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Abstract

Veri�cation of memory arrays is an important part of processor veri�cation. Memory

arrays include circuits such as on-chip caches, cache tags, register �les, and branch

prediction bu�ers having memory cores embedded within complex logic. Such arrays

cover large areas of the chip and are critical to the functionality and performance of the

system. Hence, these circuits are custom designed at the transistor level to optimize

area and performance. Conventional simulation based veri�cation approaches do not

work for arrays, as it is infeasible to simulate the astronomical number of simulation

patterns that are required to verify these designs. Therefore, we need to look at

formal methods to ensure the correctness of these circuits.

We have adopted the formal technique of Symbolic Trajectory Evaluation (STE) to

solve the array veri�cation problem. STE uses a form of symbolic simulation to check

whether a �nite state system satis�es a formula expressed in a carefully restricted

temporal logic. It can handle switch-level circuits and detailed system timing. How-

ever, STE does not resolve many fundamental issues important for verifying arrays.

These include the state explosion problem, causing prohibitively large ordered binary

decision diagrams (OBDDs) for certain classes of circuits, and the switch-level anal-

ysis bottleneck, limiting the size of switch-level circuits that can be analyzed prior to

running STE.

Our thesis builds upon earlier work on STE to overcome these problems. We have

developed techniques to exploit symmetry while verifying transistor-level circuits by

STE. We show that exploiting symmetry allows one to verify systems several orders of

magnitude larger than otherwise possible. We have veri�edmemory arrays with multi-

million transistors. The techniques we have developed also successfully overcome the

switch-level analysis bottleneck. We believe that with our work, the problem of static

random access memory (SRAM) veri�cation is solved. We have developed techniques

based on new Boolean encodings to e�ciently verify content addressable memories

(CAMs). Our encodings scale up well in terms of veri�cation memory requirements,

as compared to naive approaches. From our experimental results, and our case studies

of PowerPC CAMs, we believe that we have solved the problem of verifying all the

di�erent types of CAMs that are found on a modern microprocessor. To facilitate

the use of STE, we have developed an automated technique to identify the internal

state nodes in transistor netlists. We have used the techniques developed in this

thesis to successfully verify several memory arrays from state of the art PowerPC

microprocessor designs.
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Chapter 1

Introduction

Three fundamental trends mark the semiconductor industry today.

� Rapid advances in Very Large Scale Integrated circuit (VLSI) fabrication tech-

nology.

� Shortening design-to-market cycle times.

� Increasing reliance of society on digital systems.

These trends continue unabated. According to the Semiconductor Industry As-

sociation's National Technology Roadmap for Semiconductors [3], in AD 2010 semi-

conductor devices will have a minimum feature size of 0.07�m, microprocessors will

contain 90 million logic transistors, several hundred million cache transistors, and

they will run at frequencies over 1000 MHz. Thus, advances in fabrication technology

are continuously fuelling the design of hardware systems which are larger and more

complex than their predecessors.

The intense competition in the �eld is resulting in ever shorter design cycles, and

delays can be very expensive. To amortize the mounting costs of development, and

manufacturing, the market is increasingly mass production oriented. All of these

issues point to the fact that errors in the design of digital systems can have severe

�nancial implications. This is best illustrated by the $475 million cost of the Pentium


oating point bug [118]. Furthermore, with increasingly widespread use of digital

3



4 CHAPTER 1. INTRODUCTION

systems in areas such as aircraft 
y-by-wire systems, and medical applications, design

errors can lead to serious injuries, or even loss of life.

Therefore ensuring correctness of designs is an important task in the design of

digital systems. Today, the most popular veri�cation technique is the simulation of

selected test cases. However, with increase in design complexity, simulation is proving

to be increasingly inadequate. For a large complex system it is impossible to simulate

all possible combinations of inputs, or sequences of inputs. A growing trend in the

industry has been the shift away from manual simulation test pattern generation

to random simulation test pattern generation. This partly avoids the problem of

generating test cases which may be inadvertently biased. However, it does not solve

the problem of uncovering an error which can occur only under remote circumstances,

when a set of unlikely factors conspire together.

For these reasons, there has been an increasing interest in formal veri�cation

techniques for hardware designs. In formal veri�cation, a mathematical model of the

design is compared with a formal speci�cation which describes the expected behavior

of the design. The veri�cation then uses rigorous, formalized reasoning to determine

whether for all possible inputs, the behavior of the design is consistent with the

speci�cation.

Microprocessors are among the most complex digital systems being built today.

Memory arrays such as caches, cache tags and translation lookaside bu�ers (TLBs) are

important components of these systems. Veri�cation of these arrays is an important

part of verifying a microprocessor. The goal of our work described here is to develop

techniques which substantially improve upon existing array veri�cation practice.

Ahead, section 1.1 discusses memory arrays and their characteristics. Section 1.2

brie
y surveys work in the area of formal veri�cation, and it discusses the di�cul-

ties that most formal techniques have in handling arrays. It also discusses issues in

using symbolic trajectory evaluation (STE) is to handle arrays. This is followed by

section 1.3 which summarizes the goals of the thesis. Finally, section 1.4 discusses

the thesis organization, and a summary of each of the major chapters.
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Figure 1.1: An array.

1.1 Veri�cation of memory arrays

Veri�cation of memory arrays is an important part of processor veri�cation. Arrays

are functional units in a processor with read and write memory structures containing

multiple data locations [89]. Circuits classi�ed as arrays include register �les, caches,

block address translators, tags, and branch target prediction bu�ers. These circuits

typically consist of random access memory cores embedded in complex timing and

control logic (Figure 1.1).

Arrays form an important part of microprocessors. On the PowerPC 604 chip

[113], arrays include the following (marked with numbers on the chip layout in Fig-

ure 1.2):

1. Instruction Cache.

2. Instruction Cache Tags.

3. Instruction memory management unit (MMU) including the Instruction side

Translation Lookaside Bu�er (ITLB), and the Instruction Block Address Trans-

lator (IBAT).

4. Data MMU including the Data side Translation Lookaside Bu�er (DTLB), and

the Data side Block Address Translator (DBAT) arrays.
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Figure 1.2: The PowerPC 604 Microprocessor (Copyright c
1994 MicroDesign Re-

sources)
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5. Data Cache Tags.

6. Data Cache.

7. Floating point register �le.

8. General purpose register �le.

These arrays are custom designed at the transistor level for optimizing area and

performance. Arrays can occupy as much as 40-50% of the processor chip area.

In the recently announced PA-7300LC processor [61] from Hewlett Packard, caches

consume 49% and the TLB takes over 5% of the chip area. In the MediaProcessor chip

announced by MicroUnity [119], tags and TLBs take over 5% of the chip area. The

register �le and the caches of this chip take 10% and 25% of the chip area respectively.

Arrays often come in the critical timing paths in a chip. For example, every

instruction fetch requires that the instruction address be �rst translated by the TLB,

and then whether or not the word is present in the instruction cache must be checked

in the cache tags, all in one clock cycle. With the clock frequencies today, and in the

foreseeable future, this is an important critical timing path in a chip.

Because of these area and performance constraints, arrays are not synthesized by

automatic synthesis tools, rather they are custom designed. The designs include many

features to maximize performance, including the use of self-timed components. For

example, the MIPS-X register �le generates an internal self-timed signal to precharge

the bit lines before a read [36]. The register �le uses two phase clocking. During the

�rst phase, data is written into the register �le, and during the second phase data

is read from the register �le. Prior to the read, the word lines of the memory cells

must be precharged to high. Having a separate clock phase for the precharge makes

a three phase clock necessary. The register-�le design works around this by detecting

the end of writes by means of a dummy column, and it then generates a precharge

signal which is killed when the second phase begins.

These characteristics of arrays, including size, their design at the transistor level

with sophisticated implementation techniques, and complex internal timing make ar-

ray veri�cation a di�cult task. Simulation based techniques su�er from their inability

to exhaustively verify these circuits. Often, for speeding up simulation, functional

models are substituted for the memory core in an array. Such an approach is also
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not satisfactory, as it can fail to capture the detailed internal timing in the system,

and thus mask design errors. Thus, to successfully verify memory arrays, we need

to employ a formal technique which can handle designs at the transistor level. The

formal technique should be automated, and it should be able to handle the large size

of arrays. The technique we choose should facilitate the speci�cation of the behavior

of arrays. Of all the formal veri�cation techniques, Symbolic Trajectory Evaluation

(STE) comes closest to meeting the requirements stated above. However, it does not

resolve many fundamental and pragmatic issues. These issues include the issue of

array size, speci�cation and e�cient veri�cation of array properties, and the identi-

�cation of data storage nodes in arrays. We have addressed these speci�c issues in

this thesis.

1.2 Related work

In this section we �rst discuss di�erent formal veri�cation approaches to place STE

and our work in context. This discussion is quite broad and general. Speci�c pieces

of work which are more closely related to our research have been referenced at the

end of each chapter. In section 1.2.2 that follows, we discuss the problems in formally

verifying memory arrays. Section 1.3 elaborates on the main contributions of this

thesis.

1.2.1 Formal Veri�cation

State Machine Analysis

Most automated approaches to formal veri�cation are based either on state machine

analysis or symbolic simulation. In state machine analysis, the veri�er creates a �nite

state machine representation of the system and characterizes the system behavior for

a number of transitions. Traditionally, many of these approaches used an explicit

representation of the state transition graph, which made their use impractical for

all but the smallest of �nite state systems. The advent of reduced Ordered Binary

Decision Diagrams (OBDDs) [15], and the use of OBDD based symbolic techniques

to represent the state transition graph [30, 43] made it possible to verify systems with

as many as 1020 to 10100 states, much larger than what could be veri�ed using explicit
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state representation techniques. With the notable exceptions of the Murphi[45] and

the SPIN [66] veri�cation systems, symbolic state transition representations are used

in most automated state machine analysis techniques today.

It should be noted that the number of states rises rapidly with the number of

state storage elements in a design | a small register �le contains 32 32-bit registers

has a state transition graph over 10300 states. So even a technique that can handle

10100 states falls hundreds of orders of magnitude short in its capacity to handle the

register �le

Symbolic state machine analysis techniques necessitate the creation of an explicit

representation of the system in terms of state variables and next state functions which

update them. The program can then analyze properties of the machine, such as de-

ciding the truth of a temporal logic formula, performing reachability analysis, and

state machine comparison. In the symbolic model checking algorithm described by

Burch et.al. [29], the underlying model can be non-deterministic and the user can

even specify fairness constraints with temporal logic formulas. However, this great

expressive power comes at a price. For each system state variable one needs to have

two Boolean variables, one for the \old" value, and one for the \new" value. The

next state relation is represented as a Boolean function of all these variables, where

the function yields 1 when the old and the new state are related, and 0 otherwise.

For large systems there are two fundamental problems that even symbolic techniques

cannot resolve. The �rst is that the system transition relation representation can

be prohibitively large. The second, which is a far more serious problem, is the pro-

hibitively expensive representation of sets of states by their characteristic function

during the state graph exploration. A number of approaches have focused on the use

of partitioned transition relations to reducing the OBDD size during state machine

exploration [55, 31]. However, while these techniques have succeeded in reducing the

size of the transition relation, the problem of computing relational products, and rep-

resenting characteristic function of sets of states still remains a signi�cant headache.

For most hardware veri�cation practitioners in the industry, model checking is

synonymous with the SMV model checker [92], or its variants, which are based on

symbolic state machine analysis. Clarke et al. �rst described a model checking algo-

rithm for a powerful branching time temporal logic called computation tree logic or

CTL in [37]. Formulas in this logic describe properties of computation paths, which
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are in�nite sequences of states systems go through during their execution. In [32]

Clarke et al. describe a symbolic version of the model checking algorithm by encod-

ing the transition relation using OBDDs. McMillan discusses the details of symbolic

model checking, and the SMV system in [92]. Coudert et al. independently developed

symbolic CTL model checking and their work is described in [43]. In this work they

describe the veri�cation of CTL properties for deterministic �nite state machines de-

rived from the system's behavioral description in the LDS language [9]. Bose and

Fisher [11] describe a model checking algorithm for a variant of CTL where sym-

bolic simulation is used to characterize the next state function of the system. Their

technique has the capability to work with detailed circuit representations, such as the

switch-level model. By choosing to ignore the veri�cation capabilities gained from

ternary simulation [16], and by working only in the binary domain, this technique

can be viewed as trading o� the size of the circuits that can be veri�ed, to allow the

veri�cation of system properties speci�ed in a richer temporal logic, as compared to

a approach like STE [27]. By representing the system behavior with next state func-

tions, the work limits itself to the veri�cation of deterministic �nite state systems.

Of course, the use of temporal logic for the speci�cation and veri�cation of hardware

systems has long been an active research area. The subsection below on temporal

logic discusses some of the related work in this area.

State machine analysis also includes techniques for determining whether two �-

nite state machines are equivalent. Typically, in the hardware veri�cation domain,

the machine derived from a high-level system description like RTL or behavioral spec.

is termed the speci�cation machine, and the machine corresponding to the low-level

system description, perhaps at the gate or the switch-level, is termed the imple-

mentation machine. Of course, there is no reason why the implementation and the

speci�cation machines may not be at the same abstraction levels. Some equivalence

checking techniques have been described in [82, 40, 34]. Verity [82] has been designed

to verify the equivalence of RTL design descriptions to switch-level implementations.

It has been targeted especially at custom CMOS designs. Two key ideas simplify

the complexity of equivalence checking for large designs, and they give Verity the ca-

pability of performing full-chip veri�cation { identical state encodings, and identical

hierarchical structure for both the speci�cation and the implementation state ma-

chines. Coudert et al. describe the PRIAM system in [9, 88], where the speci�cation
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and the implementation machines are extracted from the LDS HDL. Since the next

state and the output functions are represented by OBDDs, and the state encodings

are identical, determining equivalence is the trivial comparison of the corresponding

next state and the output OBDDs. Coudert and colleagues extended the work to

do equivalence checking for state machines without identical state encodings with a

symbolic breadth �rst exploration of the product machine state graph [42, 41]. These

ideas have also been explored by Camurati and colleagues in [34].

All of the above techniques require partitioning the circuit into combinational

logic and latches. This is not always easy for transistor-level circuits that are based

on memory structures because often parts of the state update and output logic are

merged with the storage circuitry. Furthermore, most FSM equivalence approaches

assume that the implementation and the speci�cation machines start from the same

state. Most memory arrays have only a limited reset capability, and therefore the

initial state of the actual circuit usually cannot be predicted. A notable exception

to this is the work by Pixley, [109], which decides the equivalence of two machines

without a knowledge of their initial states.

As a part of state machine analysis, abstraction based techniques have been used

to attack the state explosion problem. Techniques in this class attempt to verify

that if a temporal logic formula holds in the abstracted system, then it also holds in

the original transition system [86]. In this approach, the original transition system

is never constructed and the abstractions work directly on an HDL-like language

describing the system to produce the abstract transition system. Such an approach

is not applicable here, for our starting point is a 
attened transistor-level netlist, and

these techniques do not work at this level of abstraction. Symmetry based approaches

to attack the state explosion problem are more recent [50, 38, 69, 100]. These have

been described in chapter 3.

Temporal Logic

While the section above mentions some of the more successful and automated appli-

cations of temporal logic to hardware veri�cation, the idea of using temporal logic

to study properties of concurrent, reactive systems is not new [90, 110, 111]. In a

temporal logic, temporal operators are added to the usual propositional operators to

allow reasoning about dynamically changing situations. There exist many 
avors of
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temporal logic including linear time temporal logic (LTL) and branching time tem-

poral logic (BTL). LTL versions of temporal logic [110] characterize time as a linear

sequence of events and proof systems for LTL have been studied in [91, 84]. BTL

versions of temporal logic characterize the behavior of systems over time as a set

of branching possibilities such that at any given point of time there are multiple

branching sequence of events (paths) each expressing a possible sequence the system

may take in the future. Various 
avors of BTL exist [48], including the well known

CTL [37]. As stated above, symbolic model checking techniques can e�ciently check

the truth of a CTL formula for small systems. Temporal logics are suitable for ex-

pressing qualitative properties of systems like safety and liveness properties. With the

exception of CTL model checking work by Clarke and colleagues, there is little use of

temporal logic formalisms for automated veri�cation of large �nite state systems.

Symbolic Simulation

While symbolic simulation is best known today for simulation and veri�cation of

digital circuits [21, 117], its use for hardware veri�cation can be traced to Darringer

in [44]. The essence of his approach is to establish a simulation relation between the

speci�cation and the implementation programs, and show that the symbolic execution

trees for the programs are the same. Darringer applies this technique for microcode

veri�cation.

Our version of symbolic simulation is an extension of conventional digital simula-

tion, where a simulator evaluates circuit behavior using symbolic Boolean variables to

encode a range of circuit operating conditions. Circuits nodes can take on symbolic

values in addition to the constants 0, 1 and X. The use of symbolic Boolean values

makes each run of a symbolic simulator equivalent to multiple runs of a conventional

simulator, one for each assignment of 0/1 values to the symbolic Boolean variables

introduced during the simulation.

Symbolic simulation became more practical after the introduction of OBDDs by

Bryant [15]. Straightforward symbolic simulation is adequate for verifying combi-

national circuits or combinational portions of sequential circuits [88]. The e�cient

extraction of the logic functionality of a digital MOS circuit in terms of Boolean opera-

tions [19, 18], and the availability of OBDDs, made symbolic simulation of switch-level

circuits feasible. The COSMOS simulation system developed at Carnegie Mellon
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University [25] was the �rst to have the capability to do symbolic ternary switch-

level simulation. In [23], Bryant describes the veri�cation of of memory circuits using

ternary switch-level simulation. The desire to leverage the power of ternary switch-

level simulation, and the ability to do hardware veri�cation by logic simulation [16]

gave rise to the technique of Symbolic Trajectory Evaluation (STE). In STE, cir-

cuit behavior is expressed as a set of assertions in a carefully restricted speci�cation

language. The circuit is simulated with symbolic ternary simulation patterns derived

from the assertions, and the response of the circuit is compared against that expected

from the assertion (details in chapter 2). Early approaches to formalizing the concepts

of STE can be traced in the following succession of papers from Bryant and colleagues

| [5], [26], and [27]. Many utilities, and the core in the Voss veri�cation system [116]

come directly from the symbolic simulation based formal veri�cation e�orts at CMU.

In [117], Seger and Bryant extend STE to work with a richer value domain, and a

more generalized assertion syntax. Recent STE extensions by Jain and Bryant [72]

allow the speci�cation of system behavior while operating in non-deterministic envi-

ronments.

Bose and Fisher [12] have used symbolic simulation, and the idea of representation

functions [65] to verify pipelined systems. The representation function maps the state

of a pipelined design into a that for a unpipelined design. The system behavior is

speci�ed as a set of Hoare like pre and postconditions.

Symbolic simulation based techniques have the capability of working with systems

much larger than what be handled by traditional state machine analysis approaches

like CTL model checking. Another advantage is their ability to work with detailed cir-

cuit models. However, successful application of symbolic simulation based approaches

for verifying memory arrays requires overcoming signi�cant fundamental and prag-

matic issues, which is the subject of this thesis. We discuss this in more detail in

section 1.3.

Theorem Proving

In theorem proving based approaches, the circuit is described as a hierarchy of compo-

nents, and there is a behavioral description of each component in the hierarchy. The

proof of a design's correctness is based on proofs of its component's correctness, which

is obtained by composing the proofs of the sub-components at the lower level. The
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HOL [57], Boyer-Moore [13] and the PVS [98] theorem provers have been successfully

used to verify several hardware systems.

HOL [57, 56] is among the best known theorem provers which has been applied to

hardware veri�cation. HOL mechanizes proofs of theorems in higher order logic. The

user interacts with HOL through ML, a strongly typed functional language [104], and

the type system of the implementation guarantees that it has a sound proof system.

Since HOL has its origins in Cambridge University, it is not surprising that a lot of

work on formal veri�cation from this university has centered around HOL. Among

others, these include work by Camilleri [35], Joyce [76], and Melham [93].

The Boyer-Moore theorem prover [13], which is based on quanti�er free �rst order

logic, is more automated than the HOL theorem prover. A signi�cant application of

the Boyer-Moore theorem prover is the veri�cation of the FM8501 microprocessor by

Hunt [68]. The PVS (Prototype Veri�cation System) theorem prover [98] is based

on type higher order logic. PVS provides a speci�cation language integrated with

a theorem prover, and support procedures to ease the burden of developing proofs.

Srivas and colleagues have used PVS to verify several hardware designs including a

pipelined processor [120, 121], and a SRT division module [114].

However, the basic weakness of theorem proving approaches is that they require a

large amount of user intervention to create speci�cations and perform proofs, which

makes them unsuitable for automation. Attempts at automation of proofs have not

been particularly successful, and proofs still require substantial interaction, and skilled

guidance from the user. In the context of arrays, it worth noting that most theorem

proving approaches, with the exception of Weise [124], use rather weak circuit models.

This is a serious limitation, since arrays are designed at the transistor-level, and,

therefore they should be veri�ed at the switch-level.

Other Approaches

In a technique developed by Burch and Dill [33], the user provides behavioral de-

scriptions of an implementation and speci�cation. These descriptions are compiled

into transition functions. The veri�er attempts to proves that if the implementation

and the speci�cation start in any matching pair of states, then the result of execut-

ing any instruction will lead to a matching pair of states. The mapping between

implementation and speci�cation is de�ned by using a number of NOPs to 
ush out
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internal pipeline registers. This approach is geared towards verifying the correct-

ness of high-level system descriptions. In contrast, we need a technique to verify the

transistor-level implementation of a design. It assumes the correctness of data-path,

and concentrates on proving the correctness of the control. This makes it unsuitable

for our problem domain, where we want to verify transistor-level implementations of

various hardware units like register-�les, TLB's and cache tags.

1.2.2 Why are arrays di�cult to verify?

Switch-level simulation has long been the predominant array veri�cation technique in

industry. However, the size and complexity of arrays precludes the use of a exhaustive

set of simulation vectors. The typical veri�cation run simulates only a small fraction

of the system behavior space. Memory arrays include many complex features like self-

timed components and multiple internal clock phases. This complexity, and their ever

increasing size exacerbates the veri�cation problem. Therefore, it is not surprising

that often design errors slip by the veri�cation process, only to reveal themselves in

Silicon.

A multitude of reasons make arrays a di�cult class of circuits to verify using most

existing formal veri�cation techniques. We have enumerated these below.

1. State explosion problem.

The large number of state holding elements can result in the state explosion

problem. The Boolean functions to represent the next state and the output

functions for arrays can be very large, especially since arrays can contain over

104 state holding elements. For designs with non-trivial behavior, e.g., the

cache tags unit, attempting to build the output function which depends on all

the internal state values will most likely lead to unacceptably large BDDs. For

the same reason, the construction of the transition relation and keeping track

of the characteristic function will also be prohibitively expensive.

2. Arrays do not follow the classical FSM structure of combinational logic and

feedback latches.

Arrays are based on memory-like structures. Often they have state update and

output logic merged with state storage which makes it di�cult to separate the
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design into combinational logic and latches. Even if it were possible to separate

an array into combinational logic and latches, such a model will likely fail to

capture the complex internal timing inherent in most arrays.

Many veri�cation techniques (e.g. [109]) do not allow combinational loops in

circuits. Therefore, such techniques will not work in the case of cross coupled

inverters, which is a commonly used circuit structure for memory circuits.

3. The switch-level analysis bottleneck

Prior to running STE on a switch-level circuit, it is necessary to derive its

excitation function by switch-level analysis of the circuit (Section 2.2). For large

memory array circuits which have large channel connected components, this

step becomes prohibitively expensive (Table 3.1). This analysis stage imposes

a limit of a few hundred thousand transistors on the maximum circuit size that

can be analyzed within practical space and time bounds. Clearly, this is not

adequate, as microprocessors today have on-chip arrays like level 1 and level 2

caches containing well in excess of a million transistors.

4. Lack of information on state points in the circuit

The absence of such information in the traditional design and veri�cation method-

ology makes it problematic for both property veri�cation tools, as well as ma-

chine equivalence checkers. To circumvent this problem, veri�cation tools like

Verity [82] require that the design has identical hierarchical partitioning in both

the RTL, and the transistor-level views. Such a strict requirement a�ects the

overall design partitioning in an adverse manner. Often, hierarchical partition-

ing at the RTL level is chosen to represent the high-level system functionality,

and at the transistor-level, a hierarchical partitioning that is suitable for layout

is desired.

1.3 Scope of the thesis

We start with the formal veri�cation technique of STE to solve the problem of ver-

ifying memory arrays. However, direct application of STE in this domain is not

without challenges. We classify the challenges into two categories | fundamental,
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and methodology related. The fundamental challenges include the state explosion

problem which results in unacceptably large OBDD growth for certain classes of cir-

cuits, and the switch-level analysis bottleneck. The methodology related challenges

include problems like having a general framework to specify and verify array proper-

ties, and relating low-level circuit implementation details to an abstract view of the

circuit. We have built upon earlier work on STE to overcome these challenges. The

principal contributions of this thesis are the following:

� Exploiting symmetry with STE

We have developed techniques to exploit symmetry while verifying transistor-

level circuits by STE. We show that exploiting symmetry can allow one to verify

systems several orders of magnitude larger than otherwise possible. We have

veri�ed memory arrays with over a million transistors. The technique we have

developed also successfully overcomes the switch-level analysis bottleneck. We

believe that with our work, the problem of SRAM veri�cation is solved.

� Veri�cation of content addressable memories

We have studied the structure of content addressable memories (CAMs). Using

new Boolean encoding techniques we have developed techniques to e�ciently

verify this class of circuits. Our encoding techniques scale up well in terms of

space requirements, as compared to naive encodings. From our experimental

results, we believe that we have solved the problem of verifying all the di�erent

types of CAMs that are found on a modern microprocessor.

� Automated state node identi�cation

To facilitate the use of STE, we have developed an automated state node identi-

�cation technique, and we have used this technique to successfully verify several

industrial arrays.

� Application of the techniques developed in the thesis to several memory array

designs from state of the art microprocessors.

An integral part of our thesis has been the application of the techniques we

have developed to real industrial designs. We have used our techniques to
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verify the following memory arrays from recent PowerPC processors | multi-

ported register �le, data cache tags unit, branch target address cache, and a

block address translator array. The last two arrays are complex CAMs.

1.4 Thesis Overview

Chapter 2 discusses symbolic trajectory evaluation of switch-level circuits. It starts

with our new atom formulation of STE which facilitates discussion of symmetry in

circuits. The chapter discusses the methodology we have adopted for veri�cation of

memory arrays. In addition, the chapter also discusses the switch-level model, which

is a prerequisite for understanding the circuit transformation techniques we use to

create conservative approximations.

Chapter 3 �rst de�nes what a symmetry property means, and it then classi�es

symmetries in systems as structural, data, and mixed structural data symmetries. It

discusses how these symmetries can be veri�ed in a system. It discusses the use of

conservative approximation to create reduced circuit models, and to partition cir-

cuits to expose highly symmetric regions of designs. The chapter then illustrates the

application of the techniques developed to verify SRAM designs.

Chapter 4 is on the veri�cation of content addressable memories (CAMs). This

chapter starts with a discussion on the structure and properties of CAMs. It then

develops techniques for generation of ternary vectors essential for verifying CAMs

e�ciently. It presents results which demonstrate the e�ciency of our techniques.

Chapter 5 discusses the state node identi�cation problem. It discusses the basic

theory underlying the identi�cation problem, and it then discusses the approaches we

have used successfully for identifying state nodes in large memory arrays. We then

present a general algorithm for state node identi�cation and some results we have

obtained on simple circuits.

Chapter 6 is on case studies on veri�cation of several memory arrays from recent

PowerPC microprocessors. These include a multi-ported register �le, a data cache

tags unit, a branch target address cache circuit, and a block address translator circuit.

We discuss the high-level design of each of these circuits, some of the interesting

properties we veri�ed, and the bugs we discovered during the veri�cation process.

Chapter 7 rounds o� the thesis with an evaluation of the work and possible future
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research directions.

Note: Figure 1.2 has been reproduced from [60, page 9] with permission from MicroDe-

sign Resources.
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Chapter 2

Symbolic trajectory evaluation of

switch-level circuits

We use symbolic trajectory evaluation (STE) to verify memory arrays. The level of

abstraction most appropriate for modeling this class of circuits is the switch-level.

To specify and verify the behavior of memory arrays, we have adopted a veri�ca-

tion methodology which partitions the speci�cation into two components | a set

of assertions describing abstract system behavior, and an implementation mapping

specifying low-level implementation details. This chapter gives a brief background on

these basic aspects of our veri�cation methodology.

2.1 Symbolic Trajectory Evaluation

2.1.1 Mathematical Notation and Background

Before we proceed with the main presentation, we brie
y discuss some of the notation

and the basic mathematical concepts used in this chapter.

Our notation generally uses upper case script letters like P;Q;R : : : to denote

sets. For example, B denotes the set of binary values f0; 1g, and T denotes the set

of ternary values f0; 1;Xg. Generally, lower case letters, p; q; r; :::, denote individual

set elements.

A binary relation R on set Q is a subset of Q � Q. Often, we use the in�x

21
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notation pRq for (p; q) 2 R. Relation R on a set Q is a partial order if it is re
exive,

symmetric, and transitive, i.e.,

8q 2 Q: qRq

q1Rq2 ^ q2Rq1 ) q1 = q2

q1Rq2 ^ q2Rq3 ) q1Rq3

A poset is an ordered pair hS;vi, where S is a set, and v is a partial order of S.

A commonly used poset in this thesis is the ternary value poset, hT ;vT i. In this

poset, T equals f0; 1;Xg, the discrete states of the switch-level mode, and the partial

order vT is such that, 8a 2 T : avT a, XvT 0 and XvT 1. The partial order vT is

consistent with the information conveyed by the values in T since a 0 or a 1 conveys

more information than an X in a circuit.

If hS;vi is a poset, P � S, then q 2 S is a lower bound of P i� q v p for all

p 2 P. A lower bound of P is called the greatest lower bound of P, written glb(P), if

and only if q v p for every lower bound q of P. Similarly, the upper bound, and the

least upper bound written as lub(P) are de�ned dually. For notational convenience,

when we enumerate the elements of a set, e.g., P = fp; qg, then we write glb(P) as

glb(p; q), rather than glb(fp; qg). Similarly, lub(P) is expressed as as lub(p; q). A

poset hS;vi has a universal lower bound ? 2 S i� ? v p for all p 2 S. The universal

upper bound, >, is de�ned dually.

A poset hS;vi is a complete lattice if lub(P) and glb(P) exist for every subset

P � S. A complete lattice has a universal upper bound > 2 S, and a universal lower

bound ? 2 S. For example, the powerset 2P of set P, with the subset relation � is

a lattice. The set union operation, [, and the set intersection operation, \, are the

lub, and the glb operations respectively. Set P, and the empty set ;, are the universal

upper bound, and the universal lower bound, respectively of this lattice.

If hS1;v1i; hS2;v2i; : : : hSn;vni are n complete lattices, then hS;vi is a complete

lattice, where S = S1�S2� : : :�Sn, and for any p = (p1;p2; : : : ;pn) 2 S, and q =

(q1;q2; : : : ;qn) 2 S p v q, i� pi vi qi for 1 � i � n. hS;vi is a complete lattice.

Given a poset hS;vi, and a mapping f : S ! S, we say that f is monotone if

and only if

p v q) f(p) v f(q)
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System behavior is expressed as a sequence of elements from some set S. The set

of all in�nite sequences of elements of S is denoted by S!. While these sequences are

in�nite conceptually, most properties we are interested in can be determined from

�nite length pre�xes of these sequences. Given a poset hS;vi, we can extend the

relation v to elements of S! by a point-wise extension of v. If s1 = s1
0s1

1 : : :, and

s2 = s2
0s2

1 : : : are elements of S!, then s1 v s2 i� si1 v si2 for i � 0. Similarly, lub

and glb can be extended point-wise.

2.1.2 Model structure and State Domain

Our view of circuits is quite abstract. We view circuits as consisting of a set of nodes

and an excitation function which determines how the circuit nodes get updated at

every time step. This abstract viewpoint can capture behavior at various levels of

abstraction ranging from detailed switch-level models to register transfer level and

high-level behavioral models. The important questions that arise are the following:

� What is the domain of values circuits operate over?

� Does this domain have some structure?

� How are the excitation functions generated and represented?

This section answers the �rst two questions. Section 2.2 answers the last question.

In this thesis, we predominantly deal with switch-level models of circuits. In

this model node voltages are expressed by the 0,1,X discrete values of the ternary

set T . An early formulation of STE [27] worked directly on this ternary domain.,

with the natural information ordering of the ternary values as speci�ed by the poset

hT ;vT i. A later formulation of STE was generalized to handle lattice-structured

value domains [117], and more complex forms of assertions. We can extend hT ;vT i

T by adding a top element, >, to T such that for all elements a in T [ f>g, avT>.

This approach, however, does not provide a suitable framework to allow the clear

expression of symmetry properties of a circuit. This has motivated us to describe the

atom formulation of STE, where the value domain of circuits is a set of atoms.

Intuitively, knowledge about about the state of a circuit is built up of information

atoms, similar in the spirit of how the physical world we live in is composed of atoms1.

1At least from the point of view of a chemist.
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Set of atoms = 

a b

,    ,    ,{a a- b+ b-+ }

Figure 2.1: Set of atoms for an inverter circuit.

The state of a circuit consists of values at the circuit nodes. Thus, we need to de�ne

atoms associated with every circuit node, as described below.

De�nition 1 Let N denote the set of nodes of a circuit. For every node n of a circuit,

we de�ne two atoms, n+ and n�, indicating that node n has value 1 or 0 respectively.

Let A denote the set of all the atoms of a circuit.

Figure 2.1 shows the set of atoms for a two node circuit. An atom for a node

restricts the value of the node. A set of atoms of a circuit restricts the values on the

circuit nodes. For example, the atom set fa+; b�g indicates a is 1, and b is 0. This

motivates the following de�nition of a circuit state.

De�nition 2 Given the set of all the atoms of a circuit, A, we de�ne a circuit state

S to be any subset of A, and S to be the set of all possible states, i.e., S = 2A.

State set S, together with the subset ordering � forms a complete lattice, where

states are ordered according to their \information content," i.e., how much they

restrict the values of the circuit nodes. For example, the structure of the state domain

for the circuit in Figure 2.1 is illustrated in Figure 2.2. In this diagram we indicate

the set of atoms in each state. As the shaded regions indicate, states can be classi�ed

as being \partial", \complete", or \con
icting". In a partial state, some nodes have

no corresponding atoms while others have at most one. In a complete state, there is

exactly one atom for each node. In a con
icting state, there is some node n for which
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Figure 2.2: Structure of State Lattice for Two Node Circuit

both atoms n� an n+ are present. Such a state is physically unrealizable|it requires

a signal to be both 0 and 1 simultaneously. Con
icting states are added to the state

domain only for mathematical convenience. They extend the semilattice derived from

a ternary system model into a complete lattice. Our state lattice has the empty set

; as its least element and the set of all atoms A as its greatest element. The set

union and intersection operations are the lub and the glb operations, respectively, in

the lattice.

Most traditional presentations of switch-level models describe circuit operation

over the ternary domain T . Each circuit node takes on one of the three distinct

values from the set T = f0; 1;Xg, where the X value denotes an unknown or an

indeterminate value. The atom representation of the state domain is closely related

to the ternary domain. If a circuit state contains n+, but not n�, then node n has a

value of 1. Similarly, the presence of n�, and the absence of n+ implies that n has

a value of 0. If the circuit state contains neither n+, nor n�, then n has a value of
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X Y y
δ

Figure 2.3: Y is the inverter excitation.
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Figure 2.4: Excitation function of inverter in Figure 2.1.

X. For example, in the circuit of Figure 2.1, the set of atoms ;, fa+g, fb�g, and

fb�; a�g, represent the circuit states (a = X; b = X), (a = 1; b = X), (a = X; b = 0),

and, (a = 0; b = 0), respectively. A circuit state such as fb+; b�g is a con
icting state.

Such con
icting states are mapped to a top element, >, which is added to hT ;vT i

to extend it to a lattice [117].

are which contain positive and negative atoms for a node are mapped to a single

element >.

Since we attempt to model the behavior of physical systems with delays, the term

excitation function is more appropriate for describing the function which speci�es

how circuit state is updated [28, pp.165-166]. Given a physical inverter with input x,

output y and a delay �, it may be modeled as an ideal zero-delay inverter, with input

x, and output Y , followed by a delay element with input Y , and output y, as shown

in Figure 2.3. The �ctitious signal Y is the excitation of the physical inverter.

The behavior of a circuit is de�ned by its excitation function Y :S!S. This

function serves a role similar to the transition relation or next-state functions of
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temporal logic model checkers. We require this function to be monotonic over the

information ordering, i.e., if two states are ordered s1 � s2, then their excitations

must also be ordered: Y (s1) � Y (s2). Intuitively, we can view a state as de�ning a

set of constraints on the signal values. We require the excitation function to remain

consistent as more constraints are applied. Since input nodes in a circuit are not

constrained by the circuit itself, for any state s 2 S, Y (s) does not contain any atoms

corresponding to the input nodes. Figure 2.4 shows the excitation function for the

inverter of Figure 2.1. A circuit model is de�ned by its lattice-structured state-set,

and a monotonic excitation function over this state-set. Formally,

De�nition 3 A circuit model M is a tuple M = hS; Y i, where Y : S ! S is a

monotonic excitation function.

The behavior of a circuit can be represented as an in�nite sequence of states. We

de�ne a circuit trajectory to be any state sequence � = �0�1 : : : such that Y (�i) � �i+1

for all i � 0. That is, the state sequence obeys the constraints imposed by the circuit

excitation function. Below, the sequences �1, and �2, where (s)
� indicates an in�nite

repetition of state s, are both trajectories of the inverter of Figure 2.1.

�1 = ; fa+g fa�; b�g (fb+; a�g)�

�2 = fa�g fa+; b+g fb�g (;)�

As can be seen, these trajectories always obey the constraints imposed by the ex-

citation function of Figure 2.4 | any state that contains the atom a+ (a�, resp.)

constrains the succeeding state to contain the atom b� (b+, resp.).

L(M) denotes the set of all trajectories of a circuit model M. L(M; z) denotes

the set of all trajectories � = �0�1 : : : of M such that z � �0, i.e., all trajectories

which start with a state which is more constrained than z. The set L(M; ;) equals

L(M).

We can extend the � ordering on elements of S, to sequences of elements of S.

This extended ordering is denoted as v. If �1 = �01�
1
1 : : :, and �2 = �02�

1
2 : : :, then

�1 v �2 i� for all i � 0, �i1 � �i2.
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2.1.3 Speci�cation Language

In STE, the speci�cation language consists of a set of trajectory assertions. The

simplest form of trajectory assertion has the form [A =) C], where A, and C are tra-

jectory formulas. A, the antecedent of the trajectory assertion describes the stimulus

to the circuit over time, and C describes the expected response.

Trajectory formulas (TFs) have the following recursive de�nition:

1. Atoms: For any node n, atoms n+ and n� are TFs.

2. Conjunction: (F1 ^ F2) is a TF if F1 and F2 are TFs.

3. Domain restriction: (E ! F ) is a TF if F is a TF and E is a Boolean

expression.

4. Next time: (XF ) is a TF if F is a TF.

The Boolean expressions occurring in domain restriction operators, having the

form E ! F , give these formulas a symbolic character. They can be thought of as

\guards," i.e., F must hold for the cases where E evaluates to true. For the theoretical

development, however, it is convenient to �rst consider the form where E is restricted

to be either 0 (false) or 1 (true). A scalar trajectory formula obeys this restriction

throughout its recursive structure. The extension to the symbolic case then simply

involves considering the valuation of the expressions for each variable assignment. X

is the next time temporal operator which causes advancement of time by one unit.

The truth of a scalar trajectory formula F is de�ned relative to a model structure

and a trajectory. Let � and �0~� both be members of L(M). �j=MF , the truth of F

relative to modelM, and a trajectory � is recursively de�ned as:

1. (a) �0~�j=Ma+ i� a+ 2 �0.

(b) �0~�j=Ma� i� a� 2 �0.

2. �j=M(F1 ^ F2) i� �j=MF1 and �j=MF2.

3. (a) �j=M(1! F ) i� �j=MF

(b) �j=M(0! F ) holds for every �.
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4. �0~�j=MXF i� ~�j=MF .

A de�ning sequence of a trajectory formula F , denoted by �F , is the weakest

possible sequence of states \consistent" the restrictions speci�ed by F . We clarify

this below. The recursive de�nition of this sequence is given as:

1. (a) �+a = fa+g;;; : : :

(b) ��a = fa�g;;; : : :

2. �F1^F2 = lub(�F1; �F2)

3. (a) �0!F = ;;; : : :

(b) �1!F = �F

4. �XF
= ;�F

While �F is not necessarily a trajectory, it can be shown that �j=MF i� � v �. A

de�ning trajectory is the weakest sequence of states that can be constructed, given the

constraints speci�ed in a trajectory formula. For example, in the de�nition above,

the de�ning trajectory for a formula consisting only of a+, is a sequence, the �rst

element of which is the set fa+g, and the remaining elements are the empty set ;.

While �F is not a trajectory, we may combine it with the successor function Y , to

get the de�ning trajectory, �F , of F. It can be shown that �F is the unique weakest

trajectory satisfying F . We outline the construction of �F ahead. Let �F = �0F �
1
F : : :.

Let �F = � 0F �
1
F : : : be the de�ning trajectory. Then, the successive elements of �F are

given by the following construction:

� iF =

(
�0F if i = 0

�iF [ Y (� i�1F ) otherwise

The truth of a trajectory assertion [A =) C] is de�ned with respect to a model

M, and a set of trajectories L of M. Expressed as, Lj=M[A =) C], it is de�ned to

hold i� for all � 2 L, �j=MA implies �j=MC. Often, L equals L(M), the complete

set of trajectories of model M. That [A =) C] is true for every trajectory in this

set is denoted as j=M[A =) C]. The existence of a de�ning trajectory for every

trajectory formula considerably simpli�es the test for determining the truth of an
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assertion. Given an assertion [A =) C], we can verify that it holds for all elements

of L(M) by performing the test �C v �A. The key result of STE, stated ahead, has

been proved by Bryant and Seger in [117].

Theorem 1 j=M[A =) C] i� �C v �A.

Thus, to verify the truth of an assertion, all we need to do is construct a de�ning

sequence, and a de�ning trajectory, and check that the former is weaker than the

latter. Furthermore, we need check only an initial pre�x of the two sequences, which

is equals the \depth" of C. The depth of a formula F, denoted by d(F ), equals the

maximum nesting of the next time X operator. This is stated as corollary 1.

Corollary 1 �C v �A i� �iC v � iA for 0 � i < d(C).

2.2 The switch-level circuit model

The switch-level model abstracts digital metal-oxide semiconductor (MOS) circuits as

a network of nodes connected together by bidirectional transistor \switches." This

model expresses transistor conductances and node capacitances by discrete strength

and size values, and node voltages by discrete states f0; 1;Xg. It can capture many

of the important low-level features in MOS circuits such as ratioed, complementary,

and precharged logic, and bidirectional pass transistors.

Prior to development of the switch-level model, the Boolean logic gate model was

a popular abstraction of logic circuits. This model consists of a set of unidirectional

logic gates connected by memoryless wires, in modeling MOS circuits. However,

the inability of this model to capture many aspects of MOS circuit behavior has

contributed to the widespread popularity of switch-level models since their inception.

Since memory arrays are designed at the transistor-level, switch-level models are

particularly appropriate for modeling this class of circuits.

Ahead, we brie
y describe the MOSSIM II switch-levelmodel developed by Bryant

[17]. This was the �rst comprehensive formal model of switch-level networks com-

bining transistors of di�erent strengths, nodes of di�erent sizes, and various node

states and transistors conductances into a uniform mathematical framework. A brief

description of symbolic Boolean analysis of switch-level circuits follows this.
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Figure 2.5: MOS transistors.

2.2.1 The model

In the switch-level model, a MOS transistor network consists of a set of nodes con-

nected together by transistor switches. Nodes are of two types: input, and storage. An

input node provides strong signals from sources external to the network, like power,

ground and data inputs. Storage nodes are internal to the circuit, and they have

states determined by the operation of the network and can retain these states in the

absence of applied signals. Each storage node is assigned a size in the set f0,...,kg to

indicate in a highly idealized way its capacitance relative to other nodes with which

it may share charge. The state of a node is represented by one of three logic values:

0, which indicates a low, 1 which indicates a high, and an X which represents an

unknown or uninitialized value. Input nodes are assigned a size w, which is greater

than the size of all the nodes and the strengths of all the transistors in the network.

A MOS transistor is a three terminal device with node connections gate, source,

and drain. This device acts like a voltage controlled switch, depending on the value

at its gate. Normally, there is no distinction between source and drain terminals { the

transistor is a symmetric, bidirectional device. We distinguish between three types

of transistors: n-type, p-type, and n-type depletion (Figure 2.5). A transistor acts

as a switch between source and drain controlled by the state of its gate node. This

switch may be open or closed, or it may have a conductance of unknown value. These

three conduction states, open, closed and unknown are represented by the values 0,

1, and X respectively. Table 2.1 shows the conduction states of the three transistor

types as a function of their gate node states. Each transistor has a strength in the set

fk+ 1,...,w� 1g. The strength of a transistor indicates its conductance when turned

on relative to other transistors which may form part of a ratioed path.

Figure 2.6 shows a switch level circuit, consisting of the nodes a, b, c, k, s, t, p,
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Gate N-type P-type N-depletion

0 0 1 1

1 1 0 1

X X X 1

Table 2.1: Transistor state with gate values

Vdd, and GND, and the transistors T1, through T8. The node sizes and the transistor

strengths are indicated by the numbers in parenthesis. The storage nodes in the

circuit are s and t, which have sizes of 1, and 2, respectively. All transistors have a

size of 3, except T6, which has a size of 4. The input nodes in the circuit, a, b, c, k,

Vdd, and GND have a size of 5. The states of input nodes Vdd, and GND are �xed at

1, and 0, respectively.

Nodes in a switch-level network are connected together by directed paths of con-

ducting transistors. Each path originates at a source node, and terminates at a

destination node. The path has a strength, which roughly indicates the approximate

amount of charge that can be supplied along the path from the source to the desti-

nation. In case of a path from an input node to a storage node, the strength of the

path equals that of the weakest transistor in the path. In case of a path connecting

two storage nodes, the strength of the path equals the size of the source node. The

state of a node depends on the states of the source nodes of the strongest paths to

this node.

2.2.2 The behavior of switch-level circuits

Most switch-level analysis and simulation tools partition the transistor-level network

into a set of communicating components, termed channel connected subnetworks (CC-

SNs). Each CCSN consists of a set of storage nodes that can share charge, together

with the transistors that connect them. Behavior within a CCSN can be di�cult

to analyze because of the bidirectional nature of transistors, and the multiple sig-

nal strengths. The interaction between the CCSNs is simpler. Each CCSN may be

viewed as a sequential machine, with inputs, internal state, and outputs. The inputs



2.2. THE SWITCH-LEVEL CIRCUIT MODEL 33

k

(5)Vdd

T3 T4

T2

T1

T5

T6

T8

T7a

a b c
t

b

p
(2)

s

(3)

GND (5)

(3)

(3)(3)

(3)

(4)

(3)

(3)(1)

Figure 2.6: Example of a switch-level network.

consist of the transistor gate nodes, and input nodes connected to transistor source

or drains. The storage nodes hold the CCSN state, and a subset of the CCSN nodes

constitute the set of observable outputs of the CCSN. Given its initial state, and the

present inputs, this sequential machine computes a new state, and new outputs. The

entire transistor network is thus modeled as a system of communicating sequential

machines. Figure 2.7 shows the circuit of �gure 2.6 partitioned into CCSNs CCSN1,

and CCSN2.

The steady-state response function of a CCSN describes its sequential behavior.

This function speci�es how the new CCSN node states are computed, given the initial

storage node states, and the values at the inputs and the gates of the CCSN, and

given that the transistor states are �xed long enough for the nodes to stabilize.

The excitation function of a CCSN gives the steady-state response of the CCSN

nodes, when the transistors are held �xed in states determined by the initial storage

node states and the inputs. An important property of the excitation function is its

monotonicity over the f0; 1;Xg values. This property implies that if some inputs of

this function were set to X, and a given output were 0 or 1, then changing the X

inputs to 0 or 1 does not alter the output. This property is particularly important

for veri�cation, in view of the \information-content" ordering of the three values.

We use the unit-delay model to describe circuit delays. In this approach, a change

in the state of a transistor gate is re
ected as a change in the state of the transistor

after a delay of one time-step. This time-step is used as the unit of time. In each
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Figure 2.7: Circuit partitioned into CCSNs CCSN1 and CCSN2.

CCSN, given the logic levels at the inputs, and the storage nodes, a new logic level is

computed for each storage node according to the CCSN excitation function. Then,

after a delay of one time-step, the storage nodes are assigned the new logic levels just

computed.

2.2.3 Computing the steady-state response

The steady-state response of a switch-level network can be obtained by a symbolic

Boolean analysis of the network [19, 18]. In this approach, the problem of determining

the network response is cast in terms of determining paths through the channel graph

of a CCSN. The result of the analysis is a number of Boolean expressions which state

how the ternary state of the CCSN is updated in each time-step.

To express and compute ternary quantities in the switch-level model in terms

of Boolean operations, a \dual rail" encoding is used. Each ternary quantity x, is

represented by a pair of Boolean values, x:L, and x:H , as shown in Table 2.2. For

each node n, we introduce two Boolean variables, n:L, and n:H . The analysis problem

can be speci�ed as: for each node n in the circuit, derive the Boolean formulas N:H ,

and N:L, which represent the encoded value of the steady-state response at the node

as a function of the initial node states.

The goal of symbolic analysis of a network is to derive Boolean expressions indi-

cating the conditions under which conducting paths are formed in the network. To
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x x:H x:L

0 0 1

1 1 0

X 1 1

Table 2.2: Dual rail encoding of x.
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Figure 2.8: Rooted paths in channel graph.

express these concepts more precisely, we �rst de�ne a channel graph, which has a

vertex for each circuit node, and an edge for the channel of each transistor in a switch-

level circuit. The CCSN de�ned earlier in section 2.2.2, is a connected component

in this graph. The analysis process examines one CCSN at a time. The discussion

ahead pertains to the analysis of a single CCSN.

A rooted path in the channel graph is a directed path between two nodes. A rooted

path p originates at root(p), and it terminates at dest(p). Paths have a length, equal

to the number of edges in it. A path can have a length of 0. The strength of a path

re
ects its relative charge transfer capacity. Figure 2.8 illustrates paths of di�erent

types in the channel graph for the circuit of Figure 2.6. p1 is a path of zero length,

with a strength of 5. p2 is a path of strength 3 from the input node Vdd to the storage

node t. p3 is a path of strength 1 from s to t. Note that the di�erence in strengths

of p2, and p3 arises from the fact that p2 conveys charge from an input node which
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can potentially supply unlimited amount of charge, whereas node s can only convey

the stored charge it has through path p3.

A rooted path is termed a de�nite path, if none of the transistors in the path

are in the X state. The steady-state response of a node depends only on the paths

to the node that are not blocked. Informally, a path is blocked if some intermediate

node in the path is the destination of a stronger de�nite path. The charge from

the stronger path overrides the charge from the weaker path. For example, if the

transistor corresponding to path p4 in Figure 2.8 is on, then, p2 and p3, the weaker

paths to node t, do not a�ect the steady-state response of t. If all the unblocked

sources of charge to a node drive it to 0 (or 1), then the steady-state response equals

0 (or 1). Otherwise, if unblocked sources drive a node to con
icting values, then the

node's response equals X. Let fm1;m2; :::;mkg be the the set of nodes which are the

origin of unblocked paths to node n. Let m1:H , m1:L, : : :mk:H , and mk:L be the

pairs of Boolean variables to encode the states of these nodes. If N is the steady state

response of node n then, given the dual rail encoding, it may be encoded as

N:H = m1:H _m2:H _ : : : _mk:H

N:L = m1:L _m2:L _ : : : _mk:L

The analyzer works with signals of one strength level at a time. It starts with

the input signals, which are of the highest strength and works downward, each time

adding in the e�ects of the paths at the next lower strength. For each strength level

w > s � 1, the analyzer sets up and solves using Gaussian elimination three systems

of Boolean equations which yield formulasN:H s, N:Ls, and clears(n) for every storage

node n. N:H s and N:Ls express the steady state response at the node, when all paths

of strengths s and higher have been accounted for. clears(n) expresses the condition

when node n is not the destination of a de�nite path greater than or equal to s. It is

used to set up equations for the next lower strength level. Thus, in the last iteration,

expressions N:H 1 and N:L1 are obtained, and these equal the steady state response

of n.

The Boolean expressions generated in the process of symbolic analysis are rep-

resented by directed acyclic graphs (DAGs), where leaves denote Boolean variables

and constants, and nodes denote Boolean operations. Each node of the DAG repre-

sents a Boolean formula, and often there is considerable amount of sharing in a DAG
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Figure 2.9: Results of switch-level analysis.

structure for the steady-state expressions for the storage nodes of a CCSN. Figure 2.9

shows the steady state expressions for nodes s, and t in component CSSN1 of the

circuit in Figure 2.6.

Section 2.1.2 describes the behavior of systems by an excitation function Y :S!S

over sets of atom. The system response obtained by the analysis above can be easily

converted to our \atomcentric" point of view by a simple transformation. To ensure

consistency between the two representations, this transformation ensures that if the

high-rail n:H (low-rail n:L) value of a node is 1, then the corresponding circuit state

does not include n� (n+). Since the presence of n� precludes the hi-rail from being 1,

(dual true for lo-rail, and n+), the transformation below converts the dual-rail DAGs

to an atomcentric DAG.

1. Transform every x:L value to x+, and every x:H value to x�.

2. In the DAG, convert AND nodes to OR nodes, and OR nodes to AND nodes.

Figure 2.10 illustrates this transformation for the DAG of Figure 2.9.

Many MOS circuits can be partitioned into CCSNs that are quite small, with

fewer than a 20 transistors. However, in some cases CCSNs can contain thousands of

transistors. This is the case for memory arrays, where the transistors in the core of the
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Figure 2.10: Atomcentric view of analysis results.

memory array form a large CCSN. Figure 2.11 shows the core of a 16-bit, 1 word/bit

SRAM circuit, where the entire core consists of just two CCSNs. The transistors and

the nodes included in one of these CCSNs have been shown in the shaded region of

the �gure. As can be seen, with increasing memory size, the size of the CCSN also

increases proportionately. A 1K-bit SRAM circuit with a similar structure has two

large CCSNs with over 3000 transistors each. Analysis of such CCSNs containing

thousands of transistors is very expensive in terms of the time and memory required.

This problem is discussed further, and a solution is described in Chapter 3.

2.3 Methodology for applying STE

STE is a powerful veri�cation technique. However specifying system behavior directly

as STE assertions is often awkward. These assertions include low-level details like

circuit node names, detailed timing, including setup and hold times, clocking disci-

pline etc. Such low-level details tend to obscure the abstract high-level behavior of

the system which can be quite simple. This has motivated us to adopt a methodology

for application of STE which was developed earlier by Beatty [6, 8]. In this section,

we have discussed an outline of the methodology, and we have illustrated it with a

small example.
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The methodology partitions the speci�cation into two components. The �rst

component is the abstract speci�cation. It consists of a set of Hoare-like abstract

assertions which specify the behavior of the system as a set of transitions over an

abstracted system space. The second component is the implementation mapping,

which describes how the abstract state is realized in the concrete implementation

by mapping the abstract state values to values on circuit nodes at speci�ed times.

The abstract assertions are combined with the implementation mapping to yield STE

assertions against which the circuit can be veri�ed using STE. The overall goal of the

methodology is to guarantee that the system being veri�ed performs correctly under

all execution sequences. The methodology establishes this guarantee by verifying

individual operations and ensuring that they can be \concatenated" with others.

Ahead, section 2.3.1 sketches how the methodology establishes a relationship be-

tween the input-output sequences of an abstract �nite-state speci�cation, and the

input-output signals of a concrete sequential design. For more details, the reader is

referred to Beatty's thesis [6]. Following this, section 2.3.2 illustrates the methodology

with an example.

2.3.1 Methodology Basis

Systems are modeled as non-deterministic agents, which accept input sequences and

produce output sequences. Switch-level circuits, and abstract assertions both de�ne

non-deterministic Moore machines, and these can be viewed as agents. The notion of

an implementation realizing a speci�cation is de�ned ahead.

A realization (or design) R implements a speci�cation S with respect to a mapping

I, if and only if for any input sequence the speci�cation might see, and any way of

encoding that input for the design, any response the design produces must be a

possible way of encoding some plausible response that the speci�cation could have

produced from the original input (Figure 2.12). This language containment property

of agents is termed as the obedience property. In order to prevent trivial designs from

being passed o� as implementations, it is necessary for the mapping I to be distinct.

Another non-triviality condition of mappings, conformity, is necessary to ensure that

every legal abstract input sequence can be applied to the system.

While we have talked about only the input-output behavior of systems, agents

usually have internal state. Thus, in order to show that one agent behaves according
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Figure 2.12: Set containment relationship between speci�cation and realization.

to another, it is necessary to expose the internal state of the system. The development

of the methodology in [6] proves that if we were to expose the internal state, and

establish the obedience result for the agents with exposed state, the obedience result

would still apply to the original agents.

A pair of states of a system, such that the system can make a transition from the

�rst to the second, is termed a transition of the system. These transitions constitute

the set of generators of the language, i.e., the system behavior. Therefore, in order

to show behavior containment of the realization by the speci�cation, it is su�cient

to show containment of the realization transitions by the corresponding speci�cation

transitions. Since the realization can be pipelined and can have overlapped transi-

tions, a marked string formalism was developed to take this into account. This last

building block of the methodology bridges the gap between input-output sequences

and individual system transitions.

2.3.2 Illustration of the Methodology

While the presentation in the previous section has been quite abstract, this section

illustrates the pragmatic aspects of the methodology with a simple example.

Consider the 16-bit SRAM circuit in Figure 2.13. This circuit can read from a
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Figure 2.13: 16-bit SRAM

speci�ed memory location, or write to a speci�ed memory location. The read or

write operation is speci�ed by control signals at read, and write, and the address is

speci�ed at the address pins adr.0 through adr.3. The circuit is clocked by a two

phase non-overlapping clock at nodes phi1, and phi2.

Partitioning the high-level system functionality into a set of abstract operations

of the system is the �rst step in the veri�cation methodology. The read and the write

operations are a natural part of the speci�cation. However, it is also necessary to

include the nop operation, to account for the system behavior when neither reads nor

writes are being performed.

Speci�cation of the abstract system state space, followed by a speci�cation of each

of the operations as a set of assertions over the abstract states is the second step in

the methodology. The abstract state space is de�ned by a set of state variables. In

our example, the abstract state includes state components M[0..15] corresponding to

the state holding elements of the circuit. We also specify abstract state components

adr[0..3], rd, wr, datain and dataout, which correspond to the address pins,

read and write pins, and the data in and data out pins in the circuit. Note that

at the abstract level, we specify even the inputs as a part of the state. Such state
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components, however, are only controlled by the environment, and they can change

non-deterministically. Rather than formally specify the syntax of assertions in detail,

we illustrate their key aspects with simple examples (Details may be found in [6], or

[71]).

Abstract assertions are of the form [A
LEADSTO

=) C], where the antecedent A de�nes

a precondition on the system state, and the consequent C de�nes the constraints

on the system state after one transition of the system. The syntax of A, and C is

similar to that of the trajectory formulas, except that they do not contain the next

time temporal operator X. In fact, at the abstract state level, the abstract assertion

[A
LEADSTO

=) C] may be thought of as a trajectory assertion of the form [A =) XC].

The read operation of the SRAM circuit described above may be speci�ed as the

following abstract assertion:

(adr = i) ^ (M[i] = a) ^ (rd = 1) ^ (wr = 0)
LEADSTO

=)

(M[i] = a) ^ (dataout= a)

Intuitively, this assertion speci�es that if the value i appears at the address pins adr,

the ith memory location contains the data value a, and a read is being performed, the

value in the ith memory location remains unchanged, and the correct value appears

at dataout. Symbolic values like a, and i are case variables, and they help specify a

number of di�erent combinations of non-symbolic values in a single symbolic assertion

as above. In addition to the assertion above, it is also necessary to specify that reads

are non-destructive, and the following assertion expresses this property.

(M[i] = a) ^ (rd = 1) ^ (wr = 0)
LEADSTO

=) (M[i] = a)

Similarly, one may specify the write operation with a pair of assertions, the �rst

of which states that a write to a given location updates the location correctly, and

the second speci�es that writes do not alter unaddressed locations. The nop opera-

tion simply involves showing that the data stored in the memory locations remains

unchanged.

The third step in the methodology is speci�cation of the implementation mapping.

For the memory read operation we have illustrated the mapping in Figure 2.14. This
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Figure 2.15: Sequence of SRAM operations aligned at markers.

mapping relates the abstract state to circuit timing and values on actual circuit nodes.

The �gure shows the actual circuit signals and their timings for each \phrase" in the

abstract assertion. The mapping captures such implementation details as that a

two phase clocking is used, and that the read signal is asserted and the address is

provided when phi1 is high. The dotted line at the left of the �gure is the start marker

indicating the nominal start of the operation, and the dotted mark to the right of the

�gure is the end marker indicating the end of the operation. These markers indicate

how di�erent fragments of circuit operation can be combined to yield a sequence of

operations | the end marker of an operation must be lined up with the start marker

of the next operation. Figure 2.15 shows a sequence of SRAM read, write and nop

operations aligned at their start and end markers.

Note that variable i in the abstract assertion shown earlier is used as an array

index. The implementation mapping represents it in binary form as a vector of sym-

bolic Boolean variables. From the antecedent phrase (M[i] = a), the implementation

mapping will initialize each tag storage node k in the memory with a symbolic ternary

function

fk(i;Mem) =

(
tag; if i = k

X; otherwise

where X is the ternary constant of switch-level simulation. This technique, called
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symbolic indexing, is critical to the e�ciency of STE on many memory arrays [6].

It is responsible for reducing the number of variables STE considers to a number

logarithmic in the number of array locations. Symbolic indexing and more general

ternary encodings are discussed further in Chapter 4.

2.4 Related work

2.4.1 Symbolic trajectory evaluation and its extensions

Our presentation of STE comes closest to the work by Bryant and Seger [117, 27].

However, recent work by Jain and Hazelhurst have extended the classes of properties

that can be veri�ed with STE based techniques.

In [72] Jain et al. have developed a more general form of trajectory assertions,

where trajectory assertions are arbitrary control graphs, which consist of state vertices

labeled with antecedent and consequent node formulas. Thus, one can have nested

and interacting loops, which allow the speci�cation of complex non-deterministic

interface protocols at system boundaries [95]. This new formalism, while interesting

and important, is not essential for arrays which generally have simple deterministic

interfaces.

In [64] Hazelhurst et al. have generalized the theory of STE from a binary tem-

poral logic to a quaternary temporal logic called TL. Formulas of the temporal logic

TL include negation, disjunction, and an until operator which is similar to its LTL

counterpart. These richer set of operators, and the four di�erent truth values of the

quaternary logic allow the speci�cation of a broader set of properties, as compared

to the original STE formulation.

2.4.2 Switch Level Modeling and Simulation

Many di�erent switch-level modeling and simulation algorithms have been described

in literature. A small subset of these includes [17], [51], [52], [4], [62], and [22]. How-

ever, rather than describe these in any detail, we refer the reader to the comprehensive

survey on this topic by Bryant [20].
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2.4.3 Methodology for Applying STE

The foundations of the STE methodology we use here were laid down by Beatty

in his thesis [6]. Recent work by Jain [72] has extended Beatty's methodology to

support more complex forms of implementation mappings which have arbitrary graph

structures and include non-determinism.
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Chapter 3

Symmetry

The term symmetry has evolved from the Greek word summetros, which means \of

like measure." The American Heritage Dictionary [2] de�nes it as:

A relationship of characteristic correspondence, equivalence, or identity

among constituents of a system or between di�erent systems.

The use of symmetry is widespread in science. Its applications range from stere-

ochemistry, to quantum mechanics. Theoretical physicists employ symmetry theory

in attempts to reconcile all known fundamental forces of nature | electroweak force,

strong nuclear force and the gravitational force, as a part of the grand uni�cation

theory [87].

The use of symmetry in formal veri�cation is recent [38], [69], [50]. The regularity

in the structure of memory arrays strongly suggests the use of symmetry in their

veri�cation to cut down on space and time. For example, consider the veri�cation of

a SRAM circuit. If all memory locations are identical in the circuit, intuition suggests

that it ought to be su�cient to verify only one memory location in the circuit. In this

chapter, we formalize the notion of symmetry in a circuit. We show how symmetry

can be exploited with STE to e�ciently verify circuits. We illustrate the veri�cation

of a SRAM circuit using these ideas.

Section 3.1 describes our notion of symmetry as an excitation function preserving

state transformation. A discussion on how symmetry properties allow one to infer

the validity of an entire set of assertions from one valid assertion follows this. Sec-

tion 3.3 shows how structural, and data symmetries can be veri�ed by circuit graph

49
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isomorphism checks, and symbolic simulation, respectively. Circuit partitioning and

reduction via conservative approximations is covered in section 3.4, and the following

section illustrates the use of the above ideas for verifying SRAM circuits.

3.1 Symmetries of a circuit

We express both circuit operation and the speci�cations in terms of sets of atoms.

We can therefore express symmetries in a circuit and the corresponding transfor-

mations of the speci�cation in terms of bijective mappings over atoms, named state

transformations.

De�nition 4 A state transformation, �, is a bijection over the set of atoms: � :

A ! A. We can extend � to be a bijection over states by de�ning �(s) for state s as

[a2sf�(a)g.

As the term suggests, a state transformation � takes a system state s and alters

it to a new state �(s). Since � is bijective, ��1 exists. Also, if �1, and �2 are state

transformations, then their composition �1�2 is also a state transformations.

Two types of state transformations, which alter circuit state in a \structured"manner

are particularly interesting. These are the structural, and data transformations.

Below, s[a1=b1; :::; an=bn] denotes the state obtained by simultaneously substituting

atoms a1,: : : ,an for the atoms b1,: : : ,bn, respectively, in state s.

De�nition 5 A structural transformation is a state transformation which swaps the

atoms for two di�erent nodes. For nodes n1 and n2, we write n1 $ n2 to denote

the transformation consisting of the swappings: n+1 with n+2 and n�1 with n�2 . Given

� = n1 $ n2, and a circuit state s, �(s) = s[n+1 =n
+
2 ; n

�
1 =n

�
2 ; n

+
2 =n

+
1 ; n

�
2 =n

�
1 ]

De�nition 6 A data transformation involves swapping the two atoms for a single

node. For node n, we write n� to denote the transformation consisting of the swapping

of n+ with n�. Given � = n�, and circuit state s, �(s) = s[n+=n�; n�=n+]

Intuitively, a structural transformation exchanges two nodes of a circuit (by swap-

ping their atoms), and a data transformation complements the value at a circuit node
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by altering a positive atom of a node to a negative atom, and vice versa. Thus, these

transformations provide us with a convenient mechanism to express circuit structure

and circuit data handling related issues. Composing structural and data transforma-

tions allows us to express a variety of circuit transformations. To simplify notation,

we will denote more complex transformations as a list of elementary transformations.

Our uni�ed view of state transformations and excitations as functions mapping

states into states allows us to succinctly express symmetry in a circuit as an excitation

preserving transform. This closely parallels the de�nition of symmetry in [38] as a

transition relation preserving state permutation.

De�nition 7 A state transformation � is a symmetry property of a circuit with

excitation function Y when �(Y (s)) = Y (�(s)) for every state s.

That is, the excitation of the circuit on the transformed state �(s) matches the

transformation of the excitation of s.

Lemma 1 Symmetry transformations have the following properties.

1. If � is a symmetry property, and Y is an excitation function then Y = �Y ��1 =

��1Y �.

2. � is a symmetry property if and only if its inverse ��1 is a symmetry property.

3. If �1 and �2 are symmetry properties, then their composition �1�2 is also a sym-

metry property.

Proof:

1. Since � is a symmetry property, for every state s, �(Y (s)) = Y (�(s)), i,e, �Y = Y �.

Therefore ��1�Y = ��1Y �, i.e., Y = ��1Y �.

2. ). Since � is a symmetry property, �Y = Y �. Therefore, ��1(�Y )��1 =

��1(Y �)��1, which reduces to Y ��1 = ��1Y . The other direction can be proved

similarly.

3. �1 and �2 are symmetry properties. Therefore, Y = ��11 Y �1, and Y = ��12 Y �2.
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Figure 3.1: Illustration of the symmetries of a circuit

Substituting ��11 Y �1 for Y in the second equation yields Y = ��12 (��11 Y �1)�2, i.e.,

Y = (�1�2)
�1Y �1�2, i.e., �1�2 is a symmetry property. 2

Depending on their constituent state transformations, symmetry properties may

be classi�ed into one of the following three categories:

� Structural symmetry | consists entirely of structural transformations.

� Data symmetry | consists entirely of data transformations.

� Mixed symmetry | consists of both structural and data transformations.

Consider, for example, the circuit shown in Figure 3.1. This circuit consists of k

identical latches. In each latch outL is a complement of the input, and outH has the

same value as the input. Since the latches are identical, this circuit has a structural

symmetry corresponding to the swapping of any pair of latches i and j, such that

0 � i; j < k:

[in.i$ in:j; outL.i$ outL.j; outH.i$ outH.j] : (3.1)

Each individual latch also stores data values 0 and 1 in a symmetric way, expressed

for Latch 0 by the data symmetry:

h
in.0�; outL.0�; outH.0�

i
: (3.2)
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Finally, each latch can also be viewed as a one-bit decoder|it sets one of its outputs

high based on its input data. Such behavior for Latch 0 is expressed by a mixed

symmetry: h
in.0�; outL.0$ outH.0

i
: (3.3)

3.2 Veri�cation under symmetry

Verifying a circuit involves checking a family of assertions against the circuit model.

The presence of symmetry properties in the circuit often allows us to dramatically

cut down on the number of assertions that need to be veri�ed. This is because if an

assertion G holds, and � is a symmetry property of the circuit, then the assertion

�(G) also holds. This is elaborated below.

We can extend � to be a bijection over state sequences by applying � to each state

in the sequence. We can also extend state transformation � to be a bijection over

temporal formulas. First we de�ne the extension of � to Trajectory formulas(TFs).

De�nition 8 If F is a TF, then �(F ) is recursively de�ned as

1. If F is the atom a, then �(F ) is the transformed atom �(a).

2. �(F1 ^ F2) = (�(F1) ^ �(F2)), where F1 and F2 are TFs.

3. �(E ! F ) = (E ! �(F )), where F is a TF and E is a Boolean expression.

4. �(XF ) = (X�(F )) where F is a TF.

The e�ect of applying � to a TF F is to replace every atom a in F by �(a). This

idea is carried further, where � may be applied to an assertion. The result of applying

� to the assertion [A =) C] is the assertion [�(A) =) �(C)], which is also denoted

by �([A =) C]).

Since a symmetry property is an excitation function preserving transformation, it

follows fairly intuitively that the structure of the de�ning sequence and the de�ning

trajectory of a TF F should remain invariant with respect to �. This is formalized

below in lemma 2, and lemma 3.
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Lemma 2 If temporal formula F has de�ning sequence �F , then its transformation

�(F ) will have de�ning sequence ��(F ) = �(�F ).

Proof: We prove this by induction over the structure of TFs.

� TF F is an atom a.

�(�F )

= �(fag;;; : : :) (From de�nition of �F )

= �(fag);;; : : : (applying � to every element of sequence)

= ��(F ) (From de�nition of �F )

� F = F1 ^ F2, where F1, and F2 are TFs.
�(�F ) = �(�F1^F2)

= �(lub(�F1; �F1)) (De�nition of �F )

= lub(�(�F1); �(�F1)) (Bijection � distributes over set union)

= lub(��(F1); ��(F2)) (Inductive hypothesis)

= ��(F1)^�(F2) (De�ntion of �F )

= ��(F1^F2)

� If F = 0 ! F1, where F1 is a TF, it is easy to see that �(�0!F1) = ;;; : : : =

��(0!F1).

� If F = 1! F1, where F1 is a TF, then

�(�1!F1)

= �(�F1) (De�nition of �F )

= ��(F1) (Inductive hypothesis)

= �1!�(F1) (De�nition of �F )

= ��(1!F1)

� Finally, if F = XF1, where F1 is a TF,
�(�XF1

)

= �(;�F1) (De�nition of �F )

= ;�(�F1) (Apply � to every element of sequence)

= ;��(F1) (Inductive hypothesis)

= �
�(XF1)

2
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Lemma 3 If � is a symmetry property of a circuit model M, then its de�ning tra-

jectories for any temporal formula F will obey the symmetry: ��(F ) = �(�F ).

Proof: We prove this result by doing induction on the sequence of elements in

the de�ning trajectory �F = � 0F �
1
F : : : �

i
F �

i+1
F : : :. In particular, we �rst show that

�(� 0F ) = � 0�(F ) (base case), and next we show that if �(� iF ) = ��(F )
i, then �(� i+1F ) =

��(F )
i+1(induction step).

� Base case:
�(� 0F )

= �(�0F ) (Def. of de�ning trajectory)

= �0�(F ) (Lemma 2)

= � 0�(F ) (Def. of de�ning trajectory)

� Induction step: Assuming �(� iF ) = ��(F )
i, and that � is a symmetry prop-

erty, we show that �(� i+1F ) = ��(F )
i+1.

�(� i+1F )

= �(�i+1F [ Y (� iF )) (Def. of de�ning trajectory)

= �(�i+1F ) [ �(Y (� iF )) (Bijection � distributes over set union)

= �i+1�(F ) [ �(Y (� iF )) (Application of lemma 2)

= �i+1�(F ) [ Y (�(� iF )) (De�nition of symmetry property �)

= �i+1�(F ) [ Y (� i�(F )) (Inductive hypothesis)

= � i+1F

2

This brings us to the central theorem of this chapter, which is stated below.

Theorem 2 For an assertion [A =) C], and a symmetry property � of model M,

j=M [A =) C] if and only if j=M [�(A) =) �(C)].

Proof: The proof follows directly from the de�nition of a symmetry property, lemma 2,

and lemma 3.
j=M [A =) C]

, �A � �C (Theorem 1)

, �(�A) � �(�C) (Bijection � preserves the subset relation)

, ��(A) � �(�C) (Lemma 3)

, ��(A) � ��(C) (Lemma 2)

,j=M [�(A) =) �(C)] (Theorem 1) 2
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Thus, proving that � is a symmetry property of a circuit allows us to infer the

validity of a transformed assertion once we verify the original. For example, suppose

we verify that Latch 0 in Figure 3.1 operates correctly for input value 1, and also

prove that the transformations de�ned by Equations 3.1 and 3.2 are indeed symmetry

transformations. Then we can infer from Equation 3.1 that for all j, Latch j operates

correctly for input value 1, and from Equation 3.2 that Latch 0 operates correctly for

input value 0. Furthermore, by composing these two transformations, we can infer

that for all j, Latch j will operate correctly for input value 0.

3.3 Veri�cation of symmetry properties

To exploit symmetry, we verify an assertion [A =) C], and given a set of symmetry

properties, S = f�1; �2; : : : ; �ng, we can conclude that [�1(A) =) �1(C)], [�2(A) =)

�2(C)], : : : [�3(A) =) �3(C)] all hold. However, before drawing this conclusion, one

must verify that every element of S is actually a symmetry property. The typical set

of symmetry properties we work with is a group. Below, we give two basic de�nitions

from group theory which we use ahead.

De�nition 9 Set S is a symmetry group for a model structure M = hS; Y i i� every

element of S is a symmetry property of M, and the following properties hold:

1. The identity element �e is in S, where �e(a) = a.

2. Every element of � 2 S has an inverse ��1 2 S such that ���1 = ��1� = �e

De�nition 10 A set hSi is termed a generator of a symmetry group S if repeated

compositions of the elements in hSi can generate every element of S.

The de�nitions above imply that rather than test every element of a set S for the

symmetry property, it su�ces to check only the generators of S. Thus, it is possible

to prove the correctness of an entire set of assertions by simply verifying that each

member of a set of generators for a group of transformations is a symmetry property.

For example, equation 3.1 represents a total of k(k � 1)=2 symmetry transforma-

tions, corresponding to the pairwise exchange of any two latches. In general, one

could argue that this circuit would remain invariant for any permutation � of the
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latches. Consider the transformation �� mapping the 6 atoms for each Latch i (two

each for nodes in.i, outL.i and outH.i) to their counterparts in Latch �(i). We could

prove that each such transformation is a symmetry property, but this would require

k! tests. Instead, we can exploit the fact that any permutation � can be generated

by composing a series of just two di�erent permutation types. The \exchange" per-

mutation swaps values 0 and 1, while the \rotate" permutation maps each value i to

i + 1 mod k. Thus, proving that the state transformations given by these two per-

mutations are symmetry properties allows us to infer that �� is a symmetry property

for an arbitrary permutation �.

So, once the generators of a symmetry group are identi�ed, the next step is to

verify that they are indeed symmetry properties. We verify structural symmetries of

a circuit by circuit graph isomorphism checks, and we verify data and mixed sym-

metries using symbolic simulation based techniques. We describe these techniques in

sections 3.3.1, and 3.3.2.

3.3.1 Structural symmetry property veri�cation

We can verify structural symmetries in our circuit models by checking for isomor-

phisms in the circuit-graph network. Since Anamos derives its representation of the

excitation function from the network, any isomorphisms in the network graph imply

structural symmetries in the excitation function. While it is also possible to verify

structural symmetries using symbolic simulation, such an approach requires perform-

ing switch-level analysis on the circuit. This analysis can be prohibitively expensive

(Table 3.1) for circuit components such as array cores with their large CCSNs.

Consider the problem of determining if n1 $ n2 is a symmetry property in a given

circuit 3.2. If this symmetry were to hold in the circuit, the circuit 2 which is obtained

from circuit 1 by swapping the labels of nodes n1, and n2 should be isomorphic to

circuit 1. To perform this isomorphism test we use a graph coloring based algorithm

described in [47, 46, 78, 7, 97]. This algorithm, which is described below, converts a

circuit graph network into a pseudo-canonical form. This allows a fast and e�cient

test for isomorphism between two networks.

Given a the circuit graph for a switch-level circuit, we �rst construct a coloring

graph which contains a transistor vertex for each transistor in the circuit, and a node

vertex for each node and primary inputs in the circuit. The edges of this graph connect
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Figure 3.2: Structural symmetry veri�cation problem

transistor vertices and node vertices, and they correspond to the node-transistor

interconnections in the circuit. Since there are no edges which connect only two node

vertices, or two transistor vertices, the coloring graph is bipartite. Once the coloring

graph is constructed, the vertices of the graph are \colored" with integers. Based on

isomorphism invariant vertex properties such as the number of edges incident on a

vertex, all the vertices in the graph are assigned an initial color. Vertices are recolored

repeatedly using a hashing function which combines the colors of the neighboring

vertices, until all the vertices are colored uniquely. Then the nodes and transistors

of the circuit are sorted to yield what is termed as the quasi-canonical form of the

circuit network. This coloring and sorting technique guarantees that two networks

that are not isomorphic will be colored di�erently. However, in some remote cases,

it is also possible that two isomorphic networks may not be colored uniquely within

a given �xed number of coloring iterations. However, we have not encountered this

problem in our experiments (Section 3.6).

The problem we need to solve is slightly di�erent that what is solved above. We

need to swap two nodes in the circuit, and test if the two circuits, before and after

the swap, are isomorphic. This does not work directly, as the isomorphism checks

work purely on the structure of the network, and they ignore the node names. So

the two circuits, before and after the node name swap will still reduce to the same

quasi-canonical form. We work around this by using structural labels.

A structural label is a circuit graph (or an interconnection of nodes and transistors)

which satis�es the following two properties:

� The structural label is not isomorphic to any subgraph of the original circuit.

� The label is not isomorphic to any other structural label.
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Figure 3.3: Veri�cation of structural symmetry n1 $ n2

These properties allow us to use these labels to physically tag circuit nodes. Struc-

tural labels serve to uniquely tag a node in the circuit being tested for symmetry

properties. So, structural labels are attached not only to the set of nodes being

swapped, but also to the remaining circuit nodes. While verifying symmetry proper-

ties by graph isomorphism checks, it is necessary to attach structural labels to all the

input and output nodes of a circuit. However, it is not necessary to consider the state

nodes during our symmetry tests. If the circuit being veri�ed satis�es all the asser-

tions, then it has the desired IO behavior, and no further tests are necessary for the

internal nodes. Of course, if some assertion fails, then further checks are necessary,

and we may well discover a problem related to the state nodes.

For example, to solve the problem illustrated earlier in Figure 3.2, we can attach

structural labels ID1 and ID2 to nodes n1 and n2 in circuit 1, and then 
ip these

labels in circuit 2. We then can reduce the two circuits to the quasi-canonical form,

and compare them (Figure 3.3).

The worst case time complexity for the graph coloring algorithm for a circuit with

n transistors is O(n2log(n)). However, in practice we have seen both the time and

memory scale nearly linearly with n. (Table 3.2).
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3.3.2 Data and mixed symmetry property veri�cation

Data and mixed symmetries can be veri�ed by symbolic simulation. Data symme-

tries involve \switching polarities" of values on a node. Mixed symmetries involve

\switching polarities" of the value on a node, and \exchanging" the values of two

di�erent nodes. To verify these symmetries it is necessary to check whether for ev-

ery combination of circuit node values, the exchange and the polarity switching of

the input node values results in changes in the output node values as speci�ed by the

symmetry property. Symbolic simulation is the ideal tool for such checks involving all

possible combination of Boolean values. One symbolic Boolean variable is introduced

for each circuit node. The circuit is simulated with these Boolean variables, and then

with new Boolean values corresponding to the changes speci�ed by the symmetry

property. The results of the two simulations are compared to verify if the circuit

obeys the symmetry property.

Consider, for example, the symmetry of Latch 0 speci�ed in equation 3.2:

h
in.0�; outL.0�; outH.0�

i
:

We symbolically simulate the circuit with the symbolic value a at the input in.0, and

inspect the values at the output nodes outL.0, and outH.0. If the above symmetry

holds for the latch, then complementing the value at node in.0, should result in the

values at circuit nodes outL.0, and outH.0 being complemented.

Consider also the mixed symmetry of Latch 0, speci�ed in equation 3.2:

h
in.0�; outL$ outH.0

i
:

This symmetry can also be veri�ed by symbolically simulating the circuit with a

symbolic value a at the input in.0, and observing the outputs, outL.0, and outH.0.

The equation above speci�es that complementing the value at in.0 should result in

the values at nodes outL.0, and outH.0 being exchanged, which can be easily checked.

3.4 Conservative approximations of circuits

Intuitively, a conservative approximation of a circuit is a \reduced" version of the

circuit which, given any current circuit state, imposes fewer constraints on the next
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state the circuit can take. In terms of values, on circuit nodes, the reduced circuit

produces more Xs than the original circuit, i.e., fewer atoms in the next state. We

formalize this concept below.

De�nition 11 Let M0 and M be circuit models over the same state set, having

excitation functions Y 0 and Y , respectively. We say that M0 is a conservative ap-

proximation of M if for every state s, Y 0(s) � Y (s). We denote this by M0 �M.

We exploit conservative approximations to perform two important tasks:

� Create reduced models which take less memory to represent.

� Partition circuits to expose symmetric regions of a design.

Proving an assertion for a reduced circuit model, allows us to infer that the as-

sertion holds for the original circuit. Theorem 3 below justi�es this. The advantage

of this is reduced circuit models are often a fraction of the size of the original circuit

model, which results in smaller veri�cation memory requirements. Conservative ap-

proximations provide a systematic way to reason about partitioned circuits, allowing

us to verify the complete circuit by proving properties about each partition. This is

particularly useful when the partitioning can expose highly symmetric regions of the

circuit. In addition, if we can prove that a circuit has some structural symmetry, then

we can create a \weakened" version of the circuit containing just enough circuitry to

verify the behavior for one representative of the symmetry group.

3.4.1 Veri�cation of Reduced Models

Below, we show that for any trajectory assertion [A =) C], and modelsM, andM0,

such that M0 �M, if the assertion [A =) C] holds forM0, then it should also hold

for M. We start with the proof of a simple result on the trajectories of M0 and M.

Lemma 4 If F is any trajectory formula, and models M, and M0 are such that

M0 � M, then the de�ning trajectories for the two models, � 0F and �F , must be

ordered � 0F v �F .

Proof: Let �F = � 0F �
1
F �

2
F : : :, and � 0F = � 0

0
F �

01
F �

01
F : : :. Using induction we show that

for all i � 0, � iF � � 0iF .
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� Base case: From the de�nition of �F , �
0
F = � 0

0
F = �0F , i.e., �

00
F � � 0F .

� Induction step: Assuming � 0
i
F � � iF is true, we show that � 0

i+1
F � � i+1F also

holds. Let �F = �0F �
1
F �

2
F : : : be the de�ning sequence of F .

� 0
i
F � � iF

) Y (� 0iF ) � Y (� iF ) (Y is monotonic)

) Y 0(� 0iF ) � Y (� iF ) (M0 �M)

) lub(�i+1F ; Y 0(� 0iF )) � lub(�i+1F ; Y (� iF ))

) � 0
i+1
F � � i+1F

2

Therefore, as expected, \weakening" the model also weakens the trajectories of

the model, and this immediately leads to the theorem below.

Theorem 3 For any assertion [A =) C], and M0 � M, if j=M0 [A =) C], then

j=M [A =) C].

Proof Since j=M0 [A =) C], �C v � 0F (Theorem 1). This result, when combined

with � 0F v �F (follows from lemma 4 above), gives �C v �F , i.e., j=M [A =) C]. 2

Thus, proving an assertion for a conservative approximation to a circuit model

allows us to infer that the assertion holds for the original circuit.

3.4.2 Partitioning circuits via conservative approximations

We can view the partitioning of a circuit into di�erent components as a process of

creating multiple conservative approximations. For example, suppose we partition a

circuit with nodes N into components having nodes N1 and N2, respectively, as illus-

trated in Figure 3.4. The set of nodes forming the interface between the components

comprise the set N1 \ N2. In this example, we assume the communication is purely

unidirectional|N1 generates signals for N2. Suppose we wish to prove a property

described by an assertion [A =) C], where the atoms of C are contained only in N2.

We could then create conservative modelsM1 andM2 using the subset construction

given by Equation 3.4 below. Taken individually, each of the two models is too weak

to prove the assertion. Using the technique of waveform capture described ahead, we

can record the output values generated by model M1 and use them in verifying the

assertion with modelM2. We describe this technique in greater detail below.
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We start with the idea of creating conservative approximations by removing nodes

of a circuit. Let N 0 be a subset of the set of circuit nodes N , and A0 be the corre-

sponding set of atoms. Then we can view the removal of those nodes not in N 0 as

yielding a conservative approximation to the circuit with an excitation function Y 0

such that:

Y 0(s) = Y (s \ A0) \ A0: (3.4)

Intuitively, s \ A0 eliminates atoms of all nodes other than in N 0, i.e., all sets the

excluded nodes to X. The intersection of Y (s \ A0) with A0 ensures that in the

response, Y 0, atoms of all nodes other than in N 0 are eliminated.

Below, we �rst discuss the idea of waveform capture, and show how to construct

a trajectory formula corresponding to the signal waveforms on a set of nodes.

Let N 0 be a subset of nodes in a circuit M. Let �A = � 0A�
1
A�

2
A : : : be the de�ning

trajectory for the circuit M for a trajectory formula A. The technique of waveform

capture records the occurrence of atoms on the nodes inN 0 as speci�ed by the elements

of the sequence �A, and it creates a temporal formula WA describing this occurrence

of atoms.

Let AN 0 be the set of atoms corresponding to the nodes in N 0. By eliminating all

atoms from �A that are not in N 0, we construct a new sequence,

(� 0A \ AN 0) (� 1A \ AN 0) (� 2A \ AN 0) : : : :

From this sequence, we construct a trajectory formula

WA = W 0
A ^ (XW 1

A) ^ (X2W 2
A) : : : (3.5)

such that W i
A = a1 ^ a2 ^ : : : ^ ak, where ai 2 (� iA \ AN 0). The lemma below states

the obvious consequence of such a construction.

Lemma 5 Let A be a trajectory formula, and let N 0 be a subset of nodes of the circuit

described by M. If WA is the trajectory formula constructed from �A, as described

above, then j=M [A =)WA].

Proof: Consider �WA
= �0WA

�1WA
�2WA

: : :, the de�ning sequence of WA. From the

construction above, and the de�nition of de�ning trajectories, �iWA
= �W i

A
, i.e.,
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�iWA
= (� iA \ AN 0). Obviously, (� iA \ AN 0) � � iA. Therefore, �WA

v �A, which proves

j=M [A =) WA]. 2.

Now we discuss the use of waveform capture to verify a property [A =) C]

for a larger design by partitioning it into smaller components and verifying these

components individually. Prior to the discussion however, we prove theorem 4, which

justi�es waveform capture and combination. To simplify the proof of the theorem,

we �rst show some useful results in lemma 6, 7, and 8.

Lemma 6 If j=M [A) C], then j=M [A) A ^ C].

Proof: Since, j=M [A ) C], therefore, ) �C v �A, i.e., for i � 0, �iC � � iA. From

de�nition of �A, for i = 0, � 0A = �0A, and for i > 0, � iA = lub(�iA; Y (�
i�1
A )), i.e., for

i � 0, �iA v � iA. Therefore, for i � 0, (�iA [ �
i
C) � � iA, i.e., �A [ �C � �A. Therefore,

j=M [A) A ^ C].

Lemma 7 If A and B are trajectory formulas, then �B v �A ) �B v �A

Proof We prove this by induction on elements of the sequences �A = � 0A�
1
A�

2
A : : : and

�B = � 0B�
1
B�

2
B : : :.

� Base case: � 0A = �0A, and � 0B = �0B. So, �
0
B � � 0A ) � 0B � � 0A is trivially true.

� Induction step: Assuming that the relation holds for the ith element of the

sequences, we show that the relation also holds for the i + 1th element. Let

�i+1B � � i+1A be true. Below, we show that � i+1B � � i+1A .

� iB � � iA (Inductive hypothesis)

) Y (� iB) � Y (� iA) (Y is monotonic)

) Y (� iB) � lub(Y (� iA); �
i+1
A ) (Take the upper bound of Y (� iA))

) Y (� iB) � � i+1A (De�nition of �A)

) lub(Y (� iA); �
i+1
A ) � � i+1A (�i+1B � � i+1A is an assumption)

) � i+1B � � i+1A

2

Lemma 8 If j=M [A) B], and j=M [B ) C], then j=M [A) C].
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2NN1

Figure 3.4: Illustration of Circuit Partitioning.

Proof From j=M [B ) C], and j=M [A) C], we know that �B � �A, and �C � �B

are true. From �B � �A, and lemma 7, we can conclude that �B � �A. Therefore,

�C � �B � �A, i.e., j=M [A) C] 1. 2

Theorem 4 IfMC andMD are conservative approximations ofM, and j=MC
[A)

F ], and j=MD
[A ^ F ) C], then j=M [A) C].

Proof: If j=MC
[A) F ], then j=M [A) F ] (from Theorem 3), and thus j=M [A)

A ^ F ] (from Lemma 6). Similarly, if j=MD
[A ^ F ) C], then j=M [A ^ F ) C]

(Theorem 3). From this, using Lemma 8, we can conclude that j=M [A) C].

Let � 1A be the de�ning trajectory generated by model M1 for antecedent A. We

construct a trajectory formula WA describing the occurrence of the atoms corre-

sponding to the nodes in N1 \N2 as described above. One re�nement that should be

performed is to record the values up to the maximumdepth of the next-time operators

in C (Corollary 1). Our construction ensures that j=M1
[A =) WA], and therefore,

j=M [A =) WA]. Using model M2, we then verify the assertion [A ^ WA =) C],

and if it holds, we know that j=M [A ^WA =) C] also holds. E�ectively, we \play

back" the waveforms on the interface nodes. Using theorem 4, we show that for any

model M and any temporal formula F , if j=M [A =) F ] and j=M [A ^ F =) C],

then j=M [A =) C], and therefore this pair of veri�cations is su�cient to prove the

desired property.

1Lemma 7 and 8 appear in a modi�ed form in [63]
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3.4.3 Partitioning with Bidirectional Communication

For partitions in which the communication between partitions is bidirectional, this

approach described above can be generalized to an iterative process, creating a series

of waveformsW1;W2 : : : ;Wk representing successively stronger approximations to the

communication patterns between the two partitions. As shown earlier in Figure 3.4,

the two components in Figure 3.5 have nodes N1, and N2, and the set of nodes forming

the interface between the two is N1 \ N2. Their respective models are M1 and M2,

which are both conservative approximation of the full circuit modelM.

As a �rst step towards proving, j=M [A =) C], we show that j=M1
[A =) W1],

i.e., j=M [A =) W1] where W1 is constructed from the waveform on the nodes

communicating from N1 to N2 (STEP 1). At each step, the dotted box around the

partition indicates the active partition. In the next step, using waveform W1, and

antecedent A, we prove j=M2
[A^W1 =) W2], i.e., j=M [A^W1 =) W2] (STEP 2).

From j=M [A =) W1], and j=M [A ^W1 =) W2], we can infer j=M [A =) W2]. In

this manner, we generate successively \stronger" waveforms, until we reach the point

where j=M [A =) Wk], and j=M [A ^Wk =) C] can both be shown true.

3.4.4 Creation of conservative approximations

Creation of a conservative approximation of a circuit intuitively means creating a

reduced version of the circuit which produces more Xs than does the original circuit.

The limiting case of the conservative approximation of a circuit is one whose every

node produces only an X for every input sequence. Such a \strict" approximation is

of little use, however. We would like to create conservative approximations in a more

controlled manner, so that we can selectively disable desired portions of the circuit.

The following two techniques are our means of doing so (�gure 3.6):

� Attach \X-drivers" to internal circuit nodes.

� Strengthen transistors which are adjacent to X-drivers.

A X-driver is a strong source of Xs. Attaching a X-driver to a node is equiv-

alent to converting the node to an input node set to the constant value X. The

X-driver is analogous to the Vdd and ground nodes, which are strong sources of 1
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Figure 3.5: Bidirectional waveform capture
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Figure 3.7: Conservative approximation of CCSN1.

and 0, respectively. An accompanying technique we employ to create a conservative

approximation is strengthening transistors adjacent to X-drivers. Intuitively, this

strengthening aids the propagation of Xs through the circuit. As will be shown later,

both these techniques monotonically move all the circuit nodes towards Xs.

As an example, suppose we wish to create a reduced model for the circuit in Figure

2.7 by eliminating nodes a, b, and s. Then we could describe the remaining portions

of CCSN1 by the excitation expressions shown in Figure 3.7. One can see that these

expressions were obtained from those of Figure 2.7 by simplifying the result of setting

the leaves for all eliminated atoms to false. This conservative approximation could

be used to verify circuit operation for the cases where node c is set to 0. We have

modi�ed Anamos to generate these simpli�ed expressions directly, avoiding the need

to ever generate a complete model. In particular, we would replace node s in the

example circuit by a X-driver.

One �nal task which remains is to show that the two circuit transformation tech-

niques discussed above actually create a conservative approximation. As mentioned

in section 2.2.3, the steady state response of a node in a switch-level network depends

on all the unblocked paths to that node. In �gure 3.8, consider the path p from src

to dest. If the path were unblocked before the X-driver is attached to node n, then,

two possibilities arise after the X-driver is introduced. The �rst is that the path

still remains unblocked, and the node response stays the same. The second is that a

stronger path q from n blocks p, i.e., jqj > jp0j, where p0 is a pre�x of p originating

at the root. In this case, the stronger path q will dominate the response at dest,

i.e., dest will monotonically move towards X. The e�ect of strengthening transistors
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Figure 3.8: Paths in a switch-level circuit conservative approximation

adjacent to a X-driver is similar | stronger paths from the X-driver may dominate

existing paths, sending their destination towards X. Note that the argument above

also accounts for the case when n is on p. In such a case, the length of path q is 0.

3.5 Putting it together: Verifying a SRAM cir-

cuit

Consider the 16-bit (1 bit/word) SRAM circuit shown in Figure 3.9. This circuit con-

sists of the the following major components | row decoder, column address latches,

column multiplexer (Mux) and the memory cell array core. To simplify the discus-

sion here, many essential SRAM components like precharge column, write-drivers etc.

have not been shown in the �gure. This is a standard organization followed in many

larger industrial SRAM arrays [53]. In order to verify this circuit we must show that

the read and write operations work correctly. For example, if a memory location is

addressed and read from, then the correct value must appear at the output. Simi-

larly, if a write operation is done, the addressed memory location should be updated

correctly. Such properties can be expressed with STE assertions.

The machinery we have built in the previous sections allows us to verify the read or

write operation for only one location and, from the symmetry in the SRAM circuit,

conclude that the operation works for every location. We expand on this below,
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Figure 3.9: SRAM circuit
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Figure 3.10: Row decoder and signal waveforms on word lines for row address 00.

starting with a discussion of SRAM symmetries.

3.5.1 Symmetries of a SRAM

Consider the decoder in Figure 3.10. For any memory operation, the value of the row

address assigned to nodes a.2 and a.3, causes one of the word lines wl.0, wl.1, wl.2

and wl.3 to be active. The �gure shows that wl.0 is active for row address 00. The

same waveform occurs on the active word line regardless of the address. This mixed

symmetry of the decoder is expressed by the group of transformations generated by

transformations �0 and �1:

�0 = [a.2�;wl.0$ wl.1;wl.2 $ wl.3]

�1 = [a.3�;wl.0$ wl.2;wl.1 $ wl.3]

Transformation �i indicates that complementing bit i of the row address causes an

exchange of signal waveforms for each pair of word lines j and k such that the binary

representations of j and k di�er at bit position i. The column address latches obey

the \decoder" symmetry expressed by Equation 3.3.

The mixed symmetries of the decoder and the column address latches can be

veri�ed by symbolic simulation, where a single run of the simulator with n symbolic

Boolean values at the circuit inputs is equivalent to 2n runs of a conventional simulator

with 0-1 values. For example, to verify that �0 is a symmetry of the decoder, we
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Figure 3.11: Structural symmetries of the SRAM core.

symbolically simulate the decoder with symbolic values s0 and s1 at the decoder

inputs a.2, and a.3 in Figure 3.10. As the simulation proceeds, we check that a

substitution of s0 for s0 in the symbolic waveform for wl.0 (resp., wl.2) matches the

symbolic waveform on wl.1 (resp., wl.3).

Figure 3.11 illustrates the two structural symmetries of the SRAM core and col-

umn Mux combination. The row symmetry arises from the invariance of the core-mux

circuit structure under permutations of the rows of the core. The column-mux symme-

try arises from the invariance of the circuit structure under a swap of column address

latch output pairs accompanied by a corresponding exchange of columns. For exam-

ple, in Figure 3.11, a swap of aH.0 and aL.0 accompanied by a swap of column 0 with

1, and a swap of column 2 with 3 is a symmetry of the circuit.

We verify the core-Mux symmetries in two parts. First we verify that arbitrary row

and column permutations are symmetries of the core. Veri�cation that the exchange

and rotate permutation generators for rows and columns are symmetries su�ces for

this. This gives a total of 4 symmetry checks for the core. Next we verify the column-

mux symmetry for the Mux. In the �gure, the generators of the four di�erent column
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Figure 3.12: Conservative approximations of the SRAM.

address line pair permutations are the two permutations associated with each column

address latch output pair. Therefore, two symmetry checks verify the column-mux

symmetry. In general n symmetry checks must be done for the Mux in a SRAM with

n column address line pairs.

3.5.2 Veri�cation steps

In order to verify the SRAM circuit we go through the following sequence of steps.

1. Circuit partitioning | We partition the SRAM circuit into two parts. The

�rst part consists of the decoder with the column address latches. The second

part consists of the memory core and the column Mux.

2. Symmetry veri�cation | Using symbolic simulation we verify the symme-

tries of the decoder and column latches. Using circuit graph isomorphism checks

we verify the symmetries of the core and the column Mux.

3. Conservative approximations|We create two conservative approximations

of the SRAM (Figure 3.12). In the �rst model, the memory core and the column
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Mux are \disabled". In the second model, the decoder, the column address

latches are disabled, and all the memory cells except that for location 0 are

disabled. Figure 3.13 shows how we conservatively disable a SRAM cell by

attaching X-drivers, and strengthening transistors adjacent to the X-drivers.

The �gure also shows the optimization that chains of N or P transistors from

Vdd or ground to an X-driver may be eliminated from the circuit | their

presence does not alter circuit behavior.

4. Waveform capture | Given the assertion [A =) C] specifying an opera-

tion for memory location 0, we use the antecedent A to symbolically simulate

conservative approximation 1. During the process of symbolic simulation we

record the signal waveforms on the outputs of the decoder and the column ad-

dress latches. We construct a trajectory formula W , which captures the signal

values on the outputs recorded above. As discussed earlier, it can be shown

that [A =)W ] is true.

5. Veri�cation of SRAM core | Finally, with conservative approximation 2,

we show that given the waveform W , and the antecedent A, the consequent

C is true, i.e., [A ^W =) C]. From the earlier discussion in section 3.4,

if [A =) W ] and [A ^W =) C] are both true, then we can conclude that

[A =) C] is true, i.e., the memory operation is veri�ed for location 0. Given

the symmetries of the circuit we can then conclude that the operation works
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SRAM size No. of Model Size Anamos Time Anamos Memory

(bits) Transistors (Bool. ops) (CPU Secs.) (MB)

Full Reduced Full Reduced Full Reduced

1K 6690 79951 2781 120 4.1 9.6 0.9

4K 25676 307555 5462 863 14.1 36.8 2.1

16K 100566 1205239 10895 7066 43.2 144.2 6.0

64K 397642 | 21960 | 170.7 | 22.0

256K 1581494 | 44545 | 732.7 | 80.0

Table 3.1: Generation of SRAM model: Full vs. Reduced model.

correctly for every memory location.

3.6 Experiments and Results

All the time and memory �gures in this section have been measured on a Sun

SparcStation-20. We used the Anamos switch-level analyzer to generate switch-level

models [19]. We modi�ed Anamos to make it possible to attach X-drivers to circuit

nodes to generate reduced models (conservative approximations) of switch-level cir-

cuits. Table 3.1 shows the results of model generation for SRAM circuits of varying

sizes. The full circuit model contains about 73 operations for each memory bit. How-

ever, for circuits larger than 16K, it was not possible to generate the full circuit model

within reasonable time or memory bounds (empty table entries). Conservative ap-

proximations of SRAM circuits, on the other hand, can be generated for much larger

circuits for a miniscule fraction of the cost of the full model. The reduced model size

grows proportional to the square root of the SRAM size, and its generation time and

memory is proportional to the SRAM size.

To verify a structural symmetries, we do graph isomorphism checks as outlined in

section 3.3. We have modi�ed the isomorphism checking code [7] from Anamos for

our purpose. Table 3.2 reports the running time and memory taken for converting

one instance of the memory core or column mux permutation into a canonical circuit,
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SRAM Size Memory Core Column Multiplexer Total Isomorph.

(bits) CPU Time Memory No. of CPU Time Memory No. of Check Time

(Secs.) (MB) checks (Secs.) (MB) checks (Secs.)

1K 2.6 1.6 4 0.3 0.19 5 11.9

4K 11.1 6.5 4 0.5 0.38 6 47.4

16K 51.2 26.0 4 1.3 0.74 7 214.1

64K 232.1 104.0 4 3.0 1.44 8 952.4

256K 1135.6 416.0 4 6.6 3.50 9 4601.8

Table 3.2: Symmetry checks for memory core and column multiplexer.

and the total time to do all the isomorphism checks. The total time and memory

requirements scale linearly with the SRAM size. Table 3.2 reports the resources

required to check the structural symmetries. The memory core has four symmetry

generators. We verify that each of these is a symmetry (columns 2,3,4). The column

multiplexer has a number of symmetry generators equal to the number of column

address lines. We also verify each of these generators (columns 5,6,7). The total time

is reported in column 8. Table 3.3 shows the time and memory required to check the

decoder and column address latch symmetries by symbolic simulation.

We used the Voss veri�cation system [116] to verify the reduced SRAM circuit.

Table 3.4 shows the running time and the memory required for verifying the write

operation for location 0. In addition, we verify two other properties | that the

read operation reads the value stored at location 0 (Table 3.5), and that operations

at other addresses do not change the data in location 0 (Table 3.6). The time and

memory required to verify these other operations is similar to that of the write. Much

of the veri�cation time and memory is taken to read in the reduced circuit model and

representing it. So, it is not surprising that the time and memory requirements grow

roughly proportional to the square root of the memory size.

The total veri�cation time for a SRAM circuit is the sum of the times in tables

3.1, 3.2, 3.3 and 3.4. For example, to verify a 64K SRAM, 170.7 secs. are required to

generate the reduced circuit model, a total of 952.4 + 3.2 secs. are required to verify

the circuit symmetries, and an additional 6.0 + 6.6 + 6.1 secs. are required to verify
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SRAM Size Time Memory

(bits) (CPU Secs.) (MB)

1K 1.7 0.69

4K 2.1 0.74

16K 2.5 0.88

64K 3.2 1.10

256K 4.2 1.52

Table 3.3: Decoder and col. latch symmetry checks.

SRAM Size Verif. Time Verif. Memory

(bits) (CPU Secs.) (MB)

1K 1.5 0.79

4K 2.0 1.05

16K 3.0 1.80

64K 6.0 2.84

256K 18.5 4.26

Table 3.4: Veri�cation of reduced SRAM writes.

the reduced model for all the operations. This gives a total veri�cation time of 1145.0

secs. It is interesting to note that symmetry checks dominate much of this time. In

the veri�cation process, the only time we ever work with the complete circuit is the

symmetry check phase. This partially explains the reason for the relatively large time

and memory requirements of this phase. However, the circuit isomorphism code we

have used is a simple modi�cation of that in Anamos. There is considerable scope for

reducing time and memory by developing a specialized circuit isomorphism checker.
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SRAM Size Verif. Time Verif. Memory

(bits) (CPU Secs.) (MB)

1K 1.7 0.79

4K 2.2 1.05

16K 3.0 1.80

64K 6.2 2.84

256K 18.7 4.26

Table 3.5: Veri�cation of reduced SRAM reads.

SRAM Size Verif. Time Verif. Memory

(bits) (CPU Secs.) (MB)

1K 1.8 0.87

4K 2.2 1.12

16K 3.1 1.82

64K 6.6 2.90

256K 19.6 4.35

Table 3.6: Veri�cation that unaddressed location unchanged.
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3.7 Related Work

Petri nets have long been used to describe systems consisting of communicating con-

current processes. Some early work on exploiting symmetry in petri nets is by Huber

et al. [67] in 1984. In [107], Starke proposes an algorithm to compute the generators of

the symmetry group for petri nets. Jensen [73] describes the application of symmetry

to construct condensed versions of state spaces of concurrent systems described by

colored petri nets. The work shows that for reachability properties, the unreduced

state space satis�es a property, if and only if the condensed state space satis�es the

property. Typically the work in this area focusses on reachability analysis, rather

than more general temporal properties, and does not consider the added complexity

(and the concomitant payo�) of symbolic state space representations.

Work on exploiting symmetry for automated formal veri�cation techniques is quite

recent. Emerson and Sistla [50, 49] show how to exploit symmetry in model checking

with the CTL* temporal logic. In a system M consisting of many isomorphic pro-

cesses, the symmetry in the system is captured in the group of permutations of process

indices de�ning graph automorphisms of M. Similarly, symmetry in a speci�cation

formula f is captured by the group of permutations of process indices that leave f

invariant. Given a permutation group G, which is contained in both groups, one can

construct a quotient structure M, such that for a start state s, and the equivalent

state s in M, M; s j= f i� M; s j= f holds. This is the correspondence theorem,

which is the central result of their work. This work, however, does not address the

complexities that arise from symbolic representations of the state space.

The work by Clarke et al. [38, 39] takes a slightly more general approach than

that by Emerson. It views symmetry as a transition relation preserving permutation,

not just permutation of indices of identical processes. Given a symmetry group G

acting on a Kripke structure M , one can construct a reduced structure MG. The

correspondence theorem in this work shows that if there is a CTL* formula f , such

that all the atomic propositions in f are invariant under G, the f is true in M if and

only if it is true inMG. This work discusses the construction of the reduced transition

relation which is represented symbolically.

The distinction between our work and that by Clarke et al., or Emerson et al.

comes partly from heritage. The roots of our work lie in the veri�cation of data in-
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tensive systems using symbolic simulation of switch-level circuits. We represent the

system transition by means of an excitation function. Naturally, when we consider

symmetry in a system, we examine the symmetry in the excitation function. We

explore structural and data symmetries in the system, which give rise to symmetries

in the excitation function. We actually verify that these symmetry properties exist

in the system, and then we construct a reduced model of the circuit. This approach

allows us to verify huge systems, including one with 262144 state holding elements (or

2262144 states). Emerson or Clarke view symmetry as a permutation on a state graph

with some desired properties, like preserving the transition relation, or a permuta-

tion of process indices which a transition graph automorphism. While this approach

appears more general, it imposes a signi�cant limitation { capturing phenomena like

the symmetrical behavior on the outputs of a decoder is extremely tedious, if not

impossible, with their process oriented point of view. Also, in both the approaches

outlined above, to be e�ectively exploited, symmetry must be present in both the

state transition graph, and the temporal logic formula being veri�ed. In contrast, our

approach does not impose the restriction of symmetry on the temporal logic formula

being veri�ed.

In [69], Ip and Dill discuss the veri�cation of large concurrent systems, where the

symmetry in the system is identi�ed by a special scalar-set datatype in the system de-

scription language. They view symmetry as an automorphism on the state transition

graph, they describe an on-the-
y construction of the reduced state transition graph.

They show that simple safety properties which hold in the reduced state graph also

hold in the original system. One approach contrasts with this, as we do not constrain

the user to explicitly give symmetry in the system description because we can directly

work with transistor netlists. Also, we can construct conservative models directly by

switch-level analysis of the transistor-level system description, which is more e�cient

than on-the-
y construction of the reduced state transition relation.

Aggarwal, Kurshan and Sabnani have exploited symmetry for the veri�cation of

the alternating bit protocol, a standard benchmark for protocol veri�cation tech-

niques [1]. Applying reduction techniques speci�c to this problem, and some simpli-

fying assumptions, they reduce the large state space using machine homomorphisms.

They show that for verifying properties about the given state machine, if su�ces

to verify the desired properties on the reduced machine. This approach to a some
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degree approximates our notion of data symmetry by considering the data symme-

try between 0 and 1 in the transmitted messages. However, the approach does not

consider many important issues like detecting, and verifying symmetry, and the au-

tomated construction of symmetry reduced state space.

Most approaches to exploiting symmetry in veri�cation start by reducing the

state space using equivalent relations among di�erent states. Partial order methods

[105, 106, 122] is an important class of work which diverges from this viewpoint

by considering equivalent relations among di�erent paths. Each path consists of

an interleaving sequence of actions. If a set of actions occurring in two paths are

independent, and therefore their order can be permuted, then the paths are considered

equivalent with respect to this set of actions. So, for veri�cation, one needs to consider

only one of these paths.

Gupta and Fisher describe linearly inductive functions (LIFs) to capture structural

induction in parametrized circuit descriptions [59, 58]. They present a canonical

representation for LIFs which provides a �xed size representation for all size instance

of the circuit. Such an approach enables e�cient veri�cation by capturing similarity

in the structure of systems.



82 CHAPTER 3. SYMMETRY



Chapter 4

Veri�cation of Content

Addressable Memories

Content Addressable Memories (CAMs) are an important subclass of memory arrays.

CAMs are widely used in applications which require fast parallel search operations.

A common example is the translation-lookaside bu�er (TLB) in the memory man-

agement unit of a processor which translates virtual addresses to physical. Other

examples of CAMs on modern processors include branch prediction bu�ers, branch

target bu�ers and cache tags. Outside the realm of processors, CAMs have been used

in various applications such as data compression [85], [83], data-base accelerators

[126], image processing [96], global routing [115], and Lisp machines [10].

In this chapter, we describe how we successfully leveraged STE, along with new

Boolean encoding techniques, to verify CAMs. The encodings were needed to contain

the exponential growth in the veri�cation space requirements with increasing CAM

sizes, as seen with a naive use of variables with STE.

This chapter begins with a short description on the structure of CAMs (sec-

tion 4.1). The basic machinery to generate and manipulate symbolic ternary vectors

for e�cient veri�cation of CAMs follows in section 4.2. Section 4.3 �rst shows the

search for an e�cient Boolean encoding for CAM veri�cation, and it then shows the

application of these encodings to various types of CAMs. The advantages of the

encoding techniques we have developed are illustrated quantitatively in section 4.4.

Chapter 6 discusses the veri�cation of two complex CAM arrays from PowerPC mi-

83
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croprocessors.

4.1 The structure of CAMs

Generally, CAMs employ as an identi�er a bit �eld called a tag. The tag serves as a key

to identify a particular data entry stored in the memory array. CAMs vary depending

upon data and tag size, techniques to read and write contents and mark contents as

valid, tag masking �elds, etc. In spite of all this diversity, CAMs all have in common

the associative read capability. The associative read operation consists of searching,

in parallel, all tags in the CAM to determine if there is a match to a particular tag

of interest, and then sending the associated data entry to an appropriate read port

of the memory. In some instances CAMs also have an associative write capability,

discussed in detail in Section 6.3.

The high-level design shown in Figure 4.1 is a very basic CAM. We implemented

this design to serve as a vehicle for experimentswith STE on CAMs, and, in particular,

as an experimental vehicle for �nding better Boolean encodings to aid in using STE

on CAMs.

We have implemented this design as a transistor-level netlist. Each t-bit tag

consists of t tag cells. Each tag cell contains 9 transistors and its design, which is

based on the one in [125, pp.590], is shown in Figure 4.2. In the �gure, a 6-transistor

SRAM cell, consisting of transistors T1 through T6, resides at the core of the tag

cell. Thus, one can perform reads and writes in a tag portion of a CAM as in a

regular SRAM array. Transistors T7 through T9 form a comparator structure which

compare the data stored in the tag cell to the data (and its complement) appearing

at bl, and blbar. Before the compare operation begins, Match Line is precharged to

a high. A mismatch in the value stored in the cell (at nodes d and db), and the

incoming value at nodes cmp, and cmpbar causes node n to become high, and thus

results in the discharge of Match Line. Typically, t tag cells share a single Match Line,

to do comparisons over bit-vectors. The data portion of the CAM is organized much

like a conventional SRAM, with the exception that the word lines are driven by the

match lines from the corresponding tag entries.

This design has n tag entries, T [0]; T [1]; :::; T [n� 1]. Corresponding to each such

tag entry, T [i], there is a data entry D[i]. By specifying the proper combination of
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address and data at Tadr, and Tagin, one can write to a desired tag entry as in a

conventional random access memory. Similarly, by specifying address and data at

Dadr, and Din, one may update the data entries. Also, while the extra logic has

not been shown in the �gure, many CAMs have the capability to perform tag and

data reads based on the addresses at Dadr and Tadr. However, the most distinctive

operation of this circuit is the associative read operation. In this operation Tagin is

compared in parallel with all the T [] tag entries, and if there is a match on the ith tag

entry, then HIT rises, and D[i] appears at Dataout. If there is no match to Tagin,

i.e., a miss, HIT remains low (and, the surrounding circuitry would ignore Dataout).

In the vast majority of CAMs, it is an assumption that, among valid tag entries

there is at most one tag that matches Tagin. This property, the at most one tag match

property, is an important system invariant. However, this property is usually not

enforced in hardware, i.e., no special circuitry is implemented to detect or guarantee

this condition. Rather, CAMs generally depend upon surrounding circuitry, or the

software manipulating the entire chip, to maintain this invariant. For example, in

the branch target address cache (BTAC) array (described in Chapter 6), the branch

prediction logic controlling the BTAC writes ensures the at most one match invariant

holds. In a CAM like the block address translator (BAT) array [112], the responsibility

of maintaining the invariant is with the operating system software, which can write

new tag and data values directly into the CAM.

4.1.1 Variations in CAM designs

Two important variations in the CAM design presented above are the ability to

handle multiplematches, and the ability to perform content addressable writes. In the

case where multiple matches are allowed, two distinct schemes have been presented

in literature [54, 85]. The �rst scheme selects one of the multiple hits based on a

preassigned priority of the di�erent matches. The second scheme counts the number

of matches that occur.

In the case of multiple matches with priority, a priority encoder is introduced

between the tag and data portions of a CAM (Figure 4.3). This encoder takes as

its input the match signals from the tags, and the match signal of the highest pri-

ority is sent to the data part of the CAM. All other match signals to the data part

are suppressed. Usually the priority between the di�erent match signals is assigned
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as vector mismatch position. These auxiliary variables did not contribute much to

the understanding of the high-level system behavior, and they should not have been

visible in the abstract speci�cations. To overcome this problem, and to allow simple

intuitive abstract speci�cations, we have developed a simple consistent notation to

specify the generation and manipulation of symbolic ternary vectors. This is described

ahead. Following this, in section 4.3, we discuss the application of symbolic ternary

vectors to e�cient CAM veri�cation.

The basic object we work with is a symbolic ternary vector, which is an array

of symbolic ternary values. When each element of a symbolic ternary vector is a

binary quantity, we refer to the vector as a symbolic binary vector. When a symbolic

ternary (binary) vector contains no symbolic variables, then we also refer to it as

a ternary (binary) vector, or a scalar ternary (binary) vector. A symbolic ternary

value is represented by a pair of OBDDs using the dual-rail encoding of chapter 2.

Each symbolic ternary vector implicitly represents a set of scalar ternary vectors. We

formally de�ne this object below.

De�nition 12 A symbolic ternary vector A is an object with the following four at-

tributes:

1. length(A) | The length of vector A.

2. support(A) |The list of symbolic Boolean variables which appear in the support

set of the functions in A.

3. elements(A)| The subset of vectors in f0; 1;Xglength(A) which are represented

by A.

4. compatibles(A) | The subset of vectors in f0; 1glength(A) such for any element

u 2 compatibles(A), there exists an element v 2 elements(A) such that v vT u.

The attribute elements(A) is the set of all non-symbolic vectors that A evaluates

to for all possible assignments to the symbolic Boolean variables in support(A). Based

on the information content of the 0=1=X ternary values, 0, and 1 con
ict with each

other, and all the other pairs of ternary values are non-con
icting or compatible.

Given an integer k, 0 � k < length(A), A[k] is the kth component of vector A.

Given integers j, and k, 0 � j; k < length(A), and j � k, A[j::k] is the vector of length
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k� j +1, consisting of components A[j] through A[k]. A binary vector is compatible

with a ternary vector if at every bit position the two vectors have compatible values.

compatibles(A) refers to the set of binary vectors each of which has at least one

compatible ternary vector in elements(A).

In the examples ahead, we use the notation (fL; fH) to represent a symbolic

ternary value, where fL, and fH are Boolean expressions representing the low rail

and the high rail values respectively. Of course, the set of symbolic binary vectors is

included in the set of symbolic ternary vectors, and in such a vector the low-rail and

the high-rail values are complementary. When it is clear from context that (fL; fH)

is a symbolic binary value, i.e., fL and fH are complementary, then sometimes in-

stead of (fL; fH) we write fH , the high-rail value. (0,1), (1,0), and (1,1) represent

the ternary values 1,0, and X respectively. If all the elements of a vector are scalar

quantities, we write the vector as a sequence of ternary values, e.g., 100X1X0. If

the vector contains only symbolic binary values, then it may be written as comma

separated sequence of symbolic values within angle brackets, e.g., ha0; a1 � a0; a1i. If

the vector contains symbolic ternary values, then it is written as a list of comma

separated symbolic ternary values enclosed within angle brackets. As an example,

let A = h(a + b; a + b); (c; c)i. In this case, length(A) = 2, support(A) = fa; b; cg,

elements(A) = f00; 01; 10; 11;X0;X1g, and compatibles(A) = f00; 01; 10; 11g.

For variable set v, let �v denote the set of all 0/1 assignments to the variables in v.

For v � support(A), let � 2 �v. We de�ne restrict(A;�) to be the symbolic ternary

vector B which is obtained by setting the variables in the functions in A to their

assignments speci�ed in �. The resultant vector B has support(B) = support(A)�v.

When v = support(A), then restrict(A;�) denotes a scalar ternary vector ~a.

The starting point for the creation of symbolic ternary vectors is a set of genera-

tors. The generators each produce a symbolic binary vector A of a speci�ed length n,

such that element(A) is a a subset of f0; 1gn. To synthesize more complex symbolic

ternary vectors, we have a set of operators. These operators act upon the symbolic

vectors obtained from the generators, to yield new symbolic vectors.

4.2.1 Symbolic vector generators

Below, we describe the bitvector, onehot, index, and the unary generators. All genera-

tors other than bitvector also have their anonymous counterparts. These are described
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at the end of this section.

Bitvector generator

The most basic generator is the bitvector generator. Given an integer argument

n, it returns a vector of n symbolic Boolean variables. If A = bitvector(n), then

length(A) = n, support(n) contains n Boolean variables, and elements(A) = compatibles(A) =

f0; 1gn.

Onehot generator

The onehot generator takes two arguments, an integer n, and a vector of Boolean

variables v. onehot(n; v) returns a vector which symbolically combines all the one-

hot vectors of length n, with the variables in v. Vector v must have a length of at

least dlog2ne. If A = onehot(n; v), support(A) = fv[0]; v[1]; : : : ; v[length(v) � 1]g

length(A) = n, support(A) = v, and elements(A) = f0i�110n�i j 1 � i � ng. If

� = (v = k), is an assignment, where the variables in vector v are assigned 0/1 values

corresponding to the integer k, v[0] being the LSB, then Restrict(A;�) = 0k�110n�k .

Index generator

Often, given a set of symbolic ternary vectors S = fs0; s1; :::; sm�1g, S � f0; 1gn, it is

necessary to index one element of S symbolically with a vector of Boolean variables

v. The index generator takes S, and a variable vector v of length dlog2me as argu-

ments, to generate the desired symbolic ternary vector. A = index(S; v) is such that,

length(A) = n, and elements(A) = S. If � = (v = i), is an assignment, where the

variables in vector v are assigned Boolean values corresponding to the integer i, v[0]

being the LSB, then Restrict(A;�) = si.

Unary generator

The unary generator, given an integer argument n, and a vector of symbolic variables

v, produces a symbolic vector of length n which symbolically combines all vectors of

the form 0i1n�i, 0 � i < n. If A = unary(n; v), where v is of length dlog2ne, then

length(A) = n, and elements(A) = f0i1n�i j 0 � i < ng.
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Anonymous generators

The second argument of the onehot, index, and unary generators is a vector of Boolean

variables which helps combine a number of scalar vectors into one symbolic ternary

vector. Often, it is necessary to know the identity of these \combining" variables, but

there are instances, where their identity is not important. In such cases, it should

not be necessary to specify the \combining" variables when invoking the generators.

Instead, the generators should implicitly create the necessary Boolean variables and

perform their task. Each of the last three operators have their anonymous counter-

parts which are written exactly as before, with the exception that they do not have

a second argument. In the examples ahead, we illustrate the use of both anonymous,

and explicit generators.

4.2.2 Symbolic vector operators

An operator is a function which maps an element of the set of binary vectors to a

subset of the set of ternary vectors. More formally,

De�nition 13 A symbolic vector operator is a mapping

op : f0; 1gn ! 2f0;1;Xg
m

which maps a binary vector of length n to a set of ternary vectors of length m. If A is a

symbolic vector produced by a generator, such that length(A) = n, and support(A) =

v, then op(A) yields a symbolic vector B, with length(B) = m, support(B) = v0 � v,

and the following property:

8� 2 �v: [~a = Restrict(A;�), and B0 = Restrict(B;�)]) op(~a) = elements(B0).

Intuitively, the de�nition above states that if op can map scalar binary vectors

to a set of ternary vectors, then it can consistently map a symbolic vector A into

a symbolic vector B. Below, we discuss the ternneq, binneq, and the ternneqmask

operators.

ternneq operator

An important aspect in the operation of CAMs is comparison over bit-vectors to

determine whether or not they are equal. We introduce the ternneq operator that
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maps a symbolic binary vector A of length n to ternneq(A) which represents all

the symbolic vectors that are \unequal" to A. For example, if A = 0010, then

elements(ternneq(A)) = f1XXX;X1XX;XX0X;XXX1g. The scalar ternary vec-

tors in this set represent all the di�erent ways in which a 4-bit vector can be unequal

to the bitvector 0010. If A = hf0; f1; f2; f3i, where f0 through f3 are symbolic binary

values, then

elements(ternneq(A)) = elements(hf0;X;X;Xi) [ elements(hX; f1;X;Xi)

[elements(hX;X; f2;Xi) [ elements(hX;X;X; f3i)

We discuss the ternneq operator and its explicit version further in section 4.2.3.

binneq operator

The binneq operator is identical to the ternneq operator, with the di�erence that for

a symbolic binary vector ~a, elements(binneq(~a)) is a subset of f0; 1glength(~a). Thus

binneq produces symbolic vectors only over the binary domain.

ternneqmask operator

Some CAMs allow selective masking of certain bit positions so that comparison over

these positions is ignored. This makes it necessary to have the ternneqmask operator

which takes into account mask values while computing a symbolic vector unequal to

a given symbolic binary vector.

Let A be a symbolic binary vector of length n. LetM be a binary vector of length

n which masks comparisons of vector A. To keep our discussion simple, initially we

assume that M is scalar. Mask M disables comparison over all the bit positions

for which it is a 1. For instance, if M = 0n�11, then comparison occurs over every

bit position other than the last. Similarly, if M = 0n=21n=2, then the comparison is

enabled only over the �rst n=2 bits. This idea can be extended in a straightforward

manner to the case where M is symbolic. Let vM = support(M), and �vM be the

set of all assignments to variables in vM . For all � 2 �vM , Restrict(M;�) disables

comparisons over A for those bit positions at which it is 1.
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With this background, we make a minor extension of de�nition 13 to de�ne tern-

neqmask as an operator which maps two binary vectors to a set of ternary vectors:

ternnegmask : f0; 1gn � f0; 1gn ! 2f0;1;Xg
n

Let A, and M be symbolic binary vectors such that length(A) = length(M) = n,

support(A) = vA, and support(M) = vM . Let �vA , and �vM denote the set of all

assignments of variables in vA, and vM respectively. B = ternnegmask(A;M) is a

symbolic ternary vector satisfying the following two conditions:

� 8�a 2 �A:8�m 2 �M :(~a = Restrict(A;�a)) and (~m = Restrict(M;�m)) and

(B0 = Restrict(B;�a [ �m)) =) B0 = ternneqmask(~a; ~m).

Intuitively, this condition states that the symbolic extension of ternneqmask is

consistent.

� If ~a = Restrict(A;�a), �a 2 �A, and ~m = Restrict(M;�m), �m 2 �M , then

8~u 2 ternneqmask(~a; ~m):8~v 2 compatibles(~u):~v&~m 6= ~a&~m, where & is the

bitwise AND operator, and ~m is the bitwise negation of every element of ~m.

This condition enforces the inequality of ~a over the non-masked positions indi-

cated by ~m.

IfA = 1010, andM = 0011, then elements(ternneqmask(A;M)) = f0XXX;X1XXg.

Note that the elements in this set disagree with A over the �rst two bit positions.

4.2.3 Implementation of symbolic vector generators and op-

erators

The generators and the operators can all be implemented with the common Boolean

operations available in any standard OBDD interface [14]. Every call to a bitvector

generator results in the creation of a set of new Boolean variables. Other generators

like onehot(n,v), and unary(n,v) produce their results in a straightforward manner.

Each of these generators produces a symbolic vector which represents a set of symbolic

or scalar vectors fs0; s1; :::; sng. The task of the variables in v is to \select" one of these

vectors, and the desired symbolic expression equals (v = 0) �s0+(v = 1) �s1+ : : : (v =

n�1) � sn�1. The + operator results in the bitwise OR of its argument vectors. The �
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operator results in the conjunction of each element of a vector with a Boolean value.

For example, if n = 4, and v = v1v0, then variables v0, and v1 select one of the four

di�erent on-hot bitvectors, 0001, 0010, 0100, and 1000.

onehot(n; v)

= (v1v0 = 00) � 0001 + (v1v0 = 01) � 0010 + (v1v0 = 10) � 0100 + (v1v0 = 11) � 1000

= hv1v0; v1v0; v1v0; v1v0i

We discuss below the implementation of the ternneq operator. Consider the earlier

example, where

elements(ternneq(0010)) = f1XXX;X1XX;XX0X;XXX1g

Intuitively, for each bit position of the binary vector we create a new ternary

vector which has the opposite binary value at that position, and has a X at every

other bit position. In the next step towards creating a symbolic ternary vector for

ternneq(0010), we must roll the four vectors in f1XXX, X1XX, XX0X, XXX1g into

one symbolic vector. This can be done with a pair of Boolean variables which select

one of the four ternary vectors. An alternate viewpoint is that these variables select

the bit position of the inequality, and we refer to them as position inequality variables.

In general, for vectors of length n, log2n position inequality variables are required.

These variables can be anonymous under almost all circumstances for associative

reads. During associative writes it may become necessary to expose these values in

some cases.

Let A = A0A1:::An�1 be symbolic binary vector of length n. Let Ai:H, and Ai:L

be the high and low rail values, respectively, of the ith element of A. Since Ai is

binary, Ai:H, and Ai:L are complementary. Let R = R0R1:::Rn�1 be the symbolic

ternary vector equal to ternneq(A). If Ri:H, and Ri:L are the high and low rail

values, respectively, of the ith element of R, and v is a vector of Boolean variables of

length log2n, then the dual rail values of Ri may be constructed as follows:

Ri:H = (v 6= i) +Ai:H

Ri:L = (v 6= i) +Ai:L

ternneqmask can be similarly implemented by taking into account each of the

di�erent possible mask values, and combining the ternary vectors so generated.
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4.3 CAM properties and CAM encodings

Below, we discuss our search for e�cient Boolean encodings to use in STE veri�cations

of CAMs (Section 4.3.1). We show how a well chosen encoding can dramatically

reduce the number of variables, and therefore the number of OBDD nodes, required

for the veri�cation. We discuss the results of our experiments in Section 4.4.

4.3.1 CAM Encodings

We will discuss the CAM encoding problem in the context of verifying the associative

read operation of CAMs. We will refer to a generic CAM modeled after that of

Figure 4.1, in Section 4.1.

The most obvious approach to verifying the associative read operation is to in-

troduce a Boolean variable for each bit of state in the T [i] and D[i] tag and data

entries. We illustrate this below with an example trajectory assertion. We assume

the number of CAM entries, n, equals 3. Let ~tin; ~t0; ~t1 and ~t2 be vectors of Boolean

variables of size t, the width of the T [i] entries. Let ~d0; ~d1 and ~d2 be vectors of Boolean

variables of size d, the width of the D[i] entries. These vectors are created by the

bitvector generator. The following assertion speci�es the associative read operation

under these conditions1.

~t0 = bitvector(t)

~t1 = bitvector(t)

~t2 = bitvector(t)

~d0 = bitvector(d)

~d1 = bitvector(d)

~d2 = bitvector(d)

(op = assocread) ^ (Tagin = ~tin) ^ (T [0] = ~t0) ^ (T [1] = ~t1) ^ (T [2] = ~t2) ^

(D[0] = ~d0) ^ (D[1] = ~d1) ^ (D[2] = ~d2)

1Some parts of the assertion necessary for veri�cation thoroughness, e.g., that the tag and data

bits are unchanged on a read, have been omitted.
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leadsto
=)

(when(:( ~tin = ~t0) ^ :( ~tin = ~t1) ^ :( ~tin = ~t2))((HIT = 0))) ^

(when(( ~tin = ~t0) ^ :( ~tin = ~t1) ^ :( ~tin = ~t2))((HIT = 1) ^ (Dataout = ~d0)) ^

(when(:( ~tin = ~t0) ^ ( ~tin = ~t1) ^ :( ~tin = ~t2))((HIT = 1) ^ (Dataout = ~d1))) ^

(when(:( ~tin = ~t0) ^ :( ~tin = ~t1) ^ ( ~tin = ~t2))((HIT = 1) ^ (Dataout = ~d2)))

The �rst line of the antecedent speci�es that an associative read is being done,

that the data at the input is ~tin, and that the three tag registers initially contain ~t0,
~t1, and ~t2. The three data registers are speci�ed as initially containing ~d0, ~d1, and ~d2.

The �rst line in the consequent checks for the condition when there are no matching

entries in the CAM. The second consequent line checks for HIT and Dataout when

only the �rst entry matches. Note that we do not check for conditions inconsistent

with the at most one match system invariant. For example, we do not check for what

happens when ( ~tin = ~t0) and ( ~tin = ~t1) are both true. A total of (t+ d)n+ t Boolean

variables are needed for this assertion. We call this encoding, where every bit of the

circuit state has a corresponding Boolean variable, as the full encoding technique.

We can reduce the variable count, however, by using symbolic indexing, at this

point just for the data entries. We can do this by using a vector of Boolean variables,

i, dlog2ne bits wide, to index into the data entries, thereby saving extra variables to

encode the values on the data entries. To e�ect this, the antecedent above should

contain (D[i] = ~data) instead of (D[0] = ~d0) ^ (D[1] = ~d1) ^ (D[2] = ~d2), where ~data

is a vector of Boolean variables d bits wide. The assertion below re
ects this change:

~tin = bitvector(t)

~t0 = bitvector(t)

~t1 = bitvector(t)

~t2 = bitvector(t)

~data = bitvector(d)

i = bitvector(log2n)

(op = assocread) ^ (Tagin = ~tin) ^ (T [0] = ~t0) ^ (T [1] = ~t1) ^ (T [2] = ~t2)
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leadsto
=)

(when(( ~tin = ~t0) ^ :( ~tin = ~t1) ^ :( ~tin = ~t2) ^ (~i = 0))((HIT = 1) ^ (Dataout = ~data))

(when(:( ~tin = ~t0) ^ ( ~tin = ~t1) ^ :( ~tin = ~t2) ^ (~i = 1))((HIT = 1) ^ (Dataout = ~data))

(when(:( ~tin = ~t0) ^ :( ~tin = ~t1) ^ ( ~tin = ~t2) ^ (~i = 2))((HIT = 1) ^ (Dataout = ~data))

Now, we need only (n+1)�t+d+dlog2ne Boolean variables. We call this encoding,

the plain encoding. For identical data and tag sizes, the number of variables goes

down by half, as compared to the earlier technique. However, as results later show,

with increasing n, memory requirements grow rapidly, even with the plain encoding

scheme. So we must improve on it.

We can reduce the number of variables even further, by taking advantage of the at

most one match CAM system invariant. Let Tagin be ~tin = htint�1; tint�2; :::; tin0i.

In order that a particular tag entry T [] not match ~tin, it should be equal to the

ternary symbolic vector ternneq( ~tin).

We now verify the associative read operation in two parts. First, we verify the

case where no CAM entries match the input tag, and second, we verify the case where

the ith entry does match the input tag. For verifying the case where no hit occurs

the new assertion is:

tin = bitvector(t)

(op = assocread) ^ (Tagin = ~tin) ^

(T [0] = ternneq( ~tin)) ^ (T [1] = ternneq( ~tin)) ^ (T [2] = ternneq( ~tin))
leadsto

=)

(HIT = 0);

The three sets of position inequality variables associated with the three invocations

to the ternneq operator are not visible in the abstract speci�cations. For verifying

the case where one entry matches the input tag, we write:

(op = assocread) ^ (datain = ~tin) ^ (D[i] = ~data) ^
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(when(i = 0)(T [0] = ~tin)) ^ (when(i 6= 0)(T [0] = ternneq( ~tin))) ^

(when(i = 1)(T [1] = ~tin)) ^ (when(i 6= 1)(T [1] = ternneq( ~tin))) ^

(when(i = 2)(T [2] = ~tin)) ^ (when(i 6= 2)(T [2] = ternneq( ~tin)))
leadsto

=)

(HIT = 1) ^ (match[k] = (k = i)) ^ (output = data)

This approach requires only (log2n+n�log2t+t+d) Boolean variables. It results in

a substantial space savings over the earlier two approaches. We refer to the Boolean

variable encoding used above as the CAM encoding. As will be seen in section 4.4,

veri�cation of even moderate sized CAMs would have been intractable without an

encoding at least as e�cient as the CAM encoding.

4.3.2 Comparison of Boolean variables for di�erent encod-

ings

We have presented three di�erent Boolean encoding techniques, full, plain and CAM

in the previous section. Table 1 shows the number of symbolic Boolean variables re-

quired in each approach for a number of di�erent CAM con�gurations. A column

has been added to show the number of variables required for representing the tran-

sition relation of the system for CTL model checking [29]. This is always twice the

number required for the full encoding. In the table it is interesting to note that the

CAM encoding shows a large savings in the number of Boolean variables required for

verifying CAMs with high associativity.

4.4 CAM Veri�cation Experimental Results

Experimental Setup

Using cmu-netlist, a tool to describe transistor netlists, we implemented a number of

di�erent CAMs, all based on the CAM of Figure 4.1, with varying numbers of entries,

and varying tag and data sizes. We used the Voss formal veri�cation system [116] to

verify the circuits described in this section, and those in chapter 6.
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CAM con�guration Encoding Type

n � t � d CAM plain full trans. reln.

4 � 4 � 4 18 26 36 72

16 � 4 � 4 44 76 132 264

4 � 16 � 4 38 86 96 192

4 � 4 � 16 30 38 84 168

16 � 16 � 16 100 292 528 1056

Table 4.1: Total number of Boolean variables required for di�erent encodings. Tag

size = t, Number of entries = n, Data size = d

4.4.1 Results

In Figures 4.4, 4.5, and 4.6 we have plotted the experimental results for veri�cation

of CAMs of di�erent sizes using the CAM encoding and the plain encoding. Full

encoding, which is not included here, usually performs much worse than the other

two encodings. We have plotted the memory taken by the OBDDs generated in the

process of verifying the associative read operation for the CAM and the plain variable

encodings. All other operations of the CAM take less space and they have not been

included here. The Boolean variable ordering for the experiments was carefully chosen

in order to avoid unfair comparison between the two techniques. We �rst chose a

variable ordering that, from our understanding of the circuit function, would give

us small OBDDs. Upon running STE with our initial variable ordering, the OBDD

package reordered some of the variables. We used this reordering information to

improve our understanding of the variable interaction and further tuned the variable

ordering before running STE again.

Figure 4.4 shows how the OBDD sizes vary for the plain and CAM encoding for

CAMs with varying associativities (tag, data sizes are constant). As the graph shows,

there is a dramatic di�erence in the space taken by the two encoding approaches. As

the number of tag entries increase, the plain encoding requires substantially more

memory than the CAM encoding. Many TLBs are highly associative. For example,

the PA-7300LC processor has a 96-entry fully associative TLB [61]. For such a circuit,
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the plain encoding approach will clearly not work. These results motivated us to

use CAM encodings in all our remaining CAM veri�cation experiments which are

described in Chapter 6.

In Figures 4.5 and 4.6, we have shown the OBDD size trends for the two encod-

ings when the tag size changes (others remaining constant), and when the data size

changes. Although the results of these graphs are not as dramatic as that of Fig-

ure 4.4, they show that the use of CAM encoding still results in at least an order of

magnitude savings in OBDD space, as compared to simpler encodings.

4.4.2 Discussion of CAM results

We can explain the trends in the results in the previous section in terms of the circuit

structure and the interactions of the boolean functions in the circuit. Consider the

3-entry CAM postulated in Section 4.3.1, and let the tag size be k. In this design the

ith match line, match[i] contains the result of match between the tag input and the

ith tag entry.
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When the plain encoding is used, then the ith match line contains the result of

the match between the input tag ~tagin and the ith tag entry ~tagi. After the compare,

the boolean function associated with match[i] is

fmatch[i] = :((tagin[k � 1]� tagi[k � 1]) _ : : : _ (tagin[1]� tagi[1]) _ (tagin[0]� tagi[0]))

The value on each dataout line Dataout[j] is a function of the functions on all the

match lines, bit d[j] (used in the associative read assertion), and ~i. So, potentially

all the Boolean variables associated with the tag and data entries, and the tag input

interact with each other.

When the CAM encoding is used, the antecedent fragment (Section 4.3.1) speci-

fying the 0th tag entry is given by (when(~i = 0)(T [0] = ~tin)) ^ (when(~i 6= 0)(T [0] =

ternneg( ~tin))) When the tag input is tin, then the 0th tag entry matches only if
~i = i1i0 equals 0. This information is conveyed by the Boolean function on match[0].

Therefore fmatch[0] = i1 � i0. So, the functions on the dataout lines depend only on the

Boolean variables in ~d, and~i. Thus, the use of CAM encoding minimizes the variable

interaction and this results in substantial space savings especially when the number

of entries is large. We have not shown the running times of the assertions here, most

of which �nish in a few seconds on a RS/6000TM model 250 workstation.

4.5 Variations of associative read

Some CAM designs do allow more than one tag entry to match the incoming tag

[127, 81]. Such CAMs are not usually seen on a processor. However, they can be

found in applications like cryptology, data routing etc. [115]. In such CAMs, there

can be two variations on the associative read operation described in Section 4.3.1. In

the �rst variation there is a priority among the tag entries and in case of multiple

matches, the highest priority match dominates [127]. In the second variation, the

total number of matches is counted [54, pp. 156{167] and this number is an output

of the CAM unit.

4.5.1 Multiple matches with prioritization

In this variation, from the multiple matches, the highest priority match is selected.

Usually the priority among the matches is based on the address. A match at a higher
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address has a higher priority than a match at a lower address2 [127].

In such a CAM, the case where HIT is 0 can be veri�ed as described in the previous

section. However, the case where there are multiple matches need a slight change.

For this the antecedent must state that the ith tag entry is the same as the input tag

and all tag entries greater than i do not match the input tag. The consequent must

then verify that only the ith match line is high and all others remain low. This can

be done by a simple modi�cation of the last assertion shown in the previous section.

4.5.2 Counting matches

For counting matches, with every tag entry we include a single Boolean variable which

if true ensures that the tag matches the tag input, and if false ensures that the tag

does not match the tag input. In the 3-entry tag example, we can have a variable ai,

with the ith tag entry, and the antecedent entry corresponding to this entry should

be (when(ai)(T [i] = ~tin)) ^ (when(:ai)(T [i] = ternneq( ~tin))).

Let the count output of the circuit give the number of tag matches. The conse-

quent below checks that the value of count equals the number of ais that are true.

(when(:a0 ^ :a1 ^ :a2)(count = 0)) ^

(when((a0 ^ :a1 ^ :a2) _ (:a0 ^ a1 ^ :a2) _ (:a0 ^ :a1 ^ a2))(count = 1)) ^

(when((:a0 ^ a1 ^ a2) _ (a0 ^ :a1 ^ a2) _ (a0 ^ a1 ^ :a2))(count = 2)) ^

(when(a0 ^ a1 ^ a2)(count = 3))

4.6 Related Work

While work on veri�cation of memory arrays has been reported in [24], and [102],

there has been little published on the particular needs of CAMs. In [24, pp. 102],

Bryant discusses the formal veri�cation of SRAM arrays using ternary simulation, and

he states the di�culty of CAM veri�cation as, \...Other classes of memory designs

can also be veri�ed by simulating a linear, or nearly-linear number of patterns. ...

2The other variation of a lower address having a higher priority is also possible
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On the other hand, content-addressable memories do not seem to �t into this class,

since it is not easy to identify where a particular datum will be stored." In [102],

we reported on veri�cation of a 4-way set associative cache tags unit. Each set of

the cache tags unit may be considered a content addressable memory. However, this

work, which was completed prior to our work on CAM veri�cation, uses a variant of

plain encoding to verify the correctness of each set.
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Chapter 5

State node identi�cation in

circuits

Our veri�cation methodology for arrays partitions the system speci�cation into the set

of abstract assertions, and the implementation mapping. The implementation map-

ping describes how the abstract state is realized in the implementation by mapping

the abstract state values to values on circuit nodes The goal of state node identi-

�cation is to identify the set of circuit nodes corresponding to each abstract state

variable.

We start this chapter with a motivation for the problem (Section 5.1). We next de-

scribe the theory behind our partition re�nement based approach to solve the problem

(section 5.2). Section 5.3 discusses the non-deterministic Moore machine speci�ed by

a set of abstract assertions. It shows how a ternary simulation model can be derived

from the set of abstract assertions. The following section describes the state node

identi�cation algorithm. Section 5.5 discusses some speci�c instances where we used

our state node identi�cation techniques.

5.1 Motivation

The typical design environment uses a simulation based veri�cation methodology.

In such an environment, veri�cation is based on applying simulation patterns at the

primary inputs of the design, observing the the primary outputs, and comparing them

107



108 CHAPTER 5. STATE NODE IDENTIFICATION IN CIRCUITS

to the expected response. Seldom do these veri�cation techniques examine internal

state points in the design. Therefore, most tools such as circuit extractors, netlisters

etc. do not maintain information about storage nodes or state points in a circuit,

as they do for the primary inputs and outputs of a design. Exposing internal state,

however, is an integral part of our methodology. This makes it necessary to develop

techniques to facilitate the identi�cation of state nodes. The ideal technique should

be general enough to work on a variety of design representations which can range from

transistor and gate-level netlists, to RTL and behavioral models. We have developed

an approach to do so, and we describe it in the sections ahead.

Sometimes, it is possible for the designer to annotate his designs with suitable

attributes to facilitate state node detection. Therefore, the need for state node iden-

ti�cation may not seem particularly acute. However, addition of extra steps and/or

new attributes and design requirements can result in changes to the existing design

methodology. An automated technique such as ours has the ability to do the iden-

ti�cation in a completely non-invasive manner. Furthermore, we should view our

techniques as complementing any other available approaches to do state node identi-

�cation. Sometimes, design representations we would verify are not under full control

of the designers. For example, if we wished to verify a synthesized gate-level or a

transistor-level netlist, the ability of the designer to add attributes to the �nal design

representation is signi�cantly limited. So an automated technique to identify state

nodes is an important veri�cation aid. The use of automated state node identi�cation

has been an important factor in the success we have had in verifying several memory

arrays from PowerPC microprocessors [102, 103].

5.2 The partition re�nement approach to state

node identi�cation

5.2.1 Ternary state machines

We use the following terminology below. Let S be a �nite set. Let jSj denote the

cardinality of S. A partition �S of S is a set of pairwise disjoint subsets of S, whose

union is S. The elements of �S are called blocks.

We use ternary symbolic simulation of circuits and speci�cation as a part of the
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Figure 5.1: The state node identi�cation problem

identi�cation process. This motivates the de�nition of a ternary state machine ahead.

De�nition 14 A ternary state machine is a 3-tuple hI; S; �i, where I = fi1; i2; :::; ipg

is the set of input nodes, S = fs1; s2; :::; sng is the set of state variables, and � : T
jIj � T jSj ! T jIj

is the state transition function which maps the current values on the input and state

nodes to the new circuit state.

This de�nition captures the behavior of switch-level and gate-level ternary simu-

lation models. We can also construct a ternary state machine from a set of abstract

assertions, which implicitly de�ne a �nite state machine [6, pp.77-78]. This construc-

tion is described in section 5.3. Note that our de�nition treats nodes corresponding

to the primary outputs of the circuit as state nodes. Of course, values on such state

nodes will not in
uence the new circuit state.

The circuit state machine (CSM) is the ternary state machine hIc; Sc; �ci de�ned

by the unit-delay switch-level model of the circuit [17], where �c corresponds to the

circuit excitation function. Let Sc equal fc1; c2; :::; cng.

The speci�cation state machine (SSM) is the ternary state machine hIs; Ss; �si syn-

thesized from a set of abstract assertions of the system. Let Ss equal fsv1; sv2; :::; svmg.

The goal of state node identi�cation is to determine, for a subset SID � Ss of the

SSM state elements, what circuit state machine nodes correspond to each state node



110 CHAPTER 5. STATE NODE IDENTIFICATION IN CIRCUITS

wordline

bit bitbar

sbars

Figure 5.2: Static RAM memory cell

n4

Phi

Phibar

Phibar

Phi

In Out

n1 n2

n3

n5

Figure 5.3: Master-Slave 
ip-
op

in SID. We formulate and solve the problem as that of determining a partition

� = fB1; :::; BjSIDj; BjSIDj+1g of the set (Ss[Sc) such that each block Bi; 1 � i � jSIDj

of the partition contains contains one SSM state node from SID, and the circuit state

nodes which correspond to it.

We make the assumption that corresponding to every abstract state variable which

is not a primary input or output, there exists a sequential storage element of some

other form. These can include storage elements like random access memory cells (Fig-

ure 5.2) or master-slave 
ip-
ops (Figure 5.3), or any other type of static or dynamic

storage element. This assumption does preclude the use of complex mappings, where

the state of an abstract state variable corresponds conditionally to the states of several

di�erent latches. However, this is not a particularly onerous restriction. Under such

a restriction the abstract speci�cation corresponds closely to the RTL abstraction. It

is at this abstraction level that we specify the behavior of most arrays.

In the partition re�nement approach, we �rst start with the partition which con-

tains only one block, namely the set, Ss [ Sc. Blocks in the partition re
ect our

knowledge of the correspondence between the circuit nodes and the abstract state

variables. Naturally, at the beginning, when nothing is known about the correspon-
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dence, all the circuit nodes and the state variables are included in the same partition.

As we re�ne our knowledge of the node correspondence (by simulating the two ma-

chines), the partition of the set Ss[Sc contains smaller blocks, which indicates a more

re�ned knowledge of the state node correspondence. At the end of the identi�cation

process, each partition block contains exactly one state variable and its corresponding

circuit nodes.

5.2.2 Partition re�nement by simulation

To determine the correspondence of the state nodes in SSM and the CSM, we start

with both the machines in the ternary reset state, where all the nodes are set to X.

Typically most switch-level, gate-level or RTL simulators have the ability to initialize

the circuit model to all Xs. We associate the node partition �0 = fSs [Scg with this

initial state where all the state nodes are indistinguishable. We apply a �nite length

input symbolic sequence IID = I1I2:::Ik to the SSM and the CSM (Figure 5.4). At

the end of each clock cycle we observe the values on the nodes in Ss, and Sc. Below,

we de�ne the equivalence relation CIID which captures the correlation of the values

on nodes in Ss [ Sc after an application of the input sequence IID.

De�nition 15 Given nodes n1; n2 2 (Ss [ Sc), n1 CIID n2 i� n1 and n2 acquire

identical ternary values when the input sequence IID is applied to SSM and the CSM

in their ternary reset states.
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The equivalence relation CIID partitions the set Ss [ Sc. Consider Figure 5.5.

It shows the application of an input sequence IID = I1I2:::Ik of length k to the

circuit. Corresponding to each state statei of the CSM and the SSM circuits, there

is a partition �i of the nodes de�ned by the relation CI1I2:::Ik . We can further re�ne

the partitions by taking their product,

� = �1 � �2 � : : : � �k (5.1)

where �a ��b = fxjx = y\z; y 2 �a; z 2 �bg. However, maintaining partitions �1; :::�k,

and computing their product for a lengthy input sequence can be expensive.

A more e�cient alternative is to use symbolic simulation to simulate multiple state

sequences in parallel. If there are l symbolic Boolean variables in the input sequence,

then with a single symbolic sequence we explore the equivalent of 2l di�erent non-

symbolic paths from the initial state state0 (Figure 5.6). Each path corresponds to

one distinct assignment of Boolean variables. Given the 2l partitions, we can compute

their product � = �1 � �2 � : : : � �2l in a very simple manner | all the nodes having

the same ternary symbolic value go into the same block of the partition �.
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This implies that if we can generate a symbolic simulation sequence which puts

symbolic values on SSM nodes such that no two nodes in SID have identical values,

and the value on any node in SID di�ers from the values on the nodes in (Ss � SID),

then we can solve the state node identi�cation problem. We call such a symbolic

input sequence an identi�cation sequence. After simulating such a sequence, the

nodes in SID are said to be distinguished. For small state machines, an approach

to obtain the identi�cation sequence is to apply new symbolic values at the inputs

for successive clock cycles until all the nodes in SID are distinguished. This gives

the shortest possible identi�cation sequence. However, this will not work for large

state machines, where di�erent symbolic values at the circuit inputs for each clock

period over several clock cycles can lead to a blowup in the OBDD sizes. Generally,

for large regular machines the construction of the identi�cation sequence is best left

to the designer, who with his detailed knowledge can easily exploit the features of

the design to construct an e�cient identi�cation sequence. We illustrate this with

examples in section 5.5.

5.3 Construction of the speci�cation state ma-

chine

The speci�cation state machine is a ternary simulation model of a system derived

from a set of abstract assertions describing the system behavior. We show the con-

struction of the simulation model by going through a sequence of graduated steps. In

section 5.3.1 we discuss the non-deterministic Moore machine de�ned by a set of ab-

stract assertions. The idea of a set of abstract assertions de�ning a non-deterministic

Moore machine comes from Beatty's work [6, pp. 77-78], and we have added some

notation to facilitate the discussion in the sections that follow. We have illustrated

the ideas in this section with the help of the SRAM example from section 2.3.2. Next,

we show the construction of a transition relation to represent the transitions of the

Moore machine, and we discuss representing the transition relation in a partitioned

form. The partitioned transition relation we develop naturally de�nes a set of excita-

tion functions which maps a binary system state to the ternary successor state of the

system. This binary-ternary model which directly arises from the assertions is our
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reference model. We show how a minor change to the algorithm which creates the

reference model results in an algorithm which yields ternary simulation model, or the

SSM. We prove that the ternary model we create accurately represents the reference

model.

5.3.1 Non-deterministic Moore machine described by as-

sertions

Let AM = f[A1
LEADSTO

=) C1]; [A2
LEADSTO

=) C2]; : : : ; [Ak
LEADSTO

=) Ck]g be a set of abstract

assertions. Let SV = fsv1; sv2; :::; svmg be the set of state variables of M . As shown

in [6], AM de�nes a non-deterministic Moore machine M over the state variables in

SV. Let the set of case variables in the assertions of AM be CV = fcv1; cv2; :::; cvlg.

As discussed earlier, the case variables help combine multiple non-symbolic assertions

into one symbolic assertion. To simplify the discussion here, we assume that the state

and the case variables are over the Boolean domain. The state space of M is Bm,

where m is the number of state variables inM . The set of transitions ofM is a subset

of Bm � Bm.

To discuss the algorithm for construction of the transition relation for M from a

set of assertions AM , we �rst de�ne the syntax of abstract assertions. In an abstract

assertion [A
LEADSTO

=) C], A, and C are abstract trajectory formulas (ATFs) which have

the following recursive de�nition:

1. (a) (svi = 0) is an ATF, where svi 2 SV.

(b) (svi = 1) is an ATF, where svi 2 SV.

2. F1 ^ F2 is an ATF, where F1, and F2 are ATFs.

3. (when e F ) is a ATF, where F is an ATF, and e is a Boolean expression over

the variables in CV.

The syntax of the ATF is similar to that of TFs in section 2.1.3 with the notable

absence of the next-time operator, X. An abstract assertion of the form [A
LEADSTO

=) C]

may be considered a trajectory assertion of the form [A) XC] for a model structure

in the abstract domain.
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Beatty [6], and Jain [71] present a more elaborate syntax for abstract assertions.

This includes a few additional constructs not directly included in the description of

ATFs. However, the ATF syntax we have presented above captures the core features

of their language. The features we have not included can be expressed in terms of

the ATF primitives. For example, an expression such as (M[i ] = a), which denotes

symbolic indexing over an array of state elements M [0::n � 1], is apparently not a

part of our language. However, this expression can be written as the ATF (when (i =

0) (M[0] = a)) ^ : : : (when (i = n � 1) (M[n� 1] = a)). Similarly, (din = a) can be

written as the ATF (when a (din = 1)) ^ (when a (din = 0)).

Each assertion [Ai
LEADSTO

=) Ci] in AM de�nes a superset of the transitions of M .

Intuitively, the assertion states that ifM starts in a state satisfying Ai, then its next

state must be within the set of states speci�ed by Ci. However, ifM starts in a state

not satisfying Ai, the assertion does not place any constraint on the next state of

M . We denote the set of transitions speci�ed by this assertion as �AiCi. The set of

assertions in AM together specify, �AM , the transitions of M , which equals \ni=1�AiCi,

the intersection of the transitions speci�ed by the individual assertions.

SRAM non-deterministic Moore machine: An illustration

Consider the set of abstract assertions for the SRAM circuit in section 2.3.2:

(adr = i) ^ (M[i] = a) ^ (rd = 1) ^ (wr = 0)
LEADSTO

=) (M[i] = a) ^ (dataout = a)(5.2)

(adr = i) ^ (din = a) ^ (rd = 0) ^ (wr = 1)
LEADSTO

=) (M[i] = a) (5.3)

(M[i] = a) ^ (adr = j )
LEADSTO

=) (when(i 6= j )! (M[i ] = a)) (5.4)

The assertions described by equations 5.2 and 5.3 specify the SRAM read and

write operations respectively. Equation 5.4 speci�es that during any operation, unad-

dressed memory locations remain unchanged. The set of state variables in the SRAM

abstract machine is SV = frd; wr; adr[0]; adr[1]; din; dout; M[0]; M[1]; M[2]; M[3]g. The

state space of the non-deterministic Moore machine de�ned by the SRAM assertions

is B10, the set of all the 0/1 assignments to the SRAM state variables. The set of

case variables equals CV = fi [0]; i [1]; a; j [0]; j [1]gg. As an illustration of the utility of

the case variables, consider the SRAM write assertion (equation 5.3). This assertion
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represents eight non-symbolic assertions, which correspond to the eight di�erent as-

signments to the three case variables i [0], i [1], and a in the write assertion. A subset

of these eight non-symbolic assertions have been shown below:

(adr = 00) ^ (din = 0) ^ (rd = 0) ^ (wr = 1)
LEADSTO

=) (M[0] = 0) (5.5)

(adr = 00) ^ (din = 1) ^ (rd = 0) ^ (wr = 1)
LEADSTO

=) (M[0] = 1) (5.6)

:::

(adr = 11) ^ (din = 0) ^ (rd = 0) ^ (wr = 1)
LEADSTO

=) (M[3] = 0) (5.7)

(adr = 11) ^ (din = 1) ^ (rd = 0) ^ (wr = 1)
LEADSTO

=) (M[3] = 1) (5.8)

Thus, we may view the set of SRAM assertions in equations 5.2, 5.3, and 5.4 as

de�ning a large number of non-symbolic assertions. Each of these assertions de�ne a

set of transitions over the SRAM state space. For example, the assertion on line 5.6

describes the write operation for storing a 1 in the 0th memory location. If the initial

state of the system conforms to the antecedent of the assertion, then the next state of

the system should be such that M[0] = 1. The assertion speci�es no other constraints

on the next state. This is illustrated in Figure 5.7, where starting at state S0, S1,

and S2 are both valid next states. However, if the initial state does not conform to

the antecedent, then no constraints are placed on the next state of the system. As

the �gure shows, starting at S3, any possible system state is a valid new state.

The S0S1 transition states that if 1 is written to M[0], then this location contains

a 1 after the write is complete. Note that in the transition, the state variables cor-

responding to the primary inputs, and the unaddressed memory locations all change

to 1. Since primary inputs like rd and wr are controlled by the environment, such

state variables can change non-deterministically. However, spontaneous changes in

unaddressed memory locations does not conform to our intuition of correct memory

operation. It is the set of transitions speci�ed by assertion 5.4 that prevents such

behavior from occurring in the abstract machine. This assertion states that during

any operation, memory locations that are not addressed retain their value. The in-

tersection of the transitions speci�ed by assertions 5.2, 5.3, and 5.4 is the set of valid

transitions of the abstract machine speci�ed by the SRAM assertions.
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Figure 5.7: Transitions of the SRAM de�ned by the assertion of equation 5.6.

5.3.2 Construction of a state transition relation from asser-

tions

To obtain the system transition relation �AM , it is necessary to compute �AiCi for

every assertion [Ai
LEADSTO

=) Ci] in AM . We represent �AiCi by its characteristic func-

tion represented as an OBDD over a set of Boolean variables. �AM is simply the

conjunction of the functions representing �A1C1, �A2C2 , ..., �AkCk .

Below, we describe the algorithm for the construction of �AC for an assertion

[A
LEADSTO

=) C]. There are three steps in the algorithm. The �rst is that for each

state variable, two Boolean variables are introduced, one for the \old" value, and

one for the \new" value. �AC is represented as a Boolean function of all these vari-

ables, where the function yields 1 when the old and the new state are related, and

0 otherwise. Therefore, we introduce two sets of variables, P = fp1; p2; :::; pmg, and

N = fn1; n2; :::; nmg, to symbolically represent the present state and the next state,

respectively.

In the second step, we compute two Boolean functions, A(P ) and C(N). When

A does not contain any case variables, then A(P ) is the characteristic function rep-
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resenting the set of states denoted by A in terms of variables in P . Similarly, in the

absence of case variables in C, C(N) is the characteristic function representing the

set of states denoted by C in terms of variables in N . The general procedure for

computing A(P ) and C(N) is described below.

Let F be an ATF, and let V = fv1; v2; :::; vmg be a set of Boolean variables to

symbolically represent the states of M . F (V ) may be constructed by transforming F

as follows:

1. (a) If F is (svi = 0), F (V ) is the Boolean expression vi.

(b) If F is (svi = 1), F (V ) is the Boolean expression vi.

2. If F = F1 ^ F2, then F (V ) = F1(V ) ^ F2(V ).

3. If F is (when e F1), then F (V ) = e _ F1(V ).

Each symbolic assertion actually represents a number of non-symbolic assertions.

So the set of transitions of the non-symbolic assertion is the intersection of the set of

transitions in all the non-symbolic assertions. This justi�es the �nal step, where we

compute �AC by universally quantifying A(P ) _ C(N) over the case variables in CV:

�AC = 8cv1; cv2; :::; cvl 2 CV: A(P ) _ C(N) (5.9)

In a set of assertions with a large number of case variables, we can perform a case

variable substitution which often eliminates a substantial number of the universal

quanti�cations necessary to construct �AC. Case variable substitution works in the

following manner. If the antecedent A of an assertion [A
LEADSTO

=) C] is of the form

A0 ^ (svi = cvj), then

�AC = 8cv1; :::; cvj�1; cvj+1; :::; cvl 2 CV: A0(P )[pi=cvj] _ C(N)[pi=cvj]; (5.10)

where A0(P )[pi=cvj] and C(N)[pi=cvj] are obtained by substituting pi, the present

state variable corresponding to cvi for cvj. Typically, by eliminating a large num-

ber of quanti�cation operations, this optimization step substantially speeds up the

construction of the transition relation.
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5.3.3 E�cient transition relation construction

In a system with a large number of state variables, it may not be possible to construct

or do computations with the transition relation �AM in a reasonable amount of time

and memory. In order to overcome this problem, we use the idea of representing

the transition relation by a set of smaller transition relations which are implicitly

conjuncted [31, 55]. So, rather than construct a monolithic transition relation �AM , for

each state variable svi, we construct a transition relation �AM ;svi which speci�es how

the variable svi gets updated. Such smaller transition relations closely resemble the

description of a system in terms of next state functions of its state variables. However,

unlike next state functions, these transition relations can capture non-determinism in

systems. The conjunction of �AM ;sv1, ... , �AM ;svm equals �AM . This is made possible

because of the fact that for the purpose of computing the transition relation, the

consequent of assertions can be \broken" into smaller terms, each of which contains

at most one state variable. We discuss this below.

Consider the assertion [A
LEADSTO

=) C], where C = C1 ^ C2 ^ : : : ^ Cn. It is easy

to see that C(N) = C1(N) ^ : : : ^ Cn(N). So �AC, which equals 8cv1; cv2; :::; cvl 2

CV: A(P ) _ (C1(N) ^ : : : ^ Cn(N)) may be written as:

(8cv1; :::; cvm 2 CV: A(P ) _ C1(N)) ^ : : : ^ (8cv1; :::; cvm 2 CV: A(P ) _ Cn(N)) (5.11)

This justi�es \breaking" an assertion like [A
LEADSTO

=) C1 ^ : : : ^ Cn] into a set of

simpler assertions of the form [A
LEADSTO

=) C1], : : : , [A
LEADSTO

=) Cn]. The conjunction

of the transition relation for each of these smaller assertions represents the transition

relation for the original assertion.

An ATF F of the form (when e (F1^F2)) is the same as (when e F1)^(when e F2),

and an ATF F of the form (when f (when g F1)) may be written as (when (f^g) F1)).

Thus any ATF F may be rewritten as F1^F2^: : :^Fk, where each Fi contains at most

one abstract state variable. So, each assertion [Ai
LEADSTO

=) Ci] in the set AM , may be

decomposed into a set of smaller assertions f[Ai
LEADSTO

=) Ci;sv1]; : : : ; [Ai
LEADSTO

=) Ci;svm ]g

such that the consequent Ci;svj contains no state variables other than svj. This allows

us to construct �AM ;svj , the jth conjunct of the partitioned transition relation as:

�AM ;svj = ^ki=1�AiCi;svj
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5.3.4 Construction of a ternary simulation model

A ternary simulation model of a system consisting of state variables sv1; sv2; : : : ; svm
consists of a set of m ternary excitation functions, f1; f2; : : : ; fm, where fi : T

m ! T

states how the new ternary state of svi is computed, given the current ternary state

of the system. We use the dual-rail encoding to represent the value of each state

variable as a pair of Boolean variables, and the excitation fi as a pair of Boolean

functions fi:L, and fi:H over these Boolean variables.

First, let us consider the partitioned transition relation obtained from the previous

section. �AM ;svj , the jth conjunct of the partitioned transition relation represents how

svj gets updated given the previous state of the system. So, the conditions under

which svj will be low, and high are expressed by equations 5.12 and 5.13, respectively.

Fj:L = �AM ;svj jnj=0 (5.12)

Fj:H = �AM ;svj jnj=1 (5.13)

The intuition is that Fj:L and Fj:H represent sets of previous states which make svj
0 and 1 respectively, in the next state. For a given state, if Fj:L and Fj:H are both 1,

then svj is driven to X in the next state. Thus, non-determinism is captured by the

ternary value X. However, Fj:L, and Fj:H as constructed above, are not satisfactory

as a ternary simulation model since they are not de�ned for ternary domains. Rather,

they express how a binary state of the system maps to a new ternary state. We term

these functions as the binary-ternary excitation, or the binary-ternary model of the

system. Since this model arises directly from the semantics of given set of abstract

assertions, we regard it as the reference model for the system.

A simple modi�cation to the procedure for obtaining the binary-ternary model

gives us the procedure which yields the ternary model of the system. This modi�ca-

tion expands the set of state variables, so that in place of every original state variable

svi, we have a pair of state variables, svi:H and svi:L, to represent the system state

encoded as dual rail values. We term these variable expansions in assertions as the

dual rail transformations. This simpli�es the construction of a set of excitation func-

tions which can handle the case when both svi:H, and svi:L are equal to 1 in the

initial state, i.e., svi is X in the initial state.

Applying the dual rail assertion transformation on an ATF F yields another ATF

which denoted by FD. We de�ne this transformation below recursively:
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1. (a) If F = (Vi = 0), then FD = (Vi:H = 0) ^ (Vi:L = 1).

(b) If F = (Vi = 1), then FD = (Vi:H = 1) ^ (Vi:L = 0).

2. If F = F1 ^ F2, where F1, and F2 are ATFs, then FD = FD
1 ^ FD

2 .

3. If F = (when e F1), where F1 is an ATF, then FD = (when e FD
1 ).

Applying this transformation to an assertion [A
LEADSTO

=) C] yields [AD LEADSTO

=) CD].

The application of this transformation to every assertion in set AM yields AD
M .

Using the procedure of section 5.3.4, a partitioned transition relation is created

from the assertions in AD
M . The transition relation uses two sets of variables, PD, and

ND, to symbolically represent the present state and the next state, respectively, for

the modi�ed set of assertions. For each i; 0 < i � m, PD contains Boolean variables

pi:H, and pi:L, and N contains Boolean variables ni:H, and ni:L, which correspond

to old and new values of state variables svi:H, and svi:L, respectively. The ternary

excitation functions for Vj may be computed as:

fj :L = �AD
M
;svj:L

jnj :L=1 (5.14)

fj :H = �AD
M
;svj:H

jnj:H=1 (5.15)

We justify the dual rail transformation by proving that the ternary model de-

scribed by equations 5.14 and 5.15 is a consistent monotonic extension of the reference

model given by equations 5.12, and 5.13.

The ternary model is said to be consistent with the binary-ternary model if for

identical binary vectors both yield identical next state results. The ternary model is

an extension of the binary-ternary model if for all ternary vectors y \weaker" than a

given binary vector x, the response of the ternary excitation to y is weaker than the

response of the ternary-binary model to x. Thus, intuitively this concept captures the

fact that the ternary model is an extended version of the ternary-binary model, and

both never \con
ict". The last property is that of the monotonicity of the ternary

model. It states that for vectors y1, and y2, if y1vT y2, then the response of the ternary

model to y1 should be weaker that its response to y2, i.e., the ternary model should

be consistent with decreasing information. Below, we show that the ternary model

we create satis�es these three important properties.
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Theorem 5 Let fi:H, fi:L, 1 � i � n, and Fi:H, Fi:L, 1 � i � n be the ternary,

and the binary-ternary excitation functions, respectively, for a system de�ned by a set

of assertions AM over state variables sv1; sv2; :::; svn.

1. Consistency: The following holds for all x 2 Bn:

fi:H(x) = Fi:H(x)

fi:L(x) = Fi:L(x)

2. Extension: For all y 2 T n, x 2 Bn such that y vT x:

Fi:H(x)) fi:H(y)

Fi:L(x)) fi:L(y)

3. Monotonicity: For y1; y2 2 T
n, if y1 vT y2, then:

fi:H(y2)) fi:H(y1)

fi:L(y2)) fi:L(y1)

Proof: Below, we prove the three properties, assuming all the assertions in AM are

non-symbolic. These results also carry over to symbolic assertions, since they can be

rewritten as a set of non-symbolic assertions, one for each possible assignment to the

case variables they contain.

1. Consistency.

Consider the assertion [Ai
LEADSTO

=) Ci;svj ]. Since the assertion is non-symbolic,

Ai(P ) is a product term of variables in P , or their complements, and Ci;svj (N) equals

one of the three values: nj, or nj, or 1. Therefore, �AiCi;svj , which equals Ai(P ) _

Ci;svj (N), is of the form

pi1 + : : :+ piq + piq+1 + : : :+ pir + Ci;svj (N) (5.16)

where pi1 ; :::; pir, all belong to P .

Similarly, consider the abstract assertion [AD
i

LEADSTO

=) CD
i;svj :L

], which is obtained

from the dual rail transformation of [Ai
LEADSTO

=) Ci;svj ]. �AD

i C
D

i;svj:L
, which represents
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the transitions of this assertion equals

pi1 :H + pi1 :L+ : : :+ piq :H + piq :L+ piq+1 :L+ piq+1 :H + : : :

+pir :L+ pir :H + CD
i;svj:L

(ND) (5.17)

If Ci;svj (N) is equal to 1, then so is CD
i;svj :L

(ND). If Ci;svj (N) equals nj(nj), then

CD
i;svj:L

(ND) equals nj :L(nj :L). Thus, for nj = 0, and nj :L = 1, Ci;svj (N), and

CD
i;svj:L

(ND) are equal. Therefore, given nj = 0; nj:L = 1, and xi 2 B; 1 � i � m,

it is easy to see that the substitutions, p1 = x1; : : : ; pm = xm and p1:L = x1; p1:H =

x1; : : : ; pm:L = xm; pm:H = xm keep the expressions in equations 5.16, and 5.17 equal.

This proves that

(�AD

i C
D

i;svj:L
jnj :L=1)jp1:L=x1;p1:H=x1;:::;pm:L=xm;pm:H=xm = (�AiCi;svj jnj=0)jp1=x1;:::;pm=xm(5.18)

Thus, Fj:L(x) equals

((^mi=1�AiCi;svj )jnj=0)jp1=x1;:::;pm=xm

= ^mi=1(�AiCi;svj jnj=0;p1=x1;:::;pm=xm)

= ^mi=1(�AD

i
CD

i;svj:L
jnj :L=1;p1:L=x1;p1:H=x1;:::;pm:L=xm;pm:H=xm) (By equation 5.18)

= ((^mi=1�AD

i C
D

i;svj:L
jnj :L=1)jp1:L=x1;p1:H=x1;:::;pm:L=xm;pm:H=xm)

= fj:L(x)

Fj:H(x) may be shown equal to fj:H(x) using an argument which is symmetrical

to the one above for the low rail functions.

2. Extension

Let x = x1x2:::xm, be a Boolean vector of length m, xi 2 B; 1 � i � m. Let

y = y1y2:::ym be a ternary vector of length m, yi 2 T ; 1 � i � m. Let yi:L and yi:H

be the low, and high rail Boolean values for representing the ternary value yi.

If y vT x, then for 1 � j � m, xj ) yj:H, and xj ) yj:L. Using this information,

with nj = 0, and nj:L = 1 in equations 5.16, and 5.17 one can readily show that

(�AiCi;svj jnj=0)jp1=x1;:::;pm=xm

)

(�AD

i C
D

i;svj:L
jnj :L=1)jp1:L=x1;p1:H=x1;:::;pm:L=xm;pm:H=xm (5.19)
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SRAM Size Model Size Model Creation

(bits) (OBDD nodes) Time (secs) Mem. (MB)

4 142 1.7 0.95

8 346 1.9 1.02

16 818 2.4 1.15

32 1890 3.6 1.40

64 4290 5.8 1.78

128 9602 16.1 2.58

256 21250 39.3 3.91

512 46594 125.0 6.23

1024 101378 429.1 12.23

Table 5.1: Creation of a ternary model from SRAM assertions

Using (f1 ^ g1 ) h1) ^ (f2 ^ g2 ) h2) ) (f1 ^ f2 ) g1 ^ g2), and equation 5.19,

one can show that Fj:L(x) ) fj:L(y). That Fj:H(x)) fj:H(y) can be shown in a

similar manner.

3. Monotonicity

The proof for monotonicity makes use of equation 5.17, y2:i:H ) y1:i:H,and

y2:i:L ) y1:i:L (since y1 vT y2) to show the desired result. It is similar to the

proof for extension.

2

5.3.5 Experimental Results

Table 5.1 shows the results for creation of a ternary simulation model by using

our algorithm on the SRAM assertions in equations 5.2, 5.3, and 5.4. For each state

variable, a pair of OBDDs representing the two rails of the excitation are created.

Column 2 shows the number of OBDD nodes required to represent the low and high

rail functions for all the state variables. Columns 3 and 4 show the time and the

memory required to create the excitation functions. As the table shows, the model

size and creation time are roughly linear with the SRAM size. One obvious optimiza-
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tion in the creation of the ternary model comes from the observation that generally

there is no need for canonical representations of the excitation functions. By using

representations like AND-OR directed acyclic graphs [18], one can possibly achieve

savings in time and memory.

5.4 State node identi�cation algorithm

From the discussion in the previous section we can see that our state node identi�ca-

tion approach requires three key components:

� The circuit state machine.

� The speci�cation state machine.

� An identi�cation sequence.

For transistor-level networks, the circuit state machine is available from switch-

level analysis of the circuit [19]. The construction of the speci�cation machine is

described in the previous section. The identi�cation sequence is typically given by

the user. Once we have these three components, both machines, started at the ternary

reset state, are simulated with the identi�cation sequence. After the identi�cation

sequence has been run, speci�cation nodes in SID, and all the circuit nodes are hashed

into bins based on their symbolic ternary values. The remainder of the algorithm

simply consists of looking into each bin, and associating the speci�cation node in the

bin with the circuit node(s) in the bin. This gives us an algorithm which is linear in

the number of speci�cation and circuit nodes.

5.4.1 Special cases

The state node identi�cation algorithm works well in most situations. Certain cases,

however, require special modi�cations to the basic algorithm. These have been dis-

cussed below.
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Polarity of value stored in storage element

If the value stored in the circuit storage element has the same polarity in the spec-

i�cation, then the above algorithm works. However, if the values are stored in the

circuit with a negative polarity, then the algorithm must be modi�ed to handle this.

A change to the hashing function, so that it treats the low and the high rail symbolic

values in an identical manner, takes care of this case.

Extraneous circuit nodes included as state nodes

While this is generally not encountered in memory arrays, it is possible in the case

of latch and 
ip-
op based storage structures that nodes not typically considered

storage nodes are identi�ed as state nodes. Two enhancements to the basic algorithm

handle these cases:

� Eliminate nodes without fanouts.

Nodes without fanouts do not in
uence the circuit behavior. So, if such nodes

have been identi�ed as state nodes, they may be safely eliminated.

� Eliminate e�ects of fanouts from latches/
ip
ops.

In some cases latches, or the master or slave components of 
ip-
ops have

fanouts into the adjacent circuit such that the values in the storage elements

are propagated on to non-storage nodes. It is possible to trace these values to

the originating logic. However, a simpler solution to this problem is to leave

the appropriate clock signals inactive, and set all the other circuit inputs to X,

after running the identi�cation sequence on the circuit. By setting all nodes,

other than those in latches, to X, such a step eliminates all the non-latch nodes

as the possible candidates for state nodes.

5.4.2 Integrity of the veri�cation process

The overall goal of the veri�cation process is to verify that a given circuit imple-

mentation is a realization of the abstract assertions, i.e., establish a set containment

relation between the IO behaviors of the two representations. Using an implementa-

tion mapping, the abstract assertions are mapped to STE assertions against which a
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circuit is veri�ed. This, together with the non-triviality conditions of distinction and

conformity establishes the desired set containment relation [6, Chapter 6].

Consider an implementation mapping for a circuit generated with the help of

our state node identi�cation procedure. Let us assume that this mapping satis�es

the distinction and conformity conditions. The implications of this are that if we

successfully verify a circuit against the set of STE assertions generated from a set

of abstract assertions, and this implementation mapping, then we have proved the

desired IO relationship between the abstract speci�cation and the realization. If,

however, the STE veri�cation fails, then the error can be either in the circuit, or in

the mapping, and further investigation is warranted. Given the simple timing in the

implementation mappings in arrays, and that the state of each abstract state element

is implemented by values on a unique set of circuit nodes, it is simple to establish the

distinction and the conformity properties for the implementation mappings. So, in

practice, if there is an error in the implementation mapping, then it will reveal itself

during the veri�cation process. Thus the overall veri�cation process is conservative,

and it will never pass incorrect circuits as correct.

5.5 Applications

We have applied our state node identi�cation techniques based on the above to a

number of examples [102, 103]. These include a multi-ported register �le unit, data

cache tags unit, and a CAM from recent PowerPC designs. Below, we �rst describe the

state node identi�cation process in a SRAM circuit. We follow it with a description

of the identi�cation process for the PowerPC arrays.

5.5.1 State node identi�cation in a SRAM array

To construct the identifying sequence for a simple SRAM array, we reset the array

and we do a write with symbolic values for addresses and data. Consider the 4-bit,

1 bit/word SRAM circuit shown in �gure 5.8. Performing a write with the symbolic

address a1a0, and the data value d means that location 0 will get updated to d when

a1 = 0, and a0 = 0. Otherwise it remains at X. This is precisely the information

conveyed by the ternary symbolic value, (a0+ a1+ d; a0 + a1+ d), shown at M [0] in



128 CHAPTER 5. STATE NODE IDENTIFICATION IN CIRCUITS

M[3]

ADR[0]

ADR[1]

READ

WRITE

DIN

DOUT
0

1

a0

d

a1

(a0+a1+d , a0+a1+d)

(a0+a1+d , a0+a1+d)

(a0+a1+d , a0+a1+d)

M[0]

M[1]

M[2]

(a0+a1+d , a0+a1+d)

Figure 5.8: State node identi�cation in a SRAM circuit

the �gure. This symbolic ternary value evaluates to (1; 1), i.e., X, for all assignments

other than 00 to a1a0. For the assignment 00, the symbolic ternary value is the binary

value (d; d). In general, the symbolic value on the ith location is (a1a0 = i)?d : X,

which evaluates to d for the assignment a1a0 = i, and it isX for all other assignments.

Such a symbolic input sequence distinguishes all the memory nodes in the array. We

have made use of this sequence to identify the SRAM parts of many di�erent memory

arrays, as described below.

5.5.2 Application to PowerPC arrays

Multi-ported Register File

The register �le contains two independently addressed banks of registers. Our work

in [102] describes the identi�cation of these nodes, where by doing a separate symbolic

write to each of the two register banks, we identi�ed their state nodes by using the

technique for SRAM described above.
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Data Cache Tags Unit

To verify the data cache tags (DTAG) unit, we identi�ed the storage nodes corre-

sponding to the tags, valid and modi�ed bits for every way in every set, and the

Least Recently Used (LRU) bits for every set. This has been described in [102]. The

identi�cation of the tags and the valid and modi�ed bits was similar to the SRAM

state node identi�cation described in section 5.5.1 | these bits can be written to a

location speci�ed by the combination of a 7-bit index and two bits which specify the

way in a set.

However, the SRAM identi�cation technique does not work for the LRU state

nodes, since these nodes can not be written to directly by using the regular DTAG

operations. The LRU bits can be reset to all zeros or they can change as a result

of a tag operation to re
ect the past memory access pattern. We made use of this

property to generate an identi�cation sequence. All the LRU bits were �rst reset, and

then we performed two DTAG operations such that a symbolic way w (encoded with

Boolean variables w1 and w0 ) was accessed in the �rst operation, and symbolic way

v (encoded with Boolean variables v1 and v0) was accessed in the second operation.

This put unique symbolic Boolean values (Boolean functions of w1, w0, v1 and v0) on

all the six LRU bits of a set. From our knowledge of how the LRU bits get updated

when a DTAG operation occurs, we were able to identify all the LRU bits of all the

sets.

Branch Target Address Cache

Similar to the DTAG circuit, the Branch Target Address Cache (BTAC) array does

not allow direct writes to the state nodes we wish to identify. Only content-addressed

writes are allowed in the array. Furthermore, we can't even reset these nodes. To

overcome this problem, we constructed an identi�cation sequence which exploits the

testing circuitry in the system. We have described this in [103]. We scanned in a

set of symbolic values corresponding to the outputs of a 6-to-64 decoder into the

write register driver, and then performed a write with symbolic values at wr fadr and

btac data in (see chapter 6 for details). Since the write register drivers drive the write

wordlines in the BTAC array, scanning in the symbolic values and doing a write is

equivalent to having a decoder driving the wordlines. This put in ternary values on
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the circuit nodes identical to the ones in a SRAM circuit after a write with a symbolic

address and data values.

5.6 Related work

Our work on state node identi�cation is a special case of the much larger body of

work on state-identi�cation and fault-detection experiments on �nite state machines

(FSMs). We discuss some of the work in this area in section 5.6.1. However, while the

approaches in the broader area of state-identi�cation and fault-detection experiments

strive for general solution to many important problems, they o�er little by the way

of practical algorithms. Our approach has been to work with a narrowed focus to

develop workable solutions for state node identi�cation in circuits. We discuss related

work closer to our own in section 5.6.2.

5.6.1 Experiments on �nite state machines

State-identi�cation and fault-detection experiments are classical topics in the area

of experimental analysis of �nite state machine behavior [80]. Experiments on FSMs

consist of a set of input sequences, and observing their output sequence. The machine

itself is treated as a \black box", where the input and output terminals are available,

but its internals are not accessible. The goal of state-identi�cation experiments is

to identify the unknown initial state of the machine (distinguishing experiments),

and if that is not possible, to identify the �nal states of the machine (homing ex-

periments) [80, pp. 449]. A fault-detection experiment is one which if performed on

the machine, allows a decision to be reached on whether the machine is operating

correctly.

Early work in this area includes that by Moore [94], and Kohavi [79], among

others. A recent survey of this area by Yannkakis and Lee appears in [128].

Pixley describes work on testing sequential equivalence of two machines at the

gate-level without a knowledge of their initial state [108, 109]. He presents OBDD

based algorithms for testing equivalence, and experimental results on small machines.

This approach, while powerful and general, does not scale up to the size of circuits

we would like to work with. Furthermore, it is not applicable to switch-level design
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representations.

5.6.2 Identifying state nodes in circuits

A number of techniques have been proposed which appear to o�er a solution to our

state node identi�cation problem. Such techniques fall into two classes. The �rst

class of techniques work on extracting a FSM representation of a transistor-level or

a gate-level netlist and in the process they identify the subset of circuit nodes which

constitute the state nodes in the netlist [77], [101]. The work in [77] does not work

for static storage structures, which is a serious shortcoming, for most of the circuits

we would like to verify have such storage structures. The approach in [101] does not

work directly on transistor netlists.

The second class of techniques attempt to identify the substructures of the circuit

by examining the circuit topology. Once the circuit substructures are identi�ed, one

may identify the state nodes by examining the storage structures [97], [46]. While

these approaches may work in a library-based design environment, they are not suit-

able for custom designs, which can contain a wide variety of customized storage cells.

The main weakness of these other techniques is their failure to exploit the dynamic

properties of the state machine implemented at the transistor or the gate-level. We

have used such information to develop fast, practical solutions to the state node

identi�cation problem.
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Chapter 6

Case Studies - Veri�cation of

PowerPC arrays

An integral part of our thesis has been the application of the techniques we have de-

veloped to real industrial designs. We have used our techniques to verify the following

memory arrays from recent PowerPC processors:

� Multi-ported register �le (section 6.1).

� Data cache tags unit (section 6.2).

� Branch target address cache (section 6.3).

� Block address translation array (section 6.4).

For each of these arrays, we �rst describe the overall circuit organization, and the

operations the array performs. Following this, we discuss the operations we veri�ed,

the time and memory required to do so. We describe bugs, if any, which we found

during the course of the veri�cation. The veri�cation work was carried out at the

joint IBM-Motorola Somerset PowerPC design center, located in Austin, Texas. The

veri�cation descriptions which follow have been reported in the 1996, and the 1997

Design Automation Conference Proceedings [102, 103].

133
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Figure 6.1: Multi-ported Register File Unit.

6.1 Multi-ported register �le

Figure 6.1 shows a high-level view of the register �le, which has 2 identical write ports

and 5 identical read ports. When READ CLK is high, the register �le does a read

operation and when WRITE CLK is high, the register �le does a write operation. The

READ CLK and the WRITE CLK signals are mutually exclusive. The environment

guarantees that the two write addresses are always di�erent.

The register �le contains 36 registers of 32 bits each, arranged in two banks, R0-

R31 and TR0-TR3. During a write operation, when TGPR WR is low, the writes

go to one of R0-R31 as speci�ed by the 5-bit address for each write port. When

TGPR WR is high, the writes go to one of TR0-TR3 based on the two least signi�cant

address bits. The environment is supposed to keep the middle address bit (bit 2) at

0, when the TGPRs are to be written. WRITE INHIBIT when high prevents any

writes from occurring. Also, each write port has a write enable signal (WE0, WE1).

The read ports also have read enable signals (RE0,..., RE4). When TGPR RD is

low, the �ve address bits select a register from the �rst bank. When TGPR RD is
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high, the lowest two address bits select a register from the second bank, and bit 2 of

the address must be low for the read to be successful. If a read does not occur on a

port, or if bit 2 of the address is high when TGPR RD is high, then the port's data

output stays precharged high.

6.1.1 Register �le

To verify the register �le, we wrote six assertions. Five describe the read operation

at each of the �ve read ports, and the sixth describes the register-�le write operation.

We start it with a description of the read operation, and follow it with that for the

write operation.

Read operation

Since the �ve read ports are identical, their assertions are similar. Here we discuss

the read operation at port 0 of the register �le. The assertion for this operation is

shown in lines 6.1 through 6.8 below. Lines 6.1 speci�es that the initial state of the

circuit is such that the ith register in the �rst register bank contains the value u, and

the nth register in the second register bank contains the value v. The second line of

the antecedent, 6.2, speci�es that the read address for the port is the symbolic value

j, and the control values at TGPRread, and ReadEn0 are trd, and en, respectively.

Lines 6.3 to 6.8 make up the consequent which speci�es the state of the register

�le and its outputs as a result of performing the read operation. Lines 6.3, and6.4

state that after the read, the contents of the register �le remain unchanged. Lines 6.5,

and 6.6 check that, when the port is enabled, the correct data value appears at the

output, and lines 6.7, and 6.8 check that when the port is not enabled, or if during a

read from the second register bank bit 2 of the address is high, then the output bits

are all high.

u = bitvector(32)

v = bitvector(32)

i = bitvector(5)

j = bitvector(5)
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n = bitvector(2)

trd = bitvector(1)

en = bitvector(1)

(Op = Read) ^ (R[i] = u) ^ (TR[n] = v) ^ (6.1)

(ReadAdr0 = j) ^ (TGPRread = trd) ^ (ReadEn0 = en) (6.2)
leadsto

=)

(R[i] = u) ^ (6.3)

(TR[n] = v) ^ (6.4)

(when(:trd ^ en ^ i = j)(Dout0 = u)) ^ (6.5)

(when(trd ^ en ^ n = j[4 : 3] ^ :j[2])(Dout0 = v))) ^ (6.6)

(when(:en)(Dout0 = 0xFFFFFFFF ))^ (6.7)

(when(en ^ j[2] ^ trd)(Dout0 = 0xFFFFFFFF )) (6.8)

Write operation

The register �le has two write ports which can update the registers in parallel. The

assertion describing the write operation appears below. It shows a subset of the

various possible combination of control signals for write.

u = bitvector(32)

v = bitvector(32)

w = bitvector(32)

x = bitvector(32)

i = bitvector(5)

j = bitvector(5)

k = bitvector(5)

n = bitvector(2)

twr = bitvector(1)
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wen0 = bitvector(1)

wen1 = bitvector(1)

winhibit = bitvector(1)

(R[i] = u) ^ (TR[n] = v) ^ (6.9)

(writePort0(j; x; wen0)) ^ (writePort1(k;w;wen1)) ^ (6.10)

(TGPRwrite = twr) ^ (writeInhibit = winhibit) (6.11)
leadsto

=)

(when(writeNone)(R[i] = u)) ^ (6.12)

(when(writeNone)(TR[n] = v)) ^ (6.13)

(when(twr)(R[i] = u)) ^ (6.14)

(when(:twr)(TR[n] = v)) ^ (6.15)

:::

(when(i 6= j ^ i 6= k ^ write01 gpr)(R[i] = u)) ^ (6.16)

(when(i = j ^ i 6= k ^ write01 gpr)(R[i] = x)) ^ (6.17)

(when(i 6= j ^ i = k ^ write01 gpr)(R[i] = w)) (6.18)

writeNone = :(wen0 _ wen1) (6.19)

write01gpr = :winhibit ^ wen0 ^ wen1 ^ :twr (6.20)

Lines 6.9 through 6.11 contain the antecedent. Line 6.9 states that initially register

Ri contains the symbolic value u and register TRn contains the symbolic value v. A

write operation is done at write port 0 with symbolic address j, symbolic data x and

the write enable for the port set to symbolic value wen0 (line 6.10). Similarly, a write

is done at write port 1, with address k, data w and write enable wen1. Finally, the

symbolic value twr controls which of the two banks the writes go to and, winhibit

when true inhibits all writes.

To make the consequent more readable, we have used the abbreviations writeNone

and write 01gpr. These have been described in terms of the symbolic variables in

lines 6.19 and 6.20. writeNone describes the condition that writes to both ports are
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disabled. write01 gpr describes the condition when writes through both ports are

enabled, and the writes go to the �rst bank of the register �le.

The consequent consists of lines 6.12 through 6.18. Lines 6.12 and 6.13 express

the condition that when both write ports are disabled, all the registers remain un-

changed. When writes are done to the second bank of registers, the �rst bank remains

unchanged (line 6.14), and vice-versa (line 6.15). When register i contains the value u

initially, and write addresses at both ports do not match i, then the value of register i

remains unchanged (line 6.16). If i matches the address at the �rst write port (i = j),

but not the second port (i 6= k), then register i gets updated to the data at the �rst

port (line 6.17). Since, it is speci�ed that write addresses at the two ports will not be

the same, we do not check the results of write when the write addresses match, i.e.,

i = j = k.

6.1.2 Resource requirements

The veri�cation of the register �le takes a total of 267 seconds (on a IBM RS6000/580)

for the complete set of assertions and generates a maximum of 8875 OBDD nodes.

Voss used 31 MB of memory; 21 MB was used to represent the circuit nodes, and

the excitation functions, and the rest was taken up by OBDDs and other run-time

structures created by Voss's FL interpreter.

6.1.3 Bugs

In the process of veri�cation, no bugs were found in the actual, register-�le circuit.

The designer did, however, test our methods by making two copies of the design,

inserting a bug into one copy, and seeing if our tool could �nd it (it did). In addition,

we translated and ran Voss on the RTL version of the register �le, and found that it

did not obey the speci�cation. The \misbehavior", however, was in an underspeci�ed

area: when addressing a register in TR0-TR3, the speci�cation states that the two

most signi�cant address bits were don't cares. However, the simulation model went

into an error state if 1's were asserted on these lines, and this was detected by a

failure of our assertion. The transistor netlist under the same conditions, completed

the write (and the same assertion passed). This di�erence was detected, and showed

the power of STE methods. It did not a�ect correct modeling of the register �le inside
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Figure 6.2: Data Cache Tags Unit

the larger chip, however, since the surrounding circuitry to the register �le did, in

fact, keep these bits low during writes to TR0-TR3.

6.2 Data cache tags unit

The data cache tags (DTAG) circuit, shown in �gure 6.2, contains 128 4-way-associative

sets. Each set contains 4 tags of 20 bits each, and each tag has one valid and one

modi�ed (dirty) bit. Also, each set contains 6 least-recently-used (LRU) bits which

record the access history of its four ways.

In a typical operation, a 7-bit index at the INDEX input selects one of the 128

sets, and the 20-bit tag at TAGIN is compared in parallel with all four tags in the

selected set. If a tag matches, then the HIT signal goes high and the LRU bits are

updated to re
ect that the matched way is most recently used. HITWAY indicates

which of the four ways is hit. If none of the four tags match, the HIT signal remains

low, and the least recent tag appears at TAGOUT (for cache replacement).
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Other important operations are the reset and the tag write operations. In the reset

operation, the RESET signal resets the DTAG unit by zeroing all valid, modi�ed and

LRU bits. In the tagwrite operation, the tag value at TAGIN and the valid and

modi�ed bit values at STAT are written into a way selected by WAYSEL of a set

speci�ed by INDEX.

6.2.1 Data cache tags operations

The data cache tags unit can do the following operations on any clock cycle { reset,

load request, store request, snoop kill, snoop 
ush, tag re�ll, and status write. The

assertions for some of these operations are described below.

Reset operation

The reset operation resets the tags unit by zeroing all the valid, modi�ed and LRU

bits. This can be succinctly expressed by the following assertion:

i = bitvector(7)

w = bitvector(2)

(op = reset)
leadsto

=) (V [i][w] = 0) ^ (M [i][w] = 0) ^ (L[i] = 0x00)

Tag write operation

In this operation, tag bits and valid and modi�ed (status) bits are written to a given

way of a set. As a result of the write the LRU bits get updated to make the written

way the most recent way. This operation can be speci�ed by the assertion below.

t = bitvector(20)

i = bitvector(7)

wi = bitvector(7)

w = bitvector(2)

ww = bitvector(2)

m = bitvector(1)
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v = bitvector(1)

l = bitvector(6)

(op = tagwrite) ^

(T [i][w] = t) ^ (V [i][w] = v) ^ (6.21)

(M [i][w] = m) ^ (L[i] = l) ^ (6.22)

(writeindex = wi) ^ (writeway = ww) ^ (6.23)

(writetag = wtag) ^ (writestatus = wstat) (6.24)
leadsto

=)

(when(wi 6= i _ ww 6= w)

((T [i][w] = t) ^ (V [i][w] = v) ^ (M [i][w] = m))) ^ (6.25)

(when(wi = i ^ ww = w)

((T [i][w] = wtag) ^ (V [i][w] = wstat[0])^

(M [i][w] = wstat[1])))^ (6.26)

(when(wi 6= i)(L[i] = l)) ^ (6.27)

(when(wi = i)(L[i] = update(l; ww))) (6.28)

In the antecedent, lines 6.21 and 6.22 show the initial system state. They state that

the tag value, valid bit and modi�ed bit of the ith set and the wth way are t, v and

m respectively. It also states that initially the LRU bits of the ith set is l. The next

two lines show that tag value wtag and the status bits wstat are written to set wi

and way ww.

As a result of the tag write, the tag, valid and modi�ed bits of the addressed

way get updated and all other ways remain unchanged. This is shown in lines 6.25

and 6.26. Line 6.28 shows that for an addressed set, the LRU bits get updated to

re
ect access to way ww, and they remain unchanged for a set that is not addressed

(line 6.27).

The status write operation is very similar to the tag write operation | the only

di�erence is that tags bits are not written during a status write.
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Load request operation

For verifying the load request operation we wrote two assertions. The �rst assertion

shows that if the initial machine state is

(T [i][0] = t0) ^ (T [i][1] = t1) ^ (T [i][2] = t2) ^ (T [i][3] = t3)^

(V [i][0] = v0) ^ (V [i][1] = v1) ^ (V [i][2] = v2) ^ (V [i][3] = v3)^

(M [i][0] = m0) ^ (M [i][1] = m1) ^ (M [i][2] = m2)^

(M [i][3] = m3) ^ (LRU [i] = l),

and a load request is done with an index value of i and the tag input is tagin, then

one of the following two things happen:

1. One of the four ways hit:

For example, way 0 hits when t0 = tagin, and the valid bit for way 0, v0, is true.

The LRU bits get updated to re
ect that way 0 was most recently accessed, and

all other state bits remain unchanged. The HIT output becomes true, HITWAY

becomes 00 to re
ect that way 0 has been hit, and at the dirty bit output, the

value of m0, the dirty bit of way 0, is written out.

2. None of the ways hit: In this case all the state bits remain unchanged, and the

dirty and the tag bits of the way to be replaced (least recently used way) are

written out.

Certain combinations of state bit values are forbidden in this circuit. For instance,

in a set no two tags can match, and it is assumed that the environment always

maintains this state invariant by not writing in matching tag values Similarly, only

certain combinations in the LRU bits are legal, and only these represent valid LRU

information. All the DTAG actions above have been veri�ed under these invariant

conditions. A second assertion veri�es that the tag, valid, modi�ed and the LRU bits

for a set that is not indexed remain unchanged in a load operation. Store request and

snoop operations have not been described here, but they are very similar to the load

request operation.

Resource requirements

The veri�cation of the DTAG circuit takes about 10 minutes (on a IBM RS 6000/580)

for the most complex of the assertions (e.g., the store request assertion) and generates
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110,000 OBDD nodes. Voss used 150 MB of memory (of which 103 MB is to represent

the circuit).

6.2.2 Bugs

Two actual bugs were discovered in the DTAG circuit. The �rst bug, a serious

functional error, was known beforehand, but its nature was kept secret from the person

running the STE veri�cation. This bug was due to a transistor \sneak path" in the

\hit detection" circuitry of the DTAG. This error was masked in regular veri�cation

process because of the assignment of directions to transistors. In addition, it is not

clear if the appropriate digital vector would have been found to reveal it, had the

directions not been applied. A single symbolic simulation vector, used during creation

of the switch-level model, brought out this bug. This bug had already been �xed, in

a later version of the circuit than the version upon which we were working.

The second bug was discovered when an assertion for what is called the status-

write operation failed. Tracing the cause of the failure revealed that the LRU bits

had not been updated, contrary to the speci�cation. The LRU bits determine which

line in a cache set will be replaced, in the event the set becomes full and a new line

must be brought in. Faulty LRU bits merely cause discrepancies in performance (the

line replaced may be the one most needed, for instance). This makes bugs in LRU

bits di�cult to �nd in digital simulation, unless one speci�cally monitors these bits

on a cycle by cycle basis.

6.3 PowerPC Branch Target Address Cache Ar-

ray

The Branch Target Address Cache (BTAC) array is part of the speculative instruc-

tion fetch mechanism on some PowerPC processors. The particular BTAC we veri�ed,

from a recent PowerPC processor, was a 64 entry content addressable memory, where

each entry consists of a 30-bit tag and a 32-bit data part (Figure 6.3). The branch

address is used to access the BTAC array, which contains the target address of pre-

viously executed branch instructions that are predicted to be taken.
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Figure 6.3: Branch Target Address Cache unit.

The primary task of this unit is, given a branch instruction address at the rd0 fadr

input, to determine if there is a matching tag entry, and if so give out the correspond-

ing data entry, which is the target address. The veri�cation of this operation is in

many ways similar to the CAM associative read operation veri�cation shown in chap-

ter 4. There are also a number of other operations this unit performs, including reset

and initialize round-robin register, but for our discussion here we focus in on the most

interesting one, namely the replace (or CAM write) operation.

6.3.1 BTAC Replace operation

In the replace operation, a TAG-DATA entry pair is updated with new values. The

entry that is selected to be updated is not based on the address of the entry, rather

it is based on the contents of the array, and a round-robin replacement policy. This

operation is essentially a CAM write operation.

The �rst step in this operation is to select the entry to be replaced. For this an

associative read is done with a tag value at read port 1, i.e., rd1 fadr. This input tag
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is compared with all the stored tags in parallel, and if there is a match, then hit1 rises

and the entry on which this match occurred is updated with new values appearing

at wr fadr and btac data in If there is no match, then a round-robin replacement

policy is enforced. This replacement policy is implemented with a 64-bit round-robin

register (right side of Figure 6.3) which is a one-hot encoded ring counter. The bit

position in the ring counter which is 1 points to the BTAC entry to be replaced in

case there is no hit on port 1. All entries which are not replaced remain unchanged.

In order to verify the replace operation, we veri�ed a number of di�erent cases,

and many of these are similar to the memorywrite operation (e.g., when the compares

are disabled on port 1). One of the more interesting cases is when write and compare

are both enabled, but there is no hit on port 1. In this case the TAG-DATA entry

pointed to by the round-robin register is written to and all other TAG-DATA entries

are unchanged. This case is shown in the assertion below.

In the assertion below, we encode the TAG value unequal to the symbolic value

tag. In order to do this, we use the CAM encoding with the help of the explicit

version of the ternneq operator. The symbolic ternary vector generated by this

operator represents the set of ternary vectors where for all i; 0 � i � 29, the ith

bit position of a TAG[] entry equals tag[i], and all other bit positions of the TAG[]

entry have an X. The problem with this is that if we have to show that TAG[] remains

unchanged in some operation, then it is not su�cient to show that it still has its earlier

value which is of the form <X,X,X,...,tag[i],...X>. The bit positions which are X can

change, and we would not be able to detect it, since X simply denotes an absence

of information. By using the explicit variant of the ternneq we can check for values

at positions other than i. Essentially, in the assertion below, we have a vector of

symbolic values called val, and with the help of this operator, encode a value of the

form <val[0],val[1],...,val[i-1],tag[i],val[i+1],...,val[n-1]>. This value is unequal to tag,

and at the same time we can verify that the value of TAG[] remains unchanged in an

operation, since none of the bit positions contain X. Note that the binneq operator

could also have been used in this case, but its use would have required new Boolean

variables for each row of the BTAC array, which would be far in excess of what our

current approach requires.

Lines 6.31 and 6.33 in the assertion below show our encoding for the 0th and the

63rd CAM entry. Line 6.34 states that the ith DATA entry is data, and line 6.35 states
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that the round-robin pointer points to the kth CAM-DATA entry. The consequent

states that only the kth CAM-DATA entry gets changed (line 6.39), and all other

entries remain unchanged (line 6.38). While the assertion below may look complex,

it expresses an important system property, and it does so with a with a relatively

small number of Boolean variables (406 Boolean variables), for a large system (over

4000 bits of state).

val = bitvector(30)

data = bitvector(32)

newadr = bitvector(30)

newdata = bitvector(32)

tag = bitvector(30)

i = bitvector(6)

j = bitvector(6)

k = bitvector(6)

p0 = bitvector(5)

p1 = bitvector(5)

: : :

p63 = bitvector(5)

(op = replace)^ (rd1 fadr[0] = 1) ^ (btac wr en = 1)^ (valid flush = 0) ^(6.29)

(wr fadr = newadr) ^ (btac data in = newdata) ^ (rd1 fadr = tag)^ (6.30)

(TAG[0] = ternneqpos(tag; p0))^ (when(j! = p0)(TAG[0][j] = val[j]))^ (6.31)

::: ^ (6.32)

(TAG[63] = ternneqpos(tag; p63))^ (when(j! = p63)(TAG[63][j] = val[j])) (̂6.33)

(DATA[i] = data) ^ (6.34)

(R[k] = 1) ^ (when(l! = k)(R[l] = 0)) (6.35)

leadsto
=) (6.36)

(when(i! = k)(TAG[0] = ternneqpos(tag; p0))^ :::

^(TAG[63] = ternneqpos(tag; p63))^ (6.37)

(when(j! = p[0])(TAG[0][j] = val[j]))^ :::

^(when(j! = p[63])(TAG[63][j] = val[j]))
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^(DATA[i] = data))) (6.38)

^(when(i = k)((TAG[i] = newadr) ^ (DATA[i] = newdata))) (6.39)

In the case where write and compare are enabled and there is a hit, the TAG-

DATA entry on the line which matched the tag on rd1 fadr is changed, and all other

TAG[] and DATA[] entries are unchanged. In order to verify that the tag entries

which are unequal to the incoming tag remain unchanged, we have used an encoding

technique similar to that in the assertion above.

6.3.2 Results

The most complex BTAC assertion takes 40MB of memory and 5 minutes to run, on

a RS/6000 model 350 workstation. Of this 40MB, 24 MB is taken up by the OBDDs,

and the remaining space is taken up by other run-time structures created during the

veri�cation process. The total run time for all assertions was 20 minutes. All the

BTAC assertions passed, and no bugs were uncovered in this circuit.

As a comparison, if a more naive Boolean encoding were used for BTAC veri�-

cation, the OBDD growth trends of Figures 4.4, 4.5 and 4.6 predict that a memory

of several GB (and a 32-bit address space) would not have been su�cient for the

veri�cation!

6.4 PowerPC Block Address Translation array

The PowerPC architecture includes a block address translation (BAT) mechanism

which maps ranges of e�ective addresses larger than a single page into contiguous

areas of physical memory [112]. Such areas are used for data not subject to normal

virtual memory handling, such as a memory-mapped display bu�er, or an extremely

large array of numerical data. This translation mechanism is implemented as an array

consisting of software controlled special purpose registers. There are separate arrays,

each consisting of eight registers, for the data side BAT (DBAT) and the instruction

side BAT (IBAT). Here we describe the veri�cation of the DBAT array.

The DBAT array is a CAM which contains 4 tag entries and 4 data entries. Each

tag, data entry pair is organized as a pair of registers called the Upper DBAT Register
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Figure 6.4: DBAT organization

and the Lower DBAT register (Figure 6.4). The two operations this array performs

are the SPR operation, and the non-SPR operation. In the SPR operation, this array

behaves like a register �le where in a single clock cycle reads and writes are done

on the Special Purpose Registers (SPRs) constituting the upper and lower DBAT

registers.

In the non-SPR mode of operation, the DBAT array behaves like a CAM and it

translates the 9 to 15 most signi�cant bits of the logical address (bit 0 is the MSB)

into the physical address as shown in Figures 6.4 and 6.5. The remaining bits pass

unchanged. In Figure 6.4, the incoming logical address (top 15 bits, i.e., EA(0:14)) is

compared to the block e�ective page index (BEPI) entry. The block length �eld (BL)

contains a 11-bit mask information which decides which bits are to be compared. If

the mask is all 0's, then all 15 bits are compared, and the corresponding 15-bit data

entry, block real page number (BRPN) is sent out as the upper 15 bits of the physical

address. If the mask entry is all 1's, then only the top most 4 bits get compared, and

on a match only the top most 4 bits of the BRPN are put out as bits 0 to 3 of the
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EFFECTIVE

0

ADDRESS: PA(0:31)

3 4 14 15...

4-bit 11-bit

0000....1111

11-bit BLOCK LENGTH (BL)

AND

14-bit BLOCK EFFECTIVE PAGE INDEX (BEPI)

0 3 4 14

4-bit 11-bit

PHYSICAL

COMPARATOR

VALID BIT

BRPN(0:3)

OR4-bit

BLOCK REAL PAGE NUMBER(BRPN)

BRPN(4:14)

11-bit

0 3 4 14 15

BITS 15 TO 31 OF EFFECTIVE ADDRESS4-bit 11-bit

BAT ENTRY MATCH

Figure 6.5: DBAT Address translation

physical address. Bits 4 to 14 of the physical address are directly copied from the

logical address. The mask has a unary-style encoding. The 12 possible legal values

for the mask for each tag-data entry are 00000000000, 00000000001, 00000000011,

..., 001111111111, 01111111111 and 11111111111. The lower 11 bits of the BEPI

and BRPN entries should be zero corresponding to positions where the mask value

is 1. Every register pair has a valid bit, Vsp, for the logical-physical address entry.

This bit, when 0, indicates that the BEPI-BRPN-BL entry is invalid, and there can

be no match on this entry. The translation process is shown in Figure 6.5. The

system invariant is that at most one DBAT entry should match the incoming logical

address. The PowerPC programming environment manual (pg. 7-25) states that it is

a programming error for more than one entry to match the input [112]. We have not

described the complete functionality of this complex unit here. Details can be found

in [112]. While we have veri�ed all the DBAT operations, here we have described the

veri�cation of the more interesting non-SPR mode of operation.
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6.4.1 DBAT non-SPR operation

The ternneq operator does not work directly for expressing a mismatch on an upper

DBAT register because comparison can be disabled on some selected register bits by

the mask �eld. Furthermore, the bits masked out can be di�erent for all the four

upper DBAT registers. So, in order to express that a register contains a data value

that does not match the incoming data, we need to take into account the mask bits

and the legal values they can hold. To solve this problem, the unary generator is

used in conjunction with the terneqmask operator.
~M = unary(11) equals the symbolic vector representing all the 12 unary vectors

of length 11 ranging from 00000000000, to 11111111111. ~M symbolically captures

all the valid mask values. Let ~u = bitvector(15) be a Boolean variable vector of size

15. This vector cannot by itself represent the 15-bit Upper DBAT BEPI entry, as

up to 11 least signi�cant bits of the BEPI entry must be zero in positions the mask

is one. Since the symbolic vector ~M represents the mask value, the symbolic vector

~u[0 � 3] jj ~u[4 � 14]&: ~M represents all the valid values of BEPI. The BRPN entry

can be described symbolically in a manner identical to BEPI.

If the valid bit for a register-pair is 0, then no match is possible. If the valid bit is

1 the comparison occurs with the incoming logical address. If an incoming tag, i.e.,

the 15 MSB address bits, is ~tin, and the mask is 000000, then for the 0th register

pair, a mismatch can be over any of the 15 bit positions in the BEPI entry T[0][0-14].

Similarly, if the mask is 000000000111, then comparison is done over bits 0 to 11.

Consequently, the mismatch can be over these 12 bits. The ternneqmask operator

with arguments ~tin, and ~M captures all of these cases symbolically.

Since every register pair can have a di�erent mask, we need a separate set of

Boolean variables ~m for encoding the mask value for each pair. Also, for each register

pair we need a distinct Boolean variable v to indicate whether their entry is valid

Using this idea, veri�cation of the associative read can be done in a manner similar

to that of the CAM as described in chapter 4.

6.4.2 Results

We wrote two assertions for verifying the DBAT circuit, one for the SPR operation,

and the other for the non-SPR operation. On a RS/6000 model 350 workstation,
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peak memory requirement for running all the assertions was 16.1 MB, and the total

time was 15 minutes. We also wrote an assertion for the non-SPR operation using

the plain encoding approach to compare against these results. This approach did not

work well. Even with many control signals set to non-symbolic values, the memory

required was over 100 MB!

6.4.3 Bugs

We discovered two bugs in the circuit we worked. These were that:

� In the SPR mode operation the signal, rpn ls, should have been all 0's, and was

not.

� Also in the SPR mode operation the signal, rpn status19, was not correctly

implemented, as expected from the circuit in Figure 6.4.

The signi�cant part about discovering these bugs was that they were found after

running just one assertion specifying the SPR operation. This is in contrast to running

a huge number of simulation vectors, often running for days, without any certainty

that such corner cases will be brought out.

6.5 Related work

While formal veri�cation of embeddedmemory arrays is increasingly being recognized

as an important issue for the veri�cation of custom designs, there has been little

activity in this area. Jones et al. at Rambus use symbolic switch-level simulation to

validate memory array designs [75]. Their approach is to use a symbolic simulator

in a manner similar to a conventional simulator, with the exception that certain

control/data signal values are made symbolic. In contrast to our methodology, they

do not partition the functionality of the unit into distinct operations. Rather, their

approach is simply to observe the output sequence of the system, in response to an

input sequence. Furthermore, for veri�cation, they use a functional model of the

memory core, rather than attempt to capture switch-level aspects of the memory

core interaction [74].
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Bryant discusses the veri�cation of memory circuits with ternary simulation, and

he shows that a N -bit random access memory can be veri�ed by simulatingO(NlogN)

patterns [23]. Of course, later work on symbolic trajectory evaluation [26, 117, 27]

by Bryant and colleagues generalizes this early work. Recent work by Velev and

Bryant [123] discusses a technique that allows symbolic simulation of systems with

large embedded memory arrays, by replacing the arrays with a behavioral model. The

memory state is represented by a list of symbolic Boolean expressions. This work,

in conjunction with our work on veri�cation of arrays at the transistor-level, has the

promise of enabling hierarchical veri�cation of systems with embedded memories.
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Conclusion

7.1 Summary

This thesis set out to solve the problem of verifying memory arrays which form critical

components of microprocessors and many other hardware systems. Veri�cation of

these circuits has been a major weakness in the design and veri�cation methodologies

used in the industry today. Therefore, this thesis set as its goal to develop a body of

techniques to verify the largest of arrays present on state of the art microprocessors.

We started with the observation that the ability of Symbolic Trajectory Evaluation

(STE) to handle low-level circuit representations and detailed circuit timing made it

an attractive starting point for veri�cation of arrays. However, two fundamental

problems prevented the use of STE on large arrays | the state explosion problem,

and the switch-level analysis bottleneck. In chapter 3 we have developed techniques

to exploit symmetry with STE to verify arrays. We show that exploiting symmetry

extends by several orders of magnitude the size of designs that can be veri�ed.

In chapter 4 we have shown the development and use of new Boolean encoding

techniques to e�ciently verify content addressable memories. Our encoding tech-

niques scale up well in terms of space requirements, as compared to naive encodings.

From our experimental results on verifying CAMs of di�erent sizes, including two

complex designs from microprocessors, we believe that we have solved the problem of

verifying all the di�erent types of CAMs found on a modern microprocessor. Chapter

5 develops an automated state node identi�cation technique, which was extensively

153
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used for the veri�cation of all the arrays we worked with.

An integral part of our thesis has been the application of the techniques we have

developed to real industrial designs. Chapter 6 discusses the veri�cation of several

memory arrays from recent PowerPC processors | multi-ported register �le, data

cache tags unit, branch target address cache, and a block address translator array.

The touchstone of our work is if it has made a di�erence in the veri�cation method-

ology for microprocessors. There are strong indications that at least one major mi-

croprocessor design center is adapting some of the techniques developed here as a

part of its veri�cation methodology.

7.2 Future work

7.2.1 Symmetry

An immediate extension of our work on exploiting symmetry with STE would be

to develop it for the more general trajectory assertions described by Jain et al. in

[72]. Most of the concepts we have developed, including symmetry properties, and

their checks should be applicable in a straightforward manner. However the idea of

waveform capture needs some modi�cation, since assertions can be of the form of

general graphs, rather than the \straight-line" assertions we have handled.

We have veri�ed structural symmetries of systems by doing circuit graph isomor-

phism checks on essentially the entire design. While the time and space requirements

for graph isomorphism checks scale up linearly with circuit size, the constant fac-

tors are large. Therefore, structural symmetry checks dominate the total veri�cation

space and time resource requirements. However, upon a little re
ection, it is clear

that performing structural analysis on a large 
attened circuit graph is a brute force

approach. In the typical design environment, hierarchical representations of the tran-

sistor netlists do exist. Checking symmetry on such a representation should be much

more e�cient than our approach. The details of this needs to be worked out, however.

Another direction for future work would be to extend our symmetry ideas to

verify content addressable memories. In the longer run, it would be interesting to

apply these ideas to verify hardware units other than memory arrays. Candidates for

such an application include a processor datapath, where one can �nd the presence
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of structural symmetries because of bit-slice repetition, and data symmetries arising

from the datapath operations.

The tools we use to detect and exploit symmetry do not o�er much by the way of

automation. We manually cut up the circuit into pieces, attach the appropriate ID

circuits, reduce it to a quasi-canonical form or do symbolic simulation for symmetry

checks. After the symmetry checks, we verify properties of the reduced design. While

it may not be possible to o�er complete automation, in that given a circuit, and an

assertion, the symmetry checks and veri�cation of the reduced circuit is are hidden

from the user, signi�cant tool building opportunities exist to make the process more

appealing to the designer.

7.2.2 State node identi�cation

Our work on the generation of a ternary simulation model from abstract assertions

represents the excitation function by OBDDs. Generally, there is no need to use a

canonical Boolean function representation for the excitation functions, and AND-OR

directed acyclic graphs (DAGs) should work �ne. Furthermore, we should be able to

represent the excitation functions without using complemented versions of the dual-

rail variables representing the current system state. It is important to investigate

these issues so that more e�cient memory models can be built. Our current models

contain roughly as many OBDD nodes as there are nodes in the AND-OR DAGs of

excitation functions generated by Anamos for switch-level circuits.

Our work on generation of simulation models from abstract assertions opens up

the possibility of hierarchical veri�cation, where after the veri�cation of a circuit, it

is replaced by its simulation model for veri�cation of the system at the next level of

hierarchy. Issues like interface timing, timing at two di�erent levels of abstraction,

and keeping the overall veri�cation process conservative need to be addressed.

Another important issue is automating the generation of the identi�cation se-

quence for circuits. Some open issues include if it is possible to do so e�ciently for

large circuits, and whether techniques to do so with ternary simulation exist.
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7.2.3 Integrating array veri�cation into conventional design


ow

There are many issues that need to be looked into for seamlessly integrating our

techniques into an overall processor design veri�cation methodology. The �rst issue

which stands out is the speci�cation language. We use a declarative language which

speci�es system behavior with a set of Hoare like pre and postconditions. It con-

centrates on specifying the system behavior, and introduces little information about

how the system is implemented [70]. However, most HDLs in use today, concentrate

on describing how the system is implemented, rather than giving an abstract view

of the system behavior. This operational approach to behavior speci�cation is some-

what at odds with our methodology. However, it is unlikely that in the short term,

the world will come around to our point of view. So, we should see how to best

integrate our approach into a conventional design methodology. Techniques to par-

tially automate the generation of abstract assertions and implementation mappings

from HDLs should be studied. This can include annotating the HDLs with attributes

like timing information for clocks and signals. One factor which makes this problem

more tractable is that for arrays we can exploit common abstractions like indexing,

bitvectors, and bitvector comparison operations.

Another important problem that should be looked into is that of performing FSM

equivalence checking between the HDL and the switch-level implementation of arrays.

Most equivalence checkers which work at the switch-level [82] do a static analysis of

the transistor-level network to determine its logic functionality. To make the problem

tractable for large circuits, they exploit design hierarchy to determine the equivalence

of the subcells in the hierarchy, thereby determining the equivalence of the complete

design. However, for arrays which typically use self timed components, and other

complex forms of circuitry, static analysis does not work. Using a combination of

static analysis, and symbolic simulation to abstract out the logic functionality of

the design is a possible solution to the problem which should be looked into. FSM

decomposition techniques should be investigated to make the problem of equivalence

checking more tractable for large designs [99], [80, pp.385-437].
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