Automatic Modeling and L ocalization
for Object Recognition

Mark Damon Whedler

October 25, 1996
CMU-CS-96-188

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:

Katsushi Ikeuchi, Chair
Martial Hebert
Steven Shafer, CM U/Microsoft
Eric Grimson, MIT

(© 1996 Mark D. Wheeler

Thisresearch hasbeen supportedin part by the Advanced Research Projects Agency under the Department
of the Army, Army Research Office grant number DAAH04-94-G-0006, and in part by the Department of
the Navy, Office of Naval Research grant numbers N00014-95-1-0591 and N00014-93-1-1220. Views and
conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing official policies or endorsements, either expressed or implied, of the Department of the Army,
the Department of the Navy or the United States Government.

Keywords: localization, pose refinement, automatic object modeling, recognition,
tracking, robust statistics, consensus, M-estimation, surface merging

Abstract

Being able to accurately estimate an object’s pose (location) in an image is important for
practical implementations and applications of object recognition. Recognition algorithms
often trade off accuracy of the pose estimate for efficiency—usually resulting in brittle and
inaccurate recognition. One solution is object localization—alocal search for the object’s
true pose given arough initial estimate of the pose. Localization is made difficult by the
unfavorable characteristics (for example, noise, clutter, occlusion and missing data) of real
images.

In this thesis, we present novel algorithms for localizing 3D objects in 3D range-image
data (3D-3D localization) and for localizing 3D objectsin 2D intensity-image data (3D-2D
localization). Our localization algorithms utilize robust statistical techniques to reduce
the sengitivity of the algorithms to the noise, clutter, missing data, and occlusion which
are common in real images. Our localization results demonstrate that our algorithms can
accurately determine the pose in noisy, cluttered images despite significant errors in the
initial pose estimate.

Acquiring accurate object models that facilitate localization is also of great practical im-
portance for object recognition. In the past, models for recognition and localization were
typically created by hand using computer-aided design (CAD) tools. Manua modeling
suffers from expense and accuracy limitations. In this thesis, we present novel agorithms
to automatically construct object-localization models from many images of the object. We
present a consensus-search approach to determine which parts of the image justifiably con-
stitute inclusion in the model. Using this approach, our modeling algorithms are relatively
insensitive to the imperfections and noise typical of real image data. Our results demon-
strate that our modeling algorithms can construct very accurate geometric models from
rather noisy input data.

Our robust algorithms for modeling and localization in many ways unify the treatment
of these problems in the range image and intensity image domains. The modeling and
localization framework presented in thisthesis provides a sound basis for building reliable
object-recognition systems.

We have analyzed the performance of our modeling and localization algorithms on awide
variety of objects. Our results demonstrate that that our algorithmsimprove upon previous
approachesin terms of accuracy and reduced sensitivity to the typical imperfections of real
image data.

Acknowledgements

| would first like to thank Katsushi Ikeuchi, my advisor and friend for much
of my 7 year stay at Carnegie Mellon. | thank him for giving me the freedom
to explore awide variety of ideas and for having an open door and open mind
whenever | needed it. | also thank my thesis committee members Martial
Hebert, Steve Shafer, and Eric Grimson for their careful reading of this thesis
and their valuable feedback regarding this research.

Takeo Kanade deserves specia thanksfor creating such awonderful group and
environment for studying computer vision and robotics. The VASC facilities
gurus Jm Moody, Bill Ross and Kate Fissell deserve much of the credit for
keeping everything going in the VASC group; their frequent help and patience
was greatly appreciated.

| thank the faculty at Tulane University, especially Johnette Hassell and Mark
Benard, for providing mewith asolid undergraduate educati on and encouraging
me to pursue aresearch career.

| wasfortunateto have many great peopleto work with during my stay at CMU.
My fellow grad students contributed many ideas and insights which helped me
to develop and implement the experimental systems in this thesis. thanks to
Yoichi Sato, Harry Shum, Sing Bing Kang, Fredric Solomon, George Paul,
Prem Janardhan, David Simon, and Andrew Johnson for their friendship and
help over theyears. | aso benefited fromthehelp of visiting scientistsincluding
Takeshi Shakunaga and Yunde Jiar. | have been fortunate to have a number
of excellent officemates during my stay here including Kevin Lynch, Tammy
Abel, Greg Morrissett, Andrzej Filinski, Lars Birkedal, Margaret Reid-Miller,
and John Ockerbloom.

Grad school would have been much more difficult without the many of the
friends | have made here. | am most grateful for having shared an office and
house with Kevin Lynch. It was important to have a friend who shared so
much in common and could always counted on. Kevin will always be like a
brother to me. My friendsin the CS PhD program were very special aswell. |
especially cherished our coop dinner group, including Rich Goodwin, Scott and
LeAnn Neal Reilly, Dave Tarditi, Greg and Jack Morrissett, Susan Hinrichs,
Alan Carroll, Mel Wang, Kevin Lynch, and Tammy Abel, which shared many
fun times together. | also cherish the friendship of John Mount, Nina Zumel,
Mark and Heather Leone and Bob Doorenbos (croquet anyone?).

Some of my favorite times were spent playing intramural sportsat CMU, with
teams such as the infamous Rude Dogs, NP Completions, Viking Death Rats,
Base Registers and Bucket Brigade. | will greatly miss all these people, most
especialy “ Super” Bill Niehaus, Will Marrero, John Cheng, John Greiner, Jerry
Burch, Todd Jochem, Dave K oshie, Fabio Cozman, Rich Voyles, David Steere,

Jay Kistler, John Pane, Mike Young, Bunsen Wong, Harry Shum and the many
others too numerous to mention.

Lastly, | would like to thank the most important people in my life, my family,
for always being there for me and supporting me unconditionally: my siblings
Brandon, Douglas, and Dana who can crack me up at any time and make me
proud to be related to them; my precious niece Aeriel who makes me smile
every time | think of her; and, most of all, my Mom and Dad for their love,
advice, patience, and help for these many years and for the years to come.

Contents

1

Introduction

1.1 Notation, Terminology, and Assumptions
1.2 Philosophical Background
1.3 ThessOverview e

Object Modeling for 3D-3D L ocalization

21 Approach
2.2 SurfaceAcquisition
23 ViewAlignment
24 DataMerging
25 3D Object ModelingResults L.
26 3D Modding: Summary

3D-3D Object Localization

31 Approach
3.2 PointVishility
3.3 3D-3DCorrespondence
34 3D-3D PoseOptimization
3.5 Putting It Together: 3D-3D Locadlization.
3.6 3D-3D Localization: Experimental Results
3.7 3D-3D Object Localization: Summary

Object Modeling for 3D-2D L ocalization

41 Problemsand Approach L
4.2 View Acquisition
43 2Dto3D:ViewAlignment
44 View Merging: the Consensus-Edgel Algorithm
45 Modeling Occluding Contoursfor 3D-2D Localization
4.6 Object Modeling for 3D-2D Localization: Results.
4.7 Object Modeling for 3D-2D Localization: Summary

~N O Wk

13
13
15
17
20

46

5

3D-2D Object Localization

51 Problemsand Approach
5.2 Edge Vishbility
5.3 Edge Correspondence
54 PoseOptimization
5.5 Putting It Together: 3D-2D Localization.
5.6 Multi-ImagelLocalization
5.7 3D-2D LocdizationResults
5.8 3D-2D Locdlization: Summary

Related Work

6.1 3D ObjectModeling
6.2 3D-3D Object Localization
6.3 Object Modeling for 3D-2D Localization
6.4 3D-2D Object Localization
6.5 Object Recognition

Conclusions

7.1 Contributions
7.2 FutureWork and Discussion

A Camera and Robot Calibration

Appendices

B

Quaternionsand Rotation

B.2 Quaternions

B.3 The Jacobian of Rotation With Respect to Quaternions

Principal Curvaturesfrom Triangulated Surfaces
Bibliography

136
136
139
145
150
155
156
157
171

175
175
181
184
190
193

196
198
198

203

207
207
208
209

213

List of Figures

1.1 Anexampleof (a) 2D image edgels and (b) 3D edgels or edgel generators.
1.2 Anexampleof the3D object modelingprocess.
1.3 Anexampleof 3D-3D localization for asimple sphereobject.
1.4 Anexampleof the3D edgel modelingprocess.
1.5 Anexampleof 3D-2D localization for asimple bulls-eye object.

21 Organizationof thischapter.
2.2 Connecting range image pointsto formasurface.
2.3 Examplesof triangulationerrors.

24 An example of zero-crossing interpolation from the grid sampling of an
implicitsurface.

2.5 Inpractice, real surface samples are noisy and dightly misaligned and it is
difficult to determine where the actual surface mightlie.

2.6 Some effects of noise and misalignment on our naive algorithm.

2.7 Graphical illustration of the error in zero-crossing interpolation using Al-
gorithm ClosestS gnedDistance with two noisy observations.

2.8 An example of inferring the incorrect sign of a voxel’s signed-distance
function.

2.9 Theextension of theimplicit surface in unobserved regions of thegrid. . .

2.10 A demonstration of gradient testing to eliminate false surfaces at zero
crossingsof theimplicitsurface.

2.11 A 2D dlice of an octree representation of a simple surface illustrates the
adaptive resolution which is high around the surface and low elsewhere.

2.12 The two degrees of freedom, 4. and ¢, of the Puma used to vary of object
position with respect to the cameras coordinatesystem.

2.13 Resultsfrom modelingtheboxcar.
2.14 Three views of the resulting triangulated model of theboxcar.
2.15 Resultsfrom modelingthefruit. L.
2.16 Three views of the resulting triangulated mode! of thefruit.
2.17 Resultsfrom modelingtherubberduck.
2.18 Three views of the resulting triangulated mode! of theduck.

10
11
12

15
16
17

21

24
24

26

27
30

31

33

2.19
2.20
221
222
2.23

2.24

2.25

2.26

2.27

2.28

31
3.2

3.3
3.4
3.5
3.6

3.7
3.8

39

3.10
311
3.12
3.13

3.14
3.15

3.16

Resultsfrom modeling theceramicmug. 43
Three views of the resulting triangulated model of themug. 44
Resultsfrom modelingthetoycar. 45
Three views of the resulting triangulated model of thecar.. 46
Theresult of the naive algorithm, Algorithm ClosestS gnedDistance, onthe
duckimage. 47
A cross section of the final model of the boxcar (thick black line) and the
original range-image data (thin black lines) used to constructit. 438
A cross section of the final model of the fruit (thick black line) and the
original range-image data (thin black lines) used to constructit. 49
A cross section of the final model of the rubber duck (thick black line) and
the original range-image data (thin black lines) used to construct it. 50
A cross section of the final model of the ceramic mug (thick black line) and
the original range-image data (thin black lines) used to construct it. 51
A cross section of the final model of the toy car (thick black line) and the
original range-image data (thin black lines) used to constructit. 52
Organization of thischapter. 56
An example of the set of visible viewing directions (the unshaded portion
of the hemisphere) for the point z ontheL-shape. 58
Orthographic projection of viewing directionsonto asimple LUT array. . 60
Latitudinal/Longitudinal discretization of ahemisphere. 61
Stereographic projection of viewing directionsonto asimple LUT array. . 62
The mapping of viewing directions to visibility values via a two-level
lookuptable. 62
K-dtreesubdivisonof 2D points. 67
An exampleof nearest-neighbor correspondence (I eft) versus nearest neigh-
bor+normal correspondence (right). 67
Plot of he 3D distance between two unit vectors with respect to the angle
betweenthetwovectors. 69
Examples of local versus global minimaand basins of attraction. 74
Plotsof w(z) for each of the M-estimatorslisted in Table3.1. 78
Plotsof P(z) for each of the M-estimatorslisted in Table3.1. 78
Example of the fluctuation of £ due to changes in the pose and the set of
visblepoints, 82
The minimum distance function with respect to the dynamic correspondences. 82
Correspondences which compare normals can create discontinuitiesin the
distancefunction. 83
Three views of the mug object generated using our surface point visibility
approXimation. 89

10

3.17
3.18
3.19
3.20

321
3.22
3.23
3.24
3.25

41
4.2
4.3
4.4

4.5
4.6

4.7
4.8
4.9
4.10

411
412
4.13
4.14
4.15
4.16
417
4.18

5.1
5.2

5.3
5.4

5.5

The variation of £ along alineof trandationinposespace. 91

The variation of £ along aline of purerotationin posespace. 91
The variation of I along aline of trandation and rotation in pose space. . 92
A close-up of a piece of the graphs of the function £ for the Lorentzian,

Gaussian and Threshold along aline of trandationin pose space. 92
The Sharpei dog convergencetestdata. 95
The ceramic mug convergencetestdata. 96
Thetoy car convergencetestdata. 97
The rubber duck convergencetestdata. 98
Depiction of threeiterations of the randomized localization search. 99
Organization of thischapter. 109
An example of raw and smooth edgel chains. 110
An example of mapping a2D edgel onto a3D triangulated surface. 111
A diagram representing the relationships between the various coordinate

framesused inthe analysisinthischapter. 112

An occluding boundary edgel which does not project onto the model surface.114
The shortest distance between aray and the surface triangleswhen they do

notintersect. 114
An occluding contour mapped to theobject. 115
The stagesof aconsensus-edgel search. 118
A circleand its occluding contour points. L. 121
Example of normal sections with (a) positive normal curvature and (b)

negative normal curvature. 123
Classes of surfacesbased oncurvature. 125
Results from modeling the 3D edgel generatorsof thestopsign. 128
Results from modeling the 3D edgel generatorsof the T-sign. 129
Results from modeling the 3D edgel generators of the bulls-eye. 130
Results from modeling the 3D edgel generators of the boxcar. 131
Results from modeling the 3D edgel generatorsof themug. 132
Results from modeling the 3D edgel generatorsof thecar. 133
Results from modeling the 3D edgel generatorsof theduck 134
Organization of thischapter. 138
Examples of three types of edgel generators. (@) rigid surface marking, (b)

convex edges, (¢) occludingcontours. 140
A normal sectionof asurface. oL 143
Using the tangent direction of an edgel to locate pixels to sample the left

and right intensities, /;, and Iy, for computing thereflectanceratio. 148
Example of correspondence search using reflectanceratios. 149

11

5.6

5.7

5.8

5.9

5.10

5.11

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521

6.1

6.2

6.3

Al

A2

Gradient-descent minimization path to align a 3d point = with the line of
sight v (@) infinitesmal steps, (b) discrete steps, (¢) shortest path.
An example of the 3D error vector between the 3D point and the line of
sghtofedgel.

The stereo correspondence problem: several points are not visible in both
VIBWS. . . . o e e

Thevariation of /£ along aline of trandation in pose space for the Gaussian
and Lorentzian weight functions.

The variation of £ along a line of pure rotation in pose space for the
Gaussian and Lorentzian weight functions.

The variation of 7 along aline of trandation and rotation in pose space for
the Gaussian and Lorentzian weight functions.

The bulls-eye convergencetestdata.
The stop sign convergencetestdata.
The T-sign convergencetestdata.
The boxcar convergencetestdata.
Theduck convergencetestdata.
The car convergencetestdata.
The mug convergencetestdata.
Tracking the car through 5images at 10 degreeintervals.
Multi-image localization of thestopsign.
Multi-image localization of thepaintcan.

[llustration of the result of Curless and Levoy’s signed distance integration
in the neighborhood of thin objectparts.

[llustration of estimating the distance to the surface along rays passing
throughavoxel.

Illustration of estimating the distance to the surface along rays passing
throughavoxel.

An image of the experimental setup including the CCD camera, light-
striping projector, and Pumarobot.o

The calibration cube used for range sensor and cameracalibration.

12

153

154

156

159

159

160
162
163
164
165
166
167
168
170
172
173

177

178

178

204
205

List of Tables

21

3.1
3.2

3.3

34

41

5.1

5.2

Statistics of the modeling experimentsfor each object. 40
Table of weight functionsfor M-estimation. 79
Results of the convergence experiments with variations of our 3D-3D lo-

calization algorithmandICP. 95
Results of the convergence experimentswith variations of |CP on the duck

IMage. 98
Results of the randomization convergenceexperiments. 100
Statistics of the edgel modeling experimentsfor each object. 127
Results of the convergence experiments for our 3D-2D localization ago-

rithm using the Lorentzian and Gaussian weight functions. 161
Results of the single versus multi-image convergencetests. 171

13

Chapter 1

| ntroduction

Object recognition remains one of the central problemsinthefieldsof artificial intelligence
and computer vision. The standard definition of the object-recognition problemisto identify
and locate instances of known objectsin an image [4, 23, 109]. That is, we do not smply
desireto know that an object existsin theimage, but that we al so need to know whereitisin
theimage. This location or positional information is commonly referred to as the object’s
pose.

Knowledge of an object’s pose has many important applications; it enables us. to
reason about the image scene, to interact with objects in the scene, to analyze geometric
relationships between objects in the scene, and to describe the scene for later synthetic or
physical reproduction.

Pose is also fundamental for practical object-recognition algorithms—impacting both
the accuracy and efficiency of these algorithms. Pose alows us to improve recognition by
enabling us: to accurately verify an object hypotheses using, for example, a project and test
strategy; to efficiently recognize time-varying image sequences via object tracking; and to
detect and reason about partial occlusion.

When we say that knowledge of the pose isimportant for applicationsin object recogni-
tion, we should qualify that by saying accurate knowledge of the poseisimportant. Object
verification[50] isavery difficult problem for recognition a gorithmswhen poseisperfectly
known. If the pose is inaccurate, verification becomes a highly unreliable operation and
recognition efficiency and accuracy will be affected. Likewise, applications that rely on
knowing where the object iswill also fail when the pose error istoo large. Thus, we claim
that determining accurate pose is a fundamental requirement for object recognition.

Accurate knowledge of pose is aso crucial for object tracking. Tracking is a smpli-
fication of the object-recognition problem. In the case of tracking, we know roughly the
position of the object in the image using a prediction from previous image observations.
Thus, an efficient local search can be used to find the new object position and verify it.
Tracking ability has great implications for practical recognition in the case of image se-
guences. If we can reliably track objects, we must perform full scale recognition only on
parts of images that contain something new.

2 Chapter 1. Introduction

Unfortunately, much work on object recognition neglects the problem of accurately
computing the object’s pose. There are a wide variety of techniques for recognition that
give identity of objects and their rough pose (see Chapter 6 for a discussion of these).
Because of the highly unfavorable combinatorics of recognition, recognition algorithms
must often sacrifice pose accuracy (and, hence, recognition accuracy) for efficiency. The
best example of this is the alignment algorithm [70]. The alignment algorithm searches
for minimal sets of matches between image and object features to align a 3D object to a
2D image. Grimson and Huttenlocher [50] have shown that the resulting uncertainty in
the pose (when using a small number of matches) is enough to make verification prone
to frequent failure. For example, under realistic uncertainty in the location of featuresin
an image, an agorithm which estimates the position of the object using 3 or 4 point or
line segment matches may be off by 20 or more degrees in rotation. Thus, the predicted
positions of other features of the object will be significantly affected—resulting in avery
low probability to correctly verify the presence of the object in theimage. The solution is
to search for more feature correspondences (create an over-determined system); however,
this results in combinatorial explosion which is what we were trying to avoid in the first
place.

The solution to this tradeoff problem is localization—a local search for the true pose
given the rough pose of an object in an image. If localization can be done efficiently and
reliably, recognition algorithms like the alignment algorithm and others will eventually
become practical in terms of accuracy and efficiency. In addition, a solution to localization
isimmediately useful as a solution to the tracking problem. Localization is fundamentally
equivalent to the object-tracking problem. Intypical tracking systems, theobject’sestimated
velocity and acceleration is used to better predict the object’s current position. From that
predicted position, a localization search is performed. Localization is a bit more genera
than object tracking in that no information other than the object’s identity and pose is
assumed to be known.

This thesis presents solutions to the localization problem in the two most prevalent
sensor modalitiesin the field of computer vision: the rangeimage (3D) and intensity image
(2D) modalities. Specifically, we present novel techniques for localizing 3D objectsin 3D
range-image data (3D-3D localization) and for localizing 3D objectsin 2D intensity-image
data (3D-2D localization). The solutions presented here in many ways unify the treatment
of the two domains.

This thesis also addresses another fundamental problem of recognition, tracking and
localization: model acquisition. In the past, models for recognition and tracking have
typically been manually created using computer-aided design (CAD) tools. Manual mod-
eling suffers from expense and accuracy limitations. The modeling solutions presented
in this thesis automatically construct object-localization models from real images of the
object. These modeling solutions are insensitive to the noisy datatypical of real image data
(for both range and intensity images). Robust model acquisition is achieved by searching

1The term localization has previously been used in [52] to denote the complete object-recognition task
(from image to object identity and pose). Here we use the localization as a synonym for pose refinement and
distinguish it from the task of object indexing and hypothesis generation.

1.1. Notation, Terminology, and Assumptions 3

for consensus information among the views to determine which image features justifiably
constitute an element in the model. Together, the modeling and localization framework
presented in thisthesis provide a sound basis for building reliable recognition and tracking
systems.

This thesis makes the following contributions:

e Robust 3D surface model construction with the consensus-surface algorithm.

Robust 3D-3D and 3D-2D object localization by performing M-estimation using
dynamic correspondences.

Robust 3D edgel model construction with the consensus-edgel algorithm.

Treatment of occluding contoursin 3D-2D localization.

3D-2D localization performed in three dimensions, unifying the localization search
for the 3D-3D and 3D-2D domains.

1.1 Notation, Terminology, and Assumptions

Beforejumping into the technical portion of thisthesis, it is prudent to specify the notation,
terminology, and assumptions which will be used throughout thisthesis. Much of thiswill
be familiar to computer-vision and object-recognition researchers, however, some of the
terminology may have dightly different meanings than used elsewhere.

1.1.1 Mathematical Notation

First, welist afew of our mathematical notations and notes:

e Vectorsarein boldfacetype: x isavector, x isascalar.

¢ Unit vectors have the hat symbol: % isaunit vector, x may not be.

e Matrices are capitalized and in boldface type: M isamatrix, I istheidentity matrix.
¢ x Will be used to denote model points.

¢ u Will beused to denote 3D image coordinates (before projection to two dimensions).

e U will be used to denote 2D image coordinates (note, thisisthe only vector that will
be capitalized).

¢ y Will be used to denote image points.

e Vectors should be assumed to be three dimensional unless otherwise noted.

4 Chapter 1. Introduction

e Pairsor tuples will be denoted using the angle brackets (.) (e.g., (x,y) denotes the
pair of vectorsx and y).

¢ p will be used to denote the object’s pose.

e The 3D rigid transformation defined by the pose p may be specified by one of the
following notations:

— simply by p
— by arotation and trandation pair (R, t) where R isa3 x 3 rotation matrix and
t isa 3D trandation vector.

— by theequivalent homogeneoustransformation R where R istheequivalent 4 x 4
homogeneous transform matrix and the point being transformed is assumed to
be extended to 4D homogeneous coordinates (i.e., by placing a1 at the end of
the 3D vector)?.

1.1.2 Terminology

We now define some of our terminol ogy.

Wewill often refer to range images (sometimes known as depth images). Here, arange
image is assumed to be a 2D view of a scene in which each image pixel contains the 3D
coordinate of the scene in someworld or camera coordinate system. The coordinate system
should be assumed to be Euclidean.

We will often discuss intensity edges extracted from intensity images. An edgel is an
individual point or edge element along an edgechain. Typically, an edgel will berepresented
by apair <U, f:> where U areimage coordinates of the edgel and t is its tangent direction,
again in image coordinates. The edgel chain is usually extracted from intensity images
using one of many edge operators (e.g., Canny [16] or Deriche[30]). For an example of an
edgel, see Figure 1.1(a).

A 3D edgel denotes the extension of a 2D edgel to an oriented point in 3D space. It
is denoted <x, f:> where x are the 3D coordinates of the edgel and t isits (3D) tangent
direction. Figure 1.1(b) shows an example of this. An edgel generator denotes the point
on an object which produces the image of the (2D) edgel in the intensity image.

For intensity edge images, Breuel [14] used the terms attached and non-attached to
distinguish between two types of edgels. Attached edgels refer to those detected edgels
which are attached to the surface of an object (e.g., a surface marking or corner). Non-
attached edgels refer to those detected edgels which belong to occluding contours of the
object, and appear to float across the surface of the object asit isrotated.

As mentioned previoudly, the object’s six location coordinates are collectively referred
to asits pose. Again, localization—also known as pose refinement®*—is alocal search for

2The homogeneous notation will be used in place of <R, t> for brevity when discussing a transformation
as asingleentity.
3The terms pose refinement and localization will be used interchangeably throughout thisthesis.

1.1. Notation, Terminology, and Assumptions 5

@) (b)

image edgel

edgel generator

|
\ triangulated 3D
image surface

plane

center of
projection

Figure 1.1: An example of (@) 2D image edgels and (b) 3D edgels or edgel generators.

the true pose given the rough pose of an object in an image. 3D-3D localization refers to
the process of localizing 3D objectsin 3D range-image data. 3D-2D localization refersto
the process of localizing 3D objectsin 2D intensity-image data.

1.1.3 Scope and Assumptions

We now briefly list some of the assumptions we make for the algorithms and experiments
described inthiswork. Our main assumptionsare practical limitationsof the type of objects
that may be used and a requirement for calibrated cameras and range sensors.

Our first assumption is that we only address the problems of modeling and localizing
rigid, 3D objects. This means we consider objects with six degrees of freedom, three
rotational and three trandational. Thisthesis does not addressissues related to deformable,
non-rigid or generic objects. While not totally general, rigid objects do account for quite
alarge segment of everyday objects. Rigid object modeling and localization is still avery
important area of current research with many applications. We view the rigid object case as
an important first step which must be solved before considering completely general classes
of objects. We also assume the the objects are opague and do not contain significantly large
portions of high frequency texture with respect to our sensors.

Lastly, we assume that we are working with cameras and range sensors which are
calibrated. The intrinsic sensor parameters must be known for us to be able to predict an
object’s appearance, using a 3D model of the object, in the sensor’s images.

Our modeling work assumes that we have a calibrated object positioning system (details
described in Chapter 2 and Appendix A), which limits the size of objects we may model
to those that are mountable on a robot’s end effector. We believe that this limitation will
soon be obviated with more work on view alignment (as will be discussed in Chapter 7)
and improvementsin the area of structure from motion.

6 Chapter 1. Introduction

1.2 Philosophical Background

We take a few paragraphs to describe some of the high-level issues and ideas which drive
thiswork.

1.2.1 Consensus

One of thekey ideaswhich isembodied by our approachto object modeling and localization
istheidea of consensus. For modeling from real data, consensus is the key to robustness.
Because of the typical data from our sensors, no single measurement can be trusted.
However, in sufficient numbers, several independent measurements of the same feature
(e.g., asurface point or edgel) can be considered quite reliable.

Consensusisal so subtly important for localization. Thekey for model based recognition
and localization is the over-constrained nature of the problem (i.e., more constraints than
free variables). Localization works because the consensus of the image data usually guides
thelocal search to the true object pose.

1.2.2 3D vsView-Based M odel Representations

Animportant decision iswhether to use view-based (2D) modelsor full fledged 3D models.
For recognition and localization in 3D image data, 3D models are obvioudy desirable.
For recognition and localization in 2D images, there exists an ongoing debate between
using many sample 2D views as the model or constructing a monolithic 3D model. One
advantage of basic view-based methodsis that model acquisition is trivial—take an image
and add it to the collection. The problem isthat an arbitrarily large number of images may
be necessary to build a complete model of appearance. The model is only as good as the
sampling resolution. For rigid, 3D objects, we will usually have six degrees of freedom
over which to sample views. |If we then consider lighting variations and camera model
variations, the number of required samples can quickly become unmanageable.

Some view-based methods go a little further and try to alleviate the sampling problem
by interpolating between views. This requires a complete set of correspondences between
two views—thisis not possible in general (see Chapter 6 for a discussion of this problem).
Foreground/background separation becomes an important issue for modeling from real
images, manual segmentation (i.e., selection of object features from the images) may be
required.

3D models have the advantage that one model can be used to predict appearances with
respect to all possible variations of pose, camera models, and illumination (if known a
priori). Verification, localization and tracking can be accomplished with a3D model asthe
change in appearance can be smoothly predicted with respect to changesin pose. Themain
detraction of monolithic 3D models is that they are difficult to construct. Automatically
or semi-automatically constructing accurate 3D models from real images is a non-trivial
problem. As we are already considering the problem of building 3D models for 3D-3D

1.3. Thesis Overview 7

localization, the acquisition of 3D models for localization in 2D images can be made
practical as we shall show in thisthesis.

1.2.3 Point-Based Models

Another philosophical issue is the type of models to use for these localization tasks. Our
philosophy isto keep the model representation as ssimple as possible. Our choice of model
representation isto consider each object as a collection of points.

For 3D-3D localization we represent an object as a set of points on the object’s surface.
This representation can be acquired from a densely triangul ated surface model by sampling
points from the triangles.

We also use points to represent the object for 3D-2D localization. Instead of smply
using just any surface point, we use points on the model which generate edgelsin intensity
images. Werefer to these pointson the model as 3D edgelsor edgel generators. Such points
comprise surface markings, occluding contours and convex/concave geometric edges of the
object.

Not only are these representations simple, which makes them efficient to implement,
but they are also very general. We can model alarge subset of the possiblerigid, 3D objects
using these representations.

1.2.4 DataDriven Optimization

Our philosophy for localization derives much from the ideas of active contours introduced
by Witkin, Terzopoulos and Kass [75, 134]. The active contour paradigm allowed the user
to initialize the location of a contour and let the forces defined by image features act on
the contour to find its optimal state. Bed and McKay’s [6] iterative closest point (ICP)
algorithm for 3D registration is based on this principle: correspondences are computed, a
new estimate of the pose is computed and the process is repeated until the pose estimate
converges. Our localization algorithm is designed in much the same way. We simply start
it off inaninitial position and find the local minimum of the energy function defined by the
object model and the nearby image data. Thisisin contrast to other localization methods
such as Lowe's [84], which performs alocal interpretation-tree search that matches high
level image tokens to the model. Our methods are data driven and rely on the lowest-level
data available from our sensor (e.g., 3D points from range images and 2D edgels from
intensity images).

1.3 ThesisOverview

Therearefour maintechnical contributionsin thisthesiswhich correspond to the breakdown
of the following chapters:

e object modeling for 3D-3D localization

8 Chapter 1. Introduction

e 3D-3D object localization
e object modeling for 3D-2D localization

e 3D-2D object localization

We will now briefly discuss our approach to each of these problems and give a simple
example to give the reader a hint of what follows.

1.3.1 Preview of Object Modeling For 3D-3D L ocalization

For the problem of object modeling for 3D-3D localization, we are interested in acquiring
a 3D triangulated surface model of our object from real range data. From the triangulated
surface model, we extract the points for the model for 3D-3D localization.

Our basic approach is to acquire several range-image views of the object, align the
image data, merge the image data using the aid of a volumetric representation, and then
extract a triangle mesh from the volumetric representation of the merged data. Our main
contribution is a new agorithm for computing the volumetric representation from the sets
of image data. Our algorithm, the consensus-surface algorithm, eliminates many of the
troublesome effects of noise and extraneous surface observationsin our data.

Figure 1.2 shows a simple example of the steps of the 3D object modeling process.
We begin with by acquiring range images of the object from various views, the views are
then aligned to the same coordinate system, and the views are merged into a volumetric
implicit-surface representation which is then used to generate a triangulated model of the
surface.

1.3.2 Preview of 3D-3D Object Localization

For the problem of 3D-3D object localization, we are interested in computing the precise
pose of a3D object in a(3D) rangeimage given arough estimate of the object’s posein the
image.

Our localization algorithm iteratively refines the pose by optimizing an objective func-
tion defined over the image data, model data and the object’s pose. The main contribution
of our agorithm isthe use of an objective function which is specified to reduce the effect
of noise and outliers which are prevalent in real image data and a method for minimizing
this function in practice. The objective function is effectively minimized by dynamically
recomputing correspondences as the pose improves.

Figure 1.3 shows a simple example of our iterative 3D-3D localization algorithm. We
begin with a range image of the object and an initial pose estimate. The correspondences
between the model and image are adynamic function of pose and allow the search to follow
the proper path to the true pose of the object.

1.3. Thesis Overview 9

(d)

(a) Acquire Range Images

Generate
3D Surface
(©
(b)

Merge Data

Figure 1.2: An example of the 3D object modeling process. (a) range-image acquisition,
(b) view alignment, (c) the merged volumetric representation , (d) resulting triangul ated
model.

1.3.3 Preview of Object Modeling For 3D-2D L ocalization

For the problem of object modeling for 3D-2D localization, we are interested in acquiring
a 3D model of the edgel generators of the object. Our approach is similar to our approach
to 3D surface modeling

We also collect a set of intensity-image views of the object and extract the edgels from
themusing astandard edgeoperator. Theedgelsarethen projectedandalignedintheobject’s
3D coordinate system using a 3D surface model of the object (built using the 3D surface
modeling approach alluded to previoudy). The aligned dataisthen merged to produce a set
of rigid edgels. To account for occluding-contour edgels, we use curvature analysis of the
pointson our 3D surface model to predict which surface pointsare contour edgel generators.
The main contributions of our 3D edgel modeling work is the consensus-edgel algorithm
for extracting rigid edgel generators and the framework for representing occluding contours
as edgel generator points. The consensus-edgel algorithm is able to reliably extract the
significant edgel generatorsfrom large sets of rather noisy input data. Edgel generators can
be used to efficiently and accurately predict the appearance of occluding contours in 2D

10 Chapter 1. Introduction

(@) Range Image (b) 3D Image Points (c) 3D Surface Model

(d) Initial Pose Pose Refinement Precise Pose

€4

Figure 1.3: An example of 3D-3D localization for a simple sphere object: (a) range image
of the sphere, (b) the 3D range data corresponding to theimage, (c) the sphere object model,
(d) threeiterations of the localization search with arrows indicating the correspondences.

images.

Figure 1.4 shows asimple example of the steps of the 3D rigid edgel modeling process.
We begin by acquiring intensity edgesfrom variousintensity-image views of our object, the
edgels are then projected and aligned onto the object surface in the object’s 3D coordinate
system, and 3D edgel datais merged to form a 3D rigid edgel model.

1.3.4 Preview of 3D-2D Object L ocalization

For the problem of 3D-2D object localization, we are interested in computing the precise
pose of a 3D object in a 2D intensity image given a rough estimate of the object’s pose in
the image.

Our localization algorithm iteratively refines the pose by optimizing an objective func-
tion defined over the image data, model data and the object’s pose. The main contribution
of our algorithm is the use of an objective function which is specified to reduce the effect
of noise and outliers which are prevalent in real image data. The objective function is
effectively minimized by dynamically recomputing correspondences as the pose improves.

1.3. Thesis Overview 11

(@) Acquire 2D Edgels (c) Aligned 3D Edgels

Map 2D
Edgels to 3D

Merge 3D Edgel%

(b) 3D Surface Model (d)

3D Edgel
Model

Figure 1.4: An example of the 3D edgel modeling process. (@) acquired intensity edgels
(overlayed on the intensity images) (b) the object’s 3D surface model, (c) the edgels from
variousviews mapped onto the object’s coordinate system, and (d) therigid edgel sextracted
from the sets of mapped edgels.

Useful correspondences are efficiently found—despite significant pose errors and high
densities of edgels in the intensity image—by extending the nearest-neighbor-search con-
cept to include edgel attributes such as edgel normals and reflectance ratios. We show that
the pose can be refined using much the same minimization algorithm as Algorithm 3D-3D
Localization of Chapter 3.

Figure 1.5 shows a simple example of our iterative 3D-2D localization agorithm.
We begin with an intensity image, its edge image, the 3D edgel model, and an initial
pose estimate. The pose is refined iteratively as in the 3D-3D localization algorithm, the
correspondences are computed dynamically as the pose search proceeds.

We now begin the technical discussion of object modeling for 3D-3D localization in
Chapter 2, followed by discussion of 3D-3D object |localization, object modeling for 3D-2D
localization, and 3D-2D aobject localization in Chapters 3, 4 and 5, respectively. We then
discuss the related research which influenced much of thisthesis. We end by offering some
conclusions, the contributions of thisthesis, and a discussion of future research directions.

12 Chapter 1. Introduction

(@) Intensity Image (b) 2D Image Edgels (c) 3D Edgel Model

2;9L%%
- 0

) &
@ﬁ N
L ¢ P \fﬂ@i’)
(d) Initial Pose Pose Refinement Precise Pose
N T Al VRSN L,
?:, g}s \»g_ % ~ x“ga: K &1/

o
V‘VGM h

N i % (5%)
Ao Qe
< 5% E?‘iﬂjz LE,,J\) 2 19& 5% E?L‘iﬂ;f %»J\

Figure 1.5: An example of 3D-2D localization for a simple bulls-eye object: (a) the input
intensity image, (b) the intensity edges of the image, (c) the object model, and (d) three
iterations of the localization search with lines drawn between the image to model edgel
correspondences.

Chapter 2

Object Modeling for 3D-3D L ocalization

The goal of this thesis is to develop solutions for localizing known objects in images.
The first localization problem that we will address is the 3D-3D localization problem—
localizing 3D objects in 3D range-image data. This thesis also focuses on the problem of
acquiring modelsfor localization, in addition to the localization problems themselves. For
3D-3D localization, a good starting point for an object model isa 3D surface model.

In this chapter, we present anovel approach for building a3D surface model from many
range images of an object. The goa of this work is to use real images of an object to
automatically create amodel whichis:

e Geometrically accurate: depicts the correct dimensions of the object and captures
small details of the object geometry

e Clean: eliminates noise and errorsin the views

e Complete: models the surface as much asis observable from the sample views

Efficiency isdesirable, but isnot amain concern, since model creation will be done off-line.
The following section overviews the specific problems we face and our genera approach
for solving these problems.

2.1 Approach

The problem we are tackling in this chapter isto build a 3D model from a number of range
images of an object. In other words, we will take [V rangeimages of an object from various
views and use them to compute a unified surface representation of the object. We can
simply stick all of the image data together; this sounds easy enough. Well, this is aimost
correct, but to do so, we must address several serious problems.

With alittle bit of wishful thinking, let us assume that we can obtain 3D surfaces from
various views and that we are able to align these views into a single object coordinate
system. The first problem is how to combine the surfaces from all views into a single

13

14 Chapter 2. Object Modeling for 3D-3D Localization

surface representation—a data-merging problem. It isa problem of topology: how are all
these surfaces connected?

Our solution makes use of a volumetric representation to avoid difficulties associated
with topology. Wewill show how the volumetric representation simplifiesour data-merging
problem—virtually eliminating the topology issue. The volumetric representation can be
conveniently converted into atriangulated mesh representation with littleloss of geometric
accuracy. The merging problem isthen a matter of converting our input surface datato the
volumetric representation.

Conversion from surfaces to the volumetric representation is simple if we are given
perfect input surface data devoid of noise or extraneous data (image data which is nearby
the object but not belonging to the object). The conversion problem is exacerbated by the
fact that input surface data from real sensors (e.g., range sensors or stereo) isnoisy and, in
fact, will contain surfacesthat are not part of the object we are interested in modeling. Our
method for merging the surfaces into a volumetric representation takes full consideration
of these facts to best take advantage of the multiple observations to smooth out the noise
and eliminate undesired surfaces from the final model.

Unfortunately, the volumetric representation is not the answer to all that plagues us.
We must now step back and determine how to get the image data aligned in the first
place. Severa strategies are possible, involving varying degrees of human interaction. Our
approach is to make alignment fully automatic by taking the images using a calibrated
robotic positioner.

Finally, we must consider the input from our sensor. Unfortunately, current sensors
provide us with point samples of the surface—not the surface itself. Range-image sensors
do not provide us with information on how the points in the image are connected. So even
from a single view, we cannot guarantee that we know the topology of the viewed surface.
Thisisadepressing state of affairs. Fortunately, we can make a good guess to get started.
Also, we are fortunate that our data merging algorithmis designed to robustly handle errors
such as the mistakes that we might make when converting our range data to surface data.

Another important issue which we do not address in this thesis is how to select views
in order to best cover the surface. The sensor planning problem is very difficult and isthe
subject of ongoing research [128]. In thiswork, we do not try to optimize the number of
views (i.e., taking the smallest number of views that cover the surface). Rather, we take a
large set of views with the hope that they cover the surface. The human operator in fact
determines the number of views and the object orientation for each view.

To summarize, to build a 3D surface model from multiple range images, we face the
following problems:

e Input data: Surfaces are desired but the sensor provides points.
e View alignment: To merge the data, it must be in the same coordinate system.

e Data merging: We need to merge all the image data while eliminating or greatly
reducing the effects of noise and extraneous data.

2.2. Surface Acquisition 15

3D Surface Modeling

View Acquisition | Section 2.2

i

View Alignment Section 2.3

|

Data Merging Section 2.4

Consensus-Surface
Algorithm

Figure 2.1: Organization of this chapter.

Therest of thischapter providesthedetailsof our solutionsto these problemswhich combine
to form a practical method for building 3D surface models from range images of an object.
Figure 2.1 shows a diagram of the technical sections of the thesis. We begin by discussing
acquisition and alignment of surface views and then follow with a discussion of our surface
merging algorithm, the consensus-surface algorithm, which is the main contribution of this
chapter.

2.2 Surface Acquisition

Our first problem is that 3D sensors such as range finders produce images of 3D points,
however, for many purposesincluding ours, it isnecessary to sense surfaces. Unfortunately,
such a sensor is not currently available. The missing information is whether the scene
surface iswell approximated by connecting two neighboring surface samples. With alittle
work, however, we can transform the 3D pointsfrom the range imageinto aset of triangular
surfaces.

We can begin by joining pairs of neighboring range-image points based on our belief that
the two pointsare connected by alocally smooth surface. When joining two points, thereis
very littlebasisfor our decision. Thelimitationsof the sensor prevents usfrom knowing the
answer. However, we can make this decision based on our experience—understanding that

16 Chapter 2. Object Modeling for 3D-3D Localization

/

/

/
Xo
/o/
N 0
1,
I
p v
7 image plane

center of projection

Figure 2.2: The orientation, 6, of the line connecting two 3D surface points x; and x, with
respect to the image plane of the camerais used to determine whether the two points are
connected.

we will often make mistakes. Our experience tells us that if two (pixel-wise) neighboring
range-image points have similar 3D coordinates, then they are likely to be connected by
alocally smooth surface; if 3D coordinates are far apart, it is very unlikely that they are
connected. This is using accomplished by using a threshold to determine whether the
two points are close enough in three dimensions according to our experience. We adopt
a thresholding scheme used by [64]. Two range data points, x; and x, are labeled as
connected if

(x2 — x1)

— =~ .V = C0SH > cosby
| x2 — x4 ||

where ¥ is the unit direction vector of the difference in image (pixel) coordinates' of the
two points, ¢ issurface angle of the two connected points with respect to the camera, and 6,
isthelargest acceptable angle (typically 80 degreesor s0). Figure2.2 geometrically depicts
the test performed here. This threshold scheme has the benefit that it does not depend on
a specific scale of data or on specific camera parameters (e.g., aspect ratio). After all pairs
of neighboring points are examined, we can create surface triangles by accumulating all
triples of mutually connected points.

This, like most thresholds, is an ad hoc assumption and will often result in mistakes:
surfaces will be created where there should be none, and some existing surfaces will be
missed. Figure 2.3 which shows an example of such mistakes. These errors are not
significantly different from other errors that our model building algorithm must confront.
Aswill be shown in Section 2.5, our model building algorithm compensates for errors such

1Thedirection vectors of pixel differencesintheimage plane can be converted to world coordinatesusing
the camera parameters, which are acquired via calibration as described in Chapter 1.

2.3. View Alignment 17

(a) (b)

R v

T triangulated surface T

L actual surface viewing
viewing . . direction
direction . range-image point

Figure 2.3: Examples of triangulation errors shown via 2D dices. (a) an incorrectly
instantiated surface between two points and (b) a surface that is missed.

as these to produce correct surface models after merging.

2.3 View Alignment

After taking several range images of an object and converting them to surfaces, we need
to eventually merge all these surfaces into a single model. The problem is that each view
and, hence, the surface datais taken from a different coordinate system with respect to the
object. In order to compare or match the data from different views, we have to be able to
transform all the datainto the same coordinate system with respect to the object. 2

To do this implies that we need to determine the rigid body transformation (motion)
between each view and some fixed object coordinate system. This rigid body motion
comprisesrotation and trandation in 3D space—six degrees of freedom, threein trandation
and threein rotation. We can denote arigid body motion by alinear transform

X1 = RXO

where R isa4 x 4 homogeneous matrix® denoting therigid transform and the pointsx, and
x1 are in homogeneous coordinates. For clarity, let us denote R by R;. o which indicates

2|t is conceivable that we could merge all the data from different views without computing rigid motion
but by determining correspondences among al the data between views[54]. If correct correspondences can
be made, view aignment is certainly achievable [135, 106].

SWe will sometimes find it useful to denote a rotation and translation using either homogeneous transfor-
mations (i.e.,, Rx whereR isa4 x 4 matrix and X is understood to be extended to 4 dimensions by appending
a1 to the 3D vector) or rotation followed by trandation (i.e., Rx + t wheret isatrandation vector and R is
a3 x 3rotation matrix). Both are mathematically equivalent, however, the homogeneous form is used when
we desire to be concisein our notation.

18 Chapter 2. Object Modeling for 3D-3D Localization

that the motion takes a point in coordinate system 0 and transformsit to coordinate system
1.

If we are given IV views, we can start by making one of the views the central view.
For convenience, the central view is chosen to be view 0. The goal isto compute therigid
motion Ro.; for all views: # 0. Once that is accomplished, the data in all views can
be transformed to a single coordinate system (e.g., view 0), and we can then consider the
problem of merging the datainto a unified object model.

Notice the problem does not change if the camera is moving relative to the object or
vice versa* Determining the motion between two views can be a difficult task and is the
subject of alarge body of previous and ongoing research [82, 135, 130, 124, 106]. There
are several ways we can approach this alignment problem—each requiring varying levels
of human interaction. We break these into three levels—manual alignment, semi-automatic
alignment, and automatic alignment—which are briefly discussed in what follows.

2.3.1 Manual Alignment

The first option, and perhaps the least attractive, is manual alignment of the views. The
user could choose a particular view as the object’s coordinate system and manipulate each
view separately using agraphical interface to align the data of each view to the data of the
central view. Thisistedious and is made difficult by the limits of visualizing 3D objects
with 2D displays. For example, two points may be aligned as viewed from one direction,
but when viewed from another direction, the two points may lie at different distances along
the original line of sight.

A less painful and more precise option is the use of registration marks on the object.
The registration marks are easily identified points on the object that can be seen in multiple
views. These points may be painted (e.g., distinguishable white or black dots) onto the
object for this purpose.

Another option isfor the user to select them via a point-and-click interface. Care must
be taken to ensure that the selected points are really the same point in different views.

Regardless of how marks are selected/detected, the user must manually denote the
correspondence between marks in each view. Once this is accomplished, the motions
between all views and the central view can be computed. For 3D data, three corresponding
points between two views are sufficient to estimate the motion between the views. However,
if thereare any errorsor noise in the 3D coordinates of any of these marks then the motion
estimate will also be noisy. The accuracy of the motion estimate can be improved by using
a larger number of points. The problem of rigid motion estimation, or pose estimation,
from corresponding pointsin three dimensionsis discussed further in Section 3.4.

Note that either of these methods will be painful and time consuming for the person
doing the modeling; however, depending on the situation, it may be the only option.

4Thisisnot completely true. The case where the camera is moving creates the problem that the object and
background have the same motion which means manual editing will be necessary to separate the object from
the background.

2.3. View Alignment 19

2.3.2 Semi-Automatic Alignment

With current motion estimation techniques [6, 135, 106], we may be able to automatically
compute the motion between each pair of views. This may be possible if the images are
taken in a single sequence with small motions between each view. What we would haveis
alist of transforms between neighboring views

Ro—1,Ri 0, ... Ry_2n_1.

From thisit is possible to compute the transform from each view to view 0 by composing
transforms, for example,
Ro—2> = Ro1R1 2.

While this sounds easy enough, it suffers from a fatal flaw. The flaw is that each
estimated transform will have some error associated with it, and that as we compose
erroneoustransforms, the error accumulates. What one will findisthat Ro_y_1 will betoo
inaccurate for practical purposesfor even moderate values of V.

The solutionisto revert to manual alignment to finish thejob by manually adjusting and
improving the motion estimates to align the views and eliminate the accumulated errors.
Thisismuch easier than the previousfully manual alignment since the estimated transforms
will actually be reasonably close and will only require small corrections.

2.3.3 Automatic Alignment

Finally, we can think about ways to achieve alignment without manual intervention. There
are basically two ways that may allow us to achieve automatic view alignment: automatic
motion estimation and controlled motion with calibration.

Fully automatic motion estimation [6, 135, 106] that isaccurate enough for 3D modeling
is still on the horizon. Currently, there are solutions to this problem which are becoming
mature [135, 130, 124, 106] but are still not quite reliable enough for practical application
which means some manual intervention may be required. The problem of error accumula-
tion will still be anissue; however, recent work by Shum, Ikeuchi, and Reddy [127] using a
technique called principal components analysis with missing data shows promise to solve
this problem in the near future.

Because of the current state of the art, we use the second approach, controlled motion
with calibration—the most practical option for an automatic solution. There are some
arguments against such an approach:

1. Cdlibration isdifficult.
2. Robots, turntables, and other positioning mechanisms are expensive.

3. Requiring controlled motion limits the applicability.

20 Chapter 2. Object Modeling for 3D-3D Localization

Whilearguments(2) and (3) arequitevalid, argument (1) isnot. Calibrationisamaturearea
in photogrammetry and computer vision and many excellent algorithms exist [136, 121].
The process of acquiring calibration points can be made |ess tedious with the use of special
calibration objects (specially painted boxes or boards) and simple techniques for detecting
these pointsin the calibration images.

In our experimental setup, we calibrate two axes of a Unimation Puma robot with
respect to a range-sensor coordinate frame. We can then mount the object on the robot’s
end effector and acquire images of an object at arbitrary orientations. The details of the
camera and robot calibration process are described in Appendix A.

From this point we assume that the views are aligned. Next, we consider the problem
of merging al the data from these views into a single model of the object’s surface.

2.4 DataMerging

We are now faced with the task of taking many triangulated surfaces in 3D space and
converting them to a triangle patch surface model. In this section, we assume that the
varioustriangle sets are already aligned in the desired coordinate system.

As discussed in Section 2.1, even if we are given perfect sets of triangulated surfaces
from each view which are more or less perfectly aligned, the merging problem is difficult.
The problem is that it is difficult to determine how to connect triangles from different
surfaces without knowing the surface beforehand. There are innumerable ways to connect
two surfaces together, some acceptable and some not acceptable. This problem is exacer-
bated by noise in the data and errors in the alignment. Not only does the determination
of connectedness become more difficult, but now the algorithm must also consider how to
eliminate the noise and small alignment errors from the resulting model. Recently, how-
ever, severa researchers have moved from trying to connect together surface patches from
different viewsto using volumetric methods which hide the topol ogical problems—making
the surface-merging problem more tractable. 1n the next section we discuss the volumetric
method which we use to solve the surface-merging problem.

2.4.1 Volumetric Modeling and Marching Cubes

When mentioning volumetric modeling, the first thought in most people’'s minds is the
occupancy-grid representation. Occupancy grids are the earliest volumetric representation
[95, 22] and, not coincidentally, the conceptually smplest. An occupancy grid isformed by
discretizing a volume into many voxels® and noting which voxelsintersect the object. The
result is usually a coarse model that appears to be created by sticking sugar cubes together
to form the object shape. Of course, if we use small enough cubes, the shape will look fine,
but this becomes a problem since the amount of memory required will be O(r3®) where the
volumeis discretized into »n slices along each dimension.

S\oxel isacommon term for an individual element, rectangular box or cube, of the discretized volume. It
is short for volume e ement.

2.4. DataMerging 21

nside 0.5

) [
3 ounte

0.3/0.9

surface

Figure2.4: Anexampleof zero-crossing interpolation from the grid sampling of animplicit
surface.

Recently, however, an algorithm developed by Lorensen and Cline [83] for graphics
modeling applications has made volumetric modeling a bit more useful by virtually elimi-
nating the blocky nature of occupancy grids. This algorithm is called the marching-cubes
algorithm [83]. The representation is dightly more complicated than the occupancy grid
representation. Instead of storing a binary value in each voxel to indicate if the cube is
empty or filled, the marching-cubes algorithm requires the data in the volume grid to be
samples of an implicit surface. In each voxel, we store the value, f(x), of the signed
distance from the center point of the voxel, x, to the closest point on the object’s surface.
The sign indicates whether the point isoutside, f(x) > 0, or inside, f(x) < 0, the object’s
surface, while f(x) = O indicates that x lies on the surface of the object.

The marching-cubes algorithm constructs a surface mesh by “marching” around the
cubes while following the zero crossings of the implicit surface f(x) = 0. The signed
distance allowsthe marching-cubesalgorithm to interpol ate the | ocation of the surface with
higher accuracy than the resolution of the volume grid. Figure 2.4 shows an example of the
interpolation.

The marching-cubes algorithm and the volumetric implicit-surface representation pro-
vide an attractive aternativeto other conceivable mesh-merging schemes (see Chapter 6 for
morediscussion onrelated 3D-modelingresearch). First, they eliminate theglobal topology
problem—how are the various surfaces connected—for merging views. The representa-
tion can model objects of arbitrary topology as long as the grid sampling is fine enough
to capture the topology. Most importantly, the whole problem of creating the volumetric
representation can be reduced to a single, smple question:

What isthe signed distance between a given point and the surface?

The given point is typically the center of a given voxel, but we don't really care. If we can
answer the question for an arbitrary point, then we can use that same question at each voxel
in the volume.

22 Chapter 2. Object Modeling for 3D-3D Localization

Now we may focus on two more easily defined problems:
1. How do we compute f(x)?

2. How can we achieve desired resolutions and model accuracy knowing that the volu-
metric representation requires O(n3) storage and computation?

Thereal problem underlying our simple question is that we do not have a surface; we have
many surfaces, and some elements of those surfaces do not belong to the object of interest
but rather are artifacts of the image acquisition process or background surfaces. In the next
subsection we present an algorithm that answers the question and does so reliably in spite
of the existence of noisy and extraneous surfacesin our data.

2.4.2 Consensus-Surface Algorithm

In this section, we will answer the question of how to compute the signed distance function
f(x) for arbitrary points x when given NV triangulated surface patches from various views
of the object surface. We call our algorithm the consensus-surface algorithm.

As described above, the positive value of f(x) indicates the point x is outside the object
surface, a negative value indicates that x isinside, and a value of zero indicates that x lies
on the surface of the object. We can break down the computation of f(x) into two steps:

e Compute the magnitude: compute the distance,
from x

f(x) |, to the nearest object surface

e Compute the sign: determine whether the point isinside or outside of the object

We are given N triangle sets—one set for each range image of our object as described
in Section 2.2—which are aligned in the same coordinate system. The triangle sets are
denoted by 7;, where: = 0,..., N —1, Theunionof all trianglesetsisdenoted by 7" = |J; 7.
Each triangle set, 77, consists of some number »; of triangles which are denoted by ; ;,
wherej =0,....,n; — L.

If the input data were perfect (i.e., free of any noise or alignment errorsin the triangle
sets from each view), then we could apply the following naive algorithm, Algorithm Clos-
estSignedDistance, to compute f(x):

Algorithm ClosestSgnedDistance

Input: point x

Input: triangle set 7'

Output: the signed distance d

(* Naive algorithm for computing f(x) by searching =)
(for the closest surface from all trianglesin 7" x)

1. (p,n) < ClosestSurface(x,T’)

2. de|x-p]|

3. if(h-(x—p)<0)

2.4. DataMerging 23

4. thend « —d
5. returnd

where Algorithm ClosestSurface returns the point, p, and its normal, i, such that p is
the closest point to x from all pointson trianglesin thetriangle set 7.

Algorithm ClosestSurface

Input: point x

Input: triangle set 7'

Output: the point and normal vector pair (p, 1)
(* Return the closest point to x from all x)

(* pointson trianglesin the set 7', and the normal x)
(* of the closest triangle.)

1. 7 agminecrminge, || x—p ||

2. péagmingg, || x—p ||

3. 1 + outward pointing normal of triangle r
4. return (p,n)

The naive algorithm for f(x) finds the nearest triangle from all views and uses the
distance to that triangle as the magnitude of f(x). The normal of the triangle can be used
to determine whether x isinside or outside the surface. If the normal vector pointstowards
x, then x must be outside the object surface. This fact can be verified by a simple proof.
First, no other surface point lieswithinthecircle of radius| f(x) | around point x. For x to
be inside the object, it is necessary that every line drawn between x and any point outside
the object will cross a surface first. If y isthe closest surface point to x, the line from y
to x must cross a surface if x isinside the surface. The fact that no closer surface exists
excludes the possibility that any such surface exists between x and y.

Again, the naive algorithmwill work for perfect data. However, we must consider what
happens when we try this idea on real data. The first artifact of real sensing and small
alignment errors is that we no longer have a single surface, but several noisy samples of
a surface (see Figure 2.5). We are now faced with choices on how to proceed. Clearly,
choosing the nearest triangle (as in Algorithm ClosestSgnedDistance) will give aresult as
noisy as the constituent surface data. For example, asingle noisy bump from one view can
result in abump on the final model, as shown in Figure 2.6 (a). Inconsistent values for the
implicit distances will appear when avoxel center ison or near a surface, since the samples
will be randomly scattered about the real surface location. For example, we could see three
surfacesformif noise or alignment error produces an inside-outside-inside-outside (+/-/+/-)
transition when, in fact, only one real surface was observed (see Figure 2.6 (b)). Thisis
especially aproblem if the noise isof similar scale to the voxel size.

With many views, the computed implicit distances from the surface will be biased
towards the closest side of the surface and result in inaccurate zero-crossing interpolation
during surface-mesh generation. Thisisavery subtle problem best explained by considering
noisy samples of a surface as it crosses a line between two adjacent voxel points (see
Figure 2.7). We can show mathematically that the zero-crossing interpolation will generate

24 Chapter 2. Object Modeling for 3D-3D Localization

sampled surfaces

actual surface

Figure 2.5: In practice, rea surface samples are noisy and dightly misaligned and it is
difficult to determine where the actual surface might lie.

sampled

input i&
surfaces

naive @)
result /—/L actual surface

interpolated

. surface
nave () f(x) > 0
result M
-
\f(x)>}/
f(x) < 0

Figure2.6: Someeffectsof noiseand misalignment on our naivealgorithm, Algorithm Clos-
estSgnedDistance. In each case two observations of the same surface (actual surface is
denoted by the shaded line) are shown, the resulting surface is: (a) the resulting surface
is as noisy as the data, (b) three surfaces are detected when only one exists created by an
inside-outside-inside-outside transition of f(x).

2.4. DataMerging 25

significant errors. Suppose that we are evaluating f(«) (along theliney = = = 0) at points
ro = 0and z; = 1, and thereisareal surfacein between the two pointsat = € [0, 1]. Also,
let us assume that two observationsare availableat = + ¢ and = — ¢. Assuming x¢ isoutside
the surface (i.e., f(xo) > 0), the signed distances will be

flzo) =2 —¢ (2.1)
fle) ==(1—(z+¢)). (22)
Using these values of [, the zero crossing will be interpolated to give an estimate, i, of x:
. T
= 1-— 2¢
The error of the estimate is
€y = — & (2.3
r — ¢
=TT (2.4)
e(1—2x)
= =/ 2.
1-— 2¢ (2.5)

Thus, theerror, e, will only bezerowhen = = 0.5 (i.e,, the real surface is exactly between
points xo and 1. The magnitude of the interpolation error will increase as the real surface
approaches either of the points. This illustration points out the fragility of zero-crossing
estimates based on inaccurate valuesof f(x). If adiscreteimplicit surfaceisto beused, the
estimates of f(x) must be as accurate as possible and the values must be locally consistent
across surfaces. In the above scenario, a ssimple estimate of the average of the observations
when computing f(zo) and f(x1) would yield the correct zero-crossing estimate.

A more sinister problem for the naive algorithm applied to real imagesis the existence
of noise and extraneous data. For example, it is not uncommon to see triangles sticking
out of a surface or other triangles that do not belong to the object. This can occur due to
Sensor noise, quantization, specularities and other possibly systematic problems of range
imaging. Also, we must consider the fact that other incorrect triangles may be introduced
by the range image triangulation process as described in Section 2.2. This makes it very
easy to infer the incorrect distance and more critically the incorrect sign, which will result
in very undesirable artifacts in the final surface. For example, Figure 2.8 shows how one
badly oriented triangle can create an implicit distance with the incorrect sign. This results
in aholerising out of the surface as shown.

Our solution to these problems is to estimate the surface locally by averaging the
observations of the same surface. The trick is to specify a method for identifying and
collecting al observations of the same surface.

Nearby observations are compared using their location and surface normal. If the
location and normal arewithin apredefined error tol erance (determined empirically), we can
consider them to be observations of the same surface. Given a point on one of the observed
triangle surfaces, we can search that region of 3D space for other nearby observationsfrom

26 Chapter 2. Object Modeling for 3D-3D Localization

actual surface

sample 1 \1 sample 2

Voxel 0

center point Voxel 1

center point

1-x-¢
\
\
\
\
\
\
\
\
\
| I ‘
signed A f\ interpolated |
distance | surface |
\ \
\
\ crossing \
o1 | | g
| |
(I-X-&) - ———— ——— — - — — = :— -
Y ‘

Figure 2.7 Graphical illustration of the error in zero-crossing interpolation using Algo-
rithm ClosestS gnedDistance with two noisy observations.

2.4. DataMerging 27

ﬁ_
\Voxel \Voxel

center point center point x

,/ .

closest surface

L point to x

/]

Figure 2.8: An example of inferring the incorrect sign of a voxel’s value, f(x), dueto a
single noisy triangle. The algorithm incorrectly thinks point x is inside the surface based
on the normal information from the closest point. The result will be ahole at that point in
the surface since additional zero-crossings will result around the error at x.

other views which are potentially observations of the same surface. This search for nearby
observations can be done efficiently using k-d trees[41] whichisastructurefor storing data
of arbitrary dimensionsfor optimal nearest neighbors search. Here, ak-dtreeiscreated for
each view, and containsthe 3D coordinates of all the triangle verticesin the view’striangle
surface set. Given apoint in 3D space, we can quickly locate the nearest vertex in agiven
view by searching that view’s k-d tree much like a binary search [41].

If an insufficient number of observationsarefound, then the observation can be discarded
as isolated/untrusted and the search can continue. Thus, we are requiring a quorum of
observations before using them to build our model. The quorum of observations can then
be averaged to produce a consensus surface. Thisprocess virtually eliminatesthe problems
described previoudy (with respect to the naive algorithm).

As an improvement over using an equally weighted voting scheme, we can assign a
confidence value w to each input surface triangle. A common technique is to weight the
surface points/triangles from arange image by the cosine of the angle between the viewing
direction and the surface normal [72]. Thisis simply computed by

w=v-Nn

where v and i are the viewing direction and normal, respectively, of the given triangle.
The consensus can now be measured as a sum of confident measures and the quorum is
over thisweighted sum. The rationale is that two |ow-confidence observations should not
have the same impact on the result as two high-confidence observations. We can now

28 Chapter 2. Object Modeling for 3D-3D Localization

specify the consensus-surface algorithm. Instead of searching for the closest surface using
Algorithm ClosestSurface, we can search for the closest consensus surface:

Algorithm ConsensusSgnedDistance

Input: point x

Input: triangle set 7'

Output: the signed distance d

(* Compute the signed, implicit distance f(x) *)
(p, 1) + ClosestConsensusSurface(x, 7")

2. d«|x-p|

3. if(a-(x—p)<0)

4, thend «+ —d

5. returnd

=

The only change from Algorithm ClosestSgnedDistance isthat Algorithm Consensus-
SgnedDistance computes the closest consensus-surface point and itsnormal inline 1. The
algorithm for computing the closest consensus-surface point and its normal is asfollows:

Algorithm ClosestConsensusSurface

Input: point x

Input: trianglesets 7;,: = 1..N

Output: the point and normal vector pair (p, 1)

1 O, 0
(* O, isthe set of non-consensus neighbors)
2. Cop 0

(x Cyey 1Sthe set of consensus neighbors)
3. for each triangulated set T;

4 do (p,) «+ ClosestSurface(x, T;)

5 (p, i, w) « ConsensusSurface(p, i, T')
6. if w0 > Oguorum

7 then Cs.; + Cier U (p, 11, w)

8 else Oyt < Oser U (p, 11, w)

9. ifCu #0

10. then(p,fi,w) < agming 3 wyec.., | X — P ||
11. ése (p,fi,w) agmaX, a.wyeo.., w

12. return (p,fn,w)

Algorithm ClosestConsensusSurface examines the closest point in each view and searches
for its consensus surface if one exists. After computing the closest consensus surfaces for
each view, it chooses the closest of those from the consensus set C,.;. C,.; contains those
locally averaged surfaces whose observations confidence values sum to at least 8,0y -
Note that two consensus surfaces are not differentiated based on their confidence sum w
but rather on their proximity to x. If none of the consensus surfaces exit, the algorithm
selects the average surface which has the highest summed confidence out of set O,.;.

2.4. DataMerging 29

For completeness, we outline Algorithm ConsensusSurface which is required by line
5 of Algorithm ClosestConsensusSurface. Algorithm ConsensusSurface basically finds all
surface observations that are sufficiently similar to the given point and normal. These
observations are then averaged to generate a consensus surface for the input surface. This
algorithm relies on the predicate

_ < An - i >
Samesurfacel (po, fio) . (pa. fn)) = { l;lusee gihg)wisgl < 84) A (o - iy > COSH,,)
(2.6)
which determines whether two surface observations are sufficiently close in terms of lo-
cation and normal direction, where ¢, is the maximum allowed distance and 0, is the
maximum allowed difference in normal directions. Now we present the pseudo code for

Algorithm ConsensusSurface:

Algorithm ConsensusSurface

Input: point x

Input: normal ¥

Input: triangleset 7' = |, T;

Output: the point, normal vector, and the sum of the observations confidences (p, i, w)
1. p+n+—w+0

2. forT;,CT

3 do (p’,1t,w’)y « ClosestSurface(x, 7;)
4 if SameSurface((x, V), (p/, ')

5. thenp « p +&'p’

6 n <+ n-+wn’

7 w—w+o

8. p« %p

9. n« ﬁ

10. return (p,f,w)

Note that in Algorithm ConsensusSurface, the definition of Algorithm ClosestSurface
was dightly modified to also return the confidence w’ of the closest surface triangle.

Werefer to thisalgorithm as awhol e as the consensus-surface algorithm. Thefollowing
conditions are assumed:

1. Each part of the surface is covered by a number of observations whose confidences
add up to more than &0, s, -

2. No set of false surfaces with a sufficient summed confidence will coincidentally be
found to be similar (following the definition of Equation 2.6) or this occurrence is
sufficiently unlikely.

3. Given N surface views, the real surfaceis closest to x in at least one view.

If these assumptions are violated, mistakes in the surface mesh will result. From our
experiments, a quorum requirement, 6,,,,.., of 1.5 to 3.0 is usually sufficient given a
reasonable number of views.

30 Chapter 2. Object Modeling for 3D-3D Localization

real
surface

volume
boundary

f(x) <0

i f(x) >0

ff

extension of
non-closed surface

-

Figure 2.9: The extension of the implicit surface in unobserved regions of the grid.

2.4.3 Holesin the Marching-Cubes Algorithm

Using the standard marching-cubes algorithm [83] and consensus-surface agorithm as
outlined above, there is a problem if there are holes or missing data. The marching-cubes
algorithm works on the assumption that the surface is defined by zero crossings of the
implicit surface function. It isamost always the case that parts of the object’s surface are
unobservable. For theregions of the volume wherethe surfaceisunobservable, theimplicit
surface we compute will be rather poorly justified and perhapsill-defined.

For example, consider what happens when we sample the surfacesfor al but the bottom
of acube. If we use the consensus-surface or naive algorithm described above, we will set
the voxels directly underneath the cube to have a negative value and the rest positive. As
shown in Figure 2.9, the effect is to literally extend the sides down to the bottom of the
voxel grid. Thisisthe best we can do using alocal computation for f(x). Essentially any
non-closed boundaries of the observed surface will be extended until the side of the volume
grid or another observed surface is reached.

Previous methods go to great lengths to prevent the difficulties presented by incomplete
data. These workaroundsinvolve creating special casesfor dealing with regions near holes,
greatly complicating implementation of the voxel filling aswell as requiring a modification
of the marching-cubes algorithm. For example, Curless and Levoy [28] try to detect this
situation and label those voxels near holes as undefined or not on the surface. However, if

2.4. DataMerging 31

Surface boundary

i .
gﬁ;?a%g Gradient

Voxels
* 0.5 1.0
1.0
B o g{j?gflfent >1
1.4
3.2

Figure 2.10: The use of gradient testing to eliminate false surfaces at zero crossings of
the implicit surface, from the previous example. The gradient is labeled next to each zero
crossing. Gradients greater than 1 can be ignored by the marching-cubes algorithm.

one examines the values of the distances around holes, there is one significant difference
between the values around the real surface and those around holes. Around a surface,
the gradient of the signed-distance function is at or near unity. However, when at a zero
contour near a hole, the gradient at x, % is necessarily larger than one since the distances
from points in the neighborhood of a hole must be greater than one voxel length. This
fact provides a simple mechanism for eliminating holes without complicating the signed-
distance function. Figure 2.10 shows our previous example of the bottomless cube with
gradient values labeled over each zero-crossing—demonstrating how non-surfaces can be
easily detected by the marching-cubes algorithm. We can simply test the gradient at each
voxel before adding it to the surface. The gradient must be computed to find zeros already,
so it isa simple matter to modify the marching-cubes algorithm to check the magnitude of

the gradient.

2.4.4 Accuracy and Efficiency

First, to achieve desired accuracy we must use a dense sampling of the volume. Since the
memory requirements of avolume grid is cubic with respect to the density of the sampling
for volumetric modeling, the first thing that gets sacrificed is accuracy. With our problem,

32 Chapter 2. Object Modeling for 3D-3D Localization

the standard volume-grid approach is also deficient in terms of computation time.

The straightforward use of volume grids presents several problems. One obvious
problem with a voxel grid representation is that the number of voxelsis n® where each
axis of the volume is discretized into n elements. This affects the achievable accuracy
since we must choose the dimension to be small enough that the grid can fit in memory:
we quickly reach the memory limits of our computers. In addition to storage cost, we
must remember that for each voxel we must compute the signed distance; thus, the number
of computations of our signed distance function f(x) will be cubic as well. Specifically,
computation resources are wasted by computing signed distances in parts of the volume
that are distant from the surface. For our purposes, the only voxels that we need to examine
are those near the surface, a small fraction of the entire volume grid.

Curless and Levoy [28] alleviate this problem by run length encoding each 2D dlice of
the volume. Thisapproach depends upon acomplicated procedure which carves out voxels
that are determined to be well outside of the surface. The procedure is tailored to their
scheme for averaging the voxel values iteratively, view by view; it is not well suited to an
algorithm such as ours which uses all the data simultaneously to compute each value. Their
algorithm is discussed in more detail in Chapter 6.

Fortunately, there is a data structure, called an octree, that is perfect for our merging al-
gorithm and requirements. Octrees[95] were developed as an efficient way for representing
3D occupancy gridsfor computer graphics and CAD modeling. An octreeis ahierarchical
representation of the volume in which we divide a given volumeinto eight octants and then
we can subdivide each octant individually if necessary and so on to any level of subdivision
desired.

For our purposes, we are only interested in the surface of our object, which octrees can
efficiently represent. Octrees are designed just for this purpose: the sampling resolution
can be adjusted to the level of detail necessary at each region of the volume. It is efficient
in that respect—sampling finely near the surface and sampling coarsely away from the
surface. Figure 2.11 shows a 2D dlice of an octree representation of a simple surface.

The octree representation [95, 22] solves both the accuracy and the efficiency problems
while keeping the algorithm implementation simple. Instead of iterating over all elements
of the voxel grid, we can apply arecursive algorithm on an octree that samples more finely
in octants only when necessary. To interpolate the zero crossings properly, we will need
the implicit distance for the voxel containing the surface (the zero crossing) and all voxels
neighboring this voxel: these voxels must all be represented at the finest level of precision.
This constraint means that if we have a surface at one corner of an octant, the longest
possible distance to the center of a neighboring octant is one and one-half diagonals of the
voxel cube, which is a distance of 3—f cube units.

Given the current octant, we can compute the signed distance. If the magnitude of the
signed distance, | f(x) |, islarger than S—f of the octant width, then it is not possible for
the surface to lie in the current or neighboring octant. If the surface is not in the current or
neighboring octant, we do not care to further subdivide the current octant. The algorithm
isasfollows:

2.4. DataMerging 33

\
\ 2D slice
of octree
[
[
/
/
/’
/
surface

Figure 2.11: A 2D dlice of an octree representation of a simple surface illustrates the
adaptive resolution which is high around the surface and low elsewhere.

Algorithm FillOctant

Input: octant (v, x, w, ¢) with value v, center x, width w, and children ¢

(x Fill the value and recursively subdivide the octant x)

(* to the finest required resolution. x)

1. v+ ConsensusSgnedDistance(x, 1)

2. if(Jv]< BLuw) A (w > wines)

3. then create sub-octants <vi,xi, 7, ci> for : = 0,..,7 by subdividing the current
octant

4, fori < 0to7

FillOctant({v;, x:, %, ¢;))

o

6. ese c— 0

Theoctreein practicereducesthe O () storage and computation requirement to O(n?).
Thisis because the surfaces of 3D objects are, in general, 2D manifoldsin a 3D space.®

Thus, the octree allows us to efficiently compute the implicit surface representation
and uses memory efficiently—allowing us to achieve desirable levels of accuracy. The
marching-cubes algorithm must be converted to manipulate octrees rather than voxels.
This is handled by simply replacing the indexing of volume elements with macros that
traverse the octree.

SUnless it behaves as a volume-filling surface or a porcupine—surfaces that seem to fill occupy 3D
space—the surface of a 3D abject will tend to sparsely occupy the 3D volume enclosing it.

34 Chapter 2. Object Modeling for 3D-3D Localization

2.4.5 Cost of the Consensus-Surface Algorithm

We can get rough estimate of the cost of our model-building agorithm by first considering
the cost of the basic operation: computing a consensus surface. To smplify analysis, we
assume that there are N views being merged and that for each view the triangle set 7; has
n triangles.

Algorithm ConsensusSurface computes the closest surface for each view which on
averagewill bean O(N logn) operation assuming k-d trees [41] are used. Algorithm Clos-
estConsensusSurface computesthe closest surface and then therespective consensus surface
for each view, which addsupto acost of O(N2 logn). Since N will usually be much smaller
thann, thisoperationisrelatively cheap. Algorithm ClosestConsensusSurface is performed
for each voxel or octree element.

Assuming that an M x M x M voxel grid is used, the modeling algorithm will cost
O(M3N?logn). However, if octrees are used we may loosely assume that the number of
voxels or octree elements which are evaluated will be proportional to the surface area of
the object. For sake of approximation, we may assume that the areais O(M?) where M is
the number of elements in the equivalent voxel grid. This reduces the complexity of our
modeling algorithm to O(M?2N?logn) which is a significant reduction since M will be
relatively large in practice to enable accurate modeling.

2.5 3D Object Modeling Results

Herewe present some experimental resultsof our implementation of the 3D object modeling
algorithm described in this chapter.

The major limitation of our modeling system is the requirement for calibrated object
positioning. Our calibrated image acquisition system—a Unimation Puma robot, and our
range sensor, an Ogis light-stripe range finder—limits the objects which we are able to
model. Dueto this, the objects must be small enough to be imaged by the range finder and
to be mountable on the Puma. As described in Chapter 1, we assume that the objects are
rigid and opague (lucent surfaces are not usually detectable by the range finder). However,
despite these limitations there remains a large class of objects which we can use to test our
model-building algorithm.

Since the object must be physically attached to the Puma, we are further limited by
the surface area of the object which we can effectively observe. For this work, we do not
attempt to model the undersides of the objects. A process of reattaching the object and
aligning the new views would be required. Though it is feasible, reattaching the object to
model its underside was not fundamental for testing our ideas.

For our experiments, we selected 5 objects to model using our system: atoy boxcar, a
rubber duck, a piece of fruit, a ceramic mug, and atoy car. For each object, we manually
determined the number of range images of the object to 1) maximally cover the viewable
surface of the object, and 2) provide a sufficient amount of overlap between views for the

2.5. 3D Object Modeling Results 35

o, v i

I object
mount

Puma object positioner

Figure 2.12: The two degrees of freedom, ¢, and 6, of the Puma used to vary of object
position with respect to the camera's coordinate system.

consensus-surface algorithm. The number of views required is related to the geometric
complexity of the object: varying from 18 for the boxcar to 54 for the toy car.

The views were acquired by varying the angles of two rotation axes on the Puma's end
effector: rotating around the camera’s y-axis direction and rotating around the camera’'s
x-axis direction. The Puma robot is capable of 6 degrees of freedom but for this work
using only two was sufficient to detect the visible surfaces of our objects. We refer to these
rotations as ¢, and 4, respectively. Figure 2.12 shows a diagram of the rotational degrees
of freedom used in our experiments. Generaly, we would vary 6, from -180 degrees to
160 in increments of 20 degrees and would vary 6, from anywhere from -30 degrees to
+30 degrees in 20 degree increments as well. For objects like the mug, we would have to
add some views to observe difficult to view surfaces such as the bottom of theinside of the
mug.

Each rangeimage contained 256 x 240 pixel swith each pixel containinga3D coordinate.
The resolution of data is approximately 1 mm (i.e., the distance between two pixels on a
flat surface at the nominal distance from the camerais roughly 1 mm). The accuracy of
datais on the order of roughly 0.5 mm.

The results of our modeling algorithm for each object are shown in Figures 2.13- 2.22.
Each of these figures show:

e anintensity image of the object

36 Chapter 2. Object Modeling for 3D-3D Localization

e aclose-up of some of the triangulated range images used as input to the consensus-
surface algorithm (shaded to better indicate the roughness of the original data)

e adice of the volume grid where the grey-scale indicates the proximity to a surface
point (black closest, white furthest)

¢ threeviews of the resulting triangulated model

Therelevant statisticsof themodeling experimentsfor each object are presentedin Table 2. 1.
These statistics include the number of input images and triangles, the number of triangles
in the resulting model, the resolution of the voxel/octree grid, the percentage of voxels
in the volume grid which were actually represented in the octree structure, the execution
time on an SGI Indy 5 (a 124 MIPS/49.0 MFLOPS machine), and the parameters for our
consensus-surface algorithm (the quorum requirement 6., , the maximum distance, ¢,
between similar points and the maximum angle, ¢,, between normal vectors of similar
points). The volume grid was divided into at most 128 cubes along each dimension. Of
the parameters used by the modeling agorithm, the quorum requirement parameter is the
most difficult to determine. Proper choice of the quorum parameter depends on the number
of views, the geometry of the object (i.e., how many views in which a given patch of the
surface is visible), and the noise in the data. Setting this parameter automatically would
be a difficult problem. It isvery similar to the view-selection problem: how to choose an
appropriate set of viewsto cover an object when the geometry is unknown.

2.5. 3D Object Modeling Results 37

(©) (d)

Figure 2.13: Results from modeling the boxcar. (a) An intensity image of the boxcar, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.

38 Chapter 2. Object Modeling for 3D-3D Localization

Figure 2.14: Three views of the resulting triangulated model of the boxcar.

The resulting triangulated models had to be cleaned to remove data corresponding to
the Puma mounting device, which, despite the fact that it's surface is black, was rather
cleanly reproduced in the resulting models. If another object has the same rigid motion as
the object being modeled, our algorithm considers this other object to be part of the object
being modeled; it is unable to distinguish between objects with with identical motion with
respect to the camera.” Holes on the undersides of the objects were also filled during the
cleaning process.

As an example of what the naive algorithm, Algorithm ClosestSgnedDistance of Sec-
tion 2.4.2, would produce we show the example of the the result of the naive algorithm on
the duck data set in Figure 2.23. Notice how many extraneous surfaces exist near the duck

"Distinguishingtwo objects that have the same rigid motion is afundamental limitation of algorithmsthat
build models from sequences of data. Thisisthe fundamental advantage of modeling by moving the object
rather than modeling by moving the camera around the object. When the object is moved with respect to the
camera, the rest of the background is unlikely to follow the same motion and thus will not be consistently
detected by the data merging a gorithm.

2.5. 3D Object Modeling Results 39

(€) (d)

Figure 2.15: Results from modeling the fruit. (a) An intensity image of the fruit, (b) a
close-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.

40 Chapter 2. Object Modeling for 3D-3D Localization
Figure 2.16: Three views of the resulting triangulated model of the fruit.
Object | Images | Tris | Tris| Voxel | Octree Time O quorum 04 0,
In | Out| Res. Usage | (minutes) (mm) | (degrees)
boxcar 18 300k | 23k | 1.6mm 6% 17 15 2 45
fruit 36 370k | 49k | 1mm 6.8% 39 15 2 53
duck 48 555k | 27k | 1.8mm 4% 52 2.25 3 45
mug 50 680k | 24k | 25mm | 23% 48 25 3 45
car 54 747k | 26k | 2mm 5.5% 86 15 2 53

Table 2.1: Statistics of the modeling experiments for each object.

2.5. 3D Object Modeling Results 41

B3
.

() (d)

(@)

Figure2.17: Resultsfrom modelingthe rubber duck. (a) Anintensity image of the duck, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.

42 Chapter 2. Object Modeling for 3D-3D Localization

Figure 2.18: Three views of the resulting triangulated model of the duck.

from theinput range-image data. Also notice thelarge number of holes and bumps over the
resulting surface. The naive algorithm fails because it trusts that every surface observation
isan accurate observation of the object surface. As can be seen from the sample range data
of theduck in Figure 2.17, thisis not the case.

To more clearly illustrate the accuracy of our modeling algorithm, Figures 2.24- 2.28
show cross sections of our final models and the original input range-image data. These
examples demonstrate the ability of our consensus-surface algorithm to accurately locate
the surface in very noisy data.

Therange-imagedatawasmost noisy in dark regionsof an object and regionsof specular
reflection and interreflection. For the most part, the consensus-surface algorithm was able
to make sense of the data in spite of these significant errors. Small bumps sometimes
resulted in those regions (e.g., on the boxcar and the duck) but that is to be expected when

2.5. 3D Object Modeling Results 43

Figure2.19: Resultsfrom modeling the ceramic mug. (a) Anintensity image of themug, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume

Chapter 2. Object Modeling for 3D-3D Localization

Figure 2.20: Three views of the resulting triangulated model of the mug.

2.5. 3D Object Modeling Results 45

Figure 2.21: Results from modeling the toy car. (a) An intensity image of the toy car, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.

46 Chapter 2. Object Modeling for 3D-3D Localization

Figure 2.22: Three views of the resulting triangulated model of the car.

the data is consistently bad in aregion. However, for the quality of the data, the model
surfaces in those regions are still very good. One problem we were unable to solve was
modeling the wheels on the toy car. The chrome wheel hubs refused to be imaged by our
light-stripe range finder. This is due to the highly specular nature and interreflections on
the wheel hub which gave no image data resembling a wheel surface from any views. To
work around this, we placed white tape over the wheels of the car.

2.6 3D Modeling: Summary

We have described a method to create a triangulated surface mesh from /N range images.
Robotic calibration is used to acquire images of the object under known transformations,

2.6. 3D Modeling: Summary 47

Figure 2.23: The result of the naive algorithm, Algorithm ClosestS gnedDistance, on the
duck image.

allowing us to align the images into one coordinate frame reliably. Our method for data
merging takesadvantage of thevolumetricimplicit-surfacerepresentation and themarching-
cubes agorithm to eliminate topological problems.

The main contribution of this chapter is our algorithm for merging data from multiple
views:. the consensus-surface algorithm which attempts to answer the question

What isthe closest surface to a given point?

With the answer to this question, we can easily compute the signed distance f(x) correctly.
While other known methods (described in detail in Chapter 6) also implicitly address
this question, their algorithms do not capture the essence of the problem and produce
answers by taking averages of possibly unrelated observations. In contrast, our algorithm
attempts to justify the selection of observations used to produce the average by finding a
guorum or consensus of locally coherent observations. This process eliminates many of the
troublesome effects of noise and extraneous surface observationsin our data.

Consensus surfaces can be computed independently for any point in the volume. This
feature makes it very easy to parallelize and alows us to straightforwardly use the octree
representation. The octree representation enables us to model objects with high accuracy
with greatly reduced computation and memory requirements. By modifying the marching-
cubes algorithm to do a smple gradient test at zero crossings, we aso are able to avoid
gpecial casesin our algorithm.

We have presented the results of our modeling algorithm on a number of example
problems. These results demonstrate that our consensus-surface algorithm can construct

48 Chapter 2. Object Modeling for 3D-3D Localization

_\ Magnification

Figure 2.24: A cross section of the final model of the boxcar (thick black line) and the
original range-image data (thin black lines) used to construct it.

accurate geometric models from rather noisy input range data and somewhat imperfect
alignment.
We now discuss our algorithm for 3D-3D object localization.

2.6. 3D Modeling: Summary 49

Magnification

Figure2.25: A crosssection of thefinal model of thefruit (thick black line) and the original
range-image data (thin black lines) used to construct it.

50 Chapter 2. Object Modeling for 3D-3D Localization

Magpnification

Figure2.26: A cross section of thefinal model of the rubber duck (thick black line) and the
original range-image data (thin black lines) used to construct it.

2.6. 3D Modeling: Summary 51

Magnification

|

Figure 2.27: A cross section of the final model of the ceramic mug (thick black line) and
the original range-image data (thin black lines) used to construct it.

52 Chapter 2. Object Modeling for 3D-3D Localization

Magnification

Figure 2.28: A cross section of the final model of the toy car (thick black line) and the
original range-image data (thin black lines) used to construct it.

Chapter 3

3D-3D Object Localization

Themaingoal of thisthesisistolocalize aknown object in animage given arough estimate
of the object’s pose. In the previous chapter, we described a method for automatically
building a 3D triangulated surface model from multiple range-imageviews. Inthischapter,
we will detail our approach to using such models for the task of localizing 3D objectsin
3D range-image data—3D-3D object localization?.

For localization to be useful for recognition and tracking applications, it must be an
efficient, robust operation and should be applicable to a wide variety of object shapes.
There are many subtle problems to be solved to achieve robust and efficient localization
in practice. We begin this chapter by briefly overviewing the problems involved and our
approach to solving them.

3.1 Approach

Here, we assumethat wearegiven an accurate, triangulated model of our 3D object’ ssurface
(using the techniques presented in Chapter 2 or an appropriately triangulated CAD model),
a range image, and a rough estimate of the object’s pose in the image. The localization
task is to estimate the precise pose of the object in the range image. In approaching this
task, we regard as axiomatic that localization is an optimization problem: we can evaluate
any pose estimate, and the true pose has the optimal value. The primary problemis how to
evaluate a pose candidate. Once pose candidates can be evaluated the next problem is how
to efficiently and effectively search for the best pose candidate.

Our first decision is to evaluate the pose by measuring the distance between points on
the model and pointsin the image. The rationale is that the range image provides us with
samples of visible surface pointsin three dimensions. Thus, it makes sense to match points
on the model surface with their samples in the image and measure the distance between
them. In general, we use one point per triangle in the model though we could easily sample

1Earlier versions of thisworked appeared in [144, 145, 146, 148].

53

54 Chapter 3. 3D-3D Object Localization

more or fewer points.?

We prefer to rely on low-level data available from the sensor rather than higher-level
features inferred from the data. 3D points (available directly from range images) are the
simplest possible feature and points suit our purposes nicely: they are efficient to process
and manipulate and relatively easy to match with one another. Pointsare also avery general
representation of shape. If higher-level features are used, the shapes that could be modeled
would most certainly be restricted (e.g., using algebraic surfaces).

At the highest level, our approach to localization comprises the following steps:

¢ Predict the appearance of model pointsin the image
e Match the model points to image points

¢ Refine the pose estimate using the point matches

The first problem we face is how to efficiently compute the visibility of the points of the
model with respect to the range-image view. We present a local approximation method
for efficiently predicting the visibility of points given the pose of the object and camera
parameters. Thismethod is general for al standard camera projection models and obviates
the need for expensive ray-casting or z-buffering.

The second issue is how to compute correspondences between model and image points.
We describe the use of k-d trees [41] to perform nearest-neighbor searches for efficiently
computing these correspondences. We also describe a method for extending the nearest-
neighbor search to consider attributes other than 3D location to improve the accuracy of
correspondences when the error in theinitial pose estimate is high.

The third problem is dealing with incorrect correspondences and noise. Our reason
for computing the correspondences is to use them to refine our estimate of the pose. This
closely resemblesthe classic pose estimation problem—computing the optimal pose froma
set of correspondences. In pose estimation, the correspondences are usually assumed to be
correct but that the data is possibly corrupted by noise (e.g., Gaussian noise). Here we are
faced with a more difficult task—dealing with incorrect correspondences as well as noise,
and no fixed/precomputed correspondences. Knowing that many of our correspondences
will be incorrect, we draw upon the field of robust statistics [67, 96] to create a solution
that is relatively insensitive to noise and outliers. The solution is more complicated than
|east-squares estimation—the standard solution for 3D-3D pose-estimation problems. The
solution to localization requires non-linear optimization. In general, closed-form solutions
do not exist for non-linear optimization problems—implying that an iterative solution
scheme is necessary, asisthe case here.

Our approach to optimization borrows much philosophically from Kass, Witkin and
Terzopoulos's [75, 134] work on active contour models and energy minimizing snakes and

2The models built using the methods of Chapter 2 can be composed of triangles of arbitrary size. If the
tessellation is too coarse, we can straightforwardly increase the density of triangles by interpolation using
many schemes. If thetessellation istoo fine, we can use decimation techniques (e.g., Johnson [73]) to reduce
the triangle density.

3.2. Point Visibility 55

from Bed and McKay’'s [6] iterative closest point (ICP) algorithm for 3D registration. In-
stead of assigning correspondences and statically solving for the pose, our method achieves
robustness by allowing the model to dynamically settle on the optimal pose with respect
to the constraints of the image. We accomplish this by making the correspondences a
dynamic function of pose during optimization. The objective function that we minimizeis
specifically chosen to make the estimation robust to outliers and is based on solid statistical
principles. Aswill be described |ater, this approach isintuitively and mathematically well
justified.

Therest of thischapter will providethe detailsof our solutionsto the problemsdescribed
above:

e Point visibility
¢ Point-to-point correspondence
o Pose optimization

Figure 3.1 shows a diagram of the technical sections of the thesis. We begin by discussing
an efficient approximation for surface point visibility computation. This is followed by
adiscussion of an efficient search technique for nearest neighbor correspondences and an
extension to include attributes other than spatial coordinates. We then discuss the pose
optimization problem and the main contribution of this chapter, our method for minimizing
arobust M-estimator via dynamic correspondences with standard non-linear optimization
techniques.

The chapter will conclude by summarizing the localization algorithm. The methods
and algorithms described here are of a very practical nature. We will attempt to describe
the steps with great attention to detail as there are many traps to catch the unsuspecting
practitioner.

3.2 Point Visbility

Before matching a surface point of a model with a point in a range image, it is prudent
to first determine if the model point is geometrically visible from the given pose. We
need to answer the question of visibility for every point of the model. Since the visibility
computation will be performed many times, the computation must be as efficient aspossible.
For an exact computation of the visible portions of an object model, there are two standard
algorithms from the field of computer graphics: ray-casting and z-buffering.

Ray-casting [40, 141] works by casting a ray from the camera’s center of projection
through a given point on the model. The model point is visible if the ray does not first
pass through any other point on the model surface. A ray is thus traced for each point
of the model. Ray-casting is a rather complicated operation. For every triangle of the
object, it ispossible that we must test every other triangle on the object surfaceto determine
if the triangle is the first surface that intersects the ray—resulting in O(n?) ray-triangle

56 Chapter 3. 3D-3D Object Localization

3D-3D Localization

Surface Point

Visibility Section 3.2

Cor]vex Con_cave
Points Points

y

Model-to-Image Section 3.3
Correspondence

Nearest

Neighbors Attributes|

Y
Pose Optimization Section 3.4

M-Estimators

Dynamic
Correspondences

Figure 3.1: Organization of this chapter.

intersection tests for a surface model composed of » triangles. Thisis much too expensive
to consider for localization in practice.

Z-buffering [40, 141] works by creating adepth image of the object. The object surface
isprojectedinto theimage, triangle by triangle. If asurface point projectsto the sameimage
coordinate as a previous point, the point that is closest to the camerais placed in the depth
image. Finally, only visible surface points are present in the depth image. Z-buffering
is less expensive than ray-casting, O(n) operations® for a surface model composed of »
triangles. Despite the existence of fast hardware implementations, z-buffering is still too
time-consuming for our purposes. Z-buffering only worksif the entire surfaceis projected
triangle by triangle onto the depth image. Thus, there is no speedup benefit to be gained
by using sparse collections of points. As a practical matter for efficiency, we must limit
our localization search to use only a sparse set of points on surface of our object model.*

3Assuming atrianglefill isa constant time operation.

4For example, a reasonable coverage of a small object could have 40,000 triangles. Using that many
triangles is inefficient and unnecessary to solve the task. Our experience is that using several hundred to a
few thousand trianglesis sufficient for localization of most objects.

3.2. Point Visibility 57

Z-buffering necessarily solves for the visibility of all points on the surface (at the specified
depth-image resolution); thus, z-buffering is not a desirable solution.

Since we are using a large set of points for localization, having a perfect visibility
computationisnot critical. Our localization agorithm should beresilient to afew mistakes
out of ahundred. Thus, exact solutions such as z-buffering or ray tracing are not necessary
for our purposes.

For 3D surfaces, we can reduce the problem to two cases: convex surface visibility and
concave surface visibility. The convex case covers all points which lie on the convex hull
of the surface: wherever the surface normal points towards the camera center, the point is
visible (assuming outward pointing normalson every surface). The concave case coversall
surface points which are not on the convex hull of the object. The solution for the concave
case subsumes the convex case but has an added complication that the concave point will
be occluded by other parts of the object surface from some viewpoints. In the following,
we present an efficient approximation to solve for convex and concave surface visibility.

3.2.1 Convex Surface Visibility

We discuss the smplest case, the convex case, first. For this discussion, let us assume that
the object is completely convex (e.g., a sphere or elipsoid). Asin Chapter 2, the surface
isrepresented as a set of triangles. For any point x on atriangle, we can straightforwardly
compute itsvisibility given the current viewing direction, v—the vector from the camera’'s
center of projection to x.°> Wherever the surface normal points towards the camera center,
the point is visible. Without loss of generality, we focus our interest on the center points
of each triangle. In the following, 7; denotes the :th triangle of the model, 1, denotes
7;"s outward pointing normal and c; denotes 7;’s center point. The visibility of point c; is
computed by the test

true n;-v>0

V|Sb|econvex(ci) = { false otherwise

where v is the viewing direction vector from the camera center of projection to ¢;. This
visibility test only requires a dot product and a comparison and, since it is local, can be
computed independently for each triangle. Note that the definition of v in this equation
means that this test will work correctly regardless of camera parameterization. v is the
only information that we need to know about the camera projection to make the visibility
determination.

In practice, apoint on the surfacewill only be visiblewhen the surface orientationisjust
less than 90 degrees from the viewing direction. Thus, we generally use a small threshold
instead of O for the comparison in the above test. The dightly modified test is:

true n;-v > cosé

false otherwise (31

visible.per (i) = {

SThe camera scenter of projectionisreadily available from the camera calibration parameters as described
in Chapter 1.

58 Chapter 3. 3D-3D Object Localization

U -t—¢

visibility hemisphere

Figure 3.2: An example of the set of visible viewing directions (the unshaded portion of
the hemisphere) for the point = on the L-shape.

where ¢ is an angle close to 90 degrees which is the maximum orientation angle of the
surface that will be detected by the range sensor. ¢ ischosen empirically. Thisvisibility test
for the convex case nicely satisfies our requirements of efficiency and locality; however,
we are not smply interested in localizing ovoids. The concave surface case is discussed
next.

3.2.2 Concave Surface Visibility

In general, we must be prepared to compute point visibility for arbitrary shapes which
will include concavities and self-occlusions where our ssmple convex visibility test (Equa-
tion 3.1) would be grossly insufficient.

As in the convex case, we prefer a local visibility test for the concave points. We
can still make good use of our previous test for convex points. Since it is inexpensive, it
makes sense to first check to seeif the surface point in question is even oriented toward the
camera. Once that is determined, we can then perform more expensive tests to determine
whether the point is occluded by another part of the object or not. As stated previoudly,
we cannot afford to perform ray-casting or z-buffering each time that we need to compute
point visibility.

For each point, the visibility function is a binary function over the set of viewing
directions. In practice, by assuming that the point lies on the planar center of the triangle,
only the viewing directions lying in the unit hemisphere above the surface point (triangle)
need to betested for visibility. Figure3.2 illustratesthisfor asimple L-shaped object. Thus,
wecan reducethevisibility problem to representing the set of viewing directionsfromwhich
the point isvisible. For the convex case, the visibility set is trivial—the hemisphere above
the point’s surface. Our main problem is how to represent the visibility set such that:

¢ the membership test is efficient, and

¢ the memory requirements are tolerable.

3.2. Point Visibility 59

If it were necessary to represent the visibility set exactly, wewould beinalot of trouble.
First, as one can imagine, the visibility set could take on arbitrarily complicated subsets of
the viewing hemisphere—making the representation arbitrarily large. Secondly, it could
become very expensive to evaluate membership in such a set. Fortunately, we can tolerate
small errors. as described in Section 3.1 our localization agorithm must be robust to small
numbers of errors. Thus, an approximation of the visibility set is sufficient.

We will use adiscrete representation of the viewing hemisphere: alookup table (LUT).
We can tessellate the viewing hemisphere into discrete bins representing sets of similar
viewing directions—all viewing directionsin a particular bin are considered equivalent for
thevisibility computation. Suchaschemeinvolvesatimeversusspacetrade-off. Ingeneral,
we are always looking to reduce the time requirements of |ocalization algorithms, thus, we
will usually choose time savings over space savings. In practice, the more important trade-
off is space versus accuracy. Do we prefer an LUT approximation which is accurate to 0.1
degrees or an approximation which isaccurate to 3 degrees but can be efficiently stored and
loaded.

Onecommon LUT scheme[47, 81, 148] isto storeineach bin alist of all object features
(e.g., points, surfaces, lines) which are visible from the viewing directions corresponding
to the bin. The problem with this approach is that it assumes that all points on the
object are viewed from the same direction. Thisis adequate for an orthographic-projection
cameramodel; however, under perspective projection the viewing direction depends on the
projected image coordinates of the scene point. For example, the LUT scheme described
above does not account for changes in the visibility set as an object trandates along the
central viewing direction.

Since we do not wish to restrict ourselves to a specific camera model, we must devise
another approach. Instead of listing all visible entities in each bin, we allocate a separate
LUT for each surface point used in the model (for example, the center points of each
triangle). We refer to these LUTs asvisibility LUTs. Each bininavisbility LUT contains
abinary value indicating whether the point isvisible or not from viewing directions which
map to the given bin. Since we have avisibility LUT for each point, each point’s visibility
can be independently computed using the viewing direction to that particular point, thus,
allowing for arbitrary camera models.

The next issue is how to tessellate up the viewing hemisphere into discrete bins. We
have two criteriafor carving up the hemisphere:

1. The mapping from viewing directionsto bins must be efficient.
2. The bins should cover approximately uniform areas of the hemisphere.

The first criteriais obvious: it is very important that the membership test is efficient as
it will be evaluated frequently (once for every point of the model). The second criteria
is a practical detail: if some bins are much larger than others, the error of the visibility
approximation will vary with respect to viewing direction.

The simplest and most efficient mapping between viewing directions of a hemisphere
and the binsof a2D LUT is orthographic projection. Consider the 2D LUT asagrid lying

60 Chapter 3. 3D-3D Object Localization

Figure 3.3: Orthographic projection of viewing directionsonto asimple LUT array.

on the equatorial plane of the hemisphere. The 2D orthographic coordinates, [f ¢]”, of a
viewing direction projected onto the gridsare ssmply the = and y components of the viewing
directionv (i.e, f = x and ¢ = y). Thisisabit unsatisfactory, however, because the result
is that two different grid elements may cover vastly different areas on the viewing sphere
(see Figure 3.3).

We would prefer a more uniform tessellation of the hemisphere. No perfectly uniform
tessellation exists, however, there are several other options. One such improvement over
orthographic projection is stereographic projection: each point on the sphere projects onto
agridlying on the equatorial plane by intersecting this plane with aray passing through the
point and the south pole (i.e., lowest point) of thesphere. Figure 3.5 showsthe stereographic
projection of a2D LUT array. Stereographic projection is dightly more complicated than
orthographic, but not beyond reason. The stereographic projection of v = [z y z]T to 2D
stereographic coordinates, [f ¢]”, isaccomplished by

I=Tr1 (32
Y
9=7""7 (33)

assuming that the radius of the sphereis 1, the sphereis centered at [0 00], and the 2D
grid [f g]T lieson the z = 0 plane. Using more advanced tessellations than orthographic
and stereographic projection would require much more elaborate (and computationally
expensive) mappings between viewing directions and LUT bins. One such tessellation is

Figure 3.4: Latitudinal/Longitudinal discretization of a hemisphere.

based on latitude and longitude (see Figure 3.4). The problem with alatitudinal-longitudinal
tessellation is the cost of indexing the LUT by viewing direction. Computing the latitude
and longitude of the viewing direction requires the (relatively) expensive evaluation of
trigonometric functions which we would like to avoid. What we can do, however, is
essentially to use LUT methods again to compute the latitudinal-longitudinal coordinates.
Sinceweareonly really interested in mapping the viewing directionto abin in thevisibility
LUT, the latitudinal-longitudinal coordinates can be ignored altogether. LUT methods can
be used to index the indices of our visbility LUT. Thus, we have two levels of lookup
tables:

¢ Vighility LUT: unique for each point, each bin contains the binary value indicating
the visibility of the point from the set of viewing directions that map to the bin.

e Index LUT: identical structurefor all pointsand models, each bin containstheindices
of the Visbility LUT which correspond to the set of viewing directions that map to
the bin.

It appears that we have the same problem as before: how do we tessellate theindex LUT?
The problemis a bit different for the index LUT than for the visibility LUTs.

Sinceonevisbility LUT isrequiredfor each point of thelocalization model, the number
of bins must necessarily be small; however, only one index LUT is necessary since the
mapping fromviewing directionsto binindicesisthesamefor all points. Thus, itisfeasible
to use amuch higher resolution table. The previous problem of uniform tessellation can be
ignored as long as the resolution of the index LUT is substantially higher than resolution
of the vigibility LUTSs (i.e., many index LUT bins correspond to each visibility LUT bin).
The index LUT can be indexed by the / and ¢ components of stereographic projection to
providethe corresponding indicesof thevisibility LUT (implicitly providingthelatitudeand
longitude, or any other mapping for an arbitrary tessellation of the hemisphere). Figure 3.6
demonstrates how the two-level indexing of viewing directionsto visibility works.

62 Chapter 3. 3D-3D Object Localization

viewing
direction

stereographic
coordinate (f,9)

77174

Cross section

Figure 3.5: Stereographic projection of viewing directions onto asimple LUT array.

viewing
direction

i ;Y
stereographic =
coordinates =

index LUT visibility LUT

(latitude/longitude
projected to 2D)

Figure 3.6: The viewing direction is mapped to theindex LUT using stereographic projec-
tion (note, in practice the resolution of the index LUT would be extremely fine as opposed
to the coarse LUT pictured here). The bin of the index LUT provides the index into the
visibility LUT which may have an arbitrarily complex tessellation (latitude and longitude
in this case).

3.2. Point Visibility 63

This two-level indexing technique will work for any discretization of the viewing
sphere. We can enumerate an endlesslist of possibilities, such astessellations of pentagons
or hexagons (asin asoccer ball), anicosahedron, or semi-regular triangulation of the sphere.
The latitudinal-longitudinal tessellation alows us more control over the size of the bins
than some of these other practical tessellations. Any tessellation can be used; the only
requirement is that there is some (arbitrarily complicated/expensive) function that maps
viewing directions to the index of the corresponding discrete chunk. This function can be
used to generate the index LUT off-line, and then we have a simple and efficient way to
map viewing directions to the bins of our viewing hemisphere tessellation.

One subtle point that was omitted from the preceding discussion was the coordinate
system of the viewing direction vector v. Each point must have its own coordinate system
since the viewing hemisphere is oriented in the direction of the point’s normal; there is
no single coordinate system which will work for all points on the model. The viewing
direction must bein the point’slocal coordinate framein order to index the correct element
of the point’svisbility LUT. We can define local coordinate system of triangle ;’s center,
c;, asfollows. Werequirethe = direction, z;, to correspond with the ;s normal:

Z;, = 1n;.

The z and y directions can be arbitrarily chosen to be orthogonal to z,. We choose the «
direction, x;, to be the direction from the center point, c;, to 7;’sfirst vertex po:

. _ Po—¢
p=
Ipo — &

The y direction, y;, followsdirectly from z; and x;:

Y. = 2%; X X;.

To index our LUT all we need to do is convert v to local coordinates, which can be
accomplished by the following matrix multiplication:

Vi= [k i)V (3.4)
G =R, ¥ (35)

The stereographic coordinates of v; index abin intheindex LUT which gives us the index
into the visibility LUT. The computation cost of this visibility test is also reasonable: one
matrix-vector multiplication and two table lookups. The index LUT can be computed
off-line and loaded at run-time, and for each concave point we must precompute and store
itsvisbility LUT. The visibility LUT is most efficiently implemented as a bit vector. The
resolution of the vigibility LUT can be chosen based on memory limitations, required
accuracy or efficiency requirements. For example, we can carve up the viewing hemisphere
into 256 chunks and store thisin eight, 32-bit words.

64 Chapter 3. 3D-3D Object Localization

3.2.3 Off-line Lookup Table Creation

Now that we have chosen arepresentation for the visibility set, we must compute the LUT
for each point of the model. Though this computation is relatively expensive, it can be
computed in reasonable time (severa minutes) off-line and stored with the model.

For each triangle 7;, the algorithm for filling the visibility LUT is as follows

Algorithm CreateMsibilityLUT

Input: point ¢; of triangle 7;

Input: triangle set T’

Output: thevisibility LUT for point ¢; of triangle 7;

1. createtheindex LUT of dimenson N x N

2. createbitmap LUT of dimension N x N, initialize all binsto true

3. forrelstr#mn

4. if ; occludes 7

5 then project 7; into 7;’s local stereographic coordinates

6 fill in the bitmap LUT bins corresponding to the projected triangle with
false to denote occlusion

7. if al bitmap LUT bins are true

8. then declare r; convex

9. return

10. else createand clear thevisibility LUT

11. for all bitmap LUT bins, initialize all binsto true

12. if binisfalse

13. then set the corresponding visibility LUT bin to false

14. returnvisbility LUT

Theindex LUT is created and a bitmap of the same dimensionsis created to record the
visibility at each of these bins. The visibility of the bitmap’s binsis computed by projecting
all occluding triangles onto the bitmap and marking those bits which overlap thetriangle as
occluded (i.e., painting the triangle onto the bitmap). After doing thisfor al trianglesof 7',
we can convert the bitmap to the (coarser) visibility LUT bitmap. If the bitmap indicates
that all bins arevisible, the point ¢; is convex and no visibility LUT is necessary.

3.2.4 On-line Visibility Testing

When performing localization, we need to test the visibility of a point before using it for
refining the pose. If we're dealing with orthographic projection, then we can use the same
viewing direction for all points (and previous aspect LUT methods become an option).
For perspective projection, the viewing direction depends on the point’s location in the
image. Thus, for perspective, we must first compute the image projection of the point and
compute v using the image coordinates and the known camera parameters. ¥ must then be
rotated into the model’s coordinate system and then the point’s coordinate system. These
transformations can be composed for efficiency. Once v istransformed to the point’slocal

3.3. 3D-3D Correspondence 65

coordinate system, wefirst perform the convex visibility test from Equation 3.1. If the test
returns true and the point is concave, then the visibility LUT is checked as described in
Section 3.2.2.

The vigibility tests described in this section are very efficient. Practical requirements
force us to make approximations, however, the approximations as discussed here typically
err onthesafe side: pointsmay be declared invisiblewhen in fact they arevisible, however,
it is not possible that a point is declared visible when it is geometrically invisible. Since
our localization algorithm will have to cope with asignificant number of errors, declaring a
few visible pointsto beinvisible will not have a big effect on the result. On the other hand,
declaring afew invisible points to be visible is pointless as they will never be detected.

3.3 3D-3D Correspondence

Oncethe set of visible model points has been computed, we need to compute the correspon-
dences between these model points and points in the range image. The correspondences
will be used to evaluate the current estimate of the pose.

The correspondence problem is circular. One cannot easily find the correct correspon-
dences without first knowing the pose of the object (i.e., knowing where to 1ook), but our
interest in finding correspondencesisto aid our search for the correct pose of the object.

One of the points of this thesis is that the exact correspondences are not necessary to
refine the pose. What is necessary are correspondences which lead to improvementsin the
pose estimate. When starting with asmall pose error, local search can often provide a set of
correspondences that are close enough to the correct correspondences to guide the search
to the correct pose. What we desire is a quick local search which will usually produce
matches to points which are nearby the correct match. Asthe pose estimation isimproved,
these matches will approach the correct matches.

Given apoint on the model and a current pose estimate, we must select a corresponding
point from our range image. The obvious approach is to find the nearest point in 3D
(Cartesian) space (nearest neighbor or closest point). Mathematically, the closest image
point y to agiven point x can be defined as

=argmin|jx —
y = agmin|jx — |

where D isthe set of three-dimensional datapointsintheimage. Thetheoretical complexity
of the nearest-neighbor search is O(|D|). However, geometry is on our side. 3D objects
occupy a volume in 3D space and their surfaces occupy 2D manifolds in 3D space. The
surface tends to sparsely occupy the 3D volume. Thus, it is possible to partition the surface
pointsin the 3D space to more efficiently search for the nearest pointsin practice. We now
describe a technique which utilizes this characteristic distribution of surface pointsin 3D
space to make the search efficient.

66 Chapter 3. 3D-3D Object Localization

3.3.1 K-D Treesfor Efficient Correspondence Search

The key to efficient search in two or more dimensions is a generalization of binary-search
trees called k-d trees [42] (“kd” isan abbreviation for k-dimensional where & isan arbitrary
integer greater than zero). ® The k-d treeis created by recursively splitting a data set down
themiddle of itsdimension of greatest variance. The splitting continues until the leaf nodes
contain asmall enough number of data points. The result isatree of depth O(logn) where
n is the number of points stored in the k-d tree. Figure 3.7 shows an example of how 2D
points would be separated into leaf nodes using this technique.

The k-d tree can be searched efficiently by following the appropriate branches of the
tree until a leaf node is reached (as in binary-tree search). The distance to al pointsin
the leaf node is computed. A hyper-sphere centered at the key point (with radius of the
distance to the current closest point) can be used to determine which, if any, neighboring
leaf nodes in the k-d tree must be checked for closer points. This test can be performed
very efficiently. Once we tested all the data in leaf nodes which could possibly be closer,
we are guaranteed to have found the closest point in the tree.

To use k-d trees and nearest-neighbor search for point sets in a particular coordinate
system, we need a measure of dissimilarity between a pair of points. The dissmilarity, A,
between k-d points x and y must have the form

Alx,y) = F (ZZ; fi(Xivyi)) (3.6)

where the functions f; are symmetric functions over a single dimension and functions f;
and [are monotonic. Most notable of these restrictionsis that A must be composed by a
sum of dissimilarities along each individual coordinate. All metric distances satisfy these
conditions—most importantly, the Euclidean distance

Alx,y) =[x =yl (3.7)

Such a dissmilarity allows us to partition the k-d tree for optimal expected time of the
nearest-neighbor search.

Though its worst case complexity is still O(n), the expected number of operations
is O(logn), which will be the case if the data is evenly distributed—as is the case for
surfaces in 3D space. The overhead involved is that the k-d tree of range-image points
must be built prior to the search. This is a one-time cost per image of O(nlogn) time
since the points in the range image are static. For most cases of 3D localization, using
closest pointsis sufficient. Thisis because surfaces sparsely occupy 3D space and points
are not often found immediately above the surface of a visible object. As long as the
majority of correspondences are to the correct surface in theimage, localization will often
succeed. The next section discusses an extension of this nearest-neighbor search to make
the correspondence search alittle more robust to initial position errors.

5The k-d tree [42] representation and nearest-neighbors search are extremely useful tools for many
problemsin computer vision, computer graphics, as well as computer science and artificial intelligence. K-d
trees are used for many applicationsthroughout thisthesis, notably in Sections: 2.4, 4.3, 4.4, and 5.3.

3.3. 3D-3D Correspondence 67

w

Figure 3.7: K-d tree subdivision of 2D points. Each line splits the data in half across the
dimension of greatest spread. The number indicates which level of the tree at which the
split occurs.

(a) (b)
. o~ >
° X - X

Figure 3.8: An example of nearest-neighbor correspondence (left) versus nearest neigh-
bor+normal correspondence (right).

3.3.2 Attributesfor Improving 3D-3D Correspondences

Besides proximity there are other possible constraints which we may want to consider
when searching for correspondences. One such exampleis surface normal similarity—the
surface normal of the model point should be similar to the normal of its matching image
point. Figure 3.8 shows an example where, because of the error in the pose estimate, the
simple nearest-neighbor search results in non-useful correspondences, while the addition
of normal constraints on the local search improvesthe utility of the matching.

The ideal dissimilarity measure for comparing two unit vectors (normals) is the angle

68 Chapter 3. 3D-3D Object Localization

between the two vectors
Ag(f1, fiz) = cos ™ (fig - fip).

Thismetricisnon-linear in termsof the two normals, », and n, that we are comparing and
can not be decomposed into adissimilarity function as specified in Equation 3.6.

As amatter of efficiency, we would prefer alinear metric that is of the form of Equa-
tion 3.7, such as the metric

A, (fi1,02) = || — Ayl (3.8)

We need to characterize A,, to determine if it is suitable for our purposes. whether A,

bears any relationship to our desired dissimilarity measure A,. Without loss of generality,
we can rotate ri; and i, such that

'=Rn;=[100]" (3.9
f, = R fi; = [cosf sind 0] (3.10)
where 6 is the angle between ni; and n,. This step uses the facts that the normals are

unit vectors and that 3D and angular distances are invariant to rigid rotation. Now we can
smplify A, (i1, ip) to

A, (i, Aip) =[] — || (3.11)
\/(cose —1)2+9n§? (3.12)

— \/cos62 — 2cos0 + 1+ sin6? (3.13)

= 4/2(1 — cosb) (3.14)

. 0
= ’/48”‘]25 (3.15)
.0
= 29n§. (3.16)

Using the small-angle approximation for 4, 2sin % ~ 0 for small valuesof 4. If weplot this
function (see Figure 3.9) over thevalid range of ¢, which isbetween 0 and 180 degrees, then
we see that though this metric is not linear, it is close to linear and monotonic in é—only
diverging near 100 degrees. Thisis qualitatively sufficient for our purposes.

Our immediate goal is to efficiently compute correspondences. Proximity is our first
criteria, normal similarity isanother. Comparing both of these quantities at the same time
is a difficult proposition with no absolute solution. For example, assume we have three
pointsx = [0 0 0] with normal i = [100]7, x; = [0 0 1]7 with normal fi; = [100]7,
and x, = [000]" with normal fi; = [001]?. How do we decide which of x; and x> is
closer to x? x; hasacloser normal to point x, while x, iscloser to x in position; the choice
isnot clear.

The answer depends on what the application’s requirements are. Returning to the
previous example, isit more important to have a point whichis closer or a point which has
a closer normal vector? We have to decide which constraint is more important and how

3.3. 3D-3D Correspondence 69

Distance

NormalvectorDistance

2,50 7

2.00

1.50 V.

1.00 /3

0.50 /4

0.00

0.00 50.00 100.00 150.00

Figure 3.9: Plot of A(fi1,12) (the 3D distance between two unit vectors) with respect
to 0 (the angle between the two vectors). The (desired) angular distance is plotted for
comparison.

much more important it is. We can do this easily by weighting either the point or normal
and combining the vectors to form a higher-dimensional vector (e.g., Six dimensionsin the
previous example).

Each data point isthen stored in the k-d tree as the 6D vector
T 117
p= [X wn] (317)
= [z y z wny wny wn,]" (3.18)

where w is the scaling factor for the normals. Applying the Euclidean distance metric to
these points gives

A(p1,p2) = [|p1 — P (3.19)
= \/||X1—X2|| + ||wiy — wiy)| (3.20)
= /|1 — x| + w ||y — fig| (3.21)

whichisthedesired effect. For example, if we decide that an error of one unit in distanceis
just as undesirable as an error of .25 units between normals, then we can scale the normals
by setting « = 4 in the previous equation.

70 Chapter 3. 3D-3D Object Localization

Thus, no modification of the k-d tree and nearest-neighbor search technique isrequired
to add the additional orientation attribute for correspondence search. The weighting factor
w Isused to effect the desired constraint on the correspondences.

Depending upon other constraints of the system, other attributes can be added in a
similar manner. Curvature is another possible attribute for improving the correspondence
search in 3D-3D localization. The main drawback of curvatureisthat computing curvature
from range imagesis a particularly noise-sensitive operation. Another potential source for
attributesis color information. The key is to select attributes that can be reliably measured
and are invariant to object pose and other possible scene variations such as lighting.

3.3.3 3D-3D Correspondence Summary

Given an estimate of the pose, we have shown how to efficiently compute nearest neighbor
correspondences between visible model pointsand pointsin therangeimage. We have also
shown how the nearest-neighbor search can be extended to consider attributes other than
3D positional information.

One must be reminded that for 3D-3D localization, the use of additional attributes for
correspondence search will only be necessary in extreme situations. In generd, if the pose
is reasonably accurate, correspondences based on proximity will yield useful results (i.e.,
model point is matched to a point near the correct point of the object surface). Thisis
due to the nature of range-image data. The pointsin the image sparsely occupy 3D space.
Thus, as a point moves away from a surface, the space between the point and the surfaceis
usually empty. If theinitial position estimateistoo far or, perhaps, the current pose estimate
is closer to an object other than the desired object, then proximity may not be sufficient
for effective localization. Using additional attributes for the correspondence search may
alleviate the problem, but there are limits. If the pose estimate is nearly correct, proximity
will almost aways be sufficient for 3D-3D localization to converge to the true pose.

Now that we have a method for efficiently generating local correspondences, our goa
iSto use these correspondences to improve our estimate of the pose; thisis the topic of the
next section.

3.4 3D-3D Pose Optimization

This section discusses avariety of techniques dealing with the computation of pose of a3D
object (point set) with respect to observed 3D points. Werefer to thisgeneral areaas 3D-3D
pose optimi zation which includes the problems of 3D-3D pose estimation and 3D-3D pose
refinement.

The desired results of pose estimation and pose refinement are much the same: find the
pose of theobject intheimage. The assumptionsarequitedifferent; pose estimationisgiven
a set of correspondences while pose refinement is given an image and a rough initial pose
estimate. For pose estimation, the given correspondences are assumed to be correct and are
fixed. Pose estimation is very much a static problem. Because of this, the pose-estimation

3.4. 3D-3D Pose Optimization 71

problem is well suited to abstract formulations and theoretical analysis. In contrast, the
problem of primary interest here, localization, is a dynamic operation involving possibly
al information available from the image.

It must be noted that there is a medium ground between pose estimation and pose
refinement—hybrids of pose estimation and pose refinement. Some examples include the
work of Grimson [52, 49] and Lowe [85, 84, 89, 90] in which the pose is iteratively
computed by a sequence consisting of pose estimation and correspondence search. During
each iteration a new correspondence (found using local search) is added to the previoudy
accumulated set of correspondences and pose estimation is performed on the whole set.
The goal isto gradually increase the accuracy of the pose estimate by adding constraints
(correspondences).

Instead of jumping straight to our solution for 3D-3D localization, we will build up to
it by first discussing a simpler version of the problem—pose estimation. The form of the
pose-estimation problem of interest hereis 3D-3D pose estimation—to compute the pose of
an object given anumber of correspondences between a set of measured 3D (image) points
and a set of 3D points of our prior model. The 3D-3D localization techniques presented in
this thesis borrow much from the theory and practice of 3D-3D pose estimation.

We begin by considering the problem of 3D-3D pose estimation—a problem which has
along history [36, 1, 66, 58] and is generally considered to be solved.

3.4.1 3D-3D Pose Estimation

The 3D-3D pose-estimation problem isto compute the pose (arigid transformation) which
alignsthe 3D model points x; with their corresponding image pointsy; where: = 1, ..., n.
The rigid transformation is specified by the matrix-vector pair (R, t) where R isa3 x 3
rotation matrix and t isa 3D trandation vector.

Each correspondence provides three linear constraints on our unknown pose variables
viathe rigid transformation equation

Y. = RXZ' + t.
In general, the sensed pointsy; will be contaminated by noise:

yi = yiactual T 6

where 3 isarandom 3D variable. Assuming that /3 isunbiased (i.e., #’smeanis[000]7)

and follows anormal distribution (i.e., P(/) e~ %), then the optimal transformation is
the least-squared error solution—-thevalues (R, t) that minimize

F(R.t) =D [Rx; +t -yl (322)

Thisseemslikean easy enough problemto solve— f isquadraticinitsinput parameters—
until we consider rotation. A rotation in 3D space has only three degrees of freedom, yet

72 Chapter 3. 3D-3D Object Localization

is represented in our linear formulaby a3 x 3 matrix R. The three degrees of freedom
restrict the values of R in anon-linear way. R must satisfy the constraints

RR? =1 (3.23)
R| =1 (3.24)

where I is the 3 x 3 identity matrix. The first constraint requires the rows of R to be
orthonormal. The second constraint ensures that the rotation is rigid and not a reflection.
Capturing all these constraints while taking advantage of the linear matrix form of rotation
isdifficult.

The generally accepted solution to the rotation problem isto represent the rotation using
aunit 4-vector called aquaternion. A quaternion is composed of a 3-vector [« v w]? and a
scalar s. We will use the 4-vector

q=[uvw S]T

to denotetherotation. Therotation matrix, R, corresponding to q isdenoted by R(q) (refer
to Appendix B for the derivation).

The 7-vector .
p=|q"t"]
denotes the complete set of pose parameters/rigid transformation. Now we have three
equivalent notations for the pose which will be used interchangeably: (R,t), p, and
(R(q),t).

The best intuitive description of a quaternion is that the 3-vector of the quaternion
represents the axis of rotation and the scalar represents the angle of rotation. This is
not entirely accurate, as the quaternion is not ssmply an axis and angle representation.
Quaternions have many nice mathematical propertieswhich have proven useful for deriving
several solutions as will be described below. For the reader’s convenience, an overview of
quaternionsis provided in Appendix B.

Theimportance of the gquaternion representation for the 3D-3D pose-estimation problem
was first demonstrated by Sanso [116] in the field of photogrammetry and then later intro-
duced to thefield of computer vision by thework of Hebert and Faugeras[36] and Horn [66].
They independently showed that a closed form solution for (R, t) existed by formulating
the minimization of Equation 3.22 using quaternions to represent rotation. Their methods
are dightly different, but we will describe the general idea central to both. First, both sets
of points x; and y; are trandated so that the centers of gravity of both translated sets are
located at the origin. The centered points are denoted by x¢ and y§ respectively. Using the
centered points we can solve for the rotation quaternion ¢ independent of the trandation t.
The optimal quaternion can be computed as the eigenvector corresponding to the maximum
eigenvalue of a matrix composed from the points x¢ and y¢. The reader should consult
[116, 36, 66] for the derivation of thismatrix. With q and, hence, R determined, t iseasily
determined to be the difference between the centroid of the point set y; and the centroid of
the rotated point set Rx;.

3.4. 3D-3D Pose Optimization 73

Horn also showed that the closed-form solution generalizes to weighted least squares
as well. Haralick [58] and Arun [1] presented a closed-form solution for 3D-3D pose
estimation which compute R directly using singular value decomposition of a matrix
composed from the points x¢ and y. The quaternion formulation is favored over the SVD
formulation which is not as robust, numerically speaking.

If the errorsin the observed data are not normally distributed, | east-squares estimation
may be inappropriate as the resulting estimate is optimal only for normally distributed
errors. It may be necessary to consider a different objective function which is the optimal
estimator with respect to the error distribution of the data. Also, if we have statistically
significant errorsor outliers, then the closed-form solutionsfor (R, t) areno longer useful.
In fact, least-squares estimation will usually fail when outliersare present asthe estimation
isvery sensitive to large errors.

Unfortunately, the existence of outliers is the rule for computer vision applications
rather than the exception. When viewing objects, it is often true that parts of the object
surfaces are occluded by other objectsin the scene or shadows. When points on an object
are occluded or go undetected, the errors for the corresponding point of the model will be
much larger than the errorsfor visible points of the object. Thisisbecause these unobserved
points violate the assumption that the observation actually corresponds to a point in our
model.

Since the closed form solution is no longer valid, an iterative approach is probably
necessary to solve this problem. The best known method for iterative search is gradient-
descent search. The basic algorithmisto follow the path of best improvement (the gradient
direction) until nolocal moveimprovesthe estimate (i.e., until the minimum of our objective
function is reached).

There are a couple of well known problems with gradient-descent techniques. First,
they assume astarting positionisavailable. Thisisnot a problem for pose-refinement since
a starting point is already assumed. Second, gradient descent is a dave to local minima.
Depending on the starting point, the desired minima may or may not be reachable. For
example, Figure 3.10 shows an example search of a one dimensional function with two
starting positions, s; and s, that lead to different local minimar; and r,. Inthis example,
ro isthe desired result. The range [in, ma.] denotes the set of starting points that will
lead to the solution r; thisrange is referred to as ,’s basin of attraction. To ensure ahigh
probability of success, wewould like agood initial starting guess (i.e., |s — r| issmall) and
awide basin of attraction (i.e., |¢min — ¥max| iS1arge). In general, the size of the basin of
attraction and the initial error will depend on the complex interaction of the model and data
pointsthat are matched as well as the number and size of any outlier correspondences.

We can now step back and examine how our localization problem relates to the pose
estimation problem. The main similarity is that local minimawill be a problem, since we
will in general have some number of incorrect correspondencesto deal with. However, the
localization problemisstill moredifficult. First, wearenot given absol ute correspondences,
only arough pose as a starting point of the search. Correspondences are acquired using the
efficient local search described in Section 3.3; however, it is unlikely that any significant
portion of these correspondences will be correct unless the pose estimate is also correct.

74 Chapter 3. 3D-3D Object Localization

f) A

global
minimum
-~
- rzw
v basin of
attraction

Figure 3.10: Examples of local versus global minimaand basins of attraction.

We must deal with two problems:

e Poor initial correspondences. we must assume that at the start of the search most of
the correspondences will not be correct.

e Outliers: even when most of the correspondences are correct, we must be able to
handle outliers gracefully.

The next section will describe methods from the field of robust statistics to handle outliers.
The methods described there will lead to an approach that also overcomes the problem of
poor initial correspondences.

3.4.2 Robust Estimation

We return to the pose estimation problem described in the previous section. We are given
a set of n observed pointsy, and corresponding model points x;, and we want to compute
the pose (R, t) which will align the two sets. The additional complication is that some
percentage of the n correspondences will be incorrect, and we do not know which ones
areincorrect a priori. The errorsfor these incorrect correspondences will not fit a normal
distribution that describes the expected errors when comparing a point with its observation.
We look to the field of robust statistics [67, 96] for a solution to this problem. Robust
statistics provides solutions to the problem of estimating statistics reliably despite data
contaminated by outliers—data which do not belong to the desired sample population.

3.4. 3D-3D Pose Optimization 75

There are three classes of robust-estimation techniques that we will consider here:
outlier thresholding, median/rank estimation, and M-estimation.

Outlier Thresholding

Thefirst class of solutions, outlier thresholding, is the simplest and, hence, the most promi-
nent robust-estimation technique used in computer-vision applications such as localization.
Outlier thresholding is also the most efficient of the three methods, but, unfortunately, the
most unreliable. The basic idea is to estimate the standard deviation, o, of the errorsin
the data and eliminate data points which have errors outside the range [—ko, ko] where
k is typically greater than or equal to 3. One problem with this is that an estimate of o
may be grosdy incorrect if there are many outliers. Another problem is that outliers with
errorslessthan ko arepossible. If alarge number of these outliers exist, then least-squares
estimation will still be inaccurate. Another popular (and somewhat similar technique) isto
find the first mode of the distribution of data and throw out the data past that point [151].
This assumes that the number of outliersis much smaller than the correct data and that the
outliers do not harmfully alter the shape of the mode.

The essential problem with these methods is that a hard threshold must be used to
eliminate the outliers. This is an unfortunate Situation since regardless of where the
threshold is chosen, some number of valid data points will be classified as outliers and
some number of outlierswill be classified asvalid. Inthissense, it isunlikely that a perfect
method for selecting the threshold exists unless the outliers (or perhaps their distribution)
are known a priori. Aswill be discussed in Sections 3.4.2 and 3.6, a hard threshold also
creates a highly non-linear (non-smooth) objective function which causes difficulties for
numerical optimization techniques.

The above methods may not always be useful for the localization problem since the
initial correspondences and pose are likely to be incorrect anyway. Initially, these errors
may not have any unimodal distribution and the valid correspondences and outliers may
have indistinguishable error values.

M edian/Rank Estimation

The second class of robust estimators that we will discuss is the median/rank estimation
methods. The basic ideaisto select the median or kth value (for some percentile &) with
respect to the errorsfor each observation and use that value as our error estimate. Thelogic
behind thisisthat the median isamost guaranteed not to be an outlier aslong as half of the
dataisvalid. In fact, median estimation has the optimal breakdown point of any estimator
(smallest percentage of outliersthat are capable of forcing the estimate outside some finite
range).

An example of median estimators is the least-median-of-squares method (LMedS)
[96, 79]. LMedS computes the parameters p which minimizes the median of the squared
error:

p = agmin (med;z:(p)?)

76 Chapter 3. 3D-3D Object Localization

where z;(p) is the error in the :th observation and med; returns the median value of
it's argument over all values of ;. Generally, to solve this problem, we must perform
exhaustive search of possiblevalues p by testing | east-squares estimates of p for all possible
combinations of matches from model to observed data. Techniques like randomization and
Monte Carlo methods are necessary to make searches such asLMedS feasible. The need to
exhaustively try all combinations of estimates p underscores a major limitation of median
methods for localization. Localization is based on the idea that local search can solve the
task efficiently. Aswill become clear later in this section, the efficiency is gained vialocal
optimization of a smooth objective function. LMedS and other median methods are not
well suited to thistype of search, since the objectiveisthe error from a single data point.

LMedS bears a striking resemblance to a couple of classic methods in pose optimiza-
tion and object recognition: random sample consensus (better known as RANSAC) by
Fischler and Bolles[38], the aignment method of Huttenlocher and Ullman [70], and the
interpretation-tree (1 T) search of Grimson and Lozano-Perez [52]. The common ideaisthat
combinations of subsets of the data are used to estimate the (pose) parameters, after which
the evaluation of the parameters can be performed. In the case of RANSAC, alignment, and
I'T search, the evaluation involves checking the correspondence of other model pointswith
the observed data set, whilein LM edS it involves measuring the median of the errorsfor all
the model points. These methods solve a dightly more difficult problem than localization,
however, since no set of correspondences or initial pose estimate is assumed.

While median/rank techniques can be very robust, they are also extremely computa-
tionally expensive.

M -estimation

The third and final class of robust-estimation techniques which we will discuss is M-
estimation. M-estimation isageneralization of least squares. The“M” refersto maximum-
likelihood estimation.

The general form of M-estimators allows us to define a probability distribution which
can be maximized by minimizing a function of the form

E(z) =3 pl=) (3.25)

where p(z) is an arbitrary function of the errors, z;, in the observations. The equivalent
probability distributionto £(z) is

which, not coincidentally, is maximized by minimizing £(z). Thus, the M-estimate is the
maximum-likelihood estimate of P(z). Our choice of p(z) determines P(z) which is our
prior model of the distribution of errorsin our observations. It also determineswhether our
estimate will be sensitive to unusually large numbers of outliers.

3.4. 3D-3D Pose Optimization 77

As described previoudly, least-squares estimation is very sensitive to outliers. Least-
squares estimation correspondsto M-estimation with p(2) = 22 —equivalent to performing
maximum likelihood estimation of

P(z)=e" P

whichisreadily identifiable as the probability of » independent observations of a normally
distributed variable.

We can find the parameters p that minimize £ by taking the derivativeof £ with respect
to p and setting it to O:

dp 822
Z 9z Op
By substituting
10p
we get
or 0z;
— =)z —. 2
p : w(z;) z b (3.26)

which, if we momentarily forget that w isafunction of z, hasthe same form asif p(z) =
wz?—readily recognized as weighted-least squares. In this interpretation, the term w(z)
measures the weight of the contribution of errors of magnitude > towards a WLS estimate.

The weight term can also be interpreted as confidence in a given observation. For
pure least squares, we have w(z) = l—indicating that each error has equal confidence,
regardless of how large the error. A weight function, w(z), can be defined that has the
effect as outlier thresholding:

w(z) = { g') IZI Ez : (3.27)

In words, observations which have errors above the threshold ¢ areignored. Thus, we have
another way of specifying an M-estimator, as aweight function.

There are many other possible choices of p(z) to reduce the sensitivity to outliers on
the estimation. Table 3.1 lists severa possible functionsthat can be used for M-estimation.
Plots of the respective weight functions are shown in Figure 3.11 for comparison. All
except the Gaussian function (least squares) can be considered for robust estimation.

The five robust M-estimators—the threshold function, Sigmoid function and functions
by Tukey, Huber, and Lorentz—described in Table 3.1 strongly weight observations with
small errors while discounting observations with large errors. Looking at the plots of
the equivalent probability distributionsin Figure 3.12, we see that the distributions are all
similar to anormal distribution near the center of the distribution, but have noticeably larger
tails (i.e., ahigher prior likelihood for large errors).

In what follows, when we refer to robust M-estimation, we will be referring to the
minimization of afunction of the form of Equation 3.25 where (=) is derived from one

78 Chapter 3. 3D-3D Object Localization

Relative Weight

| | | Torentzian
1.00— — Gaussian
Tukey— *
0.90— _ Hupa”t!
Threshold
0.80_ —
0.70_ —
0.60__ —
0.50__ —
0.40_ —
0.30_ —
0.20__ —
0.10__ —
0.00__ —
| | | | | | Normalized Error
0.00 2.00 4.00 6.00 8.00 .

Figure 3.11: Plotsof w(z) for each of the M-estimatorslisted in Table 3.1 .

Relative Probability

| | Corentzian
100 oo — Gaussian
Tukey— *
0.90__ __ Huber™ ~
Threshold
0.80__ _
0.70— —
0.60__ _
0.50__ _
0.40__ _
0.30— —
0.20__ _
0.10_ _
0.00— e e == —
| | | | Normalized Error
—10.00 -5.00 0.00 5.00 10.00

Figure 3.12: Plotsof P(z) for each of the M-estimatorslisted in Table 3.1.

3.4. 3D-3D Pose Optimization

| Function Name | w(z) | Comments
Gaussian 1 |east-squares
estimation
{ 1 |z <o .
Threshold w(z) = 0 outlier threshold-
|z| > o . .
ing, o is the
threshold
Lorentz's function w(z) = (1#1(&)2) o controlswidth of
2 distribution [111]
z2\2\2
Tukey’sfunction | w(z) = { él_ (51 IEI § Z o controlswidth of
distribution [137,
58]
1 |z2|<o

Huber’s function

o controlswidth of
distribution [67]

Sigmoid function

B controls falloff

79

and c is the center
of the faloff, re-
lated to mixture of
Gaussian and uni-
form background
[62, 143]

Table 3.1: Table of weight functions for M-estimation.

of the five robust weight functions described above or a function with similar weighting
characteristicsto one of the above five functionsin Table 3.1.

M-estimators are often loosely mixed with weighted least-squares (WLS) estimation.
Haralick et al. [58] use an iterative reweighting technique based on WLS for the optimal
pose with respect to a robust M-estimator. In our experience, weighted least squares is
only appropriate when the correspondences are fixed as is standard for pose-estimation
problems.

As one can see, the weight term in M-estimation is a function of the pose p. If we
attempt to solve the M-estimation as a WLS problem, the function being minimized is
different from the objective function, and the computed step may take the pose into a
different minima. Thus the closed form (WLS) solution isno longer valid. The problemis
that if the magnitude of the derivative of the weight function is great, small changes in the
pose will have large changes on the function being minimized. A proper implementation
of M-estimationis likely more computationally intensive than outlier thresholding, but itis
likely to be better behaved.

80 Chapter 3. 3D-3D Object Localization

3.4.3 Robust Pose Refinement

Our original problem isto solvefor the pose, p, of an object given aset of correspondences
between visible object points x; and image points y;. Since we know that we will have
many outliersin our set of correspondences, we will use arobust M-estimator to solve for
p. Wewill minimize

> plzi(p)) (3.28)

where V (p) is the set of visible model points for the model pose parameters p (com-
puted using the methods of Section 3.2), z;(p) is the 3D distance between the sth pair of
correspondences. We define

z(p) = [[R(q)x; + t — yill

whereR (q) isthe 3x3 rotation matrix for the rotation component of p andt isthetranslation
component. Sincethereisno closed formsolutionfor thisproblem, aniterativeoptimization
technique such as gradient descent is necessary.

Unfortunately, minimizing £ isnot so straightforward. The correspondingimage points,
y:, areafunction of p aswell’:

yi = y(xi,p) = agmin|[R(q)x: +t — y]|

Ignoring thisfact can result in inefficiency and possibly incorrect results. This complicates
the minimization algorithm in practice.

The whole idea of localization is that we can start with a crude set of correspondences
and gradually converge to the correct correspondences and at the same time find the true
pose of the object in the image—much like active contour approach of Witkin, Kass and
Terzopoulos [75, 134] and the ICP algorithm of Bed and McKay [6]. Thus, as we search
the pose space, an improvement in £ should correspond to an improvement in p as well
as an improvement in the correspondences. If we hold the correspondences fixed for any
search, we are minimizing a different function.

Fortunately, with alittle work, we can perform the gradient-descent search to correctly
minimize the desired function . The basic agorithm for gradient descent search of a
function f () with initial guess z¢ is

Algorithm GradientDescent

Input: starting point x

Input: function f(x)

Input: gradient of f, V f(x)

Output: the location, x¢ of thelocal minimum of f(x)
1. repeat

71f attributesare used to find correspondences as described in Section 3.3.2, then thisfunction would have
to include the additional error term in this equation.

3.4. 3D-3D Pose Optimization 81

J e f(x)
dx + -V f(x)
A < argmin, f(x + Adx)
X ¢ X + Adx

until f — f(x) < ¢

return x

Noabkwd

The crucia step of Algorithm GradientDescent is the computation of A in Line 4—
generaly referred to as a line minimization [111]. If we take a step A in the gradient
direction, a proper evaluation of £ requiresthat we reevaluate the correspondences at that
step to determineif £ decreases with respect to the correspondences at that point. By doing
S0, the correspondences become dynamic, and the search begins to smulate the effect of
model pointsfloating in apotential field [75, 134, 29, 104, 133] in which the only force felt
by each point is from the attraction of the nearest point—its correspondence.

Another complication is that the set of points that are visible in the model is also a
function of p. With adight change of p, we could see alarge change in the set of visible
points. This can cause great problems for a line-minimization routine since changes in
visibility will cause discontinuous jumpsin £ as A varies. Even though £ (Equation 3.28)
is normalized, adding and removing many observations will often have large changes on
the value of . For example, consider a cube rotating in front of a camera. As the cube
rotates, different sides become visible. The equivalent to thisin localization is when the
localization search rotates the model to improve the pose estimate. As the estimate of the
model’s orientation changes, surfaces of the model may make the transition from occluded
to visible and vice versa. This will cause the value of £ to abruptly change. Figure 3.13
shows an example of this effect with a cross section of a cube and the value of £ as the
orientation changes.

To implement line minimization efficiently and reliably, £(p) must be smooth aong the
line (at least within the current basin of attraction). If weallow V (p) to vary, then we cannot
achieve smoothness during line-minimization: this is an unfortunate fact which we must
accept. Our solution is to compute the visibility set, V/(p), before the line minimization
and keep this set fixed during the line minimization.

One may wonder what the effect of changing correspondenceswill have on the smooth-
nessof £(p). Theanswer isthat £(p) isusually smooth when achange of correspondence
occurs. This is because the changes of correspondences usually occur continuously with
respect to z;. For example, consider the minimum distance = between point x and two
other points xo and x;. If point x isin between x, and x3, the distance function, z(x), is
maximum when the point is halfway between the two points and linearly decreases as it
approaches either of the points (see Figure 3.14). The important fact is that the functionis
continuous as the point moves. It isnot C'! as there are first derivative discontinuities at
each point and the midpoint between them as can be seen in the graph of = in Figure 3.14.

When using correspondences with attributes (e.g., points and normals as described in
Section 3.3.2), it isindeed possible that the minimum distance function will have disconti-
nuities. For example, we can modify the previous example to give each point a normal as

82 Chapter 3. 3D-3D Object Localization

E©)

aspect A aspect B

T viewing i

direction !

= visible surface aspect A | aspect B
..... hidden surface ‘

. aspect

image data change

Figure 3.13: Example of the fluctuation of £ due to changes in the pose and the set of
visible points. The graph shows the value of £ as the object rotates from one aspect to
another with respect to the camera.

correspondence z(x)
transition point

e model point
® image points

Figure 3.14: The minimum distance function with respect to the dynamic correspondences.

3.4. 3D-3D Pose Optimization 83

correspondence
transition point

|
|
-+—e : oo
|
|

model point
® image points —— using normals
w/o using normals

Figure 3.15: Correspondences which compare normals can create discontinuities in the
distance function z. Note how the transition point (where the correspondences switch) has
moved due to the influence of the normal constraint.

an attribute. 1f the two points have different normals, then the point at which the correspon-
dence shifts is no longer the midpoint (depending on the weight of the normal constraint).
Figure 3.15 shows this effect. Point x has a left facing normal and is, thus, more strongly
attracted to xo, whose normal is also facing left. Thus, as x approaches x;, the transition
point—the point where x becomes closer to x; than x, inthe 6D point and normal space—is
closer to x; than xo since the correspondence prefers xo because of its smilar normal. At
some point, the proximity to x; will overwhelmsthedifferencein surface normal directions.
Ascan beseenin Figure 3.15, the minimum distance function has a noti ceabl e discontinuity
at the transition point. However, such discontinuities are relatively small compared to the
discontinuities caused by changesin the set of visible points.

To complete our minimization algorithm, the only thing remaining to discuss is the
computation of the gradient of £(p). The presence of dynamic correspondences does not
cause any problems since the gradient is an instantaneous measure and the likelihood of a
model point lying exactly on a discontinuity is small enough to ignore.

When computing the gradient of £(p) (Equation 3.28), we have from Equation 3.26

% = Zw(zz) % %

7

It turns out that we can greatly smplify the following derivations with a few algebraic
manipulations. First, instead of using

z(p) = [[R(q)x; + t — yill

we redefine z; to be
2
z(p) = [|R(q)x; +t —yi".

84 Chapter 3. 3D-3D Object Localization

Thisonly requiresadlight change in w(z) to compensate for having arguments that are the
sguare of the distance rather than the distance itself. We will also assume that the model
points have been pre-rotated so that the current quaternion is q; = [000 1]7 which has
the property that R(q;) = I. Thisalows us to take advantage of the fact that the gradient
of R(q)x hasavery smple formwhen evaluated at q = q;:

J(Rx)
dq

x = 2C(x)". (3.29)
qar

where C(x) isthe 3 x 3, skew-symmetric matrix (i.e, C(x) = —C(x)T) of the vector x
(the derivation of Equation 3.29 is presented in Appendix B). Multiplying by this matrix
and a vector is equivalent to taking the cross product of x and that vector, i.e.,

C(x)v=xXV.

Using these facts, 22 can easily be derived:

=
0z I(R(q)x; -V
o = 2AR(ax+ =y (R(q) ap+t yi) (3.30)
_ 2(x;+t—yi)
= l AC(2)T (% 4+t — y1)] (3.31)
| 2Axi+t—yi)
_ l e] . (3.32)

Thus, very simple formulas define the gradient with respect to the rotation quaternion and
trandation vector.

We now have covered thepoint visibility problem, the correspondence problem and pose
optimization as they relate to the 3D-3D localization problem. In this section, we described
an optimization method, gradient descent with dynamic correspondences, that solves the
localization problem using a robust M-estimator. We can now put together the methods
discussed so far into a complete algorithm for performing robust 3D-3D localization.

3.5 Putting It Together: 3D-3D L ocalization

We have described the principal components of our 3D-3D localization agorithm: point
visibility, point-to-point correspondence, and robust pose optimization.

Here, we put everything together to present a pseudocode description of our complete
3D-3D localization agorithm:

Algorithm 3D-3D Localization
Input: initial pose p

Input: range image point set D

Input: object localization model

3.5. Putting It Together: 3D-3D Localization 85

Output: fina pose p
1. createk-dtreefor the points D

2. repeat

3 compute the set of visible model points: V(p)
4. Fo « E(p)

5. dp + —VE(p)

6 A < argminy F(p + Adp)

7 p < p+ Adp

8. until Fo— E(p) < ¢

9. returnp

The above algorithm is more or less a complete description of the localization as we have
implemented it. There are however afew practical details which were omitted for clarity
and are discussed below.

3.5.1 Scale'sEffect on Gradient Directions

A problem affecting gradient-based search methods is that the amount of change due to
rotation and trandation isrelated to the scale of the data. The problem isthat a unit change
of rotation resultsin achange in the error that is dependent on the scale of the vector being
rotated. At the same time, a unit change in trandation is independent of the scale of the
data. Roughly, asthe scale increases, the sengitivity of the rotation parameters increases at
aratethat is much faster than that of thetrandation parameters. Thisisnot agood situation
for agradient-based search. The implication isthat if we have a given problem and ssimply
scale the data, the algorithm which uses gradients will follow two different solution paths
when rescaled.

From the derivation of the rotational Jacobian in Equation 3.29, one can quickly derive
the gradient of the following example, atypical squared error between a point x at pose
{(q,t) and an observation y

f=(R(ge)x+t—y)
Assuming that q = q; (i.e, the point x has already absorbed the current rotation), the
rotational gradient is of theform

af

o AC(x) T (x+t—y) (3.33)
=—4dxx(t—y) (3.34)
and the trandational gradient is of the form
af
5t = 2x+t—y). (3.35)

If the scale of our data, x and y, (assume t is zero, or equivalently that it is aready
subtracted fromy), isroughly 3, then

0 :
‘%‘ ~ 8nf x| |y| o« X2

86 Chapter 3. 3D-3D Object Localization

using the relation between the angle, ¢, between two vectors and the magnitude of their
cross product, while

at| =TI

using the law of sines and assuming that x and y approximately form an isosceles triangle.
Thus, asthe scale of our dataincreases, the gradient direction shiftstowards a purerotation,
and vice versa as the scale decreases.

When the gradient is a pure trandation or pure rotation, gradient-based searches will
have poor convergence characteristics. Imagine that the desired pose is a pure trand ation.
The gradient with respect to rotation will dominate, and infinitessmal steps will have to
be taken during each line minimization to ensure that progress is made®. What would be
desirable for most applications is that the solution to a problem at a scale where rotation
and trandation have roughly the same influence would be the same (modulo scaling of t)
regardlessif the data were rescaled or not. To affect thisis not difficult, it smply involves
normalizing the data to some canonical frame (say a unit cube). It isagood ideato include
the normalization in any algorithm that will deal with objects of different sizes, otherwise
algorithm performance may unexplainedly get worse when applying it to a new domain.

This is related to numerical conditioning of matrices for solving linear systems [61].
For purely quadratic functions, a standard technique for rescaling the variables to form
spherical objectivefunctionsiscalled preconditioning. Preconditioninginvolvescomputing
an approximation of theinverse of the quadratic coefficient matrix of the objective function.
The system is premultiplied with this approximation and if the inverse approximation is
accurate the condition number of the linear system can be improved (the objective is
transformed to be more spherical than elongated). Preconditioning and scaling the data will
generally improve the performance of gradient-based searches.

Hartley [61] recently showed that the scale of the data can cause numerical problems
for Longuet-Higgens 8-point algorithm for computing the fundamental matrix of two
uncalibrated cameras. He showed that by ssimply normalizing the data before applying
the algorithm, the condition number of the solution matrix is greatly improved resulting in
reduced error. The same logic appliesto evaluation and use of the gradient in our case.

3.5.2 Efficient Gradient Search

Gradient-descent search (as described in Section 3.4.3) is notorioudy inefficient in practice
[7, 111]. While gradient descent solves the minimization problem, it does so inefficiently
since each gradient step requires the evaluation of the objective function’s gradient—
Equation 3.26, which isrelatively expensive to compute—and aline minimization. Ideally,
the gradient would point directly to the local minimum of the objective function, and the

8A seemingly straightforward solution is to iteratively move in pure trandations or pure rotations. This
may be effective in some cases, but it suffers from the same problems of pure gradient-descent search. For
example, if the error is pure trandation, a step in rotation that reduces the error will later have to be undone
to reach the desired result.

3.6. 3D-3D Locdlization: Experimental Results 87

solution would be found in one line-minimization step. In practice, thisis usually not the
case.

By definition, each successive gradient step direction is perpendicular to the previous
step direction (otherwise the directional derivative in the current search direction would
still be non-zero). This means the search must travel between two points by making a
sequence of 90 degree turns. Unless pointed directly toward the minimum, the search will
be accomplished by a potentially large number of 90 degree steps which zig-zag back and
forth towards the local minimum.

The problem is that each gradient step undoes some of the work of the previous step
unless the change in the gradient direction along the new step direction is perpendicular to
thepreviousstep (i.e., thechangein gradient isin the sasmedirection asthe current gradient).
Such adirectionisreferred to as aconjugate direction. Asthe search moves away from the
current point along the conjugate direction, the gradient direction of the point on the line of
search continues to be perpendicular to the previous step.

For efficiency, a variation of gradient descent that follows conjugate directions, the
conjugate-gradient algorithm [7, 111], is used. Conjugate gradient search avoids much
of the zig-zagging that pure gradient descent will often suffer from. For purely quadratic
functions, conjugate-gradient search can be shown to convergeto thelocal minimainn line
minimization steps, where . isthe number of free parametersof the objectivefunction. The
modification of Algorithms GradientDescent and 3D-3D Localization to utilize conjugate-
gradient searchistrivial [7, 111].

LineMinimization

Line minimization (Line 4 of Algorithm GradientDescent) is a critical step for any lo-
calization method using gradient-based optimization. The critical issue is that the choice
of line-minimization method will determine the number of evaluations of the objective
function being minimized. In our case, the objective function, £(p) (Equation 3.28), is
very expensive to evaluate—computing correspondences and summing up the weighted
errors between model and image points. It is, thus, important to minimize the number of
evaluations of F(p) to compute the minimum point, A, along the search direction. For the
line minimization, there are many techniques to choose from [7, 111]. We use a combi-
nation of golden-ratio bracketing and parabolic fits [111] to quickly isolate the minimain
the gradient direction with as few evaluations of £(p) and % as possible. If the bracket
cannot be found quickly, we stop the search and return the best value of A so far.

3.6 3D-3D Localization: Experimental Results

In this section, we present the results of our experimental evaluation of our 3D-3D local-
ization algorithm.

88 Chapter 3. 3D-3D Object Localization

Wefirst present examples of the performance of the surface-point visibility approxima:
tion (described in Section 3.2) used by our algorithm. This gives us a qualitative feel for
the accuracy and errorsin the approximation.

Next, we present a qualitative evaluation of the smoothness of our objective function
F (Equation 3.28) with respect to the various M-estimator functions p(z) described in
Section 3.4.2.

We then present quantitative results demonstrating the convergence of our algorithm
with respect to the various M-estimators.

To provide a baseline for comparing our algorithm with the state of the art, the con-
vergence experiments were also performed using Bed and McKay’s iterative closest point
algorithm [6]—the most widely used algorithm for 3D-3D alignment and localization.

Finally, we present convergence results for a randomized version of our 3D-3D local-
ization agorithm which shows that there is a potential for improving both accuracy and
efficiency of our algorithm.

Note, the models used in this section (with one exception®) were created using the
method of Chapter 2. The models created using this method generally contain on the order
of 30,000 triangles in the mesh. Currently it is not practical to perform localization on
surface meshes this dense. For the purposes of localization, we must decimate (reduce the
density of triangles) the triangle mesh.

There are several algorithms developed for triangle-mesh decimation including [119].
However, most of these a gorithmsare designed with graphics applicationsin mind—all that
isdesired is an accurate geometric approximation. For localization it isimportant that the
triangulation is relatively uniform across the object surface. Otherwise, the pose estimate
will be biased by the dense regions of the surface—the objective function will weight dense
regions more than sparse regions and the dense regions will thus be closer aligned to the
image data than the sparse regions. Fortunately, there is a decimation algorithm designed
with object recognition and localizationtasksin mind. Johnson’sdecimation algorithm[73]
optimizes the decimated mesh to keep the lengths of triangles nearly uniform, the result is
that the surface istriangulated by nearly uniform areatriangles—no long, thin or extremely
large triangles are generated as is the case with other algorithms. Johnson’s algorithm was
used to produce lower resolution surface meshes for each object using approximately two
to three-thousand triangles per object. Thisnumber of trianglesisreasonablefor testing our
3D-3D agorithm on the SPARC 20 workstations (resulting |ocalization time approximately
20 to 30 seconds for large initial errors). The geometric accuracy of the decimated model
is preserved in all but the high curvature regions of the surface. The decimated surface
meshes are sufficiently accurate for 3D-3D localization in range images with relatively
coarseresolution as used in thiswork—256 x 240 pixelswith aresol ution of approximately
1 mm.

9The model of the Sharpei dog is courtesy of Heung-Yeung Shum [127]

3.6. 3D-3D Locdlization: Experimental Results 89

=S
S ——

A

¢
v

V4
N
N
Y
A
8
L
A AN 2

7, ZaN
LI

o

AV,

Z
2
V5
I
X
K

53
4

w»;e
S

N
2NN\
SO
AN

2

D

Figure 3.16: Three views of the mug object generated using our surface point visibility
approximation.

3.6.1 Qualitative Analysisof the Surface-Point Visibility Approximation

Wefirst briefly demonstratetheaccuracy (or rather inaccuracy) of our surface-point visibility
approximation as described in Section 3.2. Presenting afew simple examples will give us
aqualitativefeel for the accuracy and errorsin our visibility approximation.

The case of interest isthe approximation of hidden surface point removal. Asdescribed
in Section 3.2, the visibility function for a given surface point is efficiently approximated
by alookup-table (LUT) approach. The discrete sampling of the visibility LUT resultsin

errorssince there will invariably be abinin the point’s visibility LUT which contains both
occluded and unoccluded viewing directions.

The best example of these approximation errorsis the ceramic mug model from Chap-
ter 2. Figure 3.16 shows several views of the mug in which the visible surface triangles
are drawn using our approximation for visibility. For our purposes of localization, we only
use the center point of each triangle. A visbility LUT is defined for each center point
and the triangle is drawn if the center point is determined to be visible. Note that, in all
views, severa triangles are missing along the border between visible and occluded surface
points on the mug. Also notethat no trianglesare drawn if their center point isoccluded by
other surface triangles. Thisis true because our algorithm for LUT generation errs on the
safe side with respect to our localization task. Generally, the number of such incorrectly
classified pointswill be very small in relation to the total number of visible surface points.

9 Chapter 3. 3D-3D Object Localization

3.6.2 Qualitative Analysis of the Objective Function

We now consider the smoothness!'%and shape of our objectivefunction £ (see Equation 3.28)
with respect to the various M-estimators, p(=), that we may use for robust localization. For
3D-3D localization to be successful, it is necessary that I/ is smooth and has a wide basin
of attraction. That is, wewould prefer £/ to be easily and reliably minimized using standard
non-linear optimization techniques!! over wide ranges of initial pose estimates.

Smoothnessis not an obvious property of £ (p). We have changes in the set of visible
points (V(p)) as p changes. The correspondences vary with respect to p aswell. Add to
that the non-linear effect of the robust M-estimators (described in Section 3.4.2) and it is
not obvious how smooth F(p) might be.

To ingpect the shape of E(p), we computed the values of F(q) over several range
images containing known objects in known positions. Here, we show some plots of F(q)
for arangeimageof aceramic dog*®. Theintensity image corresponding to therangeimage
used for this analysis is shown in Figure 3.21 (@), an off-center view of the range data is
shown in Figure 3.21 (b), and the alignment of the dog model in the image is shown in
Figure 3.21 (c). The correct pose of the dog was manually estimated.

Barring large amounts of noise, partia occlusion, or shadows, we would expect the
correct pose estimate to be alocal minimaof any of the robust estimator functions described
previoudy and thisisindeed the case.

For each of the M-estimator functions p(z) from Section 3.4.2, we plotted the value of
FE aong various lines in pose space which cross the desired pose. The plot in Figure 3.17
shows the values of £ for each function p(z) along a pure transation through the correct
pose (at point + = 0). The axis dimensions of the plot is in millimeters and the range of
the plot is 120 mm. The dog is approximately 120 mm high. Figure 3.18 shows the value
of F for each function p(z) aong a pure rotation through the correct pose (at point 0). The
axis dimensions of the plot is in degrees and the range of the plot is 80 degrees. Finaly,
Figure 3.19 shows the value of £ for each function p(z) aong a rotation and translation
through the correct pose (at point 0). The axisdimensionsof the plot isin combined degrees
and millimeters and the range of the plot is 80 degrees and 120 mm.

One can see that the F is relatively smooth for all M-estimator functions except the
threshold function. Once the poseis close enough to the desired pose, the threshold version
of I/ begins to become smoother but still has many bumps and local minima created by
the differential nature of the threshold. On a closer look (see Figure 3.20), we see that
FE is smoother for the smooth down-weighting M-estimators such as the Lorentzian than
it isfor the Gaussian. In practice, this difference in relative smoothness results in poorer
performance by the Gaussian.

10By smoothness of afunction, we refer to lack of bumps and local minimaalong the function’s landscape.
Optimally, we prefer a purely quadratic function which has a single globa minimum and no other loca
minima.

1 Randomized optimization techniques such as simulated annealing [43, 62, 111, 140] are not considered
here but are discussed in the futurework in Chapter 7.

2The mode of the Sharpei dog is courtesy of Heung-Yeung Shum [127].

3.6. 3D-3D Locdlization: Experimental Results 91

140 | | __ Gaussian
Huber

Threshold
— Turey™ *

120
/

0.80_

0.60__

0.40__

| | | | | Translation (mm)
60.00

Figure 3.17: The variation of £ aong a line of trandation in pose space for five M-
estimators. Thetrueposeisat + = 0. The x-axisrepresents trandation in millimeters. The
rough range of the graph is [—60, 60] millimeters (about half the length of the dog).

| | Gaussian
— Huber ~°
— Threshold

Tukey™ *

—Rotation (degrees;
40.00 (deg)

Figure 3.18: The variation of £/ along a line of pure rotation in pose space for five M-
estimators. Thetrueposeisat + = 0. The z-axisrepresents rotation in degrees. The rough
range of the graph is [—40, 40| degrees.

92 Chapter 3. 3D-3D Object Localization

I | Gaussian
Huber ~

Rlicylvacyl
— Threshold
Tuley™ *

3.00_

250

2.00—

1.00__

| | | | | Rotation and
-40.00 -20.00 0.00 20.00 40.00 Translation
(degrees +
1.5 mm)

Figure3.19: Thevariation of £ along alineof trandation and rotation in pose spacefor five
M-estimators. The true poseisat = = 0. The x-axis represents simultaneous rotation and
trandation. The rough range of the graph is [—60, 60] millimeters and [—40, 40] degrees.

— Lorentzian

Gaussian
Threshold’

.
..........

| | | | | Translation (mm)

Figure 3.20: A close-up of a piece of the graphs of the function £ for the Lorentzian,
Gaussian and Threshold along aline of trandation in pose space. The Threshold and Gaus-
sian versions of £ have many small local minimawhich causes problems for optimization
algorithmsin practice.

3.6. 3D-3D Locdlization: Experimental Results 93

3.6.3 3D-3D Localization Convergence Results

We now present quantitative results demonstrating the convergence of our algorithm using
the various M-estimators described in Section 3.4.2. To provide some basis for comparison
with the state of the art, we al so repeated each experiment using Bes and McKay'siterative
closest point algorithm [6]—which is currently the most widely used algorithm for 3D-3D
alignment and localization.

We performed experiments on images of 4 objects: the dog, the mug, the car, and the
duck. For each experiment, we took a range image of our object in a known position—
using the robotic positioner or by manually estimating the object’s precise position. Each
image contains 256 x 240 pixels, each pixel containing a 3D point. The test images are
shown in Figures 3.21, 3.22, 3.23, and 3.24. These figures show the intensity image view
corresponding to the range finder’s view, an off-center view of the range-image points, an
overlay example of an initial (incorrect) pose estimate as used in the experiments and an
overlay of the object model on the intensity image at the estimated position.

Each experiment consists of 100 trials of the 3D-3D localization algorithm from a
randomly generated initial pose estimate. The initial pose estimates were generated by
perturbing each pose by a random trandation vector and a random rotation. Each trial
was performed with the same magnitude of initial pose error: 20 millimetersin trandation
and 30 degrees of rotation. We wish to emphasize that the initial errors are not uniformly
distributed between 0 and 20 millimeters of trandation, and 0 and 30 degrees of rotation,
but are exactly 20 millimeters and 30 degrees, respectively. Thus, there are no easy (i.e.,
close to the actua pose) initial estimates in our set of trials. Our algorithm is capable
of convergence from larger errors but characterizing the convergence range in genera is
difficult since convergence will vary greatly with respect to the input data. The objects
presented here havedimensionsof at most 200 millimeters, thus20 mmtrandation errorsare
significant. Combining thiswith 30-degree rotation errors makes for a difficult localization
task in general.

For each image, we performed the convergence experiment on four versions of our
3D-3D localization algorithm. The versions differ only by the M-estimator weight function
which is used. The following weight functions were used: Gaussian (constant weight),
Lorentzian, Tukey, and Huber. See Section 3.4.2 and Figure 3.11 for a review of these
functions. To account for large initial pose errors it is important that the errors = are
normalized accordingly so that the robust estimators do not immediately discount correct
correspondences. The errors are normalized by a progressively decreasing normalization
factor o (i.e, use 2’ = Z). Thisis effectively the standard deviation which controls the
width of the M-estimator weight-functions (e.g., a 3o threshold). In these experiments, we
begin with ¢ = 12 mm and reduceit to 6 mm and then to 3 mm as the algorithm progresses.

In addition to the four versions of our algorithm, we a so executed the same experiment
using Bed and McKay's iterative closest point algorithm [6]. ICP iteratively solvesfor the
closed-form pose estimate (using technigques such as those by Sanso [116], Faugeras and
Hebert [36], Horn [66], or Arun [1] as described in Section 3.4.1) given correspondences
between model pointsand the closest pointsinthe 3D image data. Asdescribed previoudly,

9 Chapter 3. 3D-3D Object Localization

these closed-form techniques are very sensitive to incorrect correspondences and outliers.
Our implementation of ICP follows the typical approach and uses a hard threshold for
removing outliers. The threshold is progressively decreased from o = 12 mmtoo = 3
mm as in the implementation of our algorithm as described above.

We manually verified the results of each trial and determined the number of correct
trials—those that correctly align the model with the image—for each experiment. The
results arelisted in Table 3.2.

From these resultswe seethat the robust wei ght functions have much better convergence
propertiesthan apureleast-squared error objectivefunction (corresponding tothe Gaussian).
The Tukey and Lorentzian weight functions perform dightly better than Huber’s weight
function. We speculate that thismay be duethe first-order discontinuity in the Huber weight
function which may create morelocal minimathan the smooth Lorentzian and Tukey weight
functions. 1CP is not successful with such large initial pose errors. For each convergence
trial, our localization algorithm typically performed 40 conjugate-gradient steps and 180
function evaluationsfor each trial (approximately 25 seconds on a SPARC 20 workstation).
The ICP algorithm typically performed 30 iterations per trial.

There is nothing special about the images used for these tests (i.e., they weren't hand
chosen, but rather randomly selected from alarge set of sample images). They were taken
with a plain black background which would suggest that the localization task would be
trivial. Thisisabit deceptive since they do contain a considerable amount of background
noise (random points floating in space), much of which is near the object. The range data
of the dog image (Figure 3.21) is the cleanest of the four which partly explains the better
convergenceresultsfor that image. Thisnoiseistypical of thelight-striperangefinder when
imaging black pointsin the scene. The duck and car images are made difficult by the fact
that they are nearly singular views. A dlight twist of the duck will reveal many previously
hidden surface points. The mug image is a tough problem for any localization algorithm
because other than the handle the object is symmetric. Thus, alocalization search could
settle on any rotation that matches the body of the mug to the image while down-weighting
or ignoring the large errorsfor the handle. Surprisingly the robust M-estimators were very
adept at locating the precise pose of the mug, though the above problem was the main
source for the trial failures. The dog object is also very tricky, the problem isthat it has a
lot of low curvature surface area which leaves two degrees of freedom. The localization
task is also more difficult when one considers the large change in point visibility from the
initial to final pose. So though these |ocalization tasks may appear smpleor trivial to most
readers, there are many subtleties to beware of .

Seeing the poor convergence results for ICP in the experiments, we performed two
more experiments with variations of 1CP. We repeated the duck image experiments using
a weighted-least squares version of ICP and using the Gaussian and Lorentzian weight
functions. This was done to determine if the use of hard thresholds (and their known
susceptibility to local minima as demonstrated in Section 3.6.2) were the reason for ICP's
failureand whether smoothly weighting theerrors(asdone by the other robust M-estimators)
would offer an improvement. The results of these experiments are shown in Table 3.3.
The results showed that by changing to a smooth down-weighting function (the ICP w/

3.6. 3D-3D Localization: Experimental Results

(@)

(c)

(b)

(d)

1%
Vi v

3
%
R
X
&
R
K
e

0L
XK
v‘e.vl‘ Ly

]
=
AVAE'
v (v
raararars

VAVAVATA
\AV YaVava'
2V 74

Figure 3.21. The Sharpel dog convergence test data: (@) the intensity image view, (b)
an off-center view of the 3D range data points, (c) atypical initial starting point for the

convergence tests (20 mm trangdlation error and 30 degrees rotation error) (d) an overlay of
the dog model at it's estimated actual location.

Object % Correct

Gaussian | Lorentzian | Tukey | Huber | ICP
dog 65 98 100 | 8 | 24
mug 52 70 67 67 2
car 37 54 61 57 4
duck 50 60 58 58 9

Table3.2: Resultsof the convergence experimentswith variationsof our 3D-3D localization

algorithm and ICP. The initial errors were of uniform magnitudes: 30 degrees of rotation
and 20 mm of trandlation.

96 Chapter 3. 3D-3D Object Localization

(@)

(©) (d)

v \'A’F'ﬂgw"‘ﬁiv.
i e

Figure 3.22: The ceramic mug convergence test data: (a) the intensity image view, (b)
an off-center view of the 3D range data points, (c) atypical initial starting point for the
convergencetests (20 mm trand ation error and 30 degreesrotation error), and (d) an overlay
of the mug model at the estimated location.

Lorentzian case) the convergence isimproved. It aso showed that using a hard threshold
is dightly better than none at al (the ICP w/ Gaussian case). However, neither attempts
managed to improve the convergence to approach that of any of the versions of our 3D-3D
localization algorithm.

We offer a few hypotheses about ICP's relative inability to converge to the desired
location for the above images:

1. 1CP does not anticipate changes in visibility sets when taking a step in pose space.
It often inadvertently forces itself out of the local basin of attraction by stepping to
aview with a significantly different set of visible points. For example, in the duck
example (see Figure 3.24), the view is singular. A dlight rotation introduces many
newly visible surface points on the duck. Thus, creating a situation where ICP has
jumped to a position of a function which it has little information about. ICP was
originally designed to register two (true) 3D data sets. Range images are incomplete

3.6. 3D-3D Localization: Experimental Results 97

(@)

(©) (d)

7 0%)
VA

PN

=N\ N
NS AV Ay
ey Sl

A SIS A Vavinava)
KNS ASINPDAGO
Ny A1V v AV AN ATA Yl
)

Figure 3.23: The toy car convergence test data: (a) the intensity image view, (b) an off-
center view of the 3D rangedatapoints, (c) atypical initial starting point for the convergence
tests (20 mm trandation error and 30 degrees rotation error), and (d) an overlay of the car
model at the estimated location.

3D data sets with respect to an object. The overlap between model and image data
will necessarily be limited and ICP was not designed with thisin mind.

2. ICP does not cope well with inaccurate correspondences. In our experience, it does
well if all or most of the image data belongs to the object or if the initial pose error
issmall. The images (a) through (c) have a substantial amount of noise. Range data
points are randomly scattered about in the background (see Figure 3.24) and are often
found to be correspondences. The closed-form pose estimation methods do not deal
gracefully with such inconsistent correspondences.

3. ICP attempts to make a global decision using information (correspondences) which
isoften only valid locally.

Theseresultsdemonstratethat using dynamic correspondenceswithin agradi ent-descent
search of a robust objective function is a key component to achieve a wide degree of

98 Chapter 3. 3D-3D Object Localization

(@)

(€) (d)

K
VR

OIS
S
REEZROI RN
‘ 'ﬁr"ﬂ%m SR
SO

Y/

VAN vivd

IS %y

SN)
=

i\
R

%
d

X
IYAY

ZaN
S

O\
N
S
0L

>

&
=

<
<.
as

25
A
=

1\
Vi))
Rabs)

)

2
]

VXU RaTaSE

Figure 3.24: The rubber duck convergence test data: (@) the intensity image view, (b)
an off-center view of the 3D range data points, (c) atypical initia starting point for the
convergencetests (20 mm trand ation error and 30 degreesrotation error), and (d) an overlay
of the duck model at the estimated location.

Object % Correct
Lorentzian | ICPw/ Lorentzian | ICP w/ Threshold | ICP w/ Gaussian

| duck | 60 | 17 | 9 | 7 |

Table 3.3: Results of the convergence experiments with variations of 1CP on the duck
image. The leftmost entry is the result of our 3D-3D localization algorithm using the
Lorentzian weight function and is intended as a point of reference.

convergence for object localization in noisy image data.

3.6.4 Randomization Experiments

Viola[140] demonstrated amethod for aligning shapes by maximizing the entropy between
two functions. A key result of his work was the demonstration of a randomized gradient-

3.6. 3D-3D Locdlization: Experimental Results 99

Figure 3.25: Depiction of three iterations of the randomized localization search. Each
image shows an overlay of the randomly selected points from the model surface which
were used for localization during the iteration.

descent algorithm which increased the speed of the algorithm and reduced the susceptibility
of his algorithm to local minima (the randomness helps the algorithm to get “unstuck”).
While local minimais also a problem for amost every localization algorithm, including
ours, the opportunity for algorithm speedups viarandomization may be critical for practical
applications.

In this section, we present the result of an experiment to test the convergence of a mod-
ification of our 3D-3D localization algorithm to use a ssmple randomization strategy. The
modification isto perform each gradient computation and line minimization (Lines 6 and 7
of Algorithm 3D-3D Localization) of our search using only a small randomly sampled
subset of our model data to measure the objective function. Since the accuracy of the
localization result will increase with the number of samples of the error, we progressively
increase the number of random samples just as we decrease the standard deviation ¢ in
the above convergence trials. In these randomization experiments, we doubled the num-
ber of surface point samples as we halved the value of . The rationale is similar to the
simulated-annealing search algorithm [111, 43, 62, 24] which starts out with a high degree
of randomness in the search and gradually settles to non-random search. With a small
number of point samples we may not be able to accurately estimate the pose, but we may
be ableto quickly find a better estimate. Aswe get closer to the true pose, the convergence
rate improves thus we can afford to add more points as we get closer to get the desired
accuracy of the pose estimate. Figure 3.25 shows a snapshot of three iterations of the
randomized localization algorithm. Each overlay shows the randomly selected pointsfrom
the model surface which were used for localization during the iteration. The number of
sampled pointsis gradually increased as the pose estimate converges to the true pose.

We performed three experiments with the following randomization schedules: 200 to
400 to 800, 100 to 200 to 400, and 50 to 100 to 200. The results of these experiments (again
performed using the duck image of Figure 3.24) are presented in Table 3.4.

100 Chapter 3. 3D-3D Object Localization

Object % Correct

Non-Random (3000) | 200,400,800 | 100,200,400 | 50,100,200
duck 60 57 52 34
speed (seconds) 275 8.5 6 45

Table 3.4: Results of the randomization convergence experiments. Each column lists
the number of surface point samples used in the randomization schedule, the number of
percentage of correct results and the execution timein seconds. All these experiments used
the randomization modification of our 3D-3D localization algorithm with the Lorentzian
weight function. Theinitial errorswere of uniform magnitudes: 30 degrees of rotation and
20 mm of trandation.

As these results show, the convergence accuracy gradually decreases as the random
set sze decreases. The speedup is significant, however, thus the potential exists for
applying randomization techniques to capitalize on the relationship between speedup and
convergence and produce an algorithm that is faster and has wider convergence on average.
For example, running the randomized algorithm multiple times from dightly different
starting points may be more efficient and more likely to converge to the desired global
minima. Thiswork isbeyond the scope of the current thesis.

3.7 3D-3D Object Localization: Summary

We have described the principal components of our 3D-3D localization agorithm: point
visibility, point-to-point correspondence, and robust pose optimization. Our algorithm
iteratively optimizes an objective function which is specified to reduce the effect of noise
and outlierswhich are prevalent in real image data.

Since an iterative algorithmis required, the computation of the objective function must
be as efficient as possible. Our solution utilizes an efficient and accurate approximation to
compute point visibility with respect to the pose and camera parameters. Point correspon-
dences are efficiently computed using k-d trees and nearest-neighbor search. We showed
how to extend the point correspondence search to includeattributes, such assurfacenormals,
in the nearest-neighbor search.

The most significant contribution of this chapter is our method for minimizing arobust
M-estimator via dynamic correspondences with standard non-linear optimization tech-
niques. We described the use of robust M-estimators to define an objective function over
which to optimize the pose such that the effect of noise and outliersis greatly reduced. We
showed that optimizing such objective functions requires the use of dynamic correspon-
dences to properly evaluate the objective function. The optimization was implemented
using standard techniques such as conjugate-gradient minimization.

3.7. 3D-3D Object Localization: Summary 101

Our results demonstrate that our 3D-3D localization algorithm using a smooth down-
weighting M-estimator, such as the Lorentzian, can consistently and efficiently converge
from rather large initial pose errors despite the presence of large number of extraneous
range-image points around the object. The convergence results showed that our algorithm
has much wider convergence ranges than Bed and McKay’s ICP agorithm [6]. We aso
showed that through randomization, the potential exists for a substantial speedup and
convergence improvement.

This ends our description of our 3D-3D localization algorithm. Experiments presented
in Section 3.6 show that this algorithm has a acceptable convergence time and produces
accurate results. We will now describe our extensions of thiswork to 3D-2D localization.
Our discussion begins with building object models for the 3D-2D localization task and is
followed by adescription of our algorithm for 3D-2D localization.

Chapter 4

Object Modeling for 3D-2D L ocalization

The previous two chapters have described our approach for 3D object modeling and 3D-
3D localization. This chapter focuses on the problem of building models for the purpose
of localizing 3D abjects in 2D intensity images—from here on referred to as 3D-2D
localization.

In many ways, model building for 3D-2D localization is similar to the problem of
building 3D models, which was addressed in Chapter 2. As in that work, here we seek
to build a model—for the task of localization—from several real images of the object
while automating the process as much as possible. 3D-2D localization is an inherently
more difficult problem than 3D-3D localization because the appearance of an object in an
intensity image is dependent on a combination of geometric and photometric properties
of the object rather than geometry alone as in the 3D-3D case.! The choice of model
representation is also not immediately obvious as the intensity images are 2D projections
of 3D phenomena.

4.1 Problemsand Approach

In this section, we overview the issues, problems, and our approach to building the models
for 3D-2D localization.

Before we can begin to build our object models for 3D-2D localization, we need to
know what information about the object will be required to solve thistask. In order to
localize an object in an intensity image, we must establish some correspondence between
alocalizable feature of the object and its 2D projection in theimage. What features should
be used? Once we have decided on a certain set of features, we need to decide upon a
model representation that allows us to predict the appearance of those features in various
images of the object. After the features and model representation are decided upon, we

IPhotometric properties and effects do play a role in range-image acquisition (e.g., effects such as
interreflectance and specular reflection can cause problems for light-stripe range finders and stereo vision).
In general, these effects are ignored except during image processing. The range sensor effectively abstracts
away these effects.

102

4.1. Problemsand Approach 103

then face the problem of building such models from real images of the object. We break
the following discussion into three sections:

1. What features should we use for 3D-2D localization?
2. How should we model the features?
3. How do we build such amodel from a set of images of the object?

The focus of this chapter is on Question 3, but before jumping in we will answer the first
two questions—thus motivating our approach to 3D-2D localization (Chapter 5).

4.1.1 Featuresfor 3D-2D L ocalization

If we areto align a 3D object in a2D intensity image, we need to correlate the model to its
theimage. There are severa types of features which have been used to correlate/matching
an object with itsintensity image:

¢ Pixels/Regions: intensity/color/texture

e Interest points. corners, junctions, inflection points, distinguished points

Edge curves: lines/arcgellipsesfit to edgel chains

Edgels: edge points extracted by the edge operator.

We will discuss the use of each of these features for model-to-image correlation.

One possihility isto correlate regions of constant surface properties on the model with
intensity, color or texture of pixelg/regionsin theimage. Thisisdifficult because theimage
intensity of an object region may vary greatly because of changes in surface orientation,
lighting, shadows and reflections. Predicting pixel intensity or color requires detailed
knowledge of scene geometry, surface reflectance properties, light source properties and
positions, and the camera s geometric and photometric parameters. Without being able to
predict sensed intensities or colors, matching prediction with observation for localization
will be very error prone.

There have been several recent findings and results which may make pixel/region corre-
lation feasible in the near future. Nayar and Bolle [100] discovered a photometric invariant
involving the ratios of intensities between two neighboring points on a smooth surface.
Maxwell [93] has developed techniques to analyze and segment color images into con-
nected regions of similar material properties. Texture information may vary because of
the factors which influence intensities. However, texture the spatial properties of certain
textures may be reliably detectable—using methods such as Krumm’s [78] local spatial
frequency— over awide range of lighting and scene variations. Changes in texture appear-
ance caused by changes in orientation and scale can be predicted since the rough object
location is known during the localization process. A drawback is that while many objects
have distinctive texture, most objects do not. Thus, texture alone will not be sufficient to

104 Chapter 4. Object Modeling for 3D-2D Localization

localize most objects. Viola[140] presented an approach that minimizes the entropy of the
correlation of the model shape with the intensity image rather than simple pixel intensity
correlation. This approach avoids some of the above problems for some simple object
shapes and reflectance properties. His approach is discussed further in Chapter 6.

A popular class of featuresused for structurefrom motion[135, 130, 124, 106] and robot
navigation [98, 91, 92, 135] are interest points and corners. Definitions of these interest
points may differ but most follow the same principal: small image windows with distinct
intensity profiles. Some definitionsincludeimage windowswith high standard deviationsin
intensity, zero crossings of the Laplacian of the intensity, or corners. Tomasi [135] defines
a criterion for interest points based on the likelihood that the point can be tracked from
image to image. A similar feature is found by analyzing edge curves extracted from the
image and selecting junctions of multiple curves and high curvature (corner) points. These
kind of features are useful for motion estimation because they are distinct and can reliably
tracked fromimagetoimage. Such interest pointsare usually too sparsefor localization and
verification applications, however, they may be good candidates for recognition indexing
schemes where sparseness is more of an asset.

Another possibility isintensity edges—discontinuities in the image's intensity profile.
Using present day techniques, intensity edges arethe most reliable, well-understood, practi-
cal, and, not coincidentally, the most popular feature for object recognition and localization
in intensity images. Intensity edges occur at points in the scene where there are geometric
discontinuities(e.g., occluding contoursof objects), surface orientation discontinuities(e.g.,
peak edges or corners) or surfacereflectance discontinuities(i.e., transitionsof surface color
or reflectance). These intensity edges have a direct correlation with points on the object
surface; however, there are other sources of intensity edges which may appear on an object
but are not intrinsic to the object—examples include cast shadows on the object, specular
reflections, or digitization noise. The intensity edges that are intrinsic to the object are
themselves subject to external sources of variation. For example, occluding contours will
only be apparent intheimageif the background reflectsa sufficiently different intensity than
the object, or surface markings may only be visible when viewed from certain directions
or under certain light source conditions. However, in general, the intrinsic discontinuity
sources of an object are detectable over wide changesin illumination and can be accurately
predicted without precise knowledge of the light source.

There are severa types of intensity edge features. Curves (e.g., line segments, arcs,
ellipses, etc.) fit to a collection of edgel data is the most common [47, 85, 110, 48, 49,
122, 54, 3, 15, 113]. Junctions and corners of the fitted curves are also a popular choice of
feature[81, 15, 110, 54]. Junctionsand cornersof edge curvesaremost similar totheinterest
points described previoudly. Models consisting of a collection of curves and junctions can
belocalized by matching them to theimage curves and junctions. Thesefeaturesaresimple
to specify and the process of curve fitting greatly reduces the combinatorics of matching
since the number of curves and junctionswill invariably be much smaller than the number
of edgels in the image. However, using edge curves immediately constrains the type of
objects for which localization/recognition systems will be applicable.

4.1. Problemsand Approach 105

Another option is to dispense with relying on a high-level feature extractor and use
the raw edgels themselves. This is the approach taken by [14, 143, 124]. Other than the
pixel intensities, edgels are likely the lowest-level information available from the image
that we can use for localization. This approach has been used recently by quite a few
researchers [143, 17, 14, 124] developing methods following the alignment paradigm of
Basri and Ullman [139]. Using the lowest-level edge data to perform localization makes
some sense since localization is not necessarily concerned with the same combinatoric
matching problem as in the general object-recognition problem. Thus, more data is not
necessarily a bad thing. This reduces the number of assumptions made by the algorithm
and redtrictions placed on our system. The agorithm will also be more robust to the
small variationsin edgel data which have significant effects on curve fitting or higher level
features extracted from the edgel data. Also, collections of edgels can represent a wide
variety of shapes.

For the reasons discussed above, we will use intensity edgels as our basisfor localizing
3D objects in intensity images. Of course, using combinations of color, intensity, texture,
and intensity-edge information would be preferableif practical, but for thisthesis, wefocus
on using intensity edgelsfor 3D-2D localization.

4.1.2 Edgel Modelsfor 3D-2D L ocalization

Now that we have decided on the type of feature to use for localization, we must choose
an appropriate representation. The key requirement for our representation is the ability to
efficiently predict the appearance of the object edgels from any given viewing direction or
arbitrary camera parameters. We must also keep in mind the difficulty of automatically
building the model from real images. Inthe following we consider two general approaches.
2D representations and 3D representations.

2D Edgel Models

By 2D representation, we refer to representing an object by a set of representative 2D
images (views). In our case, each view would be an edge image.

Each view is a discrete sample from the space of object locations and orientations, as
well aslighting conditions and camera parameters. To model an object using thisapproach,
we must sample a sufficient number of viewsto cover the expected variationsfor the given
task or application. The number of required views can be quite large for even afew degrees
of freedom since the number of required views is roughly exponential with respect to the
number of degrees of freedom which will be modeled. For example, for each degree of
freedom, if we take n samples along each degree of freedom, we will have n¢ samplesin
total whered isthe degreesof freedom. Inaddition to sampling the view space of the object,
for the task of localization, this space must be made continuous, thisis done by connecting
edges in neighboring views so that intermediate views can be interpolated. Computing
these correspondences between two views is nearly an impossible task in general, since
given any two neighboring views, the set of visible points is almost never the same.

106 Chapter 4. Object Modeling for 3D-2D Localization

Shashua [124] proposed an approach for modeling reflectance and geometry by computing
correspondences using optical flow. Gros [54] described a framework for matching line
segments and points by approximating the motion between views as an affinetransformation
and searching for an affine transformation using a clustering technique similar to the Hough
transform [2].

Much work has been done using 2D representations dating back to Basri and Ullman
[139]; this and other work using 2D representations is discussed in Chapter 6. This
representation is most popular for ease of building models, however, the price that is paid
is accuracy and applicability. The motivation for most of the 2D representations is for
the problem of object identification or indexing. Only the alignment method of Basri and
Ullman [139] is suited and intended to localize and verify an hypothesized pose; however,
their method is only applicable to orthography or scaled orthography.

Other basic types of 2D representation include efficient methods for image correlation
and pattern recognition. Murase and Nayar [99] introduced the eigenspace representation
for image sets. Using their method, the object is represented by alarge number of intensity
images. Eigenspace analysis is used to reduce the images to pointsin a low-dimensional
subspace (the principal components of the eigenspace). Image matching can then be
efficiently performed in the subspace. Huttenlocher, Lilien and Olson [69] used this
method to represent binary edgel images of the object, which is more robust to changes
in lighting. They cleverly showed that the correlation between vectors in the subspace is
approximately the same as a Hausdorff distance between the binary edgel images. The
Hausdorff relationship makes their formulation somewhat insensitive to partial occlusion
as well. The eigenspace techniques are essentially an efficient form of image correlation
and suffer fromall the same problemsas correlation. Another related techniqueisthe use of
artificial neural networksto solve pattern matching problems|[107, 33, 114, 97]. Implicitly,
the networks learn a functional mapping between images and object/view identification—
equivalent to image correlation and pattern recognition. Localization and verificationisnot
possible in this framework, though these methods show promise for solving the indexing
problem.

3D Edgel Models

The other choice for representation is a 3D representation. Here each edgel is represented
as an edgel in three dimensions in, preferably, the coordinate system of the object. The
advantage of thisrepresentation isthat we only need one model for all possible object poses
and camera parameters. The main drawbacks of such a representation are how to acquire
such amodel from 2D dataand how to efficiently predict the appearance from agiven view.

Much of the previous work [47, 85, 122, 3, 15] on 3D representations of edges for 2D
recognition and localization tasks have been based on CAD modeling and acquiring the 3D
edge model from CAD geometry; however, most of this work has been limited to smple
features such as straight edge segments, arcs, and junctions [81, 15, 110, 54]. In generdl,
CAD modeling is labor intensive and often results in crude models.

4.1. Problemsand Approach 107

Our approach is to treat edgels just like surface points in the 3D-3D case. That is,
the model is a collection of edgels (oriented points) on the object where each edgel has a
computationally efficient, local visibility criteria associated with it. Given such a model,
we can easily and accurately predict appearances of the object’s edges continuously with
respect to posefor any given cameramodel. Therest of this chapter describes our approach
to build an object centered, 3D edge model.

4.1.3 Building 3D Edgel M odels from Real I mages

We have decided to build an object-centered, 3D edgel model from a set of intensity images
of the object. Many of the problemsinvolved with thistask are very similar to the problems
of Chapter 2. Thestepsof view acquisition, view alignment, and datamerging seem rel evant
for the 3D edgel modeling problem as well. The basic problems involved in building 3D
edgel models from real images are:

1. Distinguishing background from foreground edgels

2. Converting 2D datato 3D data

3. Aligning all of the data into the same coordinate system

4. Merging al the edgel datato form a single 3D edgel model
5. Dealing with occluding contours

We now will briefly overview our method for building 3D edgel modelsfor 2D localization,
while addressing these problems along the way.

We begin by acquiring a set of intensity images of the object that adequately samples
the range of viewing directions and, if desired, lighting conditions that are expected when
applying 3D-2D localization. The intensity images are then processed to provide sets of 2D
edgels. We must then deal with anon-trivial complication—creating a3D model from a set
of 2D projectionsof the 3D object. There are possible waysto get 3D information from sets
of 2D information such as structure from motion [82, 135, 130, 124, 106] or epipolar/stereo
analysis[45, 131]. None of these are currently practical, however.

Fortunately, we have a trick up our deeve, namely, the 3D modeling techniques de-
scribedin Chapter 2. That is, weareableto builda3D model of an object’ssurfacegeometry.
Using the 3D surface model solves the first three problems: the foreground/background
problem, 2D-to-3D conversion, and alignment of the 3D data. In fact, acommon theme of
our work on 3D-2D localization is to use 3D information, whenever possible, to solve the
2D problems.

Once al the 2D edgel data is mapped and aligned in 3D model coordinates, the 3D
edgel data must be merged into a single, unified edgel model. Our agorithm for merging
edgelsisclosely related to the consensus-surface a gorithm of Chapter 2 and isappropriately
called the consensus-edgel algorithm. The idea is to find clusters of smilar edgels from
multiple views. Much like the surfaces from range images, the edgels that are extracted

108 Chapter 4. Object Modeling for 3D-2D Localization

from intensity images are often noisy, and spurious edgels are frequently detected due to
reflections, specularities and image noise. Thus, we do not want every observed edgel as
part of the fina model. Only stable edges—edges that are consistently detected over many
views—are desired. By searching for a consensus of edges from the observed edgel data,
we can guarantee that only stable edgel generators are part of the edgel model.

The consensus edgel algorithm is not sufficient for our purposes however; it is only
applicablefor building modelsof rigid edgel generators. That is, edgel swhose positionwith
respect tothe 3D model isfixed (e.g., surfacemarkingsor corners). Theother classof edgels,
non-attached edgels, arethose resulting from occluding contoursof an object such astheside
of acylinder. Occluding contoursappear to be detectable over many views. For example, as
acylinder rotates about itsaxis, the projection of the side contoursremains stationary in the
2D image. However, the object coordinates of the apparent contour generator is constantly
changing asthe cylinder rotates. Thisisbecause the contour generator is changing between
views (i.e., a different point is generating the perceived contour). To model the edgels
generated by occluding contours, we can do no better than modeling the geometry of the
object surface. Since we already have an accurate surface model, we utilize the surface
geometry to predict the appearance of occluding-contour edgels for localization.

Figure 4.1 shows a diagram of the technical sections of the thesis. This chapter has
two principal components dealing with the modeling of rigid edgels and occluding-contour
edgels. Rigid edgels (including surface markings and corner edgels) are modeled from a
large set of sample images of the object. We first describing in detail each step of our
rigid-edgel-modeling algorithm: view acquisition, view alignment via 2D to 3D mapping,
and edgel merging using the consensus-edgel algorithm. We then discuss the geometric
curvature analysis required to model occluding contour edgels of an object.

4.2 View Acquisition

Thefirst step of the edgel-modeling processisview acquisition—sampling intensity images
of the object from various views and processing them to produce 2D edgel setsrepresenting
each view. Asin Chapter 2, we do not explicitly dea with the problem of view selection.
We simply assume that we are given a set of viewsthat provides adequate coverage for our
purposes.

To compute edgels from an intensity image, the usual process involves convolving the
image with an edge operator and linking the maxima of this operator into edgel chains.
The choice of edge operator is rather arbitrary, and there are a number of them to choose
from. The Canny operator [16] and Deriche operator [30] are the two most popular edge
operators for computer-vision applications.

We use the Canny operator, although other operators would give similar results. The
Canny operator is the most common edge operator and implementations are found in
nearly every computer-vision software package. It isimplemented as afirst derivative of a
Gaussian convolution operator, which Canny [16] showed to be avery close approximation
of the optimal convolution operator for detecting step edges. The Canny operator measures

4.2. View Acquisition 109

3D Edgel Modeling

Rigid and Convex Edgels Occluding-Contour Edgels

View Acquisition | Section 4.2

Curvature Analysis | Section 4.5

/
View Alignment

2D to 3D Edgel
Mapping

'

Data Merging Section 4.4

Consensus-Edgel
Algorithm

Section 4.3

Figure4.1: Organization of this chapter.

the edge strength at each point in theimage. All pixelsthat are not local maximaof the edge
measure are suppressed. The remaining pixelsare local maxima of the Canny operator and
are linked to form edgel chains. The linker uses hysteresis thresholding [16] to connect
adjacent edgels that may not be as strong as other edgels on the chain. This prevent edges
from being broken into smaller pieces randomly due to fluctuations in the measured edge
strength along the chain. Linking also eliminates many spurious points from the immediate
neighborhoods of strong intensity edges.

The result of the Canny detector and edgel linking is a set of raw edgel chains. Fig-
ure 4.2 (a) shows an example of typical raw edgel chainsfrom a Canny operator. As can
be seen in that figure, these chains are jagged—much like a staircase—due to the discrete
nature of the image pixels. For the purposes of modeling and localization, smooth edge
datais very desirable (thiswill be made clear later in this and the next chapter).

Edge smoothness can be achieved by applying a smoothing operator over each edge
chain [88, 147]. Figure 4.2 (b) shows an overlay of the edgel chains resulting from such
a smoothing operation. As can be seen, the smoothing removes much of the noise and
aliasing effects (kinks) from the edgel chains while maintaining accuracy of the edgel
positions (an important aspect for localization). In fact the edgel positionsfor most edgels
are improved to sub-pixel accuracy after the smoothing removes the discrete kinks in the
chains. For details of the smoothing operation, the reader is referred to the the paper by
Wheeler and Ikeuchi [147]. Smoothing also makes the computation of edgel normals much
morereliable. After smoothingthe edgel chains, it ispossibleto subsamplethe edgel chains
if desired to get a denser set of edgelsthan pixel resolution.

Theresult after image acquisition, edge detection, and smoothing isaset of edgel chains

110 Chapter 4. Object Modeling for 3D-2D Localization

(a) Raw Edges (b) Smoothed Edgels Overlayed

LH J 3 /
J
J
J
J
(
J
f f (
{ }
i / P
Iy
A I
f %
J Aoy
)) "‘ 7
| | Iy
f 4 7 A
I 7/ fJ
i / I 7 Vi
(1 pe A "v‘ 7
\ S A o
\ 7 4 A
v / e J
».»; 7 A vA' 7
SRR

SN R A
SOCESOCT

Figure4.2: An example of (a) raw and (b) smoothed edgel chains (overlayed over the raw
chains).

for eachimage. E; = Uje; ; denotesthe set of edgel chainsfor view i. ¢, ; = {Uy, ..., U, }
denotes the jth edgel chain of view . Each edgel chain is an ordered list of 2D edgels
pointswhere U, denotesthe (continuous) 2D coordinate of the kth edgel point inthe chain.

After acquiring 2D edgel sets from various views of the object, these edgels must
somehow be mapped into acommon 3D coordinate system. Next, we describe our method
for mapping and aligning the acquired 2D edgelsin 3D model coordinates.

4.3 2D to3D: View Alignment

The goal of this section isto map al the 2D edgelsinto a 3D coordinate system so that the
datafrom all views can be merged to form the localization model. The problems (repeated
from Section 4.1) that we face include:

¢ Distinguishing background from foreground edgels

e Converting 2D datato 3D data

4.3. 2D to 3D: View Alignment 111

projected
3D edgel chain

image edgel

triangulated 3D
surface

center of
projection

Figure 4.3: An example of mapping a 2D edgel onto a 3D triangulated surface.

¢ Aligning all the datainto the same coordinate system

We can use the 3D modeling technique and calibrated-positioning system of Chapter 2 to
virtually eliminate the above problems while enabling us to align all of the edgel datain
the object’s 3D coordinate system.

To begin, a triangulated surface model of the object is built using the techniques of
Chapter 2. We assume that the pose of the object in each intensity image is known—for
example, using the calibrated object positioner as described in Section 2.3. The positionis
denoted by the rigid transform Ro_;, which represents the motion between view 0 and the
view 7.2 We can use view 0 as the object coordinate system. All the 2D edgel datawill be
transformed to this central view.

Given the 3D surface model and its pose Ro._; in the image with respect to the object’s
coordinate system, we can project the 2D edgels onto the 3D model—in a sense, texture
mapping the edges onto the model’s surface. This is accomplished much like ray tracing;
for each edge point in theimage, we follow the ray from the camera’s center of projection,
through the edgel in the image plane, and into the scene. We then determine which surface
trianglesintersect with the ray and select the closest of these triangles. Figure 4.3 shows an
example of the edgel mapping process.

Though this operation is intuitively ssimple, in practice there are severa changes of
coordinate system involved in mapping the 2D edgel to the model’s coordinate system. In
particular, we have 3 coordinate systems to deal with: image, camera, and object. The
image coordinate system is in terms of pixels while the others are defined as 3D Cartesian
framesin metric units. The transformations between coordinate systems are:

Xe = Rc<—me (41)

2Asin Section 2.3, Ro—; isa4 x 4 homogeneous transformation matrix.

112 Chapter 4. Object Modeling for 3D-2D Localization

K model center

image

plane
\¢ U (v
u
w

P

Ye
ZW Xc
A
image "

center camera center

Figure4.4: A diagram representing the relationshi ps between the various coordinate frames
used in the analysis in this chapter.

u=R,_.x. (4.2)
U= [w] (43)

where x,,, and x. are the positions in model and camera coordinates respectively, u =
[u v w]T are the image projection coordinates, and U = [U V]* are the 2D image pixel
coordinates. R.._,, is arigid transformation that transforms model coordinates to an
orthographic camera-centered frame. The camera-centered frame is defined such that
[00 0]7 isthe center of projectionand [0 0 1]7 isthe camera'sfocal axis. R,._. transforms
the Euclidean camera coordinates to (possibly non-Euclidean) 3D projection coordinates.
Thistransformaccountsfor scaling factors(such as aspect ratio) and trand ation of theimage
center to non-zeroimage coordinates. Theimage projection coordinatesare specified so that
thefinal transformationis purely a perspective projection. Figure4.4 showstherelationship
between these coordinate frames.

The 2D edgel observations are defined in the image coordinate system, but to build 3D
edgel models of an object, it is necessary to have these measurementsin a 3D coordinate
system, preferably the model coordinate system. There are several ways that one could go
about mapping these edges. We begin by projecting the triangles of the 3D surface model
into the image (much like z-buffering) using the equations presented above. Then, given
the 2D edgel coordinates, U, we can quickly determine which triangle intersects the ray
corresponding totheedgel. First, we convert theedgel U to aviewing directionv in camera

4.3. 2D to 3D: View Alignment 113

coordinates by inverting the projection transform

U
v=R1 |V (4.9
1
We then compute the precise intersection of ray v with triangle 7;
x, = 2 (4.5)
n;-v

where n¢ and c{ are the normal and center point, respectively, of triangle 7; in camera-
centered coordinates. Once the intersection point is computed, we can then transform the
point to the model coordinates by inverting the model-to-cameratransform:

-1
Xm = R.Z, X

We have now shown one way to map 2D edgels to 3D model coordinates. There are
many other possible strategiesto perform this mapping; however, nonewill be significantly
more efficient than the one above. In any case, since model building will be done off-line,
efficiency is not areal concern, thus, thereis no need to discuss other possible methods.

As each 2D edgel in a chain is mapped to 3D model coordinates, the ordering of the
edgels in the chain is maintained so that the 3D tangent direction for each edgel may be
estimated. For example, the tangent vector, t,, of the ;th edgel in achainis

r X1 — Xy
D X x|

where each x; is the mapped point corresponding to 2D edgel U;. The ith 3D edgel in a
chain isthen represented as the point and tangent vector pair <xi, ‘EZ»> . Thismapping solves
the foreground/background problem. Only the edgels originating from the surface of the
object are mapped to three dimensions; the other edgels may be ignored for purposes of
modeling the object.

The basic approach that we have presented is not fool-proof however. It will often fail
for edgels on or near occluding boundaries when the edgel rays do not intersect with our
surface model. Figure 4.5 shows an example of this problem. Several factors contribute
to the misalignment of occluding contour edgels with the surface model. Some degree of
variability in 2D edgel location is due to edge detection, image discretization, and image
noise. These errors will be propagated to the 3D mapping. Also, we can expect some
errors to be introduced by the 3D mapping because of alignment/calibration error (in our
calibrated image acquisition system) and 3D surface model error. Dueto all of these factors
an edgel corresponding to an occluding contour will randomly fall on either the object side
or non-object side of the actual edge position. Thus, there will always be many instances
of edgel raysthat are generated by occluding contours of our object but do not intersect the
object. We can rectify this problem by testing not only for intersection but also for near
misses—edgel rays passing near triangles on the occluding boundary of the surface model.

114 Chapter 4. Object Modeling for 3D-2D Localization

INANNAY INANIN N

Figure4.5: An occluding boundary edgel which does not project onto the model surface.

center of
projection

Figure 4.6: The shortest distance between aray and the surface triangles when they do not
intersect.

Occluding boundary triangles are easily detected when the model is projected into the
image. Thesetriangleswill be adjacent to atrianglewhichisnot visible (using the visibility
tests of Section 3.2) from the given pose—thus creating an occluding boundary. The
occluding boundary triangles can be checked separately for the near miss condition. We
calculate the shortest distance between the edgel ray and any triangle on the model surface
(see Figure 4.6). If this distance is within some threshold (for example, say 2 mm), then
we can accept it as a potential 3D edgel in the model. The 3D coordinate of thisedgdl is
the point on the edgel ray that is closest to the model (again see Figure 4.6).

This strategy seems like a reasonable solution. The result, however, is still unsatis-
factory. The problem is that while the 2D projection of the surface model’s occluding
contour may appear smooth, the contour is not smooth in three dimensions. Figure 4.7 (b)

4.3. 2D to 3D: View Alignment 115

(@) (b) (c)

Figure 4.7: An occluding contour mapped to the object. (a) original 2D view, (b) another
view of the mapped contour in three dimensions shows that it is not smooth in three
dimensions, (c) the same contour after smoothing.

shows this phenomenon. The cause of the jagged 3D edgel is the triangulation along the
occluding contour of the model surface. Much like the problem with jagged edges after
edge detection in Section 4.2, we can use a smoothing operator to remove the kinksin the
edge while retaining most of the original edge shape. In this case, we are smoothing a 3D
edge chain. The smoothing operator of Wheeler and Ikeuchi [147] isaseasily applied to 3D
edgel chainsasit isto 2D edgel chains. The smoothed result is suitable for our purposes.
Figure 4.7 shows an example of such a 3D edgel before and after smoothing.

Asonemay imagine, the use of athreshold to attach edgel s to occluding boundaries may
be prone to errors. Often there will be edgels from the background that are near occluding
boundaries of our object. Such mistakes are not critical as they are indistinguishable
from spurious edgels that will invariably appear on the object. A successful agorithm for
merging the 3D edgel datamust account for the presence of extraneous and spurious edgels
in the set of observations. The algorithm must minimize the possibility of including such
edgelsin thefina model.

We have described how 2D edgels are acquired from aview of our object and how these
edgels are mapped onto the surface of our object. In this section, we have shown how to
align all of our edgel datainto an object-centered coordinate system via an edgel-mapping
process using a surface model. This process nicely eliminates two difficult problems: first,
it directly solves the foreground/background problem—a problem that is likely unsolvable
automatically using any other method; second, the correspondence problemisnow tractable
as al of the edgels are transformed to the same coordinate system which allows a natural

116 Chapter 4. Object Modeling for 3D-2D Localization

and reliable way to match and compare edgels.

The next problem is how to convert alarge set of edgel observationsto a single model
representation of these observations. Our solution, the consensus-edgel algorithm, is the
subject of the next section.

4.4 View Merging: the Consensus-Edgel Algorithm

In this section, we will describe an algorithm for merging the 3D edgel sets acquired
by using the methods of the previous two sections. Given multiple aligned edgel sets, the
guestion ishow to combinethe edgelsfrom all the viewsto produce a unified representation
of the edgel generators of the object. The main problem here is distinguishing random and
extraneous edgels from those which will be visible over awide variety of scenes. We must
also be prepared for a significant amount of uncertainty in the edgel positions due to:

¢ Edge detection and discretization
e Imagenoise

¢ View alignment/calibration error
e 3D surface model error

This problem bears much similarity to the merging problem for 3D surface model building
described in Section 2.4.

One difference between the surface and edgel case is that the topological problem is
much smpler with edgels. In fact, topology is not necessary at all as we only need to
build amodel of edgels (points and tangent directions). Modeling the connectivity of the
edgels may be useful for other tasks but is not necessary for the current localization task.
We do not have the equivalent of the implicit surface representation to ssimplify the data
merging process, nor do we need such a device. The main reason for using the implicit
surface representation in Chapter 2 was to obviate a difficult problem of topology. If edgel
connectivity isdesired, thisinformationwould be easily obtainable as the topology of edgel
chainsisquite simple.

Asinthe 3D surface-merging problem, our edgel-merging algorithm must compensate
for noisy/spurious edgel observations. Again, in the presence of such observations, there
is little or no basis to trust that a single observation should be part of the object model.
Our goal isto build models of edgel generators which are stable over many views of the
object. We wish to take advantage of multiple observations to get a better estimate of the
true source of the edgels with respect to the object’s coordinate system. Simultaneoudly,
we wish to exclude spurious and random edgels from the final model. Again, we are drawn
to the concept of consensus as the basis for merging the observed data.

The basis of the merging agorithm is to find consensus sets of similar edgels from
variousviews and compute an average of these edgel sto add to themodel. Asinthesurface-
merging problem of Chapter 2, the concepts of consensus and similarity are relevant for

4.4. View Merging: the Consensus-Edgel Algorithm 117

edgel merging. For the edgel-merging case, smilar edgels are defined to be observations of
the same edgel generator on the object. In the surface-merging case, similarity was defined
in terms of surface location and normal direction. In the edgel-merging case, it is much
the same; we define edgel similarity in terms of edgel location and tangent direction. Two
edgels are grouped as similar if the distance between the two is below a threshold and the
angle between their tangent directionsis smaller than athreshold. We define the predicate

A 2 true Xo — X1 ||< 64) A (|tg - t1| > CcOSH,,
SameEdge|(<x0, t0> , <X1,t1>) = { false (()|t|herW|Se ||) (‘ ‘)
(4.6)
which determines whether two surface observations are sufficiently close in terms of lo-
cation and tangent direction, where 6, is the maximum allowed distance and 4,, is the
maximum allowed difference in tangent directions. Much like the consensus-surface algo-
rithm, consensus is defined as the minimum number of similar observed edgels required to

instantiate an edgel generator in the model.

Our problem now is where to begin the search for consensus edgels. In the surface-
merging case, we only needed to fill al the voxelsin the volume grid; the order in which
we proceed is irrelevant as each voxel is independent of the other voxels. In the current
problem, all we have is an unorganized set of edgels with no obvious way to proceed.

Having no other information than the edge sets themsel ves and without the benefit of a
representational aid like the volumetric representation for surfaces, it makes sense to begin
the search for consensus edgels at one of the observed edgels. A good edgel to start withis
onewhichislikely to be aconsensus edgel (i.e., an observation of astable edgel generator).
One possibility isto begin with large edgel chainsfirst. 1t isunlikely that noise or random
external events will result in the detection of very long edgel chains. Also, long edgel
chains are often indicative of significant geometric or photometric features of the object
which are often detectable over many views.

Our strategy will be to take each 3D edgel chain—Ilongest first—and check each edgel
of thechainto seeif it belongsto aconsensus edgel. We performalocal search of the edgels
from all other views to find the nearest edgel in each view. These edgels are tested for
similarity to the current edgel and if a consensus is found, we add the averaged, consensus
edgel to our final model.

Figure 4.8 shows an example of the local search for a case where we have four views.
The edgelsfound to bein the consensus can be eliminated from further consideration. Thus,
we are able to identify all consensus edgels from our set of 3D edgel observations.

As in the consensus-surface search, the local search for nearest edgels can be imple-
mented efficiently using k-d trees [42]. A k-d tree of 3D edgelsis built for each different
view of the object. A nearest-neighbor search of the respective k-d trees can be computed
in O(logn) expected time where n isthe number of edgelsin the given tree.

The consensus-edgel algorithm can now be specified more precisely. In the algorithm
below e; ; denotes the jth edgel chain of view «. Again, an edgel chain comprises alist of
3D edgels—3D points and tangent direction pairs (x;, t;).

Algorithm BuildConsensusEdgel Model

118 Chapter 4. Object Modeling for 3D-2D Localization

local tangent
search search average
range range edgel

LI ,’
—_— \ — \ —

Figure4.8: Thestagesof aconsensus-edgel search for thegrey edgel (center |eft). Eliminate
candidates first using proximity, then the tangent direction constraint, then average the
remaining edgels to form a consensus edgel.

Input: 3D edgel sets £;,: =1,.., N
Output: consensus edgel model £
1. Ef — @

2. for each F;

3 do Build K-D Tree(;)

4. for eachedgel chaine, ; € U, F;, largest |e; ;| first

5, dofor all (x,t) € e;;

6 do <Xc, t., count> — ConsensusEdgeI(<x,f:> , Ey)
7 it count > 0,y0rum

8 then Ef — Ef U <Xc,£c>

9. return £y

Algorithm BuildConsensusEdgelModel makes use of an important subroutine: Consen-
suskEdgel. Algorithm ConsensusEdgel performsthe local search around the neighborhood
of the given edgel to estimate the average of the edgels that are determined to correspond
to the same edgel generator on the object. Algorithm BuildConsensusEdgelModel uses a
threshold 4, to determineif the support for a given edgel is sufficient to add it to the
final edgel model.

Algorithm ConsensusEdgel
Input: edgel <x,f:> of chain ¢; in edgel set F;
Input: 3D edgel sets £y, k= 1,.., N

4.5. Modeling Occluding Contours for 3D-2D Localization 119

Output: average consensus edgel and count: <xwg, fasgs count>
Xaug & X
toug — T
count + 1
for each edgel set F/; # E;
do (x.,t.) «NearestEdgel (£, x)
if SameEdgel ((x,), (x...))
then x,,, + Xauy + X
tavg ¢ bavg + te
count <+ count + 1

ROoOo~NO O~MwWDNPE

1
0. Xgyy “Xavg
7 t(l’U
11, t,, g

lItavgll

12. return <Xavg, f:avg, count>

Algorithm NearestEdgel returnsthe closest edgel (interms of position) from aset of edgels
to the given edgel. Three thresholds are required and are almost identical to those required
for the consensus surface algorithm (see Section 2.4). 6, and6,, arerequiredfor the predicate
SameEdgel, which is defined in Equation 4.6, to determine how close the edgel points and
tangent directions must be to consider them as similar. These can be estimated based on
the variations expected from the observed data. 8, 1S the consensus threshold which
determines the required number of similar edgels for consensus. This threshold must be
chosen while considering the number of total views and the number of views from which
the edgel sourcesmay bevisible. ,,,,... will determine how stable the edgels must be for
inclusion in the model.

Theresult of Algorithm BuildConsensusEdgel Model will be the set of consensus edgels
over the edgel setsfrom all views. The above description omits one bookkeeping detail for
clarity. We must keep track of which edgels have been used to add a consensus edgel to the
final model and eliminate these edgels from further consideration.

We now have a method to merge rigidly attached object edgels (i.e., edgel sources
whose position is fixed on the object). This method overlooks a large source of edgels,
namely occluding contours. Occluding contours are quite different from rigid edgels and
thus require dightly different representation and treatment for localization. It is unlikely
that the same point on the contour generator would be observable from a sufficient number
of views for consensus to be applicable. Since the appearance of occluding contours is
based purely on local geometry of the generator’s surface, we can utilize our 3D surface
model to predict the appearance of the surface’s occluding contours. Thisisthetopic of the
next section.

4.5 Modeling Occluding Contours for 3D-2D L ocalization

Occluding contours are the boundaries observed at points on a smooth surface where there
is a trangtion from visible surface points to occluded surface points from a particular

120 Chapter 4. Object Modeling for 3D-2D Localization

viewing direction. Occluding contours are often detected as edges in images since the
object surface and background are often of distinctly different shades, colors or intensities.
Thus, occluding contours are prominent features for object recognition and localization.
For smooth convex surfaces, every point on the surface can generate an occluding contour
from many viewing directions. For example, each point on a sphere generates an occluding
contour in the image for all viewing directions ¥ such that

v-n=0
where ii isthe surface normal at the given point. This set of ¥’'s spans the tangent plane of
the surface at that point.

For localization, we need to be able to predict the appearance of occluding contours
fromagiven viewing direction. Appearance prediction needsto be an efficient operation as
well. Another consideration isthat our representation must be derived from our 3D surface
model.

One possible solution would be to represent the surface of the object using an algebraic
polynomial, and then analytically solve for occluding contours. Thisis the approach taken
by Ponce and Kriegman [77]. The problem is that these algebraic equations can become
very large even for smple shapes. Another complication for algebraic representations of
occluding contours is how to build models of algebraic surfaces. In practice, objects will
have to be modelled using a collection of algebraic surfaces. Inferring the algebraic repre-
sentation from atriangulated surface is an extremely difficult problem—fundamentally the
same as range-image segmentation [5], for which no compl etely satisfactory solution exists.
Even if segmentation were solved, the boundaries between surfaces greatly complicatesthe
solution of the algebraic surfaces.

Another possibility, and the approach that we use in this thesis, is to use a piecewise
planar approximation of the surface. It is areasonable option for several reasons:

e Our surfaceisalready approximated by apiecewise planar model (triangular patches).

e The approximation error of the contour projection can be made arbitrarily small (but
islimited by the original surface-model resolution).

¢ We can use apoint-based representation consistent with our rigid edgel representation
and 3D surface representation.

The piecewise-planar approximation idea is made clear by considering the piecewise-
linear approximation of a 2D circle (cross section of a sphere). Figure 4.9 (a) shows a
circleand aset of viewing directions (equivalent to tangent directions) at the corresponding
contour generators. As the viewing direction changes, the contour generator traverses the
circle. If thecircleisrepresented by a set of connected line segments (see Figure 4.9 (b)),
the contour generator still changes as the viewing direction changes, but now it changesin
discrete intervals corresponding to the endpoints of the line segments.

For the localization task, the most important aspect of the approximation isthe accuracy
of the projected contour. The worst-case error is the distance between the piecewise-linear

4.5. Modeling Occluding Contours for 3D-2D L ocalization 121

!

Figure 4.9: A circle and its occluding contour points (a) continuous circle, (b) piecewise-
linear circle, (c) the error of approximation

circleandthetruecircleandismaximum at the midpoint of each approximatingline segment
(see Figure 4.9 (c)). We can represent a curve's occluding contours to a desired accuracy
using piecewise-linear approximation. Thisnaturally extendsto 3D using piecewise-planar
models (such as our triangulated surface models).

Applying z-buffering [40, 141] to our triangul ated surface model is one possibility for
computing the occluding-contour edgels. Basically, the occluding-contour points can be
identified by finding points which lie on edges which border a visible triangle on one side
and an invisible triangle on the other side. However, as noted in Section 3.2, z-bufferingis
too expensive for our localization application. Using the same idea with our surface-point
visibility approximation produces very poor results since the mistakes of the approximation
will always imply occluding-contours where none should exist.

I nstead we concentrate on defining alocal computation over pointson the object surface
to determine whether they generate a contour or not from a given viewing direction. Our
triangulated surface model consists of vertices which are connected to form triangles that
cover the surface. Each vertex or surface point is a potential contour generator. We are
interested in finding aquick local computation to determineif the vertex ison the occluding
contour generated by the surface model from a certain viewing direction. The curvature at
a point provides the information necessary to predict the appearance of contour points.

122 Chapter 4. Object Modeling for 3D-2D Localization

451 Curvature

Curvature is, technically, a property of a curve, not a surface [102]. The curvature of a
surface usually refers to the curvature of a specific curve that lies on the surface. For a
length-parameterized curve in three dimensions, () = [z(t) y(t) z(¢)]", the curvatureis
the magnitude of the change in the tangent vector, 5'(t). Curvatureisalso described as the
magnitude of the bending of the curve where the direction of the bendingis 3”(¢) Thus, the
curvature of 3(¢) isdefined as

r(t) = [|8"(D)]] = o (1) + y" ()2 + 2" (1)?

For acircle of radiusr, x = % A rough characterization of curvature isthe inverse of the
local radius of the curve.

For curves, the Frenet frame [102] defines a coordinate system at each point. The
coordinate system is defined such that the normal i = %. Thus, with the normal
direction aready specified, the magnitude of bending is sufficient to describe the curvature
at apoint on a curve.

Getting back to smooth surfaces, we are interested in whether a surface point generates
acontour fromagiven viewing direction. Thefirst requirement isthat the viewing direction
v is perpendicular to the surface normal f at the point (i.e,, n - ¥ = 0). Given v and i,
we can extract a particular curve from the surface—the intersection of the surface with the
plane spanned by v and ii. This curveis called a normal section [102] since the surface
normal liesin the plane of the curve. For example, the normal section of apoint on asphere
of radius r isacircle of radius r (see Figure 4.10). The curvature of the normal section at
the given point is appropriately called the normal curvature.

The curvature of anormal section isnot smply amagnitude (asin the 2D case) but also
indicatesthe direction of bending by itssign. Surfaceshave aunique normal i at each point
whileanormal section at apoint may bend in either then or —n directions(see Figure4.10).
Thus, the sign of curvature of a3D point differentiates between normal-section curves that
bend away from the surface normal and those that bend in the direction of the surface
normal.

To generate an occluding contour for a surface with an outward pointing normal, we
requirethat thenormal section hasnegativenormal curvature (seeFigure4.10 (b)). Negative
normal curvatureimpliesthat the point is atransition from visible to invisible points—thus
generating the contour.

For a3D surfacepoint, thecurvaturedependson the specific normal section. Fortunately,
Euler’s formula gives us a simple characterization of the curvatures of all normal sections
given an arbitrary viewing direction v such that i - v = 0. Euler’sformulais

/i(\/\/') = /il(él . \/\/')2 + /iz(éz . \/\/')2 (47)

where «1 and «; are the maximum and minimum curvatures, respectively, and arereferredto
collectively as the principal curvatures. é; and &, are the tangent directions corresponding
to the maximum and minimum curvatures, respectively, and are referred to as the principal

4.5. Modeling Occluding Contours for 3D-2D Localization 123

@k>0 (b)k <0

kn

/
normal @

section

(k= i

Figure4.10: Exampleof normal sectionswith (a) positive normal curvatureand (b) negative
normal curvature.

directions. The principa directions are orthogonal to each other and form the basis of
the tangent plane of the point. «1, 2, €1, and &, completely characterize the curvatures
of normal sections at a point. Along any normal section, the curvature of a point can
be classified into three categories. positive, negative and zero. Only surface points with
negative curvature (convex normal sections) generate occluding contour edgels in a 2D
projection of the 3D object. However, the curvature at a surface point depends on which
normal section is taken. Since it is possible for a point to have x; > 0 and x; < 0,
some viewing directions in the point’s tangent plane would generate occluding contours
(k(¥) < 0) while otherswould not (x (%) > 0).

Estimating Curvature from a Triangulated Surface M odel

Using curvature information, we can determine which points on our 3D surface model
are potential contour generators. Determining the curvature of the surface points of the
model istricky. The problem is that we have atriangulated (sampled) model of a surface:
much shape information has been lost. The surface model isaso not likely to be perfect—
the surface will invariably be contaminated by noise. Since curvature is a second-order
differential property, it isvery computationally sensitive to noise and the effects of discrete
sampling (e.g., aliasing).

Several solutions for computing the surface curvature from discrete data have been

124 Chapter 4. Object Modeling for 3D-2D Localization

proposedintheliterature. Bed and Jain [5] presented aformulationfor computing curvature
from range images. Their formulation relies on the regular grid sampling of the depth (as
isavailable directly from range images) so is not directly applicable to our problem. Chen
and Schmitt [18] proposed a solution for computing curvature at points of a triangul ated
model. Their method involves fitting circles to triples of points to approximate normal
sections and then use aleast squaresfit to Equation 4.7 to solvefor the principal curvatures
and directions. Unfortunately, the best fit circle for three haphazardly selected points on
a surface can give wildly inaccurate estimates of normal curvature. In addition, thereisa
singularity for collinear triples which makes fitting circles to these points unreliable.

A more stable and natural method is the one proposed by Koenderink [76]. His idea
is to fit a quadric surface in the neighborhood of each point and then use the algebraic
representation of the surface to derive the principal curvatures and directions. Thisis a
natural approach for estimating principal curvatures since, fundamentally, the principal
curvatures and directions define a locally quadratic approximation of the surface shape.
A variation of Koenderink’s approach was used by Shi et a. [125] to measure surface
curvature in tomographic medical data.

We aso use a variation of Koenderink’s approach to compute the principal curvatures
and directions for each vertex on our triangulated surface model. While fitting a quadric
surface seems simple enough, there are some subtleties that may interest the reader. The
description of the quadric fitting and curvature estimation is presented in Appendix C.
The main point is that we can easily compute the principal curvatures, ;1 and x,, and the
principal directions, é; and €,, from the local quadric fit.

Given x; and «,, we can quickly classify each point into one of three categories:

1. (k1 > 0) A (k2 > 0): Thispoint is not a contour generator, and we can eliminate it
from consideration for our purposes.

2. (k1 > 0) A (k2 < 0): This point is either a cylindrical point (i.e, x; = 0) or a
saddle point and generates contours from some tangent viewing directions—those
with negative normal curvature.

3. (k1 < 0) A (k2 < 0): This point is an elliptic point and generates contours for al
tangent viewing directions.

Figure4.11 shows examples of each of these three surface classes and the set of viewing
directions from which the point generates an occluding contour (i.e., x(¥) < 0).

Thus, we can classify all points on our model surface as belonging to one of the above
three classes. We use this information to predict the visibility of contour edges in images
of the object. The details of the visibility computation will be described in the next chapter
on 3D-2D localization.

One point worth noting is the effect of corners and very high curvature points. These
points are fundamentally different to occluding contours but also share some similarities.
They are given a separate class. convex edgels.

4.6. Object Modeling for 3D-2D Localization: Results 125

(@ (b) (c)
k1>=0,k2>=0 k1>=0,k2<0 K1<0,k2<0

n

A n
v v :
; i > vf

n
[v j
. . A
, N

/ A ’ A
/ \ / \ N
1 \% \ / \
i \ i \
I : l u :

\ \
\ U, \ i
\ / \ /
\ / /
N ’ /
’

N
N . \/
N .

- Visible tangent directions

N

Figure 4.11: Classes of surfaces based on curvature. The third row shows a tangent plane
for each class on which the dark shaded regions indicate viewing directions from which a
contour isvisible at the point in question.

Convex Edgels

High-curvaturepoints (e.g., corners) areahybrid of therigid surface and occluding-contour
edgels. From some viewing directions, high curvature (corner) points generate occluding
contours. In this sense, the convex edgel is like an occluding-contour edgel. From
other directions, they may generate intensity discontinuities because of the surface normal
discontinuity across the edgel. In this sense, the convex edgel islike arigid surface edgel.

For the curvature analysis presented in this section, we need not distinguish high
curvaturepointssince our method for acquiring rigid edgel models(described in Section 2.4)
will usually detect thistype of edgel asrigid. However, aswe will see in the next chapter,
the visibility constraints for convex edgels demands treatment separate from rigid surface
edgels and occluding-contour edgels.

4.6 Object Modeling for 3D-2D L ocalization: Results

Herewe present some experimental results of our implementation of the 3D edgel modeling
algorithm described in this chapter.

126 Chapter 4. Object Modeling for 3D-2D Localization

Asdiscussed above, we make use of a 3D surface model of the object constructed using
the method described in Chapter 2. Thus, we are bound by the same constraints of the
modeling system described there: the objects must be small enough to be imaged by the
range finder and to be mountable on the Puma. We assume, as before, that the objects are
rigid and opague.

For our 3D edgel modeling experiments, we selected 7 objects to model using our
system. We use the toy boxcar, rubber duck, ceramic mug, and toy car which were used in
the experiments of Chapter 2. We also model 3 other ssimpler (planar) objects: a stop sign,
asignwithaT onit (T-sign), and abulls-eye like target.

For each object, we first built the 3D surface model following the methods of Chapter 2.
We then acquired intensity image views of the objects, again using our calibrated image
acquisition system. We manually determined the number of intensity image viewsfor each
object to 1) maximally cover the viewable surface of the object, and 2) provide a sufficient
amount of overlap between viewsfor the consensus-edgel algorithmto extract rigid surface
edgels. The number of viewsrequired is related to the geometric complexity of the object:
varying from 21 for the three planar objects to 54 for the toy car.

Theviewswere acquired by varying thejoint angles§, and ¢,, of the robot’s end effector
asin Section 2.5 (see Figure 2.12 and Section 2.5 for areview of these details). Generally,
we would vary 8, from -180 degreesto 160 in increments of 20 degrees and would vary 4,
from anywhere from -30 degreesto +30 degreesin 20 degree increments as well.

In addition to varying the pose of the object, we also varied the illumination in order to
reduce the dependence of our models on any single light source condition. We used three
different illumination configurations for this purpose. The illumination configuration was
switched after every image in the sequence.

The acquired intensity images contained 256 x 240 pixels. Each image was processed
as described in Section 4.2 to produce a set of smoothed 2D edgel chains. The 2D edgel
chains were then projected into 3D object coordinates using the calibrated position and
3D surface model of the object. The edgels were then resampled in 3D coordinates a a
resolution of 1 mm. Theresulting 3D edgel setswere then provided to the consensus-edgel
algorithm to extract the significant 3D edgel generators from the observed data.

Theresults of the model acquisition for the test objects are shown in Figures4.12- 4.18.
Each of these figures show:

e anintensity image of the object

e an example from the set of observed intensity edge images

¢ the complete set of 3D edgels used as input to the consensus-surface algorithm
e aview of the 3D rigid edgels extracted from the data

¢ threeviews of the full edgel model, including 3D rigid edgels and occluding contour
edgels extracted from the 3D surface model (the views are displayed using hidden
edgel removal for clarity)

4.7. Object Modeling for 3D-2D Localization: Summary

127

Object

Images

Edgels

Edgels

Time

aquorum

In Out | (seconds) (mm) | (degrees)
stop 21 22k 914 10 11 15 25
T-sign 21 26k 970 14 8 15 25
target 21 18k 602 9 11 25 25
boxcar 33 39k 1537 48 7 3 45
mug 36 39k 1510 240 8 2 25
car 54 40k 1387 134 6 1 36
duck 49 21k 185 46 12 2 45

Table 4.1: Statistics of the edgel modeling experiments for each object.

The relevant statistics of the modeling experiments for each object are presented in
Table 4.1. These statistics include the number of input images, the number of edgels input
to the consensus-edgel algorithm, the number of edgelsin theresulting model, the execution
time on an SGI Indy 5 (a 124 MIPS/49.0 MFLOPS machine), and the parameters for our
consensus-edgel agorithm (the quorum limit 6,0, , the maximum distance, é,, between
similar points and the maximum angle, 0,, between tangent vectors of similar edgels).

Theresultsdemonstrate that we can createfairly accurate model s of the edgel generators
of an object given many sample views of the object and a 3D surface model of the object.
In particular, the consensus-edgel algorithm is able to extract the significant rigid edgels
from alarge set of rather noisy edgel observations.

4.7 Object Modeling for 3D-2D L ocalization: Summary

In this chapter, we have described our methods for automatically constructing a model
for use in localizing a 3D object in 2D intensity images—3D-2D localization. For this
localization task, we have chosen to match model edgels with image edgels using a 3D
model representation rather than a view-based (2D) approach.

In order to build a 3D model of the edgel generators of the object, we make use of the
3D surface modeling and calibrated view alignment described in Chapter 2. Knowing the
pose of the object and its shape allows us to convert 2D observations into the object’s 3D
coordinate system, while eliminating background edgelsfrom consideration. We presented
the consensus edgel algorithm which extracts the stable rigid edgel generators from the
sample views of the object. To account for occluding-contour edgels, we proposed a
method for computing and analyzing the curvature at al points on our 3D surface model.
Knowing the curvature of a point, we can classify it as a contour generator or not. The
principal curvatures and directions of a point makes it possible to predict the viewing
directions from which a contour generator will generate a contour.

We have postponed discussion of the visibility computation for our edgel model. At
best, from our sampled data, we can collect a set of viewing directions from which each
model edgel was detected. Visibility conditionsof an edgel cannot bereliably or accurately

128 Chapter 4. Object Modeling for 3D-2D Localization

(b)

