single 60 KB datagrams was 135 Mbps for copy,
170 Mbps for emulated copy, 172 Mbps for share, 181 Mbps for emulated
share, 313 Mbps for move, 318 Mbps for weak move, 331 Mbps for emulated
move, and 336 Mbps for emulated weak move.

Figure 8.4 may give the impression that migrant-mode data passing is
intrinsically more e�cient than native-mode data passing if the device used
supports only pooled in-host bu�ering. However, if a client is insensitive to
data layout enough to use migrant bu�ers, then in principle that client can
also use client-aligned bu�ers, and then emulated copy, emulated share, and



CHAPTER 8. EVALUATION OF EMULATED COPY 105

migrant-mode schemes give very similar performance, as shown in Figure 8.3.
If, on the contrary, a client is sensitive to data layout, it would require client-
level copies between migrant bu�ers and client data structures. The total
number of copies (possibly one copy on output, if the client needs to retain
access to the same or other data on the same pages, plus one copy on input)
is then at best the same as if emulated copy or emulated share were used
(one copy on input only). In those cases, migrant-mode data passing may
actually give worse end-to-end performance than that of native-mode data
passing.

In a fair comparison, therefore, emulated share comes out as the scheme
with the best performance, and emulated copy is almost as good. Both
emulated copy and emulated share can o�er the same programming interface
as that of copy and thus less incompatibility with applications written for
copy semantics than do migrant-mode schemes.

8.2.2 Analysis

Single-packet end-to-end latencies can be broken down into the sum of a
base latency and data passing latencies at the sender and receiver. The
base latency captures end-to-end costs that are independent of the particu-
lar data passing scheme or input bu�ering used, such as crossing the user-
kernel boundary and incurring driver, device, network, and interrupt laten-
cies. Data passing latencies, on the contrary, depend on the data passing
scheme and input bu�ering used. The base latency can be approximated by
the end-to-end latency of the emulated share scheme with early demultiplex-
ing, reduced by the costs of referencing and unreferencing client bu�ers.

Only request-time data passing operations at the sender contribute to end-
to-end latency, because reply-time operations overlap with network latencies
and latencies at the receiver. Conversely, with early demultiplexing, request-
and ready-time operations at the receiver overlap with latencies at the sender
and in the network, and only the reply-time operations at the receiver con-
tribute to end-to-end latency. With pooled in-host or outboard bu�ering,
only ready-time and reply-time operations at the receiver contribute to end-
to-end latency.

The time intervals for each data passing operation and datagram length
when performing experiments of the types shown in Figures 8.1, 8.3, and 8.4
were captured and averaged over �ve runs for di�erent platforms and network
transmission rates. For each platform and transmission rate, least-squares
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linear �t on each operation latency versus data length provided excellent cor-
relation, except in cases of constant or very small latencies. The �tted equa-
tions of each operation latency were averaged over the data passing schemes
and type of input bu�ering where the operation is used, for each platform
and transmission rate. Tables 8.2 and 8.3 show the results for Micron P166
PCs at 155 and 512 Mbps, respectively, while Tables 8.4 and 8.5 show the
results for Gateway P5-90 PCs and AlphaStation 255/233 workstations at
155 Mbps.

On all three platforms, copyin cost less than copyout because the exper-
iments were performed on warm caches. On output (copyin), data can be
read from the cache, while on input (copyout) it has to be read from mem-
ory. The copyin cost is actually nonlinear because the L1-cache has, on all
three platforms, much higher bandwidth than that of the L2-cache. This
may cause a negative �xed term in the corresponding linear �t.

For the Micron P166 PCs at 155 Mbps and each data passing scheme,
the base latency, the costs of the respective output request-time operations
indicated in Table 7.1, and the costs of the respective input reply-time oper-
ations indicated in Table 7.2 were added, taking values from Table 8.2, so as
to estimate the respective end-to-end latency with early demultiplexing. The
third column of Table 8.6 shows these estimates, along with the least-squares
linear �t of the actual end-to-end latencies. Likewise, for the Micron P166
PCs at 512 Mbps, base latency, costs of output request-time operations, and
costs of input ready-time and reply-time operations indicated in Table 7.3
were added, for each scheme, so as to estimate the respective end-to-end la-
tencies with pooled in-host bu�ering and client-aligned or unaligned client
input bu�ers. Table 8.7 shows these estimates along with the least squares
linear �ts of the actual end-to-end latencies from Figures 8.3 and 8.4. The
good �t between estimated and actual latencies suggests that this breakdown
model is accurate for the data lengths considered, which are multiples of the
page size (additional terms would increase accuracy for intermediate lengths
but would also make the model more complicated).

Using the breakdown model, single-packet end-to-end latency when sender
and receiver use di�erent data passing schemes can be expected to be equal
to the sum of the base latency plus sender-side latencies of the scheme used
by the sender plus receiver-side latencies of the scheme used by the receiver.

The breakdown model can be extended into a scaling model that takes
into account CPU, memory, and network speeds. To a rough approximation:
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1. The multiplicative factor of the base latency is network-dominated and
equal to the inverse of the e�ective network transmission rate (net of
overheads for medium access control and physical encoding), subject
to adapter and I/O bus bandwidth limitations;

2. The �xed term of the base latency is equal to the sum of I/O bus, device,
and network latencies, plus a term corresponding to �xed operating
system overhead, which scales inversely to CPU speed;

3. The copyout multiplicative factor is memory-dominated and equal to
the inverse of the main memory copy bandwidth, and the associated
�xed term can be ignored;

4. The copyin multiplicative factor is cache-dominated and may vary be-
tween the inverse of the copy bandwidth of the L2-cache and the inverse
of the copy bandwidth of main memory, depending on data and cache
sizes and cache associativity and locality. The �xed term can be ig-
nored;

5. All other parameters are CPU-dominated and scale inversely to to CPU
speed, as estimated by SPECint95 or some other integer benchmark6

that is based on the performance of large programs with sparse refer-
ences to memory (as is the case of an operating system).

This scaling model can be veri�ed with data from Tables 8.1, 8.2, 8.3,
8.4, and 8.5. A comparison between costs for Micron P166 PCs at 155 and
512 Mbps (Tables 8.2 and 8.3) shows that di�erences other than that of the
base cost are minimal, which is consistent with the model. Items (1) and
(2) of the model are veri�ed by comparing respectively the multiplicative
factor and �xed term of the base cost in each case. The fourth column
of Table 8.6 shows estimates for end-to-end performance with Micron P166
PCs at 512 Mbps based on measurements of costs on the same computers at
155 Mbps (Table 8.2). For simplicity, the multiplicative factor of the base
latency was assumed, according to item (1) of the model, to vary inversely
to transmission rate, but all other terms and factors were assumed to be

6The cost of page table updates may scale otherwise between processors of di�erent

architecture, causing the cost of the read-only , invalidate, swap, region map, and reinstate

operations to diverge from this model. Page table updates are particularly costly in

multiprocessors, where the data passing schemes that do not use these operations { weak-

integrity (with customized system bu�ers) and copy { may have some advantage.
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constant. This causes, according to (2), a somewhat in
ated estimate of the

�xed cost of the base case. However, even with this simplifying assumption,

the predicted latencies are very consistent with the least squares linear �t of

the actual end-to-end latencies from Figure 8.1.

Table 8.8 shows the veri�cation of (1), (3), and (4) for each platform at 155

Mbps. Table 8.9 shows the veri�cation of (3), (4), and (5) across platforms,

also at 155 Mbps. Agreement between estimated and actual scaling is quite

good for the Gateway P5-90 PC, which has a Pentium CPU, the same (albeit

at a slower clock) as that of the Micron P166 PC (which is the base case). In

the AlphaStation, CPU-dominated ratios have geometric means consistent
with the model but varied much more widely (between 0.47 and 3.77) than
those of the Gateway P5-90 (which varied between 1.53 and 2.59). This
could be expected, given the architectural di�erences: The AlphaStation has

an Alpha CPU, instead of a Pentium.
A comparison between Tables 8.3, 8.6, and 8.7 using the scaling model

explains the clustering in Figures 8.1, 8.3, and 8.4. Network-dominated costs
strongly dominated CPU-dominated costs (making performance di�erences
among schemes other than copy relatively minor), but not memory and cache-

dominated costs (penalizing the copy scheme).
Extrapolating based on the scaling model, if CPU speeds continue to

increase faster than transmission rates, as is the current trend, the perfor-
mance di�erences among schemes other than copy will tend to decrease, and
if CPU speeds continue to increase faster than main memory bandwidth, the

performance di�erence between copy and other schemes will increase.

8.3 Maximum throughput

This section estimates the maximum throughput � that each data passing

scheme can sustain.
To simplify analysis, the system is assumed to run a single client that

handles multiple work units concurrently. Each unit corresponds to data of
length L and requires total CPU time tC for client processing and tI=O for I/O

processing. The physical I/O subsystem is assumed to support a maximum

throughput �PHYS , considering device, controller, and I/O bus capacity.
If the system has no idle CPU time (i.e., there are enough concurrent

work units to eliminate CPU idle time), then � = L=(tC + tI=O). Conversely,

if the physical I/O subsystem is saturated, then � = �PHYS . In general, the
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Figure 8.5: I/O processing time (tI=O) with early demultiplexing. I/O with
the copy scheme leaves much less CPU time available for client processing.

system can support a maximum throughput7:

� = min(�PHYS ;
L

tC + tI=O
)

tI=O can be estimated by subtracting CPU idle time from end-to-end

latency. In the case of early demultiplexing, reported in Figure 8.1, the

tI=O obtained is shown in Figure 8.5. tI=O was much higher for the copy

scheme than for any other scheme: The I/O processing for an exchange
of 60 KB datagrams occupied the CPU during 3338 �s with copy, 1358

�s with share, 1204 �s with weak move, 1186 �s with move, 1059 �s with
emulated copy, 1026 �s with emulated move, 1001 �s with emulated share,

7The throughput for single datagrams quoted in other sections does not involve mul-
tiple concurrent work units, may saturate neither CPU nor physical I/O subsystem, and
therefore may be less than the maximum throughput derived here.
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and 970 �s with emulated weak move. Given the coe�cients of variation of

these measurements, between 5% and 10%, the di�erences among emulated

schemes are not statistically signi�cant.

Substituting back into the equation for �:

1. If tC � tI=O (client performs much more computation than I/O), then

� is essentially independent of the data passing scheme.

2. Conversely, if tC � tI=O (I/O-intensive client, e.g., network �le server),

then:

(a) If tI=O � L=�PHYS (saturated physical I/O subsystem), then � is
also independent of the data passing scheme; or

(b) If tI=O > L=�PHYS (saturated CPU), then � = L=tI=O . In the case

of early demultiplexing, using the data from Figure 8.5, one can
estimate that, for L = 60 KB, emulated copy and emulated share
can increase maximum throughput with respect to that of copy
by roughly 215%. (The improvement will be less if the the CPU
saturates with copy but not with the other schemes.)

To a rough approximation, tC scales inversely to CPU speed; tI=O scales
inversely to the memory copy bandwidth for the copy scheme, or inversely
to CPU speed for other schemes; and �PHYS scales proportionally to device

speed. Therefore, the e�ects of current trends in CPU, memory, and device
speeds can be projected as follows:

1. For the copy scheme, the relationship between tC and tI=O , for clients

with good cache locality, may tend to tC � tI=O (I/O-intensive client)

because CPU speeds are increasing faster than memory bandwidth is.
For clients with poor locality, tC may scale similarly to tI=O . The
relationship between tI=O and L=�PHYS tends to tI=O > L=�PHYS (satu-

rated CPU) for devices, such as high-speed networks, whose bandwidth

is increasing faster than that of memory.

2. For schemes other than copy, tC tends to scale similarly to tI=O . The

relationship between tI=O and L=�PHYS tends to tI=O � L=�PHYS (satu-
rated physical I/O subsystem) because CPU speed is improving faster

than device bandwidth is.
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Figure 8.6: Single-packet end-to-end latency with or without checksumming.
Emulated copy is cheaper than copy even if the host processor also has to

read the data for checksumming.

Consequently, either because of compute-intensive clients or saturated
physical I/O subsystem, current trends tend to reduce maximum through-

put di�erences among schemes other than copy. For I/O-intensive clients,
the tendency is to increase performance di�erences between copy and other

schemes, because of saturation of CPU/memory in the former and of the

physical I/O subsystem in the latter.

8.4 End-to-end latency with checksumming

This section examines the impact of checksumming on the performance ad-
vantages of data passing schemes that avoid copying.

Figure 8.6 shows single-packet end-to-end latencies with early demulti-

plexing, using the copy or emulated copy data passing schemes, and with or
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without IP checksumming by the host processor. Client bu�ers were page-

aligned. In this experiment, the equivalent throughput for single 60 KB

datagrams with or without checksumming was, using copy, 116 or 135 Mbps,

and using emulated copy, 206 or 338 Mbps, respectively. The penalty of

checksumming was lower when using copy because copy brings data into the

cache, which emulated copy doesn't. The penalty of checksumming could be

further reduced in the copy scheme, on output, by integrating the checksum

and copy in a single step [24], so that each data word is read and written only

once (in the experiment of Figure 8.6, copying and checksumming were per-

formed separately, so that each data word was read twice and written once).
The same optimization would be incorrect for input because the client bu�er
would be overwritten with erroneous data when the checksum fails, violat-
ing the integrity guarantees of copy semantics. The curves for \copy" and

\copy and checksum" in the �gure can be taken, respectively, as the lower
and upper bound of the latency using integrated copy and checksum. The
�gure shows that the cost of emulated copy plus checksumming was sub-
stantially less than that lower bound. This is because VM manipulations
are very cheap and checksumming only requires one memory access, to read

data, while copy requires two memory accesses, to read and write data.

8.5 Multiple-packet end-to-end latency

This section examines the impact of data fragmentation into packets on the

performance advantages of data passing schemes that avoid copying.
Figure 8.7 shows multiple-packet end-to-end latencies at 155 Mbps with

pooled in-host bu�ering, eight-byte packet headers, and no transport-level

ow control. All curves other than the top two used emulated copy. The

bottom two curves indicate that, when the client input bu�er was aligned

according to the preferred o�set and the MTU was equal to 8 KB (two pages),
the throughput for 60 KB with or without header/data splitting was 122 or

119 Mbps, respectively. Performance was slightly worse without header/data
splitting because of the overhead of reverse copyout at the beginning and

copyout at the end of each packet. The throughput for 60 KB decreased

to 93 Mbps when the MTU used was 9180 bytes (the default MTU for IP
over ATM [3]) and the client input bu�er started with the preferred o�set
but was contiguous. Only the data in the �rst two pages ended up aligned,

and the rest had to be copied. (The �rst two pages of each packet could
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Figure 8.7: Multiple-packet end-to-end latency with pooled in-host bu�ering
at 155 Mbps. The performance of client-aligned bu�ering is not substantially

a�ected by the presence or absence of header/data splitting.

be aligned and swapped if the client used non-contiguous input bu�ers, with
each segment conforming to the preferred o�set and length.) The throughput
for 60 KB decreased further to 90 Mbps when the client input bu�er already

started misaligned, so that all data had to be copied, although the MTU was
a multiple of the page size (8 KB). Even in this last case, emulated copy

still gave much better performance than did copy. This advantage is due to

TCOW's copy avoidance on output. The top two curves indicate that the
throughput for 60 KB using copy was 78 Mbps. This value is fairly insensitive
to header/data splitting, client input bu�er alignment, and MTU.

Figure 8.8 shows multiple-packet end-to-end latencies at 155 Mbps with

early demultiplexing, eight-byte packet headers, and no transport-level 
ow
control. Client input bu�ers were o�set from a page boundary by 1 KB.

The throughput for 60 KB with copying was 80 Mbps and fairly insensitive
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Figure 8.8: Multiple-packet end-to-end latency with early demultiplexing at
155 Mbps. Copying is avoided regardless of client input bu�er alignment and

MTU. The MTU can be quickly estimated by MTU tracking.

to the MTU. The throughput for 60 KB with emulated copy was 121 Mbps
if the actual MTU (tx mtu) was the same as that expected by the receiver

(rx mtu), 9180 bytes. The actual MTU could vary widely without a�ecting
performance, as long as it was the same as that expected by the receiver.
When the actual MTU was 18360, twice the size expected by the receiver,

the throughput for 60 KB fell to 100 Mbps, because data beyond the �rst

two pages ended up not aligned in system bu�ers and had to be copied to the

client input bu�er for delivery. The �gure also shows latencies for the �rst

run using MTU tracking, that is, estimating the MTU based on the longest
packet received. After data longer than the actual MTU was received, MTU

estimation converged to the actual value, and performance became the same
as when the MTU was �xed and known.

Bu�er snap-o� extends the conditions under which server-aligned bu�er-
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ing occurs. However, bu�er snap-o� does not improve the performance in

situations where server-aligned bu�ering already occurs. Consequently, per-

formance with bu�er snap-o� can be estimated to be roughly equal to the

bottom line in Figure 8.8.

8.6 Summary

The main observations from this chapter's experiments are:

� Emulated copy implements copy semantics while giving performance

almost as good as or better than the other copy avoidance schemes.

� Emulated share can o�er the same programming interface as that of
copy and provides the best overall performance. However, emulated

share o�ers lower integrity guarantees than does emulated copy.

� Emulated copy and emulated share with client-aligned bu�ering impose
fewer restrictions and give about the same performance as do migrant-

mode data passing schemes. This is the case even if the network adapter
has only the minimum level of support considered here, pooled in-host
bu�ering (i.e., single scatter-gather list).

� Current technological trends tend to increase performance di�erences
between copy and other schemes and reduce performance di�erences
among schemes other than copy.

� Absence of checksumming support in network adapters reduces but
does not invalidate the performance advantage of emulated copy rela-
tive to copy.

� Data fragmentation into packets imposes optimization conditions for

emulated copy that can be successively reduced by each higher level of
network adapter support: pooled in-host bu�ering, early demultiplex-

ing, bu�er snap-o�, outboard bu�ering.

� Header-data splitting provides very little performance improvement

and no reduction in optimization conditions relative to pooled in-host

bu�ering.
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Operation Latency

Base 0.0598 B + 130

Copyin 0.0180 B - 3

Reference 0.000363 B + 5

Wire 0.00141 B + 18

Read only 0.000367 B + 2

Invalidate 0.000373 B + 2

Region mark out 3

Copyout 0.0220 B + 15

Unreference 0.000100 B + 2

Unwire 0.000237 B + 10

Swap 0.00163 B + 15

Region create 24

Region �ll 0.000398 B + 9

Region �ll & overlay re�ll 0.000716 B + 11

Region map 0.000474 B + 6

Region check, unreference, 0.000507 B + 11
reinstate, mark in

Region check, unreference, 0.000194 B + 6
mark in

Region check 5

Region mark in 1

Overlay allocate 7

Overlay 7

Overlay deallocate 0.000344 B + 12

Table 8.2: Costs of primitive data passing operations on the Micron P166
computer at 155 Mbps, in �sec. B is the data length in bytes.
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Operation Latency

Base 0.0190 B + 110

Copyin 0.0169 B

Reference 0.000346 B + 5

Wire 0.00113 B + 18

Read only 0.000375 B + 2

Invalidate 0.000366 B + 2

Region mark out 3

Copyout 0.0221 B + 11

Unreference 0.000105 B + 2

Unwire 0.000218 B + 9

Swap 0.00166 B + 13

Region create 21

Region �ll 0.000398 B + 6

Region �ll & overlay re�ll 0.000723 B + 8

Region map 0.000518 B + 5

Region check, unreference, 0.000501 B + 13
reinstate, mark in

Region check, unreference, 0.000181 B + 7
mark in

Region check 5

Region mark in 1

Overlay allocate 5

Overlay 6

Overlay deallocate 0.000327 B + 12

Table 8.3: Costs of primitive data passing operations on the Micron P166
computer at 512 Mbps, in �sec. B is the data length in bytes.



CHAPTER 8. EVALUATION OF EMULATED COPY 118

Operation Latency

Base 0.0718 B + 179

Copyin 0.0440 B - 63

Reference 0.000649 B + 10

Wire 0.00256 B + 33

Read only 0.000648 B + 3

Invalidate 0.000707 B + 3

Region mark out 5

Copyout 0.0535 B + 23

Unreference 0.000186 B + 3

Unwire 0.000440 B + 18

Swap 0.00285 B + 27

Region create 43

Region �ll 0.000714 B + 15

Region �ll & overlay re�ll 0.00132 B + 20

Region map 0.000835 B + 12

Region check, unreference, 0.000972 B + 20
reinstate, mark in

Region check, unreference, 0.000327 B + 11
mark in

Region check 9

Region mark in 2

Overlay allocate 17

Overlay 15

Overlay deallocate 0.000543 B + 22

Table 8.4: Costs of primitive data passing operations on the Gateway P5-90
computer at 155 Mbps, in �sec. B is the data length in bytes.
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Operation Latency

Base 0.0710 B + 235

Copyin 0.00974 B - 5

Reference 0.000347 B + 8

Wire 0.00175 B + 23

Read only 0.000275 B + 4

Invalidate 0.00141 B + 4

Region mark out 5

Copyout 0.0182 B + 1

Unreference 0.000244 B + 6

Unwire 0.000450 B + 25

Swap 0.00443 B + 12

Region create 43

Region �ll 0.000428 B + 8

Region �ll & overlay re�ll 0.000730 B + 10

Region map 0.00175 B + 3

Region check, unreference, 0.00167 B + 16

reinstate, mark in

Region check, unreference, 0.000227 B + 12

mark in

Region check 7

Region mark in 2

Overlay allocate 17

Overlay 11

Overlay deallocate 0.000336 B + 28

Table 8.5: Costs of primitive data passing operations on the AlphaStation

255/233 computer at 155 Mbps, in �sec. B is the data length in bytes.
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Scheme Early demultiplexing Early demultiplexing

155 Mbps 512 Mbps

Copy E 0.0997 B + 141 0.0581 B + 141
A 0.0998 B + 125 0.0568 B + 116

Emulated copy E 0.0621 B + 153 0.0205 B + 153
A 0.0622 B + 150 0.0214 B + 133

Share E 0.0619 B + 165 0.0202 B + 165
A 0.0621 B + 162 0.0210 B + 143

Emulated share E 0.0602 B + 137 0.0186 B + 137
A 0.0600 B + 137 0.0193 B + 109

Move E 0.0628 B + 197 0.0211 B + 197
A 0.0626 B + 202 0.0217 B + 172

Emulated move E 0.0610 B + 151 0.0194 B + 151
A 0.0609 B + 150 0.0201 B + 133

Weak move E 0.0620 B + 173 0.0201 B + 173
A 0.0615 B + 170 0.0206 B + 143

Emulated weak move E 0.0603 B + 144 0.0187 B + 144

A 0.0602 B + 143 0.0194 B + 127

Table 8.6: Estimated (E) and actual (A) end-to-end latencies on Micron

P166 computers, in �sec. Estimates for both 155 and 512 Mbps were based
on measurements at 155 Mbps. B is the data length in bytes.
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Scheme Client-aligned pooled Unaligned pooled

Copy E 0.0584 B + 146 0.0584 B + 146

A 0.0579 B + 136 0.0569 B + 143

Emulated copy E 0.0218 B + 154 0.0422 B + 153
A 0.0215 B + 154 0.0442 B + 174

Share E 0.0227 B + 179 0.0432 B + 178

A 0.0228 B + 174 0.0436 B + 190

Emulated share E 0.0214 B + 152 0.0418 B + 151
A 0.0211 B + 151 0.0417 B + 154

Move E 0.0225 B + 196 0.0225 B + 196
A 0.0222 B + 199 0.0222 B + 196

Emulated move E 0.0217 B + 162 0.0217 B + 162
A 0.0215 B + 162 0.0214 B + 163

Weak move E 0.0227 B + 187 0.0227 B + 187
A 0.0222 B + 182 0.0222 B + 186

Emulated weak move E 0.0214 B + 160 0.0214 B + 160

A 0.0213 B + 162 0.0214 B + 162

Table 8.7: Estimated (E) and actual (A) end-to-end latencies on Micron P166
computers at 512 Mbps, in �sec. Estimates were based on measurements at
512 Mbps. B is the data length in bytes.

Micron P166 Gateway P5-90

Type of Parameter Estimated Actual Estimated Actual

Network-dominated > 0.0570 0.0598 > 0.0570 0.0718

Memory-dominated 0.0228 0.0220 0.0548 0.0535

Cache-dominated [0.0165, 0.0228] 0.0180 [0.0328, 0.0548] 0.0440

AlphaStation 255/233

Type of Parameter Estimated Actual

Network-dominated > 0.0570 0.0710
Memory-dominated 0.0229 0.0182

Cache-dominated [0.00586, 0.0229] 0.00974

Table 8.8: Data passing costs estimated according to e�ective network trans-

mission rate (about 140 Mbps for raw transmission rate of 155 Mbps) and

memory and L2-cache copy bandwidths are consistent with the actual values.
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Gateway P5-90

Type of Parameter Estimated GM Min Max

Memory-dominated 2.40 2.43 2.43 2.43

Cache-dominated [1.44, 3.33] 2.46 2.46 2.46

CPU-dominated multiplicative factor > 1.57 1.79 1.58 1.92

CPU-dominated �xed term > 1.57 1.83 1.53 2.59

AlphaStation 255/233

Type of Parameter Estimated GM Min Max

Memory-dominated 1.00 0.83 0.83 0.83

Cache-dominated [0.26, 1.39] 0.54 0.54 0.54

CPU-dominated multiplicative factor > 1.30 1.64 0.75 3.77

CPU-dominated �xed term > 1.30 1.54 0.47 3.74

Table 8.9: Scaling of data passing costs relative to the Micron P166. \GM",
\Min", and \Max" are the geometric mean, minimum, and maximum values

of the ratios of parameters of each given type.



Chapter 9

Evaluation of I/O-oriented IPC

Microkernel systems are often judged according to how well they match

monolithic systems in: (1) compatibility with existing programs; and (2)
performance. Hence, microkernel systems often include one or more servers
emulating conventional APIs (e.g., that of Unix) and attempt to show that
they can compile system code as fast as does an existing monolithic sys-
tem [67].

The IPC facility determines, to a large extent, both the compatibility and
performance of a microkernel system. The ultimate goals of an IPC facility,
therefore, should be, at the same time: (1) to provide a client interface
that is compatible with conventional APIs; and, (2) to give user-level servers
performance that is, for practical purposes, as good as that of equivalent
kernel-level servers.

For applications whose I/O is primarily storage-related, such as compil-
ing, the combined goals of compatibility and performance have often been
achieved. Even if the system's IPC facility is ine�cient and copies data mul-

tiple times between clients and servers, the API emulation library linked with
applications can map open �les and transparently implement explicit �le I/O

by reading and writing the corresponding mapped region. Alternatively, ap-
plications may access �les using the mapped �le I/O interface. In either case,

data and control passing costs for �le accesses are almost as good as those
in a monolithic system. For network-related and other I/O with ephemeral

server bu�ers using conventional APIs, however, microkernels typically have

had poor performance.

I/O-oriented IPC targets speci�cally the latter case, which most needs

improvement: network-related and other I/O with ephemeral server bu�ers.
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Micron PP200

CPU Pentium Pro 200 MHz

SPECint95 8.20 (Dell XPS Pro200n)

L1-cache 8 KBI + 8 KBD, 2490 Mbps

L2-cache 256 KB, 668 Mbps

Memory 32 MB, 4 KB page, 374 Mbps

Table 9.1: Characteristics of the computers used in the experiments. The

integer rating used for the Micron PP200 is the listed SPECint95 of the Dell

XPS Pro200n, which has the same CPU.

Chapters 4 and 5 make the case that I/O-oriented IPC rates highly with re-
spect to the �rst goal of an IPC facility, compatibility. This chapter evaluates

how close I/O-oriented IPC comes to reaching the second goal, performance.
Experiments on the Credit Net ATM network at 512 Mbps demonstrate

that I/O-oriented IPC gives user-level protocol servers performance approach-
ing that of kernel-level ones. In fact, for data longer than about a page, the
performance of a user-level server using I/O-oriented IPC and emulated copy

is better than that of a kernel-level server with conventional data passing by
copying.

9.1 Experimental set-up

In this chapter's experiments, user-level clients communicated over the Credit
Net ATM network at 512 Mbps by making input and output requests to a
kernel- or user-level datagram protocol server. I/O-oriented IPC was used
in the user-level server case. The kernel- and user-level protocol servers were
identical, and both subcontracted a kernel-level network driver. Original

clients used data passing schemes compatible with conventional explicit I/O

interfaces: copy, emulated copy, and emulated share.
The experiments were performed on Micron PP200 PCs with the charac-

teristics shown in Table 9.1. Scaling tests were also performed on Gateway
P5-90 and Micron P166 PCs (Table 8.1). In all tests, pairs of identical

machines were used. The operating system used was NetBSD 1.1 with the

modi�cations described in Section 8.1. The measurement methodology was
similar to that described in Section 8.1.

Both experiments with kernel-level and user-level servers were on NetBSD,
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Copy Emulated copy Emulated share

Kernel-level 178 323 346

User-level 175 307 320

Table 9.2: Equivalent throughputs for single 60 KB datagrams (Mbps).

a monolithic system. This set-up has the virtue of keeping the most factors

constant, but, arguably, experiments with user-level servers should be on a

microkernel system. I/O-oriented IPC extensively optimizes the data path

between user-level clients and servers. The resulting data passing overheads
are competitive to, if not better than, those of existing microkernel systems.
However, the implementation of I/O-oriented IPC described here does not

yet optimize the control path. IPC goes though the standard trap and con-
text switching mechanisms of NetBSD. These mechanisms are much more
heavy-weight than those of a true microkernel system, such as L4. The con-
text switch time of L4 on the Pentium processor at 166 MHz is 0.74 �s [51],
more than an order of magnitude less than that of NetBSD on the same pro-

cessor1. Consequently, the experimental set-up used here is biased against
user-level servers, particularly for short data, where context switch costs are
most signi�cant.

9.2 Measurements

Figure 9.1 shows the end-to-end latency for communication between user-
level clients making requests to kernel- or user-level protocol servers (KLS and
ULS, respectively). Data passing between user-level client and system bu�ers
was implemented by the copy, emulated copy, or emulated share scheme. The

curves indicate that for data longer than about a page, end-to-end perfor-

mance was dominated by the network latency and presence or absence of data
copying in the end systems. IPC avoidance (KLS vs. ULS) had relatively

low impact, and the particular copy avoidance scheme used (emulated copy
or emulated share) also had little importance. Table 9.2 shows the equivalent

throughputs for single 60 KB datagrams.

Figure 9.2 shows the corresponding latencies for short data. The ULS

1I/O-oriented IPC has a much more aggressively optimized data path than that of L4,
however. For arbitrarily located client data, L4 does not completely avoid copying; it
simply reduces the number of copies in IPC to one.
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Figure 9.1: With I/O-oriented IPC, the performance of user-level servers
(ULS) approaches that of kernel-level ones (KLS). For data longer than about

a page, user-level servers had better performance, with emulated copy, than
that of conventional kernel-level servers, with data passing by copying.

overhead , i.e. the di�erence in end-to-end latencies with user- or kernel-

level servers and a given data passing scheme, was about 60 �s for 4-byte
datagrams.

Figures 9.1 and 9.2 indicate that the ULS overhead is fairly insensitive

to data length and data passing scheme, that is, ULS overhead is more of a
control passing overhead than a data passing overhead. In I/O-oriented IPC,

much of the ULS overhead is due to a full context switch between user-level
client and user-level protocol server at each end host. This clearly would

not be the case in conventional IPC facilities, which pass data by copying.
Additionally, it should be observed that much of the ULS overhead measured

here may be an artifact of the experimental set-up used; it is well possible
that I/O-oriented IPC would achieve much lower ULS overheads on the same
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Figure 9.2: With I/O-oriented IPC, the higher latencies of user-level servers
are due mostly to context switching, not to copying.

hardware if tests had been made on a true microkernel system.
Figure 9.3 shows end-to-end short-datagram latencies using emulated

copy on the same network but with di�erent end hosts: pairs of Pentium

90 MHz (P90), Pentium 166 MHz (P166), or Pentium Pro 200 MHz (PP200)
PCs. The curves demonstrate that faster processors reduce not only end-

to-end latency with kernel-level servers (with a lower bound at the device

latency), but also the ULS overhead. The 4-byte latency with kernel-level
servers on the P90 was close to that with user-level servers on the P166, a

processor introduced about one year later than the P90. Similarly, the 4-byte
latency with kernel-level servers on the P166 was close to that with user-level

servers on the PP200, a processor introduced about one year later.
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Figure 9.3: Processor improvements are quickly reducing the ULS overhead.

9.3 Analysis

In the measurements with user-level servers, the latter were the lenders of

system bu�ers (as is the default case), and therefore neither zero completion
nor copying between system and server bu�ers was necessary. In these condi-
tions, I/O-oriented IPC involves no more data-touching operations than does
a system call, and one may expect ULS overhead to scale according to pro-

cessor performance, rather than memory performance. Table 9.3 validates

this model by comparing scalings predicted from the processors' SPECint95

benchmarks with the actual scalings computed from Figure 9.3.

Extrapolating based on this scaling model, if processor performance con-
tinues to improve as fast as in the recent past (more than 50% per year [40]),

the ULS overhead and the potential bene�t of IPC avoidance relative to
I/O-oriented IPC will drop quickly.
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Processor SPECint95 ULS overhead Predicted Actual

(�s) scaling scaling

Pentium 90 MHz < 2.88 209 > 2.85 3.32

Pentium 166 MHz 4.56 110 1.80 1.75

Pentium Pro 200 MHz 8.20 63 1.00 1.00

Table 9.3: Scaling of ULS overhead of each platform relative to that of the

Pentium Pro 200 MHz PCs.

9.4 Summary

The main observations from this chapter's experiments are:

� Su�ciently long data allows the copy avoidance gains of I/O-oriented
IPC to more than o�set the higher control passing costs of IPC rel-
ative to a system call. For data longer than about a page, user-level

servers using I/O-oriented IPC can have better performance than that
of conventional kernel-level servers.

� Unlike conventional IPC facilities, I/O-oriented IPC has overheads that
are due mostly to control passing, not data passing.

� The overheads of I/O-oriented IPC have been decreasing very fast,

inversely to processor performance.
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Chapter 10

Interoperability of I/O with

Ephemeral and Cached Server

Bu�ers

The new copy avoidance optimizations described and evaluated in Chapters 3
to 9 target speci�cally I/O with ephemeral server bu�ers. However, many
applications perform I/O that involves both ephemeral and cached server

bu�ers. For example, Unix's ftp may input data from a �le and output that
data over a network, or vice-versa. File I/O usually involves cached server
bu�ers, whereas network I/O involves ephemeral server bu�ers. This chapter
examines the interoperability of both types of I/O.

Copy avoidance in I/O with cached server bu�ers is provided by mapped

�le I/O. Section 10.1 describes how mapped �le I/O can be integrated with
the copy avoidance techniques described in the previous chapters for I/O with
ephemeral server bu�ers. Such integration allows applications to pass data
without copying between �le systems and networks. Legacy applications,

however, may still use explicit I/O, instead of mapped �le I/O, for access

to �les. Section 10.2 discusses that case. Experiments in Section 10.3 show
that both mapped �le I/O and emulated copy can reduce response times and

I/O processing times in a distributed application with remote �le accesses
over a network. Mapped �le I/O and emulated copy are synergistic: Their

combined e�ect is greater than the sum of their individual bene�ts.
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10.1 File access by mapped �le I/O

Data from a mapped �le region can be output to a network using any of

the schemes described in Chapters 3 to 7, passing data from �le system to

network without copying. If output is with move semantics, it implicitly

unmaps the �le from the corresponding region and deallocates the region. A

potential problem is that a page with nonzero output reference count may

migrate to a server's cache when the last region that contains the page is

unmapped. To avoid TCOW faults, it is desirable to change the �le server so

that it refrains from writing on a page with nonzero output reference count.

The server should instead write on a new page, complete the new page in a
manner analogous to reverse copyout (Section 4.1), and then swap pages in

the server's cache.
Similarly, data can be input directly from a network to a mapped �le

region, passing data from network to �le system without copying. A po-
tential di�culty is that data may arrive from the network preceded by an
application-level header. The header may, for example, specify the �le, o�set

from the beginning of the �le, and length of the data. Because the appli-
cation does not know the �nal destination of the data before examining the
header, copy avoidance will usually require page swapping. However, page
swapping will only be possible when data is received from the network in a
bu�er that starts at a page o�set equal to the �le o�set modulo the page
size. For simplicity, let us assume that the �le o�set o is always a multiple of

the page size, and what may vary is only the �le and, possibly, the length of
the header (h) and of the data (l). Page swapping then requires that data be
received from the network in a page-aligned bu�er, stripped of any headers.
The technique used to achieve page alignment will depend both on the data
passing semantics used for input from the network and on the type of input

bu�ering provided by the network adapter. The case of emulated copy and
server-aligned bu�ering achieves copy avoidance using only standard tech-

niques. Other non-copy data passing schemes and input bu�ering types,
however, require application-level optimization to achieve copy avoidance.

If network input is by emulated copy with server-aligned bu�ering, the

application informs the network server that input is expected, consisting of

an arbitrarily aligned segment of h bytes, followed by a page-aligned segment

of l bytes. The server correspondingly scatters the input. The application
does not immediately receive the input. Instead, the application �rst peeks at

the header (e.g., using Unix's standard recv call with MSG PEEK 
ag). After
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decoding the header, the application inputs the �rst h bytes to a region that

is not a mapped �le region, followed by l bytes directly to the corresponding

mapped �le region (the application can use, e.g., Unix's standard readv call

with a scatter list). No copying is necessary, but the network adapter must

support server-aligned bu�ering, as discussed in Chapter 6. If h and l are

�xed, early demultiplexing is su�cient. However, if h or l is variable, bu�er

snap-o� is necessary.

If network input is by emulated copy with client-aligned bu�ering and

the network adapter supports only pooled in-host bu�ering, copy avoidance

becomes more di�cult because data may arrive with arbitrary alignment
from the network. Page alignment can be restored, however, by using the
software technique discussed in Section 6.3, header patching . This technique
requires that both sender and receiver agree on its use. Let h0 be the preferred

alignment for input from the network. Using header patching, the sender
transmits the application-level header followed by the data starting at �le
o�set o+h0+h and of length l�h0

�h, followed by data starting at �le o�set
o and of length h0+h. The receiver peeks at the �rst h0+h bytes of the input.
After decoding the header, the receiver inputs the �rst l bytes directly to the

address a corresponding to �le o�set o in the mapped �le region, and the
following h0 + h bytes also to an address a (the I/O interface itself patches
the initial data of length h0 + h on top of the headers at address a).

If network input is by any non-copy scheme other than emulated copy,
copy avoidance requires an addition to existing mapped �le I/O interfaces.

In-place input directly to the mapped �le region is not possible because the
application must �rst decode the header to determine the region. Likewise,
migrant-mode input brings data into a newly allocated region, not the des-
tination mapped �le region. In these cases, the application should input
the header and data to a page-aligned region other than its �nal destina-

tion, decode the header, and patch the header. The application then uses a

new technique, user-directed page swapping , to pass the data to its destina-

tion without copying. User-directed page swapping is implemented by a new
system call:

mswap(source, destination, length, deallocate)

where source is the start address of the source region, destination is the

start address of the destination (mapped �le) region, length is the length of
both regions, and deallocate indicates whether pages from the destination

region should be passed to the source region or simply deallocated.
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mswap arguably is a fundamental call that is missing in mapped �le I/O

interfaces such as that of Unix. It is necessary, for example, for passing

data between mapped �les without copying (mswap would be used with a

true deallocate 
ag for such purpose). To process a mswap call, the system

veri�es write access permissions to both regions, pages in any missing pages

in the source region, marks all pages of the source region dirty, and swaps

pages between the regions. Before swapping, if deallocate is true, the

system removes and deallocates any pages in the destination region (without


ushing to the respective pager), and therefore the source region ends up

without any physical pages. After mswap, the contents of the destination
region is the same as if the data had been copied.

In the in-place case, the source region would in general be needed for
subsequent input, and therefore mswap could be used with a false deallocate


ag. In the migrant-mode case, on the contrary, if the source region is to be
deallocated, mswap could be used with a true deallocate 
ag.

10.2 File access by explicit I/O

Data input from a network can be output, using an explicit I/O interface, to a
�le. However, using only the new optimizations described in this dissertation,
copy avoidance will be limited to network input; �le output will copy data
from client bu�er to server cache. For copy avoidance also on �le output,
mapped �le I/O can be used, as described in the previous section.

Conversely, data input from a �le, using an explicit I/O interface, can
also be output correctly, without modi�cations, to a network. However, to
avoid TCOW faults and unnecessary page copying, the following re�nement

should be made in data passing from server cache to client bu�er: For each
page of the client bu�er, if the client page has zero output reference count,

data can be simply copied from server cache to client page. If, however, the
client page has nonzero output reference count, data should be copied from

server cache to a new page; if the new page is not completely �lled, it should
be completed by reverse copyout; and the new page should be swapped with

the client page. This modi�cation is transparent to clients and preserves

copy avoidance gains of network output when the bu�er is reused for �le

input. For copy avoidance also on �le input, mapped �le I/O can be used,

as described in the previous section.
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10.3 Demonstration

This section experimentally demonstrates that emulated copy interoperates

e�ciently with mapped �les. The experiments measure the performance of a

synthetic benchmark application when �les and/or the network are accessed

with or without copy avoidance. The goal of the experiments is to measure

the e�ects of copy avoidance in best-case and worst-case conditions; the

experiments are intended as demonstrative only and not as an evaluation of

bene�ts for a typical load.

10.3.1 Experimental design

In the benchmark application, a client fetches or stores �le data by making
requests to a remote server . Requests contain a header that includes the code
of the service requested, a request identi�er that the server should include
in the corresponding reply, and, in case of fetch or store requests, the �le
identi�er, �le o�set, and data length. In the case of store requests, data

follows the header in the same packet. Replies contain a header that includes
the identi�er of the corresponding request, the resulting status (e.g., success
or bad �le), and the length of the data actually fetched or stored. In the case
of successful fetch replies, data follows the header in the same packet.

Both client and server run at user level. Each party communicates with

the other by making requests directly to a kernel-level network driver. Both
parties use the same data passing scheme, which may be either copy or
emulated copy.

The server accesses �les using either the conventional explicit I/O inter-
face (Unix's read and write, with data passing by copying) or the mapped

�le interface (Unix's mmap using shared mode). The server maintains a list

of open �les per client.

The server uses several optimizations in the case of mapped �les. To each
open mapped �le corresponds one or more mapping regions. Mapping regions

have always the same size, so as to prevent fragmentation of the server's
address space. To allow for expansion of �les open for writing, the server

maintains its own indication of the true length of the �le. Before mapping
such a �le to a region whose end would lie beyond the end of �le, the server

repositions the end of �le to correspond to the end of the region. The server

truncates such a �le to its true length before closing and unmapping it.
The client requests to fetch or store data always of the same �le and of
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Micron XRU266

CPU Pentium II 266 MHz

SPECint95 10.8 (Intel Portland)

L1-cache 16 KBI + 16 KBD, 3234 Mbps

L2-cache 512 KB, 626 Mbps

Memory 32 MB, 4 KB page, 390 Mbps

Disk controller Adaptec AHA 2940 Ultra Wide SCSI-2

Disk Seagate ST34371W \Barracuda", 4.35 GB, 512 KB cache,
7200 RPM, average/max seek 8.8/19 ms

Table 10.1: Characteristics of the computers used in the experiments. The
integer rating used for the Micron XRU266 is the listed SPECint95 of the

Intel Portland motherboard, which has the same CPU.

length and o�set (from the beginning of the �le) equal to a multiple of the
page size. The experiments measure the response time observed by the client

and the I/O processing time incurred at the server for each combination of
data passing schemes for network and �le access. Two types of measurement
are made for each data length. The miss measurement is taken right after
unmapping mapped regions (if any) of the �le under study and performing
explicit I/O on a very large unrelated �le. The latter step removes the data
of the �le under study from all caches (processor caches, �le system bu�er

cache, and cache of the disk). The hit measurement is taken right after the
miss measurement, so that data is in the cache and, in the case of mapped
�le I/O, in a region mapped to the server. No \warm-up" measurement is
taken. The reported values for each measurement are the averages of �ve
tries. Because some measurements had large variance, this chapter's graphs

include error bars. Each such bar corresponds to the standard deviation of

the corresponding measurement.
The measurements do not include the case of double caching, where the

server accesses �les using explicit I/O but maintains its own cache of the

data. On hits, double caching is equivalent to �le mapping (except on total

memory consumption, which with �le mapping may be only half of that of
double caching). On misses, double caching is equivalent to the case where

the �le is accessed with explicit I/O.
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Figure 10.1: Fetch response time in the case of a hit.

10.3.2 Experimental set-up

Both parties ran on computers with the characteristics shown in Table 10.1.
The operating system used was NetBSD 1.1 with the modi�cations described

in Section 8.1. Parties were connected by the Credit Net ATM network at
512 Mbps. Unless otherwise stated, early demultiplexing was used.

Unfortunately, NetBSD 1.1 does not e�ciently implement mapped �le

I/O. Contrary to many contemporary systems, NetBSD maintains separate
pools of free pages for VM and the �le system's bu�er cache. Consequently,

when mapping and unmapping a �le, NetBSD has to copy data between
pages of each pool. This ine�ciency a�ects measurements in the miss case.

10.3.3 Response time

Figure 10.1 shows the hit response time for fetching data of each length

using di�erent data passing schemes. Whether mmap or emulated copy gives
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Figure 10.2: Store response time in the case of a hit.

by itself greater improvement depends on the data length. For data shorter
than 8 KB, mmap's fewer instructions executed in the server resulted in greater
bene�ts than those of emulated copy. For data longer than 8 KB, however,
emulated copy's avoidance of two copies (one at each party) had greater

impact than mmap's avoidance of only one copy (at the server). The combined
e�ect of mmap and emulated copy is greater than the individual e�ect of each

optimization. This synergy is due to cache e�ects. The bene�ts of copy

avoidance are greatest when copying is avoided in the entire end-to-end data
path. In this experiment, relative to data passing by copying, combined mmap

and emulated copy reduced response time by 29% for 8 KB data and by 43%
for 60 KB data.

Figure 10.2 shows the corresponding hit response times for storing data.
The spikes that occur when the �le is accessed by explicit I/O are due to

NetBSD's �le write policy. By default, NetBSD updates the disk synchro-
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Figure 10.3: Store response time in the case of a miss.

nously1 when data length is multiple of 16 KB. Otherwise, the e�ects of copy
avoidance are similar to those of Figure 10.1. Relative to data passing by
copying, combined mmap and emulated copy reduced response times by 27%

for 8 KB data and by 45% for 60 KB data.
Figure 10.2 also shows the response time when header patching (HP) and

pooled in-host bu�ering are used. The response time is essentially the same

as that with early demultiplexing (the default in all �gures).
The miss response time for fetching data is very variable because of disk

latencies (especially rotational latency). The average response timemeasured

for 4 KB data was 14 ms, with standard deviation of 4.5 ms. For 60 KB

data, the average response time was 25 ms, with standard deviation of 3 ms.
Response time di�erences among data passing schemes for network I/O and

1In a comparative study of the �le systems of several Unix-derived systems, [40] (in its
�gures 6.40 and 6.41) shows that a surprising number of them have a synchronous write
policy. In NetBSD, the system administrator can con�gure asynchronous writing when
mounting the �le system, but system manuals strongly discourage that option.
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Figure 10.4: Fetch I/O processing time in case of a hit.

for �le I/O were not statistically signi�cant.
For storing data, however, the miss response time has a marked depen-

dence on whether explicit I/O or mapping is used for the �le, as shown in
Figure 10.3. The steps that occur when the �le is accessed by explicit I/O

and the data has length that is a multiple of 16 KB are due to NetBSD's
synchronous write policy. Di�erences between corresponding cases with copy

or emulated copy were not statistically signi�cant because of the large vari-

ability in disk latency.

10.3.4 I/O processing time

Figure 10.4 shows the hit I/O processing times measured in the server's

system for fetching data of each length using di�erent data passing schemes.
mmap and emulated copy each avoid one data copy at the server. mmap has by

itself a greater impact than does emulated copy because, on a hit, mmap also

avoids executing many �le system instructions. In this experiment, relative
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Figure 10.5: Store I/O processing time in case of a hit.

to data passing by copying, combined mmap and emulated copy reduced I/O
processing times by 18% for 8 KB data and by 40% for 60 KB data.

Figure 10.5 shows the corresponding hit I/O processing times for storing
data. The e�ects of copy avoidance are greatest when both network and �le

accesses are copy-free. Relative to data passing by copying, combined mmap

and emulated copy reduced I/O processing by 31% for 8 KB data and by
68% for 60 KB data.

Figure 10.5 also show the I/O processing time when header patching

(HP) and pooled in-host bu�ering are used, instead of early demultiplexing.
Header patching reduces I/O processing time noticeably. In the early de-
multiplexed case, the host processor has to insert and remove special bu�er

segments for headers and trailers (the Credit Net 512 Mbps cards do not

have automatic depadding). This overhead is avoided in the header patch-
ing/pooled case. However, header patching is not transparent to clients,

while early demultiplexing can be. A higher level of adapter support (bu�er
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Figure 10.6: Fetch I/O processing time in case of a miss.

snap-o�) should give performance similar to that of header patching and
transparency greater than that of early demultiplexing.

Figure 10.6 show the I/O processing times for fetching data on a miss.
Unfortunately, unlike many contemporary systems, NetBSD's implementa-

tion of mmap does not avoid copying, because NetBSD maintains separate

pools of free pages for VM and the �le system's bu�er cache. Therefore, the
full bene�ts of copy avoidance could not be demonstrated for this case. Rela-

tive to data passing by copying, emulated copy alone reduced I/O processing

time by 15% for 60 KB data (for 8 KB data, measured di�erences were not
statistically signi�cant).

Figure 10.7 shows the related I/O processing times for storing data on a

miss. Again, NetBSD's mmap implementation did not allow the full bene�ts

of copy avoidance to be demonstrated. Relative to data passing by copying,
emulated copy alone reduced I/O processing times for 60 KB data by 16%

(for 8 KB data, di�erences were not statistically signi�cant).
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Figure 10.7: Store I/O processing time in case of a miss.

Figures 10.6 and 10.7 suggest that, in this version of NetBSD, it is more
e�cient to use double caching than mapped �le I/O.

10.4 Related work

This dissertation's copy avoidance approach tightly integrates the I/O and
VM subsystems. Applications and the network and �le I/O subsystems share

or exchange pages allocated from the VM pool, which can result in trans-

parency relative to applications. IO-Lite [32] takes a di�erent approach,
where applications and the network and �le I/O subsystems share read-only

bu�ers allocated from the IO-Lite (as opposed to the VM) pool of bu�ers.
Consequently, IO-Lite can avoid copying only for applications that use the

IO-Lite API. Unlike the solution presented here, IO-Lite has to copy data
between application bu�ers and IO-Lite bu�ers for applications that use a

conventional explicit I/O interface with copy semantics or a mapped �le I/O
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interface. IO-Lite requires early demultiplexing, whereas this work's solution

can provide copy avoidance even with only pooled in-host bu�ering.

10.5 Summary

Copy-free output of �le data to a network may require a few modi�cations

in the �le system to avoid the overwriting of pages with outstanding output

references. Copy-free input of �le data from a network can be achieved with

standard techniques in the case of network input by emulated copy with

server-aligned bu�ering. However, server-aligned bu�ering requires special
hardware support (early demultiplexing or bu�er snap-o�). If network input
is by emulated copy with client-aligned bu�ering and pooled in-host bu�er-

ing, the page alignment necessary for copy avoidance can be achieved by a
software technique, header patching . For network input by other non-copy
schemes, header patching can be used for alignment and a new technique,
user-directed page swapping , can be used to pass data to its �nal destination
without copying.

However, the measurements presented in this chapter show that fetch re-
sponse time is much more sensitive to cache misses than to data copying. For
optimization, the �rst priority is to improve the prefetch and cache policies,
using, for example, application-controlled �le caching [19], informed prefetch-
ing and caching [65], or compiler-inserted I/O prefetching [58]. After a high
cache hit ratio is achieved, copy avoidance can considerably further improve

the fetch response time.
Likewise, store response time is more sensitive to a synchronous write

policy than to data copying. Although an asynchronous write policy is
more prone to inconsistency in case of a system crash, the costs of the syn-

chronous policy appear excessive. A reasonable compromise, used in many

systems [49, 40], is to process writes asynchronously but update the disks
each 30 seconds. When writes are asynchronous, copy avoidance can signi�-

cantly further improve response time.
The server's I/O processing time can always bene�t from copy avoidance,

whether or not a miss occurs. The measurements presented in this chapter

show that copy avoidance can provide improvements ranging from negligible
(for misses on short data) to very signi�cant (for hits on long data). If the
server is CPU-bound, copy avoidance may signi�cantly improve the server's

throughput.
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Finally, the measurements presented in this chapter also demonstrate that

for greatest copy avoidance bene�ts, all I/O data copying should be avoided.

In applications involving both �les and networks, this can be achieved, with-

out changes in the semantics of existing interfaces, by using mapped �les and

emulated copy.
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Chapter 11

Data Passing Avoidance and

Scheduling Avoidance

Optimizations

Chapters 3 to 10 describe and evaluate new optimizations for copy avoidance
according to either the explicit or the mapped �le I/O model. Those models
assume that all I/O data must be passed to and from client bu�ers. As ex-

plained in Section 1.2.4, many clients do not actually have such requirement.
For example, some clients may only pass data from one device to another,
without processing that data, or pass the same data to multiple servers. It
may be more e�cient for such clients to use an alternative I/O model, with
data passing avoidance, where data passing is reduced or eliminated, rather

than merely made more e�cient.
In an extensible system, a client may implement such model by installing

an extension and having the data be passed to and from the extension, rather
than the client itself. In the case of a kernel extension, the implementation

may further depart from conventional I/O models by also including schedul-

ing avoidance, that is, by executing the extension at interrupt or callout
level. Scheduling avoidance reduces context switching overheads, but may

also disrupt system scheduling.
This chapter presents Genie's new interface, iolets , which o�ers an I/O

model with data passing avoidance in systems with monolithic or microkernel

structure. Iolets allow limited hijacking , a safe form of scheduling avoidance.
Experiments in Chapter 12 show that, for certain applications, iolets and

limited hijacking can greatly improve I/O performance relative to that of a

147
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conventional explicit I/O interface, which passes data by copying. However,

the improvement is dramatically reduced if the conventional explicit I/O

interface is optimized with the copy avoidance techniques of Chapters 3 to 7.

11.1 Iolets

An iolet is an I/O program, usually rather small, that executes at kernel

level and contains multiple I/O requests. Clients specify iolets in a restricted,

parametric, non-Turing-complete language with few features other than those

strictly necessary for data passing avoidance and scheduling avoidance. An
iolet interpreter executes an iolet by making the iolet's I/O requests as spec-
i�ed by the client. When the iolet completes, the iolet interpreter returns a

status code to the client.
Clients can specify that an iolet be repeated a certain number of itera-

tions, and that processing of the I/O requests of each iteration be:

1. Sequential: Next request processed after completion of the current re-

quest (useful for device-to-device data transfers, e.g., in network �le
servers);

2. Periodic: Similar to sequential, with possible delay between iterations
to satisfy a speci�ed period (useful for digital audio and video);

3. Parallel: Requests made in client-speci�ed order, but completed asyn-
chronously in arbitrary order (useful for multicast); or

4. Selective: Similar to parallel, but iteration completes when any of its

requests completes (as in Unix select).

An iolet might, for example, specify that, for a certain number of itera-
tions, periodically each 1

30
second, data be input from a video digitizer card

into a bu�er and then output from that bu�er to a video monitor and a

network interface, as illustrated in Figure 11.1. The bu�er used in the iolet
could be multiserver or outboard (Section 1.2.4).

The interface for submitting an iolet is as follows:

iolet_submit(scheduling, iterations,

actual_iterationsp,

period,

requests_number, requests,

bufc, bufv, handlep)
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Figure 11.1: Iolet for video capture, display, and transmission.

where scheduling can be sequential, periodic, parallel, or selective, as ex-
plained above; iterations speci�es how many times the iolet's requests
should be repeated; actual iterationsp points to number of times the
requests were actually repeated (returned by the interface); period is the
time interval between successive periodic iterations; requests number is the
number of requests in each iteration; requests speci�es the requests of each

iteration, in the desired order; bufc is the number of bu�ers used by the iolet;
bufv is a vector of pointers to the descriptors of the bu�ers; and handlep

points to an identi�er returned by the interface. The client can use that
identi�er to synchronize with completion of the iolet or to abort the iolet
(using io sync or io abort, as described in Section 7.1). A null handlep

makes the iolet synchronous.
Requests of each iteration of an iolet are speci�ed by a vector of structures

of the following type:

struct io_req {server, service,

bufc, ind_bufv,

timeout, resultp}

where server speci�es the server of the request, service de�nes the re-
quested service, bufc is the number of bu�ers used by the request, ind bufv

is a vector of indices into the bufv vector of the iolet submit call, specify-

ing the bu�ers submitted for the given request, timeout is the time limit for
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completion of the request, and resultp points to the result of the request in

the last iteration executed (returned by the interface).

Bu�er descriptors are the same as those for conventional I/O requests

(Section 7.3). The client can specify, in a bu�er scatter-gather element, the

usual native-mode and migrant-mode data passing schemes, such as emulated

copy and move. In addition to those, the multiserver and outboard data

passing schemes are de�ned. In such cases the location of the scatter-

gather element determines: (1) the lender of the bu�er and (2) up to three

integers to be interpreted by the lender, and which may specify, for example,

a network connection, display window, or �le. When the iolet is submitted,
the interface automatically makes a bu�er allocation request to the lender,
and processing continues when the lender replies. Likewise, when processing
of the iolet completes, the interface makes a bu�er deallocation request to

the lender, and processing continues when the lender replies. If the client
does not specify the lender, the interface allocates and deallocates the bu�er
from and to the VM pool of free pages.

If any request in an iolet is to a user-level server, the selective transient
mapping of the corresponding bu�ers occurs only in the �rst iteration of the

iolet, and unmapping occurs when the iolet completes.

11.2 Limited hijacking

Genie's iolet interpreter executes at kernel level in the context of the client

or, when processing of an I/O request completes asynchronously, at interrupt
level. In the latter case, if the next request of the iolet is to a server that is
integrated in the kernel, the interpreter can make that request immediately,
without scheduling. Although such scheduling avoidance eliminates context

switching latencies, it also implicitly assigns to the processing of the next

request priority higher than that of any application processing1. The iolet in

e�ect hijacks the CPU, which may disrupt system scheduling.
Limited hijacking prevents scheduling disruption by letting the iolet in-

terpreter avoid scheduling only for requests that execute very fast2.

Each service provided by an I/O server has associated �xed and variable

costs. The iolet interpreter estimates the processing time of a request by

1Also true of processing as callout or software interrupt [36].
2This is consistent with scheduling policies, such as that of Unix, that assign higher

priorities to more interactive processes.
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adding the respective service's �xed cost and the product of the respective

service's variable cost and the total length of the bu�ers passed in the request

and respective reply. Kernel-level servers can be integrated with the kernel

and have �xed and variable costs de�ned at system build time. After boot

time, they can also be installed and have �xed and variable costs con�gured

by the system administrator. User-level servers can't hijack the CPU, and

therefore their �xed and variable costs are considered to be zero.

The iolet interpreter monitors the accumulated processing time of each

iolet. This time is the sum of measured request processing times, reset to

zero when the client process is rescheduled, there is a delay between periodic
iterations, or a user-level server returns a reply to a request of the iolet. The
iolet interpreter avoids scheduling if the sum of the accumulated processing
time and next request's processing time estimate is less than the hijack limit ,

a con�gurable constant much lower than the scheduling quantum. Otherwise,
if the iolet request is synchronous, the iolet interpreter wakes the client, and
processing continues when the client is rescheduled; otherwise, processing
continues when the client next checks the status of the iolet.

If processing of a request completes synchronously at the non-preemptive,

non-interrupt-driven top half of a kernel, such as that of Unix, processing of
the next request may also occur without rescheduling. In such cases, the iolet
interpreter avoids scheduling if the sum of the accumulated processing time
and next request's processing time estimate is less than the I/O scheduling

quota, a con�gurable constant. Otherwise, the iolet interpreter yields the

CPU for rescheduling.

11.3 Related work

Contrary to the ephemeral server bu�ers of the optimizations of Chapters 3

to 7, multiserver bu�ers can be either ephemeral or cached. This has been
demonstrated by experiments with the splice interface on a network server

and a display server, using ephemeral multiserver bu�ers [36], and on a �le
system, using cached multiserver bu�ers [35]. The splice interface can be

considered to implement a special case of iolet where the number of requests

is always two, the �rst request is always to input data, the second request is
always to output data, and multiserver bu�ering is used.

The combination of services of multiple I/O servers using iolets is quite

similar to that achieved in Scout paths [57]. Iolets allow, however, run-time
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requests to any I/O server, whereas Scout paths are constrained to build-time

router graphs.

IBM channel programs [42], like iolets, allow unprivileged applications to

submit to the system sequences of I/O requests. However, channel programs

do not support data passing avoidance. A given channel program can use

only one device and always passes data between that device and client bu�ers.

Channel programs also do not use scheduling avoidance, because they run

on a dedicated I/O processor (called a channel ).

Iolet's use of a restricted, parametric, non-Turing-complete language for

special-purpose extensibility in monolithic and microkernel systems has many
precedents, including packet �lters [54], application-controlled �le caching [19],
and application-controlled VM caching [48]. A recent paper [32] calls this
form of extensibility inherently safe customization because it rules out the

potential safety problems that come with general extensibility using a Turing-
complete language. Such problems include potential breach of system pro-
tection or integrity and hoarding of resources, such as CPU and memory.

SPIN [9] and VINO [69] are examples of systems that, contrary to io-
lets, use Turing-complete languages (Modula-3 and C++, respectively) for

extensions. Compared to those systems, iolet's model of extensibility is much
more restricted. Iolets allow clients to combine the services of multiple I/O
servers in client-speci�c ways; however, kernel-level I/O servers are trusted
and can only be installed by a privileged user. For more general extensions,
unprivileged users can install user-level servers. The iolet extensibility model

is similar to that of Unix shells, which allow combining the functionality of
multiple programs. SPIN and VINO, on the contrary, allow unprivileged
users to install general application-speci�c programs as untrusted kernel ex-
tensions. Such generality does come at a price, however: To make execution
of untrusted extensions safe, SPIN requires extensions to be written in a

type-safe language, and VINO has to encapsulate extensions for software

fault isolation. These requirements have been reported to make code from

10% to 150% slower [70]3.
Because iolets are very compact and, given their special purpose, can be

e�ciently interpreted, iolet submission is much simpler than the installation

of a SPIN or VINO extension. The latter have to be compiled, checked, or

sandboxed, dynamically linked, and downloaded into the kernel for installa-

3Interpreted Java was found to make the same code from 13 to 113 times slower [70].
Compiled Java should have much less overhead, however.
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tion, and unlinked and deallocated for tearing down.

I/O interfaces that allow clients to allocate multiserver or outboard bu�ers

must prevent clients from hoarding such bu�ers. Iolets and splice [36] solve

this problem by not allowing clients to hold such bu�ers outside the scope

of the call that uses those bu�ers. The iolet interface allocates multiserver

or outboard bu�ers when the client submits an iolet. When that iolet com-

pletes, the iolet interface automatically deallocates the respective bu�ers.

Container shipping [64] and SPIN [9], on the contrary, allow untrusted user-

or kernel-level clients to hold multiserver bu�ers outside the scope of a call.

The referenced papers do not clarify whether or how those systems would
prevent multiserver bu�er depletion. VINO uses a transactional facility that
allows it to arbitrarily abort extensions and free any resources that the exten-
sion may have acquired while processing. Such facility could be used to deal

with extensions that appear to be hoarding a multiserver bu�er. However,
the overhead of the transactional facility is high [69].

Scheduling disruptions due to interrupt-level processing have been re-
ported in several recent papers [56, 31, 57]. LRP [31] and Scout [57] demon-
strate substantial throughput improvements under high receiver load by ex-

ecuting in the context of scheduled processes code that in the BSD Unix
protocol stack is interrupt-driven.

11.4 Summary

The iolet interface implements an alternative I/O model with data passing
avoidance and scheduling avoidance. An iolet is a program that consists of
I/O requests. Clients can drop iolets into the kernel using the iolet interface.
Iolets can reduce data passing overheads for applications that do not require

access to I/O data or that output the same data to multiple servers. Iolets

can also reduce control passing overheads, because control does not return to

the client at completion of each request. Iolets are speci�ed in a parametric,
non-Turing-complete language that is inherently safe and can be used for

this restricted form of extensibility in monolithic and microkernel systems.
Limited hijacking makes scheduling avoidance safe by limiting the amount

of time that an iolet may execute before rescheduling. Before making a
request, the iolet interpreter estimates, based on data length, the processing

time of the request. If the sum of the actual execution time since rescheduling

plus the estimate is too high, the iolet interpreter yields the CPU.



CHAPTER 11. DATA PASSING AND SCHEDULING AVOIDANCE 154



Chapter 12

Evaluation of Iolets and

Limited Hijacking

This chapter experimentally evaluates data passing avoidance and schedul-
ing avoidance in: (1) device-to-device data transfers (Figures 1.7); and (2)
multicasting of the same client data to multiple devices (Figure 1.8).

Data passing avoidance and scheduling avoidance have been experimen-
tally evaluated before. Previous works have reported large reduction in data

passing overheads [35, 36, 64, 9, 77]. Evaluations involving scheduling avoid-
ance have also suggested [35] or reported [77] reduction in control passing
overheads. However, those previous comparisons were biased against conven-
tional I/O models because the latter were not optimized. The experiments in
Chapters 8 and 9 and Section 10.3 demonstrate that the performance of con-
ventional I/O models can be greatly optimized by copy avoidance. However,

before this work, comparisons between data passing and scheduling avoid-

ance, on the one hand, and copy avoidance, on the other, had been missing
in the literature. This chapter provides such comparisons.

12.1 Experimental set-up

Experiments were performed on a Micron P166 personal computer. The
operating system used was NetBSD 1.1. A new system call was added to

support Genie's iolet interface, which is described in the previous chapter.

Measurements were performed according to the methodology described in
Section 8.1. Similar variances were observed.
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Figure 12.1: Total latency of data transfer from Cyclone board to ATM
network.

The device-to-device experiments input data from a Cyclone board and

output the same data to a Credit Net ATM adapter at 155 Mbps. The
multicast experiments output the same client data to the Cyclone board and
to an ATM adapter, in that order. The Cyclone board contains an Intel

960 processor, 2 MB of memory, and a bridge with DMA engine between
the board's bus and the host's PCI bus. The Credit Net ATM adapter is
described in Section 8.1.

12.2 Device-to-device latency

12.2.1 Measurements

Figure 12.1 shows the total latency for transfers of data with length equal to
increasing multiples of the page size from the Cyclone board to the ATM net-
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Figure 12.2: Total latency of short data transfer from Cyclone board to ATM
network on otherwise idle system.

work (as shown in Figure 1.7) as AAL5 packets, without checksumming. For
the copy, emulated copy, and emulated share schemes, separate synchronous
input and output requests were used. For the multiserver scheme, single syn-

chronous sequential iolets were used, each with an input request followed by
an output request. The hijack limit was manipulated to achieve scheduled or

hijacked processing. For the outboard scheme, synchronous output requests

were used, specifying the driver of the Cyclone board as the outboard bu�er
lender. For 60 KB data, relative to copy, emulated copy reduced latency by

28%, and both emulated share and multiserver schemes reduced latency by
31%. The outboard scheme provided modest additional latency reduction.

Figure 12.2 shows the total latency of short data transfers between the
same devices as in Figure 12.1. The fairly constant and small di�erence

between latencies of the multiserver scheme with scheduled or hijacked pro-
cessing corresponds to the cost of rescheduling (16 �s). NetBSD avoids con-
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Figure 12.3: Total latency of short data transfer from Cyclone board to ATM
network with ten concurrent compute-bound processes.

text switching when the same process is running before and after reschedul-
ing, even after an idle period (guaranteed in Figure 12.2 because there were
no other runnable processes). Latencies were slightly higher with emulated

share than with scheduled multiserver because of an extra system call and
page referencing/unreferencing costs in the emulated share case. Latencies

were considerably lower with emulated copy than with copy for data longer

than about half a page because of Genie's reverse copyout optimization (Sec-
tion 4.1).

The experiments of Figure 12.2 were repeated with the host running ten
concurrent compute-bound processes. When returning to user mode after

an interrupt, exception, or system call, NetBSD reschedules the CPU if a
higher-priority process is runnable. Compute-bound processes in NetBSD

and other Unix-derived systems attain low scheduling priority as they ac-
cumulate running time, whereas I/O-bound processes, such as the device-
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to-device benchmark used here, receive high priority. The device-to-device

latency measurements, therefore, should be a�ected by only modest con-

text switching overheads. This was not true when the experiments were

�rst repeated because NetBSD did not guarantee strict priority scheduling.

Rescheduling leaves interrupts enabled, after which events may make another

higher-priority process runnable before the CPU returns to user mode. In

such cases, the current lower priority process may be allowed to run until

the next timer interrupt (spurious latencies of up to 10 ms were observed).

This priority inversion was eliminated by, after rescheduling and immedi-

ately before returning to user mode, disabling interrupts and again checking
if rescheduling is needed; if not, interrupts are atomically reenabled as part
of the return from interrupt instruction. This modi�cation guarantees that
whenever the processor is in user mode, it is running the highest-priority

process. Figure 12.3 shows the latencies after the modi�cation. The di�er-
ences between Figures 12.2 and 12.3 are quite small. Each rescheduling plus
context switching cost on average 28 �s.

12.2.2 Analysis

The code that is executed in the experiments reported in Figure 12.1 was
instrumented to measure the latencies spent in each section of the code.
Table 12.1 shows the least-squares linear �t of latencies that correlate well
with data length and the averages of nearly-constant latencies.

Table 12.2 compares, for each data passing scheme, the total latency
estimated by adding the corresponding breakdown latencies, shown in Ta-
ble 12.1, with the least-squares linear �t of the actual total latencies reported
in Figure 12.1. The good agreement between predicted and actual total la-
tencies suggests that the latency breakdown model is quite accurate for the

data lengths considered, which are multiples of the page length.
The enter and leave latencies for iolets (c, d) were higher than those for

simple requests and replies (a, b) because of the larger number of parameters
of iolets. The delay between sequential requests in iolets (e, which includes

limited hijacking calculations) was, however, quite low.
Table 12.1 reveals why total latencies for long data were so similar for em-

ulated share, emulated copy, and hijacked or scheduled multiserver schemes:

All breakdown latencies other than copyin (p) and copyout (q) were strongly
dominated by device latencies (j and l).

In principle, ATM output from the Cyclone board (m) could be as e�cient
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as ATM output from host memory (l), and latency with outboard bu�ering

should be much lower than with any other data passing scheme (by at least

the cost of input from Cyclone board to host memory (j)). In practice,

however, m will depend on the performance of the bridge between outboard

memory and I/O bus. In the case of the experiments, the performance of the

bridge was clearly less than optimal.

The low overhead of rescheduling (g) or rescheduling plus context switch-

ing (h), relative to total latencies, explains why, even for short data, hijacking

provided little latency improvement.

The unspectacular bene�t of hijacking found here contradicts the dra-
matic latency reductions reported for ASHs [34, 77]. The source of this
discrepancy is that ASHs run on Aegis, which has a round-robin scheduler,
whereas the measurements presented here were on NetBSD, with a debugged

implementation of the multiple-priority scheduling policy common to most
Unix-derived systems.

12.3 Device-to-device throughput

The scheduler idle loop was instrumented to determine how long the proces-
sor was idle during the measurements of Figure 12.1. Subtracting idle times
from total latencies, the I/O processing times (tI=O) shown in Figure 12.4
were obtained.

I/O processing times (Figure 12.4) were considerably more sensitive to

data passing scheme than were total latencies (Figures 12.1) because device
latencies contribute to the latter but not to the former.

Referring to the analysis in Section 8.3, Figure 12.4 suggests that, for data

passing schemes other than copy, even client processing no more complex
than copying the data may give tC � tI=O and therefore give the same � for

all schemes.
Assuming, on the contrary, tC � tI=O (e.g., network �le server), Ta-

ble 12.3 indicates the minimum value of �PHYS (L=tI=O) necessary to saturate
the CPU.

The bandwidth of the OC-3 ATM card limits �PHYS to about 135 Mbps.

According to the values in Table 12.3, such �PHYS will not saturate the CPU

for any data passing scheme other than copy. Therefore, � will be 135 Mbps

for all data passing schemes other than copy, but only 104 Mbps for copy
and L = 4 KB.
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Figure 12.4: I/O processing time (tI=O) of data transfer from Cyclone board
to ATM network.

Table 12.3 shows that higher-bandwidth (perhaps parallel) devices and

higher L can considerably increase �, especially with data passing schemes
other than copy, up to the PCI bus limit, 800 Mbps. For L = 4 KB, re-
placement of copy with emulated share, which is possible in conventional

programming interfaces, can, using faster devices, improve � by up to 64%;
the hijacked multiserver scheme, which requires introduction of a new pro-
gramming interface, can further improve � by up to another 27%. For L =

60 KB, however, � is insensitive to data passing scheme, as long as the latter

is not copy, because of the upper bound set by the I/O bus.

12.4 Multicast latency and throughput

Figure 12.5 shows the total latency for output of the same data (as shown
in Figure 1.8) to the Cyclone board and to the ATM network, in that order.
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Figure 12.5: Total latency to output the same client data to the Cyclone
board and to the ATM network.

Copy avoidance schemes used separate asynchronous output requests to each

driver. Data passing avoidance schemes used single synchronous parallel io-
lets with one output request to each driver. Latencies di�ered little between
emulated copy and emulated share because of an optimization: Genie avoids

making output pages that are already read-only again read-only (Table 7.1).
This optimization is normally enabled but had been disabled in the experi-
ments of the previous chapters so as to evaluate emulated copy output under

worst case conditions. In the experiment of Figure 12.5, measurements were

made for output of increasing lengths of the same bu�er. Given that lengths
were multiple of the page size, each successive measurement required mak-

ing only one additional page read-only. In this experiment, relative to copy,
copy avoidance alone (emulated copy) reduced latency by 43%, more than

did data passing avoidance alone (copy iolet), 30%. Combined copy avoid-

ance and data passing avoidance (emulated copy iolet) reduced latency by
46%.
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Figure 12.6: I/O processing time (tI=O) to output the same client data to
Cyclone board and ATM network.

Subtracting idle times from the latencies of Figure 12.5, the I/O process-
ing times (tI=O) shown in Figure 12.6 were obtained. For long data, copy
avoidance alone (emulated copy) reduced tI=O (improving throughput) much

more than did data passing avoidance alone (copy iolet), and copy avoidance
and data passing avoidance combined synergistically in emulated copy iolet.

12.5 Summary

The main observations from this section's experiments are:

� In device-to-device data transfers:

{ Emulated copy and emulated share can greatly reduce data pass-
ing overheads without changing the programming interface.
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{ Multiserver and outboard schemes can give smaller further im-

provements and require change in programming interface.

{ Performance di�erences among copy avoidance and data passing

avoidance schemes tend to be obscured by client processing or

saturation of physical I/O subsystem.

� In multicast:

{ Conventional requests with emulated copy or emulated share per-

form better than iolets with data passing by copying.

{ Copy avoidance and data passing avoidance combine synergisti-
cally.

� Limited hijacking makes scheduling avoidance safe, but bene�ts can be
modest if the scheduler correctly enforces priorities.
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a Request enter 11

b Reply leave 11

c Iolet enter 20

d Iolet leave 13

e Iolet sequence 3

f Multiserver bu�er turn-around 1

g Reschedule 16

h Reschedule and context switch 28

i Cyclone driver - input 0.000156 B + 9

j Cyclone board ! host memory 0.0211 B + 13

k ATM driver - output 0.000520 B + 30

l Host memory! ATM network 0.0590 B + 17

m Cyclone board ! ATM network 0.0746 B + 23

n System bu�er allocate 0.000162 B + 5

o System bu�er deallocate 0.000125 B + 5

p Allocate and copyin 0.0168 B - 5

q Copyout and deallocate 0.0205 B + 15

r Aligned bu�er allocate 0.000226 B + 4

s Swap and deallocate 0.00222 B + 19

t Reference 0.000424 B + 10

u Unreference 0.000111 B + 4

v Reference and read-only 0.000808 B + 13

w Outboard allocate 0.0000868 B + 8

x Outboard deallocate 0.0000481 B + 8

y Prepare descriptors 4

Table 12.1: Latency breakdown for device-to-device data transfers, in �s. B

is the data length in bytes.
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Scheme Model Estimated Actual

Copy 2 � (a+ g + b) + i+ j+ 0.118B + 169 0.119 B + 187

+k + l+ y + n+ q + p+ o

Emulated 2 � (a+ g + b) + i+ j+ 0.0841 B + 189 0.0841 B + 193

copy +k + l+ y + r + s + v + u

Emulated 2 � (a+ g + b) + i+ j+ 0.0818 B+ 173 0.0817 B + 167

share +k + l+ 2 � (t+ u)

Scheduled c+ 2 � g + d + 2 � e+ f+ 0.0811 B + 155 0.0814 B + 138
multiserver +i+ j + k + l + y + n+ o

Hijacked c+ g + d+ 2 � e+ f + i+ 0.0811B + 139 0.0811 B + 140
multiserver +j + k + l+ y + n+ o

Outboard a+ g + b+ k +m+ w + x 0.0753 B + 107 0.0753 B+ 103

Table 12.2: Estimated and actual total latencies for device-to-device data
transfers, in �s, on an otherwise idle host. If other processes are active, h

should replace g. B is the data length in bytes.

4 KB 60 KB

Scheme tI=O L=tI=O tI=O L=tI =O

Copy 316 104 2770 178

Emulated copy 220 149 569 864

Emulated share 192 171 433 1140

Scheduled multiserver 185 177 374 1310

Hijacked multiserver 150 218 331 1490

Outboard 153 214 423 1160

Table 12.3: I/O processing time (tI=O , in �s) and throughput for CPU satu-
ration (L=tI=O , in Mbps) in device-to-device data transfers.



Chapter 13

Conclusions

Operating systems often copy I/O data between local clients and servers.
Data copying is convenient because it decouples the parties and allows de-
vices to have simpli�ed bu�ering. However, the lagging improvements in the

performance of memory relative to the performance of processors and many
devices make copying highly and increasingly undesirable.

There have been numerous previous proposals for copy avoidance or even
data passing avoidance. However, most such proposals have been incom-
patible with existing applications and systems. Optimizations that preserve

compatibility, COW and page swapping, have long been known, but they
have often been thought more restrictive than they need be [27, 29, 23, 60].

Page swapping, in particular, has typically been underutilized or wholly
neglected. This dissertation reveals several more general or new ways to ex-
ploit it: input of data of arbitrary alignment and length, IPC, interoperation

of explicit and mapped �le I/O. Page swapping is arguably as fundamental

a VM technique as is COW. In fact, they are dual: COW passes output
request data, while page swapping passes input reply data. Both COW and
page swapping pass data to or from client bu�ers with copy semantics (when

page swapping is coupled with input alignment) and to or from server bu�ers

with migrant semantics.

Page swapping has not been used more widely perhaps because the tools

necessary for understanding it were missing. A major contribution of this
dissertation is establishing systematic models of how I/O can be organized,

how data and control passing overheads can be optimized, and how I/O data
can be passed. These models conceptualize previous and new techniques in

an innovative way, emphasizing structure and aspects relevant to compat-

167
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ibility, such as programming interface, integrity, restrictiveness, criticality,

symmetry, and protection, instead of implementation details.

These concepts provide the substrate on which the dissertation's main

theme is developed: the integration of the I/O and VM subsystems for copy

avoidance. Integration has long been available for storage I/O, in the form

of mapped �les. This work broadens integration to the case of network

I/O using conventional explicit I/O interfaces with copy semantics. The

resulting solution allows copy-free I/O both for storage and network I/O

while preserving compatibility with existing interfaces and systems.

This dissertation describes and evaluates new optimizations for each data
passing semantics and for IPC, network adapter support, data passing avoid-
ance, and scheduling avoidance. In particular, two new data passing schemes
for network I/O are introduced: emulated copy, for data passing with copy

avoidance but preserving copy semantics between user-level client and sys-
tem bu�ers, and I/O-oriented IPC , for e�cient data passing between system
and user-level server bu�ers.

Several previous works proposed integrating application and system bu�-
ers of the network I/O subsystem [29, 12] and, more recently, also those

of the storage I/O subsystem [44, 32]. The advantages of the VM-based
approach presented here are: (1) data passing semantics compatible with
that of existing interfaces, and (2) optimization conditions that are advisory
only and whose restrictiveness decreases according to the hardware support
available. At one extreme of hardware support, pooled in-host bu�ering,

some applications not aware of optimizations may already satisfy conditions
and bene�t from copy avoidance; at the other extreme, outboard bu�ering,
all applications bene�t from copy avoidance. In contrast, solutions that
incompatibly change data passing semantics cannot without copying support
previously written applications, regardless of hardware support available.

The experiments reported here cover a broad range of data and control

passing optimizations for network I/O, perhaps the broadest in a single study.

The pattern that emerges with remarkable regularity from the experimental
results is that end-to-end performance is dominated by network bandwidth

and latency and presence or absence of data copying at the end systems.
Data passing semantics and whether protocol servers are implemented at

kernel or user level have only secondary importance, when emulated copy
and I/O-oriented IPC are used.

Considering the many and sometimes radically di�erent optimizations

previously proposed for alleviating data and control passing overheads in
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network I/O, the similarity of their performance improvements can cause

surprise. However, by and large such optimizations had been previously

compared only to conventional data passing by copying and were never pitted

against each other.

In hindsight, the dominating e�ects of physical network constraints and

of copying should actually be expected. Some data passing semantics and

operating system structures may indeed allow lower data and control passing

overheads. However, the performance of both networks and memory have

long been improving more slowly than that of processors. If copying or data

passing is avoided, network performance can easily dominate I/O processing,
including data and control passing.

The main conclusion is that optimizations that preserve data passing se-
mantics and system structure can give end-to-end improvements almost as

good as or, in some cases, better than those of data and control passing opti-
mizations enabled by changes in data passing semantics or system structure.
Additionally, scaling measurements suggest that di�erences in end-to-end
performance using various data and control passing optimizations tend to
decline, given current technological trends.

These results clearly con�rm the thesis. Emulated copy can provide large
network I/O performance improvements while preserving copy semantics and
its programming interface. I/O-oriented IPC gives user-level protocol servers
performance approaching that of kernel-level ones without changing operat-
ing system structure.

Emulated copy and I/O-oriented IPC establish a new baseline for judg-
ing future network I/O optimizations. Proposals for changing data passing
semantics or operating system structure are not fairly supported by compar-
isons only with unoptimized implementations of conventional I/O interfaces:
Emulated copy and I/O-oriented IPC can greatly improve the latter without

changing semantics or structure.

The experimental results and analysis presented here suggest that the

new baseline set by emulated copy and I/O-oriented IPC will be more di�-
cult to signi�cantly outperform than is the conventional one, set by interfaces

that pass data by copying. Rather than simply reduce data and control pass-
ing overheads, new optimizations will possibly have to improve the physical

I/O subsystem or �nd new ways to use the latter for speci�c applications or
classes of applications (e.g., specialized protocol implementations or disk lay-

outs, better prefetch and cache policies, application adaptation to available

bandwidth, or trading bandwidth for latency).
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The following sections make recommendations based on this dissertation's

�ndings and point to relevant future work.

13.1 Recommendations

The results of Chapter 8 recommend the adoption of emulated copy in sys-

tems that have an explicit I/O interface with copy semantics, such as Unix

and Windows NT. Emulated copy can signi�cantly improve network end-to-

end performance and is compatible with existing interfaces, such as sockets.

The results suggest that little further improvement would be possible by
radically changing the data passing semantics of existing interfaces.

For full emulated copy support, four additional calls would be useful:

1. Con�gure input and output thresholds;

2. Inform preferred alignment and length for client input bu�ers;

3. Specify variable lengths of application-level headers and trailers; and

4. Synchronously 
ush previous output requests.

The second call supports client-aligned bu�ering. The third call supports

server-aligned bu�ering when application-level headers or trailers have vari-
able length. In such cases, the application receives headers and trailers out-
of-band. This call may not be necessary if headers and trailers have �xed
length, since then the application can simply intersperse segments for head-
ers and trailers in the input request's scatter list (e.g., using Unix's readv).

It may also not be necessary if headers are patched (Section 6.3). The fourth

call supports output bu�er reuse by the client (the client can also avoid
TCOW faults by using circular bu�ers with appropriately set socket window
sizes, as discussed in Section 4.3). In Unix, these calls can be implemented

as new ioctl requests.

Emulated copy requires a few simple VM modi�cations, as explained in
Chapters 3, 4, and 10 and Section 7.4. In the socket framework, emulated

copy would also require the following new interfaces in socket and protocol
layers [49], in addition to those necessary for the above new calls:

1. Request data input into given bu�ers; and

2. Abort a previous request for data input into given bu�ers.
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These interfaces support server-aligned bu�ering.

Chapter 8 also shows that in some cases, e.g. input of data of length

around half a page using customized system bu�ers, emulated share can be

considerably more e�cient than emulated copy. It is therefore advisable

to support both emulated copy (by default, for compatibility) and emulated

share (for best performance). Emulated share can use the same programming

interface as that of emulated copy. Output that uses any of the techniques

explained in Section 4.3 to avoid TCOW faults will also work correctly, with-

out modi�cations, under emulated share. To avoid corruption of important

data on input with emulated share, applications may have to rearrange their
bu�ers. Alternatively, applications may checkpoint their data periodically
and roll back in the unlikely case of input failure. Emulated share requires,
in addition to the modi�cations for emulated copy, two new calls:

1. Switch data passing to emulated share; and

2. mswap (Section 10.1).

The �rst call can be implemented as an ioctl request. The second call
supports e�cient interoperation with mapped �les.

For application programmers, the recommendations are to use client-
aligned bu�ering and emulated share whenever possible in new applications.
Client-aligned bu�ering allows good performance even without special net-
work adapter support. I/O with emulated share, if supported, gives the

best performance, and, if not supported, can be transparently converted into
emulated copy. Programmers should also strive to issue input requests (per-
haps asynchronously) ahead of the corresponding physical input. This allows

server-aligned or in-place input.
Similar recommendations apply for maintainers of existing applications.

Although some applications may already post input requests early enough
for server-aligned input or unwittingly use client-aligned bu�ers, other ap-

plications may bene�t from changes to achieve copy avoidance. The changes
need not be complex, and can include, for example, anticipating input re-

quests, aligning client bu�ers, or 
ushing previous output requests before

reusing output bu�ers. The changes are strictly for performance, however;

applications will also work correctly without any changes.

The results of Chapter 9 suggest that protocols can be implemented at
user level without major performance degradation, using I/O-oriented IPC.
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User-level servers would make protocol and driver development and main-

tenance much easier than they currently are in systems such as Unix and

Windows NT.

For copy avoidance, it is desirable that new protocols be designed with

�xed-size headers and trailers. If variable-size headers are unavoidable, the

results of Section 10.3 suggest the use of header patching. Header patching

at one protocol layer is transparent to layers above and below that layer.

Because header patching allows the preferred alignment to be �xed, it can

simplify the network adapter support necessary for copy avoidance.

For designers of network adapters, Chapter 6 recommends support for
bu�er snap-o�, which allows copy avoidance under very general conditions.
In the case of �xed-size headers, the implementation of bu�er snap-o� is
particularly simple. The bene�ts of bu�er snap-o� should be particularly

visible in Gigabit Ethernet adapters. The high data rates of Gigabit Eth-
ernet make data copying undesirable; however, because Ethernet packets
are smaller than a page, the concatenation of multiple packets is essential
to allow copy avoidance by page swapping. When bu�er snap-o� or early
demultiplexing is supported, other important recommendations are: (1) al-

low speci�c input bu�ers to be reclaimed, and (2) use pooled in-host bu�ers
when the data bu�er list of a reception port is empty (rather than drop the
packet). In adapters for Gigabit Ethernet, ATM , and other high-speed net-
works, support for checksumming and encryption may signi�cantly improve
performance.

For processor designers, this work recommends support for unmapped
access (Section 3.1.1), tagged TLB entries, and, in case of virtually addressed
caches, tagged cache entries. The latter two optimizations avoid abrupt loss
of locality on context switches. It is also important to insure that the costs
of TLB updates in new processors and in multiprocessors scale well.

13.2 Future work

It would be interesting to determine experimentally, on various typical work-

loads, what percentage of existing applications unwittingly satisfy the condi-

tions for copy avoidance with server- or client-aligned bu�ering and TCOW.
A comparison between emulated copy and emulated share in architectures

radically di�erent from those of the computers used in this dissertation could

unveil interesting new results. In multiprocessors, for example, the cost of
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TLB updates can be much higher than in a single processor. In such archi-

tectures, the advantage of emulated share may be higher, because it does

not require TLB updates. A study of the Solaris zero-copy TCP scheme on

multiprocessors [23] shows that COW and page swapping are considerably

more e�cient than copying even on multiprocessors without hardware sup-

port for TLB consistency. That study suggests that emulated copy would

also be bene�cial in such architectures, but does not clarify what further

bene�t would be obtained from emulated share.

Other architectural variations of interest include systemswith much great-

er I/O bandwidth than that of personal computers, and devices with much
lower latency than those used in this dissertation's experiments. Both of
these variations may make the e�ects of data passing semantics and operat-
ing system structure more signi�cant than found here.

Optimized control passing may signi�cantly reduce the latency of I/O-
oriented IPC for short data. It would be interesting to verify if techniques
such as those of Peregrine [43], L4 [51], or Exokernel [34] could be applied to
improve context switching in I/O-oriented IPC.
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