An efficient commerce system

Andrew C. Myers

November 1996
CMU-CS-96-191

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

This report is a revision of an undergraduate thesis submitted to Princeton University
i May, 1996.

Keywords: electronic commerce, DigiCash, First Virtual, Millicent, Se-
cure Electronic Transactions

Abstract

We give an introduction to some of the issues surrounding the construction
of electronic commerce systems and discuss some proposed solutions:

e Visa and MasterCard’s SET

e First Virtual’s Green commerce model
e DigiCash

e Millicent

We also present a new payment protocol created to enable the electronic
purchase:of small bits of information such as database queries, newspaper
articles, web searches, etc. Our system’s goals:

e The minimum acceptable transaction size will be five cents.
o Committing fraud will be very difficult.

e Merchants will not know customers’ identities.

e The credit company will not know what customers buy.

Security is implemented with one—way hash functions. We chose not
to use public key cryptography because it would make transactions too
computationally expensive.

This report is a revision of an undergraduate thesis submitted to Princeton
University in May, 1996.

Acknowledgments

I would like to thank Andrew Appel, my adviser, for his guidance and sup-
port; Mark Manasse, Charles Jones, and Saul Hansell for their assistance.

Contents

Acknowledgments
1 Introduction

2 Building a commerce system

2.1 Selected solutions
21.1 Credit Cards
2.1.2 First Virtwal L.
2.1.3 Visa and MasterCard’s SET
214 DigiCash.
2.1.5 Millicent

3 Our system

3.1 Design Goals

3.2 Whyoursystemworks

3.3 Theprotocol

3.4 Potential weaknesses

3.5 Performance analysis

4 Conclusion
A Become a cryptographer in five minutes

Bibliography

Chapter 1

Introduction

Creating a commerce system for the Internet is very much like trying to
carry a gallon of water around in a sieve: there are many tiny difficulties
that must be avoided in order to succeed. The task becomes a matter of
constant compromise and balance. Complete success is practically impossible
to achieve; partial success is more likely.

The main problem in a commerce system is security. Commerce is about
moving money; security flaws allow money to slip away. Patching one flaw
can create several others. At the same time, there are other issues to be
‘considered, such as the system’s overhead, speed, and how much privacy it
affords users. The problem is a mix of theoretical and practical obstacles
whose solution must in the end appeal to potential users in order to be
effective.

The motivation for an electronic commerce system is to allow people to
buy information over the Internet. Currently, we are forced to buy a whole
newspaper just to read one article. To find one piece of information, we
might be forced to buy a large book. We would like to be able to buy these
small items individually rather than paying and receiving more than we want.
Unfortunately, none of the many proposed systems meets our goals.

~ Some systems are designed for much larger transactions, others for much
smaller transactions. Some are too insecure, others do not offer enough
privacy for our tastes. Thus, we have decided to create a system suitable
for handling small transactions (about five cents) securely, with moderate
privacy, and with protection for both the buyer and seller in a transaction.

Still, other systems are worth examining closely to learn how they have
addressed the issues. These solutions aid us in designing new systems, both

CHAPTER 1. INTRODUCTION 4

commerce-related and otherwise. In addition, it is likely that at some time
in the future, if not already, we will buy something from a vendor on the
Internet. Examining these systems will help us to make an informed decision
about which system we should actually employ to make a purchase.

Chapter 2

Building a commerce system

The most important issue in electronic commerce is security. Security sup-
plies trust: merchants trust that customers will pay the proper amount, and
customers trust that they will receive the goods for which they asked. In ad-
dition, customers trust that they will be billed only for the item they bought
at the price to which they agreed. Without security, trust is eradicated as
the system is exploited by evil parties bent on acquiring goods and money.
To avoid losing money, honest merchants and customers will prefer a system
with effective security.

Security is not an all-or-nothing feature. A system that is more secure is
more appealing until the security begins to make the system inconvenient to
use. If completing the security procedure for a one cent purchase requires five
minutes, customers will be disinclined to make the purchase. The minimum
amount of security necessary is the amount that will make the benefit of
breaking the security smaller than the cost. We believe that a thief will
not spend two dollars in computer time to decode information that he could
have purchased for one dollar. On the other hand, people interested only in
making mischief, not in financial gain, will not be deterred by a low return
on their invested effort.

The second most important issue in electronic commerce is speed. If a
transaction requires an enormous amount of computation, the cost of the
transaction will be dominated by the cost of the computing time. Assuming
a typical Internet commerce company needs to make roughly $300,000 per
year per computer to pay for hardware maintenance and other expenses (this
estimate was inspired by Manasse [7]), it would need to take in about one
cent per second (a year has about 31.5 million seconds).

CHAPTER 2. BUILDING A COMMERCE SYSTEM 6

Computing the speed of a particular commerce system is a question not
only of how quickly each transaction is completed, but also of the peak
demand on the system. Let’s assume that at peak times, a system receives
ten times the average number of requests per second (this estimate also from
Manasse). We judge how much load a computer can handle by the peak
number of requests, but we judge how much revenue a computer will receive
by the average number. For instance, we can assume that a computer which
can handle a maximum of 100 transactions per second will receive the revenue
from at most 10 transactions per second. If the computer handles more than
10 transactions per second on average, it will not be able to handle peak
load.

An issue related to the speed of transactions is the number of messages
sent per transaction. In general, as the number of messages sent increases,
so does the time required to complete the transaction. The network delay,
i.e. the time the messages take to travel on the network, does not contribute
to a transaction’s cost of computing time. While a computer is waiting for
a message, it can be engaged in other processes. However, the amount of
time that a customer has to wait for a transaction to be completed will be
increased by network delay.

A protocol with a larger number of messages per transaction usually im-
plies that a larger number of parties are involved. Increasing the complexity
of a transaction in this way increases the number of possible points at which
the transaction can fail. Not only will a transaction with more opportunities
for failure fail more often, but it will also take longer to find the problem
and report an error. The result is that a complicated protocol increases both
the time a customer has to wait and the cost of each transaction through
increased use of network resources.

The amount of privacy in a commerce system is also an important con-
sideration. Merchants will probably want to be well known. Customers may
feel the opposite way. They may not want their names to be put on a mailing
list, or they may not want where they shop or what they buy to be publicly
known. In the best case, the merchant would know what a customer buys,
but would not know the customer’s identity. The rest of the world might
know who the customer is, but would not know who he bought from or what
he had bought.

On the other hand, it would be nice for the merchant and customer to
have a written contract witnessed by a third party specifying the item to
be purchased and its price. A contract would be useful in case a party was

CHAPTER 2. BUILDING A COMMERCE SYSTEM 7

not satisfied with the outcome of a transaction and wanted to take additional
action to rectify the situation. Though it seems that maintaining privacy and
producing a contract are opposed to each other, they can both be achieved
simultaneously (but partially), as our system demonstrates.

There are other issues to be considered. We should not only look at how
difficult it is to become a customer in a given system, but how difficult it
is to become a merchant. If it is easy, more people will become merchants,
increasing the content available to customers. There are many other criteria
by which to judge commerce systems; we have presented the ones we feel are
most significant.

2.1 Selected solutions

2.1.1 Credit Cards

There are several reasons to include an explanation of standard credit cards
in this paper. The primary reason is that some of the commerce systems to
be discussed are merely wrappers for credit cards. Also, studying the cost
of credit card transactions may help us to estimate the costs associated with
other commerce systems.

A typical credit card transaction involves five parties, the cardholder, the
merchant, the merchant’s bank, the cardholder’s bank, and the credit card
company. When a cardholder buys something from a merchant, the merchant
asks its bank and the merchant’s bank asks the credit card company if the
charge can go through. The credit card company asks the cardholder’s bank.
The reply from the cardholder’s bank filters back through the network to the
merchant, who proceeds with the transaction. Billing information propagates
from party to party in the same way. Finally, the cardholder’s bank sends
the cardholder a bill. [5]

Payments take the opposite route through the system, beginning with
the cardholder paying his bank. The cardholder’s bank keeps 1.3% of the
payment in addition to any interest that may have accrued if the cardholder
did not pay right away. The rest of the payment is sent to the credit card
company, which charges the merchant’s and cardholder’s banks about five
cents each. Finally, the payment is sent to the merchant’s bank, which keeps
1.9% and sends the rest to the merchant. [5]

The plan of action that credit card companies, specifically Visa [4], are

CHAPTER 2. BUILDING A COMMERCE SYSTEM 8

pursuing is to build a range of services around issuing credit cards. With a
Visa card comes insurance, buyer protection, and many other bonuses. This
approach is contrary to electronic payment systems, where the focus is only
on producing a workable method to transfer money from the customer to the
merchant.

2.1.2 First Virtual

First Virtual’s system [11], known as the Green Commerce Model, is to be
admired if for no other reason than that it is already in operation. The
system’s purpose is to allow consumers to use their credit cards over the
Internet without fear that their card information will be stolen. While this
would usually mean that the system inherits the overhead associated with a
credit card, First Virtual avoids that problem through aggregation. Instead
of sending each charge to the credit card company, charges are cached at
First Virtual and sent off to the credit company as a single charge. This
scheme effectively reduces the overhead of a credit card, but it also increases
the risk. A customer may be over his credit limit when the charges are finally
sent to the credit company.

The Green system is particularly remarkable because it uses no crypto-
graphic tools. First Virtual’s position is clear:

Although use of cryptographic services could provide protection
against masquerade, replay, and manipulation of the transfer—
response message, the Internet community presently lacks the
supporting infrastructure to deploy these services on a widespread
basis. [11]

Because of its lack of security as well as its heavy reliance on email, First
Virtual’s system is a veritable Swiss cheese of security holes. It seems that
any user with knowledge of how to fake an email and how to eavesdrop on
network traffic can disrupt others’ transactions and make purchases using
others’ credit. Perhaps First Virtual’s system only remains in operation
due to a dearth of malicious hackers or First Virtual subscribers. While
this system will protect credit card information, its method of protecting
users’ accounts from unauthorized use in the electronic realm is feeble and
ineffective.

CHAPTER 2. BUILDING A COMMERCE SYSTEM 9

Time Customer Merchant First Virtual Credit Card Company
Purchase request
e

Authorization request
_—

Authorization
_—

Payment Request

Payment

Figure 2.1: First Virtual’s protocol

Both the customer and merchant have to register with First Virtual. The
customer supplies his credit card information, email address and some al-
phanumeric characters. First Virtual returns an identification number made
from the customer’s characters plus a few more of its choice. The merchant
tells First Virtual how it would like to be paid.

To start a transaction, a customer sends his identification number to
the merchant. The merchant sends this on to First Virtual with an order
to transfer funds from the customer’s account to the merchant’s. If the
customer’s identification number is invalid, First Virtual tells the merchant.
If not, First Virtual sends an email to the customer asking whether it should
go ahead with the funds transfer. In the meantime, the merchant delivers
the ordered goods to the customer. Note that in this system there is no
guarantee that the merchant will be paid.

The customer can answer First Virtual’s email in one of three ways. He
can reply that the transfer should go ahead, that it should not, or that it
should not because fraud was involved. Answering that there was fraud
will instantly cancel the customer’s account with First Virtual. Also, if the
customer decides not to pay often enough, his account will be cancelled. If the
customer does not answer at all within a set number of days, his account will
be suspended. If the customer decides to pay, all parties in the transaction
are satisfied. At some future time, First Virtual will charge the transaction
to the customer’s credit card and will distribute payment to the merchant.

CHAPTER 2. BUILDING A COMMERCE SYSTEM 10

One possible attack

Attacking First Virtual’s security is mostly a matter of acquiring a user’s
identification number. With an identification number, anyone could make
a purchase at a merchant who supports First Virtual’s system. The items
bought would be transmitted immediately. Later, the owner of the account
would be asked to pay for the transaction. The number of transactions that
can be made depends on how quickly the account owner responds to First
Virtual’s queries. Using an account number is as simple as filling it in where
requested (usually an order form on the World Wide Web) when making
purchases.

Another possibility is to acquire transaction numbers. These identifiers
will enable the bearer to authorize or refuse transactions as well as to report
fraud, instantly closing the account associated with the transaction number.
Obviously, the potential for mischief is very high. If Alice intercepts Bob’s
identification number, uses it to make a purchase, and intercepts the asso-
ciated transaction number, then she can authorize First Virtual to bill Bob.
Even better, when Bob tries to stop payment, First Virtual will report that
the transaction has been closed and that he probably made a mistake.

Conversely, if Alice is able to intercept a transaction number from one of
Bob’s purchases, she can use it to tell First Virtual that fraud took place. The
result is that Bob’s account would be instantly shut down, and the merchant
Bob used would not be paid.

Because First Virtual employs no cryptography in their protocol, all that
is required of Alice (besides moral turpitude), is the ability to read Bob’s
email. If Alice’s computer is on the same network as Bob’s, she could sniff
packets going in and out of Bob’s computer. Otherwise, she could exploit
any of the multitude of security holes in most operating systems to examine
Bob’s electronic mailbox.

2.1.3 Visa and MasterCard’s SET

On February 1, 1996, Visa, MasterCard, Microsoft, Netscape, and others an-
nounced that they would support the Secure Electronic Transactions (SET)
protocol [13]. SET’s purpose is to enable credit cards to be used safely on
the Internet. Care is taken to ensure that no party knows more than they
should: All messages are encrypted via DES (with the DES key exchanged
through RSA public key cryptography) to prevent third—party oberservers

CHAPTER 2. BUILDING A COMMERCE SYSTEM 11

Merchant’s Customer’s
Time Customer Merchant Bank Bank
Initialization
_____________ >
< _____________
Purchase Request
Authorization Request
—_——
B —
Transaction Status Inquiry
_____________ =
- I — = — = = e = — — — —
Payment Request
— s
-

Figure 2.2: SET’s message protocol (dotted messages are optional).

from learning anything. The customer’s payment information is encrypted
so that the merchant is unable to read it. The merchant and the cardholder
are the only two parties who know what the cardholder is ordering. The
system is heavily reliant on authentication through public key signatures, as
distributed by a series of trust brokers. [10]

A SET transaction bears a close resemblance to a standard credit card
transaction. To initiate a purchase, a cardholder sends an order for some item
to a merchant via the Internet. The merchant, in order to get approval for
the transaction, sends a message to the Acquirer payment gateway, another
name for a computer which acts as the intermediary between the Internet
and the Acquirer, a.k.a. the merchant’s bank. The Acquirer sends a mes-
sage to the Issuer, a.k.a. the cardholder’s bank, via the banks’ proprietary
communications network. The Issuer checks to see whether the cardholder
is in good standing and returns the result, which propagates back to the
merchant. The merchant has the choice of requesting payment in the same
message as the request for approval, or in a separate message which takes
the same path. [10]

A whole transaction can be accomplished in six messages, but the number

CHAPTER 2. BUILDING A COMMERCE SYSTEM 12

of messages can swell to 14 if a few optional but recommended pieces of the
protocol are used. A simple transaction requires two encryptions: one for
the message to the merchant and the other for the message to the Acquirer.
Before that, the cardholder needs to acquire a series of certificates to verify
that the Acquirer is legitimate. Verification involves checking that the root
certificate, which the cardholder holds, matches the signature on the next
certificate, which matches the signature on the next certificate, etc., for three
or four levels. At each level, another RSA decryption is necessary. [10]

Whether or not SET is secure, it is certainly slow. The extensive use of
public key cryptography guarantees that a transaction will take a significant.
amount of time to complete. To estimate how long it would take for the
cardholder to process a transaction, we found the amount of time necessary
for PGP (version 2.6.2) to decrypt and verify the signature on an eight byte
message encrypted and signed with 1024 bit keys: around 1.2 seconds on
an Intel ’486. Completing one SET transaction would probably consume a
significant number of seconds on the same computer. The Acquirer would
have a smaller but still significant amount to compute. The sum of the
standard credit card costs along with the cost of the computing time neces-
sary for one transaction will probably turn out to be quite a large number.
Unfortunately, Visa and MasterCard have not release estimated or actual
performance figures for SET.

2.1.4 DigiCash

DigiCash [1] uses RSA public key cryptography to provide strong, anonymous
digital cash. One drawback to this system is the amount of processor time
needed to complete transactions. DigiCash requires that the serial number on
each piece of money spent needs to be compared with the serial numbers on
every previously spent piece of money to prevent cash from being spent more
than once. A modified version of the protocol eliminates the verification step,
but does not detect double spending until after the transaction is completed.
In the modified scheme, when double spending does occur, the anonymity of
the cash is compromised, eventually revealing the culprit.

In addition to the time required to check for double spending, an enor-
mous amount of processor time is required to verify digital cash. The mer-
chant must verify the bank’s signature on each digital coin that it is given.
On an Intel ’486, verifying a 1024 bit public key signature on a short message
using PGP takes about 0.2 seconds. Additional processing would be neces-

CHAPTER 2. BUILDING A COMMERCE SYSTEM 13

sary to check for double spending. It is probably safe to assume that the
average transaction would take the merchant about half a second. At this
rate, each transaction would cost the merchant five cents in computing time.
For transactions below 25 cents, DigiCash’s system would be very expensive.

2.1.5 Millicent

Millicent [6] is a scheme for making tiny (less than one cent) purchases that
seeks to evade the traditional difficulties with digital cash through decentral-
ization. Instead of issuing money through banks, cash, now called scrip, is
issued by each merchant. Customers buy various merchants’ scrip from a
broker, an entity that has a contract to produce and sell scrip for merchants.
Millicent does not address the process of establishing a relationship between
a broker and a customer or between a broker and a merchant: these are left
to other protocols which are meant to handle larger transactions.

In an effort to make transactions fast and inexpensive, Millicent has been
stripped of features. There are no receipts in a standard transaction. There
is no method of guaranteeing that a customer gets the item that was or-
dered, or even any item at all. Customers are encouraged to complain to
the merchant’s broker, but the broker is unlikely to act until a significant
number of customers have complained. Finally, if a customer loses unspent
scrip, there is no way to recover it. The sacrifices made in customer service
pay off in efficiency: Millicent can be used to pay for transactions as small as
0.1 cents. The spartan nature of the system may not be important for small
transactions, but they limit the system’s usefulness for larger transactions.

Scrip consists of a vendor identification, an amount, an expiration date,
and a signature. The signature, which can only be produced or verified by
a vendor (and any brokers to whom the vendor licenses scrip production), is
produced by a one-way hash function (see Appendix A). Each piece of scrip
has a serial number which is used to detect double spending.

The protocol for buying goods from a merchant is usually very quick and
easy. A customer sends a request and some scrip to a merchant and the
merchant replies with the goods and perhaps more scrip as change. Un-
fortunately, the worst case version of this transaction is much slower. If a
customer does not have scrip for a vendor, he will need to contact his broker.
If his broker also lacks the required scrip, it will ask the merchant where to
buy scrip and transfer this information to the customer. The customer buys
scrip from the merchant’s broker. Finally, the customer will actually make

CHAPTER 2. BUILDING A COMMERCE SYSTEM 14

Customer’s Merchant’s
Time Customer Broker Merchant Broker

Scrip request
_—

"Who is your broker?"
—_—m

"My broker is X"
-
"Get scrip at X"
-

Scrip Request

Scrip

Request and payment

Goods

Figure 2.3: Worst case scenario for a Millicent transaction.

the purchase. At this point, eight messages have been passed between four
hosts (see Figure 2.3). As the number of places at which the customer shops
increases, this sequence of messages will be more frequent and the additional
delay will become significant.

Another difficulty that can arise when a customer shops in many different
places is accumulation of spare scrip. It is unlikely that a customer will spend
all of his scrip. Rather, the customer will usually have a small amount left
over after every purchase. Because Millicent deals with tiny purchases, the
amount of leftover scrip will be on the order of a penny. Since pennies can
eventually add up to a large amount, customers can sell their scrip back to
the associated vendors at a discount.

Chapter 3

Our system

3.1 Design Goals

There are three parties in every transaction in our system: the customer,
the merchant, and the credit company. The credit company pays the mer-
chant on behalf of the customer. Eventually, the customer repays the credit
company. Both the customer and merchant need to have accounts with the
credit company before they can interact. A merchant or customer gets an
account by agreeing on an identification number and secret bit string with
the credit company.

Our system allows customers some privacy, but not total anonymity. Mer-
chants never see the real identity of a customer, but they can link the cus-
tomer’s identification number to all of that customer’s purchases. This allows
merchants to reward their frequent customers without knowing who those
people are. The credit company is able to link identification numbers to ac-
tual people, but it will not know what merchants send to customers or what
customers order from merchants. If a dispute between a customer and mer-
chant arises, the credit company will be able to verify both the customer’s
order to the merchant and what the merchant intended to send to the cus-
tomer. The customer and merchant are given privacy and protection from
fraud.

If a group of merchants were to share their customer information, they
would be able to develop a more complete record of customers’ buying habits.
However, only the credit company can link customer identification numbers
with actual people. We hope that most credit companies will abstain from

15

CHAPTER 3. OUR SYSTEM 16

releasing the identities of their customers. Given that current credit compa-
nies release information about their cardholders (credit record information,
for instance), our assumptions may be somewhat unrealistic. Perhaps people
who are concerned about their privacy will boycott overly loquacious credit
compaiies. A

Since our system uses no munitions [2], i.e. strong cryptography, it is ex-
portable. While it may be desirable to encrypt traffic between the merchant
and the customer, it is not necessary. For the security—conscious, our system
can be easily converted to use a protocol such as secure sockets for com-
munication between the merchant and customer. All messages between the
merchant and the credit company should not be encrypted, since encryption
would make our system much slower and therefore, more expensive.

3.2 Why our system works

Our system relies mainly on hashing to enforce security and allow anonymity.
The customer and merchant sign® their messages so that the credit company
can verify the signatures. The credit company produces two signatures, one
that the merchant can verify and the other that the customer can verify. If
a message is altered in any way, it is extremely likely that the signature will
reveal that a change has been made. Signatures prevent an evil party from
adding or corrupting information during a transaction.

Hashing is also used to produce a digital “contract” that the customer
and merchant sign for each transaction. The customer produces a signed
order by signing the hash of the description of the item to be purchased.
The merchant can check that the hash is correct. The customer’s signature
guarantees that he cannot later lie about what he ordered. Similarly, the
merchant hashes the data to be delivered to the customer and signs the
hash. The credit company, after verifying the merchant’s signature, will also
sign the hash with a signature that the customer can verify.

Anonymity is supplied in two respects. Customers are known to mer-
chants only by their identification numbers. A merchant can tell from where
a customer is connecting, but cannot tell the customer’s identity. If a cus-
tomer does not want to reveal from where he is connecting, he can use a
gateway computer to forward his packets rather than sending them directly.
The credit company is able to link a customer’s identification number with

LA discussion of signatures can be found in Appendix A.

CHAPTER 3. OUR SYSTEM 17

Credit
Time Customer Merchant Company
Request
Authorization request
Receipt
Receipt and goods

Figure 3.1: Our system’s message passing scheme.

his true identity, precluding total anonymity. But unless the credit company
decides to release the name to identification number matching, customers’
anonymity will be preserved.

The other aspect of anonymity is that the credit company will not know
either what the customer orders or what the merchant delivers. While the
credit company will receive signed hashes of both, it will never see the ac-
tual data. Appending random bits to both the customer’s order and the
merchant’s reply makes it very difficult for the credit company to find out
what is being hashed since the random bits increase the number of possible
documents from which the hash could be produced.

3.3 The protocol

The customer initiates a transaction by sending a purchase request to the
merchant. The purchase request consists of two parts. One part is a de-
scription of what the customer wants to purchase. The other part consists of
all other necessary information: identification numbers for the customer, the
customer’s credit company, and the merchant; the amount of the transac-
tion, the number of transactions that the customer has initiated before this
one (a.k.a. the transaction counter), a hash of the item description, and the
customer’s signature on the whole message except the item description.
The merchant, upon receiving the customer’s packet, checks that the
itern description matches its hash. If it does not or if there are any other
problems with the item description or amount to be paid, the merchant will

CHAPTER 3. OUR SYSTEM 18

send an error message to the customer explaining what the problem is. If
everything seems to be in order, the merchant will send the following to
the credit company: the customer’s message minus the item description, a
revised amount on the purchase (which can only be less than or equal to the
customer’s amount), the merchant’s transaction counter, a hash of the data
that the customer has ordered, and a signature on the whole message.

When it receives the merchant’s message, the credit company will check
the merchant’s and customer’s signatures. The credit company will also make
sure that both the merchant and the customer’s transaction counters have
not been used more than once. The credit company expects to receive trans-
actions counters from a host in ascending order. The credit company will
tolerate small skips in transaction counters that could have been produced by
a customer or merchant requesting several transactions in a very short time.
If the gap in transaction counters remains for a significant period of time or
is very large, the credit company will contact the customer or merchant to
ask what the problem is.

If both signatures as well as the rest of the packet are valid, the client’s
account will be charged and the merchant’s account will be credited. The
credit company’s reply to the merchant will include each party’s identifica-
tion number, the client’s and merchant’s transaction counters, the amount,
the merchant’s hash of the requested data, and two signatures of the whole
packet, one for the merchant and one for the customer.

If the credit company reports that the transaction is successful, the mer-
chant will forward the credit company’s message to the customer. The mer-
chant will also send the data that the customer ordered. Here the merchant
has a choice: it can either send the customer’s data before it receives the
credit company’s reply, or it can send the data after. The merchant would
be exposing itself to greater risk by not waiting for the credit company, but
it would potentially increase customer satisfaction by decreasing the time it
takes for the customer to receive his purchase. If the network link between
the merchant and credit company is slow, the merchant will have a large
incentive to send the data first.

3.4 Potential weaknesses

Our system is not immune to attacks in which packets are destroyed or
corrupted. It is quite possible to prevent all transactions just by changing a

CHAPTER 3. OUR SYSTEM 19

byte or two in each packet going to or from the credit company. It should be
noted that this attack would be effective against any of the other systems we
have considered. While our system can be shut down, there are few if any
vulnerabilities that will allow theft.

One possible attack is for an evil hacker to impersonate a customer that
is known to some merchant. The merchant, being the trusting sort, would
send the data that the fake customer requested before receiving the bank’s
confirmation. To impersonate a customer, the attacker needs to use the
customer’s identification number and IP address. Packet sniffing is all that
is required to find the identification number. However, if the attacker also
tries to make his packets seem to come from the customer’s IP address,
he will have problems. If the customer’s computer is turned on when the
attacker initiates a connection with the merchant, the merchant’s packets
to the customer’s IP address will cause the customer’s computer to reset
the connection between the merchant and fake customer (assuming a TCP
connection is used) [8]. Even if the customer’s computer is off, the attacker
will only get one order filled before the merchant stops trusting the spoofed
customer.

A more direct approach might be to steal the customer’s identification
number, secret bit string, and transaction counter. We require that each
customer’s data be protected by a password. Thus, if the data is stolen, it will
most likely be the customer’s fault, not our system’s. Assuming that the data
is stolen, the customer’s transaction counter will reveal the theft. When the
thief uses the customer’s data, the transaction counter will be incremented
at the thief’s computer and at the credit company but not at the customer’s
computer. The next time the customer makes a purchase, a transaction
counter value will be used twice, indicating that there is a problem. If the
thief decides to add some value to his copy of the transaction counter to avoid
collisions, the credit company, noticing the gap in transaction counters, will
contact the customer to make sure that everything is in order.

Finally, there is the possibility that a brute force attack will succeed [9].
Having intercepted customer A’s message, an evil hacker could try hashing
every possible bit string concatenated with the message until he generated a
signature identical to the one on the message. Assuming that he knew the
correct value of the transaction counter (which is possible), he could generate
messages that appear to come from customer A. The chance that this attack
will succeed is very low given that there are at 2'° possible signatures to
search through. Even if the hacker could try 10¢ bit strings per second, it

CHAPTER 3. OUR SYSTEM 20

Credit
Company =

d
Va
V4
/
/
/
/
I
v
Merchant Merchant ‘ Merchant
‘ Customer ‘ Customer Customer 1

Figure 3.2: The setup for our performance analysis.

would take about 103 years to try every possibility.

3.5 Performance analysis

In order to find out exactly how fast our system is, we implemented and
benchmarked it. The experiment consisted of eleven customers generating
purchase requests continuously, one merchant per customer, and a central
credit company server which processed all of the merchants’ requests. We
found that the credit company could process a sustained rate of 57 transac-
tions per second.

We implemented the software in C to avoid any unnecessary overhead.
The credit company kept records on each customer and merchant as well as
receipts for every transaction. Customers kept the location of a merchant
and personal information (their secret bit string, etc.). Merchants only kept
records about themselves. We stored all of this information in regular files
without a database. All programs operated serially, so there was no need to
lock records.

A transaction consisted of the following: The customer would open a
TCP connection to the merchant (the customer and merchant ran on the

CHAPTER 3. OUR SYSTEM 21

i |

g0t

75

M

A

20 40 50 80 100 120

Figure 3.3: Transactions per second versus time (in minutes).

same machine) and transmit a purchase request. If the merchant found that
the request was invalid, it would send an error message back to the cus-
tomer. Otherwise, it would open a TCP connection to the credit company
and transmit payment information. The credit company would process the
information, return a receipt that either confirmed that the transaction oc-
curred or explained why it failed, and close the connection. The merchant
would forward the receipt to the customer along with the purchased elec-
tronic data, and then it would close the connection. A counter in the credit
company server was incremented each time it closed a connection to a mer-
chant. Once a minute, an interrupt was generated, the value of the counter
was printed, and the counter was reset to zero.

The computers used were all connected by a 10 Mb/s local area ethernet
network. The credit company ran on an otherwise idle Hewlett Packard
712/80 with HP-UX. (The current list price of an HP 712/80 is about
$10,000.) We collected data once per minute for 119 minutes. Over that
period, the credit company processed an average of 71.65 transactions per
second. The peak average rate sustained for a minute was 87.78 transactions
per second and the lowest average rate sustained for a minute was 57.51
transactions per second. The standard deviation was 8.93.

CHAPTER 3. OUR SYSTEM 22

Figure 3.3 shows the rate at which the credit company processed trans-
actions versus time. We believe the fluctuations in the transaction rate are
due to various unrelated system daemons periodically demanding resources
(X was running, among other things). By removing all unrelated processes
from the computer, we believe that the credit company server could achieve
a sustained transaction rate between 70 and 80 transactions per second.

Assuming that our system cannot operate faster than 55 transactions
per second, the credit company’s cost of computer time per transaction is
0.18 cents. The merchant’s cost of computer time per transaction should be
roughly the same unless the channel between the merchant and customer is
encrypted. The credit company would have to take a 3.6% commission on
a five cent transaction, well within bounds of acceptability. Transactions as
small as two cents each are possible, since the credit company’s overhead
would be only 9%. Of course, these calculations assume that the credit
company will charge 0.18 cents per transaction, but in reality, its pricing
policies are dependent on many other factors, such as demand for the system.

Having found the minimum transaction size, it would be useful to find the
maximum. Finding the largest possible transaction is a matter of analyzing
the amount of work required to steal. The maximum transaction size should
be small enough so that a thief will invest more in stealing than he will receive
in return. We believe our system is not vulnerable to any currently known
cryptographic attack. It is most vulnerable to physical attacks, such as a
thief using a gun to coerce people to buy him things. How safe our system
is from physical attack is outside the scope of this investigation. Therefore,
we cannot make a judgment about how large a transaction can be.

Chapter 4

Conclusion

The systems we have examined all have various flaws which make them un-
suitable for our purposes. First Virtual’s system offers no protection against
fraud. Visa’s SET has adequate security but seems to be too slow both be-
cause of the amount of computing time required to deal with all the necessary
cryptography and because of the number of messages that need to be sent
to complete one transaction. DigiCash seems to be faster than SET, and
promises anonymity. Unfortunately, DigiCash is probably not fast enough.
Millicent, while appealing for its normally low overhead, can become ineffi-
cient in some circumstances, sending eight messages to complete one trans-
action.

DigiCash and Millicent have one thing in common: neither offers any
protection to the participants in a transaction. Our system creates a signed
contract which formalizes the agreement between customer and merchant.
DigiCash and Millicent have no such mechanism, relying instead on methods
outside their systems to prevent or limit fraud. Altering DigiCash to provide
protection would make as much sense as altering physical cash in the same
way. DigiCash was not built to offer robust protection to its users. Millicent
could theoretically install some amount of protection, but it might make the
protocol too complicated to be efficient.

We believe that our system compares very favorably with other systems
for handling transactions as small as five cents. Our system offers security,
some privacy, the ability to verify that merchants and customers have fulfilled
their contracts, and low overhead. If privacy is not an issue, no encryption
at all is required, allowing transactions to be extremely fast. Our system
successfully gives customers and merchants both convenience and security.

23

Appendix A

Become a cryptographer in five
minutes

We will need to use a one—way hash function [9], an algorithm that transforms
an arbitrary amount of data into a set length (usually around 100 to 200 bits)
of data. A good one-way hash function makes it very difficult either to find
the input from the output or to find two inputs that share the same output.
Our system uses the Secure Hash Algorithm (SHA) because we believe it to
be more secure than other well-known algorithms, e.g. MD5.

With a hash function, it is easy to construct an almost unforgeable sig-
nature for a document (as shown in [6]). Call the document to be signed
D. The signature of D is the one-way hash of the concatenation of D and
a long sequence of random bits (call this B) known only by the person who
signed the document. Observe that if the hash function is good, then the
easiest way to duplicate the signature (without knowing B) is to try com-
puting the signature with every possible value of B. To prove that a person
signed a document, the person need only reveal B, at which point anyone
can compute the signature and verify that B is the right sequence. If two
parties both know B but nobody else does, they can use B to sign and verify
messages to each other.

24

Bibliography

[1] David Chaum. Achieving Electronic Privacy. Originally appeared in
Scientific American, August 1992. Also found at
http://www.digicash.com/publish/sciam.html, August 1992.

[2] John Gilmore. Cryptography Export Control Archives. Found at
ftp://ftp.cygnus.com/pub/export/export.html.

[3] Douglas A. Hayes. Bank Lending Policies, pages 175-98. Division of
Research, Graduate School of Business Administration, The University
of Michigan, Ann Arbor, Michigan, 1977.

[4] Visa International. Visa U.S.A: The Evolution of a Full-Service
Consumer-Payment System. Background information received from

Visa., August 1995.

[5] Patrick J. Lyons. What Happens When a Customer Says ‘Charge It’.
The New York Times, March 7 1993. Section 3, page 8.

[6] Mark S. Manasse. The Millicent protocols for electronic commerce.
Found at http://www.research.digital.com/SRC/millicent/.

[7] Mark S. Manasse. A talk on Millicent. The talk was presented at the
Princeton University Department of Computer Science, February 1996.

[8] Information Sciences Institute of the University of Southern California.
RFC 793: Transmission Control Protocol DARPA Internet Program
Specification. Found at
http://www.cis.ohio~state.edu/htbin/rfc/rfc793.html,
September 1981.

[9] Bruce Schneier. Applied Cryptography, chapter 7 and 18. John Wiley
& Sons, Inc., second edition, 1996.

25

BIBLIOGRAPHY 26

[10] Secure Electronic Transaction (SET) Specification Book 2: Technical
Specifications. Found at
http://www.visa.com/cgi~bin/vee/sf/set/settech.html?2+0,
February 1996.

[11] Lee H. Stein, Einar A. Stefferud, Nathaniel S. Borenstein, and
Marshall T. Rose. The Green Commerce Model. Found at
http://www.fv.com/pubdocs/green-model .txt, May 1995.

[12] Salvatore J. Stolfo. A conversation with Mr. Stolfo at Columbia
University on February 29, 1996.

[13] Visa and MasterCard combine security specifications for card
transactions on the Internet. Found at
http://www.visa.com/cgi-bin/vee/vw/news/PRelco020196 . html?2+0.

