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ABSTRACT

Object localization has applications in many areas of engineering and science. The goal is to spa-
tially locate an arbitrarily-shaped object. In many applications, it is desirable to minimize the num-
ber of measurements collected for this purpose, while ensuring sufficient localization accuracy. In
surgery, for example, collecting a large number of localization measurements may either extend
the time required to perform a surgical procedure, or increase the radiation dosage to which a

patient is exposed.

Localization accuracy is a function of the spatial distribution of discrete measurements over an
object when measurement noise is present. In [Simon et al., 1995a], metrics were presented to
evaluate the information available from a set of discrete object measurements. In this study, new
approaches to the discrete point data selection problem are described. These include hillclimbing,
genetic algorithms (GAs), and Population-Based Incremental Learning (PBIL). Extensions of the
standard GA and PBIL methods, which employ multiple parallel populations, are explored. The
results of extensive empirical testing are provided. The results suggest that a combination of PBIL
and hillclimbing result in the best overall performance. A computer-assisted surgical system which
incorporates some of the methods presented in this paper is currently being evaluated in cadaver

trials.
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1 Introduction

Object localization is the problem of determining the spatial pose (position and orientation) of an arbitrarily-shaped object.
Localization requires that a geometric model of the object be matched to measurements of the object acquired while the
object is in a fixed configuration. In the current work, the model is a 3-D surface representation and the measurements are
discrete 3-D surface points. The matching process (often referred to as registration) is to find a spatial transformation which
aligns the measurements with the model, as measured by a suitable cost metric. For example, Figure 1 shows data from a
physical model (or “phantom”) of a human pelvis before and after registration. The shaded triangle mesh surface model
was constructed from computed tomographic (CT) images of the pelvis phantom, and the spheres represent discrete 3-D
surface measurements which were collected in selected regions of the same phantom using a digitizing probe. Once the
registration process is performed, it provides a mapping between any point in the CT coordinate system and the correspond-
ing point in the digitizing probe coordinate system, and vice versa. In surgical applications, this would allow a pre-operative
plan constructed from CT data to be executed in a coordinate system related to the surgical tools or patient (i.e., the digi-

tizing probe’s coordinate system). Solution of similar registration problems is required in a wide variety computer assisted

surgical techniques [Taylor et al., 1995].

Before:

After:

Figure 1: Registration of discrete measurements to a
3-D surface model of a human pelvis
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In surgical applications, each data measurement can increase the time and risk associated with the surgical procedure. In
order to minimize the number of measurements required, the collection of measurement data should be carefully planned
to ensure that the resulting object localization is sufficiently accurate. The problem of selecting sets of discrete point mea-
surements which have maximum utility for localization is difficult for at least three reasons. First, the space is highly dis-
continuous and contains many locally optimal point sets. Second, it is difficult to define meaningful derivatives in the space
of candidate measurement points. Third, the space can be large with many dimensions; exhaustively exploring point con-
figurations is far beyond computational resources. Initial attempts to find good point sets were based on steepest ascent
hillclimbing methods [Simon et al., 1995a]. Recently, methods such as genetic algorithms have been proposed for combi-
natorial optimization problems [Homaifer et al., 1993], [Levine, 1993], [Fang et al., 1993]. In this paper, alternate hill-

climbing methods, genetic algorithms (GAs), and a GA hybrid, termed Population Based Incremental Learning (PBIL), are

applied to this problem.

2 Discrete Point Data Selection

The goal of the registration problem in Figure 1 can be stated mathematically as follows:

guTn Z||Mi- (RD; +T)|2 (1)
where M; represents points in the triangle mesh surface model, D; represents the discrete point measurements, and R and T
are a rotation and translation respectively, which minimize the least-squares distance between the points. In this paper, it is
assumed that the scale of the model and data measurements are the same, although in general it is possible to estimate an
unknown scale parameter in the registration process. A solution method for this class of problems was proposed in a paper
describing the Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992]. In the first step of this algorithm, the closest
points between each D; and the surface model are computed and labeled M;. In the second step, equation (1) is solved using
a least-squares solution method such as the one described in [Horn, 1987]. The resulting transformation is then applied to
each of the D;. This process of computing closest points and solving the resulting least-squares problem is repeated itera-

tively until convergence. While convergence to the global minimum is not guaranteed, in practice the algorithm does con-

verge globally when the initial pose estimate is good.

In certain situations, there is a fundamental ambiguity when attempting to solve the registration problem [Simon

et al., 1995a]. For example, consider the problem of localizing the slotted cylinder shown in Figure 2 using only discrete
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point measurements in locations indicated by the marks. It is impossible to localize the cylinder translationally along the
central axis or rotationally about it. For this particular measurement set, there is a singularity in equation (1) with respect
to R and T. An infinite number of pose solutions exist. However, by repositioning several of the discrete measurement

points to the end regions and within the slot, it becomes possible to determine the location of the cylinder unambiguously.
Figure 2: Slotted cylinder singularity

A similar example is shown in Figure 3 in which the goal is to localize each of the cubes using the discrete point measure-
ments indicated by the dots. Assuming that the data in each case is corrupted by unbiased noise, it can be shown that the
resulting registration accuracy is a function of the number and positions of the points which are used. This is demonstrated
in Figure 4, in which the normalized pose error resulting from 1000 registration experiments is plotted for each of the mea-

surement configurations of Figure 3. The configuration with the largest number of points (128) results in the best overall

accuracy (i.e., the smallest error).

128 Points 24 Points 24 Points

Figure 3: Cube data configurations

In Figure 4, the pose errors resulting from the two 24 point measurement configurations are not the same. Given the choice
between these two configurations, the one with the points nearer the cube corners is clearly superior. Note that if the reg-
istration experiments had been performed without measurement noise, all three configurations would result in the same
error. In the absence of noise, far fewer points would be necessary; the theoretical minimum number of points required for

registering discrete points to an arbitrary surface is six. Additional insight into the results of Figure 4 is provided in the
discussion below.

As suggested above, for certain applications the costs associated with collecting object localization measurements can be
high. Therefore, it is desirable to minimize the amount of data acquired, while ensuring that accuracy requirements are sat-

isfied. Furthermore, it is necessary to ensure that singularities such as the one illustrated in Figure 2 do not arise, even for
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Figure 4: Configuration dependent cube pose error

arbitrarily-shaped objects such as the pelvis in Figure 1. The goal of discrete point data selection is to select a fixed number

of discrete point measurements which result in the highest possible localization accuracy.

In [Simon et al., 1995a] a framework is proposed for analyzing the “geometric constraint” between a surface model and a

set of discrete points. A complete formulation of the analysis is beyond the scope of this paper; however, a brief summary
is presented here.

Consider the following equation which is presented without derivation (for additional details see [Simon et al., 1995a]).

6
E= Y Agd'g)’ )
i=1

In the equation, E is a first order approximation to the least-square error term in equation (1), the‘Ki are a set of scalar eigen-
values, g; are the corresponding 6-dimensional eigenvectors, and dt is a 6-dimensional vector which represents an arbi-
trary, small 3-D transformation. Given an object surface model and a configuration of proposed discrete point surface
measurements, the A; and g; of equation (2) can be derived. The g, define a set of basis vectors which span the space of
all possible transformations. The A; can be interpreted as sensitivity measures (or gains). They express the rate of change
in E which results when a set of discrete point measurements is transformed about the global minima of equation (1) in the
direction g; . For example, if one or more of the A; are equal to 0, a singularity such as the one demonstrated in Figure 2
exists. The corresponding ¢; represents the direction in which the singularity occurs. In general, it is desirable for all of the

A; to be as large as possible so that E is maximally sensitive to all transformations. The following scalar sensitivity measure

is used in the remainder of this work:

o 3
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where A4 corresponds to the smallest eigenvalue and A, corresponds to the largest eigenvalue. The intuition behind this
measure is that maximizing it makes the smallest eigenvalue large, while ensuring that the variability in the eigenvalues is

small. A discussion of this measure and several alternatives can be found in [Navhi, 1994] and [Kim and Khosla, 1991].

Recall that equation (2) is a first order approximation of the error term in equation (1). Therefore, we would expect a rela-
tion between the sensitivity of the former equation and the accuracy of registration performed using the latter equation.
This relation is illustrated in Figure 5. The normalized pose errors of Figure 4 are plotted versus the sensitivity measure of
equation (3). Note the strong relation between pose error and the sensitivity measure. Larger values of the sensitivity mea-
sure result in smaller pose errors. This relationship allows equation (3) to be used as a criterion function for selecting dis-

crete point measurement configurations which tend to result in high registration accuracy.
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Figure 5: Pose error vs. Sensitivity

Each pose error along the Y-axis of the plot in Figure 5 required 1000 registration trials to be performed from random initial
starting locations. Execution time to estimate this pose error was roughly 60 minutes per datum on a Sun Sparc-10 work-
station. In contrast, each sensitivity measure along the X-axis was computed in less than 1 milli-second per configuration.
Due to this disparity in computation time, it is much more efficient to use the sensitivity measure as a criterion function for

selecting discrete point measurement configurations via optimization methods.

The geometric constraint analysis summarized above provides a global metric of registration measurement sensitivity. Lo-
cal measures of sensitivity based on features such as surface curvature are also feasible; however, such measures are not

guaranteed to completely constrain the pose. In particular, there are situations in which collecting measurement data only
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within high curvature regions will result in singularities such as the one evident in the slotted cylinder of Figure 2. Identi-

fying such singularities requires a global measure of sensitivity such as the one proposed above.

3 Search Algorithms

Selecting measurement points which maximize the sensitivity measure in equation (3) is a combinatorial search problem.
The goal is to select N points from a set, V, such that equation (3) is maximized. In practice, the points in set V are the
vertices of the triangle mesh surface model. For this task, many search algorithms are considered: two hillclimbing meth-

ods, many variants of genetic algorithms, and Population-Based Incremental Learning. These methods are described in this

section.

3.1 Steepest Ascent Hillclimbing

The first type of hillclimbing is Steepest Ascent Hillclimbing. Initially, N vertices are randomly chosen from the set of pos-
sible vertices, V. Call this selected set S. Let Evaluate(S) represent the performance of S (from equation (3)) which is to
be maximized. Select a vertex v from S. In turn, replace v with every vertex in V. Repeat this procedure for each v in S.
Replace the vertex in S with the single substitution which leads to the largest increase in performance. Repeat the process.

Continue until no better moves are found. This is the method which was initially used for the point selection experiments

in [Simon et al., 1995a].

3.2 Next-Ascent Hillclimbing

The second form of hillclimbing is Next-Ascent Hillclimbing. This method is similar to steepest ascent, except that the set
S is immediately changed when a vertex substitution is found which increases Evaluate(S). This is in contrast to the pre-
vious method, in which the substitution chosen maximizes Evaluate(S) over all possible substitutions. Next-Ascent Hill-

climbing usually takes more steps than the previous method, but there are fewer evaluations per step. In addition, vertex

substitutions for Next-Ascent Hillclimbing are generated randomly.

3.3 Genetic Algorithms
Genetic algorithms (GAs) are biologically motivated adaptive systems which are based upon the principles of natural se-

lection and genetic recombination. A GA combines the principles of survival of the fittest with a randomized information
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exchange. It has the ability to recognize trends toward optimal solutions, and to exploit such information by guiding the
search toward them. Recently, genetic algorithms have been proposed as general purpose function optimization tools for
combinatorial problems such as the Traveling Salesman Problem [Homaifer et al., 1993], Jobshop Scheduling [Fang

et al., 1993], Set Partitioning [Levine, 1993] and actuator placement [Furuya and Haftka, 1993], to name a few.

In the standard GA, candidate solutions are usually encoded as fixed length binary vectors. The initial group of potential
solutions is chosen randomly. These candidate solutions, called “chromosomes,” are allowed to evolve over a number of
generations. At cach generation, the fitness of each chromosome is calculated; this is a measure of how well the chromo-
some optimizes the objective function. The subsequent generation is created through a process of selection, recombination,
and mutation. The chromosomes are probabilistically selected for recombination based upon their fitness. General recom-
bination (crossover) operators merge the information contained within pairs of selected “parents” by placing random sub-
sets of the information from both parents into their respective positions in a member of the subsequent generation. Although
the chromosomes with high fitness values have a higher probability of selection for recombination than those with low fit-
ness values, they are not guaranteed to appear in the next generation. Due to the random factors involved in producing “chil-
dren” chromosomes, the children may, or may not, have higher fitness values than their parents. Nevertheless, because of
the selective pressure applied through a number of generations, the overall trend is towards higher fitness chromosomes.
Mutations are used to help preserve diversity in the population. Mutations introduce random changes into the chromo-

somes. Good overviews of GAs can be found in [Goldberg, 1989] [DeJong, 1975].

One of the tunable parameters in the GA is the type of crossover/recombination used. The crossover operator, which is
unique to genetic algorithms, randomly mixes the contents of two “parent” solution strings into two “children” solution
strings. There are three common CIossover operators; one point crossover, two point crossover, and uniform crossover.
Since it is not @ priori known which crossover will perform better in this search problem, all three were tried. In one point
crossover, a random point in the solution strings is chosen, and the material beyond that point is swapped in the children
solutions. In two point crossover, two points are chosen, and the material between the two points is swapped. In uniform

crossover, each position in the children has a 50% chance of coming from parent A, and a 50% change of coming from

parent B. The crossover operators are shown in Figure 6.

The simple single population GAs described above have been extended by using parallel evolution of multiple smaller sub-

populations, termed “islands”. This idea is motivated by the study of punctuated equilibria, allopatric speciation, and ho-
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XxXX Child A: XXxXxXXXXYYYY
Yyyy—®¥=Child B: YYyyyYYXxXX

Parent A: XXoxXxX
Parent B: YYyyyYY

One Point Crossover

XxXX Child A: XXxxyYYXxXX
—»
tyyy Child B: YYVyXxXYyyy

XxX
yYY

Parent A: XXxx
Parent B: YYyy

Two Point Crossover

Parent A: XXxxXxXXxXX Child A: X¥xyy=xXXyyX

__» .
Parent B: YYyyyYYYyyy Child B: YXyxXYYYxXy

Uniform Crossover

Figure 6: Common crossover operators for genetic algorithms.

meostasis [Cohoon et al., 1988]. These ideas are implemented by evolving multiple smaller subpopulations independently.
At infrequent intervals (in this study once every 100 generations), the best solutions between subpopulations are copied,
and the evolution is continued. This allows diversity to be re-introduced into each subpopulation by the introduction of new
solution strings. Methods based upon this idea have empirically shown to perform substantially better than single-popula-
tion methods [Gordon and Whitley, 1993] [Davidor, 1991] [Whitley and Starkweather, 1990]. The subpopulations are ar-

ranged in a linear order. The swapping scheme is shown in Figure 7; this scheme is taken from [Whitley and

Starkweather, 1990].

3.4 Population-Based Incremental Learning

Recently, a simplified statistical model of the GA has been introduced in [Baluja and Caruana, 1995], termed Population-
Based Incremental Learning (PBIL). This method has been compared to standard GAs on a variety of benchmarks with
promising results [Baluja, 1995]. Like the standard GA, the version of PBIL presented here operates on solutions encoded

as binary vectors. A brief introduction to the PBIL method is given below, and the algorithm is shown in Figure 5 (descrip-
tion and figure from [Baluja, 19951):

PBIL is a combination of evolutionary optimization and hillclimbing. The object of the algorithm is to create a real
valued probability vector which, when sampled, reveals high quality solution vectors with high probability. For ex-
ample, if a good solution to a problem can be encoded as a string of alternating 0’s and 1’s, a suitable final proba-

bility vector would be 0.01, 0.99, 0.01, 0.99, etc.

Initially, the values of the probability vector are set to 0.5. Sampling from this vector yields random solution vectors
because the probability of generating a 1 or 0 is equal. As search progresses, the values in the probability vector
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gradually shift to represent high evaluation solution vectors. This is accomplished as follows: A number of solution
vectors are generated based upon the probabilities specified in the probability vector. The probability vector is
pushed towards the generated solution vector(s) with the highest evaluation. The distance the probability vector is
pushed depends upon the learning rate parameter. After the probability vector is updated, a new set of solution vec-
tors is produced by sampling from the updated probability vector, and the cycle is continued. As the search progress-
es, entries in the probability vector move away from their initial settings of 0.5 towards either 0.0 or 1.0. The
probability vector can be viewed as a prototype vector for generating solution vectors which have high evaluations
with respect to the available knowledge of the search space.

The manner in which the updates to the probability vector occur is similar to the weight update rule in supervised
competitive learning networks, or the update rules used in Learning Vector Quantization (LVQ) [Hertz et al., 1991].
Many of the heuristics used to make learning more effective in supervised competitive learning networks (or LVQ),
or to increase the speed of learning, can be used with the PBIL algorithm. This relationship is discussed in greater
detail in [Baluja and Caruana, 1995].

To the best of our knowledge, PBIL has only been explored using a single probability vector, as shown in Figure 8; how-
ever, multiple probability vectors are also possible. The resulting model is similar to the parallel GA model described in
the previous section. The implementation is as follows: several instantiations of the PBIL algorithm, shown in Figure 8,
are run independently. The PBIL algorithm is modified to include interactions analogous to crossover in genetic algo-
rithms. Every 100 iterations, a probability vector from another population is copied to the current population. Samples are

generated based upon the original and new probability vectors by simulating “one-point” crossover. A random point is cho-
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Figure 7: The swapping scheme for parallel GAs. The arrows represent the copying of the best chromosome
from the donating population into the receiving population. The receiving population replaces its worst
chromosome with the new chromosome. This transfer takes place every 100 generations. The distance of the
donating population is the transfer occurrence modulo the number of subpopulations. In these experiments,
a total of 10 subpopulations are used.
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#+k%x¥ Injtialize Probability Vector *****
for i :=1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
**+%% Generate Samples ¥¥¥+%
for i :=1 to SAMPLES do
sample_vectors[i]:=generate_sample_vector_with_probabilities (P);
evaluations[i] :=Evaluate_Solution (samplefi]);
best_vector := best_evaluation (sample_vectors, evaluations);

w4 Update Probability Vector Towards Best Solution ¥¥¥%%

fori:=1 to LENGTH do
P[i] := P[i] * (1.0 - LR) + best_vector[i} * (LR);

*xxkk Murate Probability Vector **%¥%
fori:=1to LENGTH do
if (random (0,1) < MUT_PROBABILITY) then
if (random (0,1) > 0.5) then mutate_direction := 1
else mutate_direction ;= 0;
P[i]:=P[i]*(1.0-MUT_SHIFT)+ mutate_direction*(MUT_SHIFT);

USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: vectors generated before update of the probability vector (100).
LR: the learning rate, how fast to exploit the search performed (0.1).
MUT_PROBABILITY: probability for a mutation in each position (0.02).
MUT_SHIFT: amount a mutation alters the value in the bit position (0.05).
LENGTH: length of encoded solution (problem dependent).

Figure 8: Single vector PBIL algorithm for binary encoded solution strings (adapted from
[Baluja, 1995]).

sen, all bits before the chosen point are determined based upon the original probability vector, and all bits after the chosen
point are based upon the new probability vector. The best vectors generated in the population are used to update both of
the probability vectors. In this manner, both of the probability vectors converge to the same vector over time. This simu-
lates, at a coarse level, the focusing of search seen in the parallel-GA subpopulations. The generation of solutions based on
two probability vectors is shown in Figure 9; this procedure is used in each subpopulation that is evolved. Each subpopu-
lation generates samples from its own two probability vectors. The order in which the probability vectors are swapped is
the same as the one used in parallel GA, shown in Figure 7. Other methods of multiple population combination were tried

and are currently under study; however, these issue are beyond the scope of this paper.
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*xxk% Generate Samples With Two Probability Vectors¥+%%%
fori:=1 to SAMPLES do
vector] := generate_sample_vector_with_probabilities (P1);
vector2 := generate_sample_vector_with_probabilities (P2);
crossover_point := random (0, LENGTH);
for j := 1 to crossover_point do
sample_vectorfi][j] := vectorl[j]
for j := crossover_point to LENGTH do
sample_vector[i][j] := vector2fj]
evaluations[i] :=Evaluate_Solution (sample[i]);
best_vector := best_evaluation (sample_vectors, evaluations);

sxix% Update Both Probability Vectors Towards Best Solution *****
fori :=1 to LENGTH do

P1[i] := P1[i] * (1.0 - LR) + best_vector[i] * (LR);

P2[i] := P2[i] * (1.0 - LR) + best_vector[i] * (LR);

USER DEFINED CONSTANTS (Values Used in this Study):

SAMPLES: vectors generated before update of the probability vector (10-50 per population, depending on run).
LR: the learning rate, how fast to exploit the search performed (0.1).

LENGTH: length of encoded solution (problem dependent).

Figure 9: Generation of samples based on two probability vectors. Shown with 1 point
crossover. Mutation are used as shown in Figure 8. There are a total of 10 subpopulations.

4 Problem Encoding and Search Space Representation

This section examines solution encoding and search space representation. The encodings represent the model vertices di-
rectly in the solution string and therefore only search along the surface of the model. Alternative encodings, which repre-

sents points in 3-D space which are mapped onto the appropriate vertex on the surface of the model, are described later.

4.1 Default Encoding

In a problem of selecting N vertices from a set of vertices, V, assign a unique value to each vertex [1..IVl]. The solution
representation is then just N integers, each in the range [1..IVI]. This encoding works well for the steepest and next ascent
hillclimbing method. In steepest ascent hillclimbing, because all possible single replacement steps are examined before a
move is selected, the encoding has the least impact on the effectiveness of search. The encoding also does not have a large

impact with next-ascent hillclimbing, since it randomly tries swapping vertices into the current set. In this study, as well as
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many others which use either GAs or PBIL, solutions are commonly represented as binary strings. Therefore, each of the
N integers is represented with log,[VI] bits. The decoding of the log,[IV1] bits into integers can either be done by interpret-
ing the bits as a number encoded in standard binary notation, or as a number encoded in gray code. However, with this
encoding, the interpretation will make little difference. Because there is no constraint to map nearby integer values to spa-
tially close vertices, selecting nearby points may require making large modifications of the solution string. This creates a
difficult space to search, since the integer encoding of vertices does not yield any information of where to explore next. In
order for the GA or PBIL to effectively search the space, the encoding must reveal information which can be used to select

new sample points. This problem has been identified in a more general form in [Jones and Forrest, 1995]. In the next en-

coding, this problem is addressed.

4.2 Neighborhood Encoding

To create neighborhoods in which the GA can easily search, two criteria were followed. First, the representation used for
similar sets of points should be similar. Second, points which are spatially close to the current point should be accessible

via a small number of moves. One method to create such an encoding is described below.

Each point is assigned a priority, initialized to 0. A single point is randomly chosen, it is assigned to be point 1. Its C closest
neighbors are chosen and their priority is incremented. The element with the highest priority which has not yet been select-
ed is chosen as the next point, and its priority is set to 0. Then, the priorities of its C closest unselected neighbors are in-
cremented. This process continues until all elements are chosen. Ties are broken in favor of the clements closest to the one
last selected. This selection procedure has the effect of growing a region in which higher priority values represent unselect-
ed points close to the set of currently selected points. The size of C was chosen empirically based upon the observation that
if C is too large or too small, the effectiveness of the resulting encoding decreases. With C too small, long “chains” are
formed such that neighboring points may have very dissimilar values. With C too large, the distance between successive

points can increase. In these experiments, C was chosen to be 10. Figure 10 shows how the regions grow on the “Venus”
model.

The general problem of mapping 2-D or 3-D spaces into a 1-D space has many solutions; the appropriateness of each de-
pends upon the requirements of the final mapping. The mapping needed in this study should have the property that spatially

close points should have small differences in the vertex numbers assigned to them. This problem is itself a difficult com-
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binatorial search problem; only heuristic methods were explored here. Alternative mapping schemes are described later.

For an overview of these issues and an introduction to some of these techniques, see [Goodhill et al., 1995].

Figure 10: Neighborhood Encoding. Top: points labeled
1-300. Bottom: points labeled 300-600.

5 Point Set Selection: Results

This section compares the search algorithms described in Section 3. The results are presented in order of increasing per-
formance. All results are computed from the average of at least 5 runs, started with random initial conditions. Each method
was allowed approximately 5x10° evaluations per run. The models tested are shown in Figure 11. For each of these models,

three point set sizes were constructed, containing 30, 60 and 90 points.
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Figure 11: Venus, femur and pelvis models

5.1 The Venus Model

The most extensive exploration of different search methods is provided for the Venus model, which contains 2432 vertices.
All of the experiments in this section are done with the neighborhood encoding, defined in Section 4.2, The results are
shown in Table 1. The first method explored is steepest ascent hillclimbing (SAH); this was described in 3.1. The second
search technique used is parallel genetic algorithms, with 10 subpopulations, as described in section 3.3. One of the param-
eters that has a large impact on the efficacy of search and on the computational time required is the population size. Three
different population sizes were attempted, 100, 200 and 500 with the number of members equally divided between subpop-
ulations. Another modifiable operator in GAs is the crossover operator. One point crossover, two point crossover and uni-
form crossover (Figure 6) were all attempted. The mutation rate was hand-tuned to work well. All nine combinations of
crossover and population size were attempted. They uniformly improved the performance over SAH. Other GAs were also
tried, using different scaling of values and/or steady-state selection [Whitley and Starkweather, 1990], and/or single large

populations. None of these methods provided uniformly better performance over the GA results presented here.
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Figure 12: Venus point selection results - 30 points

Table 1: Venus Results (Sensitivity Measure)

Point Set Size
Method
30 | 60 | 90
Steepest Ascent Hillclimbing (SAH) 097 |2.10]2.93
GA - One Point Crossover - Pop. 10 (10 populations) 1.29 | 2.57 | 3.73
GA - Two Point Crossover - Pop. 10 (10 populations) 1.19 | 2.67 | 3.90
GA - Uniform Crossover - Pop. 10 (10 populations) 1.19 | 2.62 | 3.70
GA - One Point Crossover - Pop. 20 (10 populations) 1.35| 2.65 | 3.88
GA - Two Point Crossover - Pop. 20 (10 populations) 143 2.63 | 3.84
GA - Uniform Crossover - Pop. 20 (10 populations) 1.26 | 2.63 | 3.73
GA - One Point Crossover - Pop. 50 (10 populations) 1.52 | 2.85]3.93
GA - Two Point Crossover - Pop. 50 (10 populations) 1.50 [ 2.94 | 3.86
GA - Uniform Crossover - Pop. 50 (10 populations) 1.46 | 2.66 | 3.47
Next Ascent Hillclimbing (NAH) 1.71 | 3.35 | 5.05
PBIL - Pop. 10 (10 populations) 1.63 | 3.28 | 4.44
PBIL - Pop. 20 (10 populations) 1.68 | 3.48 | 5.28
PBIL - Pop. 50 (10 populations) 1.80 | 3.70 | 5.40
PBIL + SAH 1.84 | 3.84 | 5.65
PBIL + NAH 1.86 | 3.91 | 5.65
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The third method explored is next ascent hillclimbing (NAH) described in section 3.2. This was able to uniformly do better
than any of the genetic algorithms attempted. Recently, [Juels and Wattenberg, 1994] have compared stochastic hillclimb-
ing methods with GAs and have found similar results. For the runs reported in this paper, NAH was restarted multiple times

until the total number of evaluations equalled those used by the GA and PBIL methods. The best evaluation found, over

the multiple restarts, was considered the final evaluation in the run,

The final method examined, parallel Population Based Incremental Learning, described in section 3.4, also has a tunable
population size parameter. The population sizes used for PBIL correspond to the three used in the GA. The performance
improves for each respective population size when compared to the GA. However, only the performance of PBIL with 50

members per population surpasses the performance of NAH.

Finally, if the hillclimbing methods are used with the best solutions found by PBIL as the starting point, performance im-
proves over either method alone. PBIL quickly finds regions of high performance, while hillclimbing is an effective way
of finding local optima. Although only simple methods of integrating these two methods were explored here, further ex-

ploration into the appropriate division of computational time between PBIL and NAH is warranted.

Point selection results are shown in Figure 12. Each of the spheres in the figure corresponds to one or more selected mea-
surement points. The radius of a sphere corresponds to the number of times that a single point is selected. There are several
reasons why it makes sense to select a single point multiple times. From a mathematical viewpoint, multiple point selection
can increase the sensitivity measure of equation (3). Points which are locally unique in terms of underlying surface orien-

tation can improve localization sensitivity in directions which other nearby points cannot. Thus, it may be desirable to ac-

quire multiple measurements in a small region about a single point.

Note that the measurement configuration shown in Figure 12 is not symmetric. For example, measurements are acquired
from only one side of the nose. Once again, this can be justified with reference to the underlying mathematics. From the
perspective of equations (1) and (2), there is no implicit reason that symmetric points should be preferred. Points on the
right side of the nose serve exactly the same purpose as do points on the left. Thus, while an asymmetric measurement con-

figuration might not satisfy our aesthetic sensibilities, functionally it is justified.

Due to the formulation of the geometric constraint analysis in [Simon et al., 1995a], there is a dependence of the sensitivity

measure in equation (3) on the scale of the underlying object. While scale normalization is performed, in general it is im-
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possible to fully eliminate the effects of scale on the sensitivity analysis. This phenomenon explains the difference between

the magnitude of the results reported in Table 1 and the results which follow.

5.2 EASIER MODELS: FEMUR & PELVIS

In this section, two other surface models, the femur and the pelvis, are explored. These contain 2530 and 2375 vertices
respectively; the neighborhood encoding is used. Results for these models are shown in Table 2 and Table 3, respectively.
Because genetic algorithms are the most computationally expensive algorithms used in this study, and they did not reveal

as good performance as either NAH or PBIL even when allowed more evaluations, they are not explored further. Point

selection results are shown for the femur in Figure 13.

Figure 13: Femur point selection results - 90 points
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Table 2: Femur Results

Point Set Size

Method
30 60 90

Steepest Ascent Hillclimbing (SAH) 7.85 17.17 27.40
Next Ascent Hillclimbing (NAH) 8.68 18.85 28.68

PBIL - Pop. 50 (10 populations) 8.62 18.35 28.14
PBIL + SAH 8.99 19.20 29.30
PBIL + NAH 8.89 19.28 29.13
Table 3: Pelvis Results
Point Set Size
Method
30 60 90
Steepest Ascent Hillclimbing (SAH) 6.87 15.72 25.12
Next Ascent Hillclimbing (NAH) 8.09 17.71 26.63
PBIL - Pop. 50 (10 populations) 8.27 17.97 2731
PBIL + SAH 8.65 18.64 28.87
PBIL + NAH 8.68 18.81 28.57

5.3 ALARGER EXAMPLE

The results on a larger example of the femur, which contains 4841 vertices, are shown in Table 4. The neighborhood en-
coding is used. The requirements for this model were set sizes of 10, 20, 30, 40, and 50 points. Here, the NAH procedure
has a clear advantage on the smallest point sets (10 points). This advantage decreases as the points sets grow larger. As the

points set sizes increase, PBIL, PBIL + SAH, and PBIL + NAH, are favored.

Table 4: A Larger Model
Method Point Set Size
10 20 30 40 50

SAH 1.15 2.65 496 7.23 8.37

NAH 1.86 3.76 5.74 7.67 9.37

PBIL - Pop. 50 (10 populations)| 1.26 3.72 593 8.08 10.25
PBIL + SAH 1.44 3.90 6.10 8.73 10.88

PBIL + NAH 1.51 3.87 6.38 8.83 11.14

5.4 THE EFFECTS OF REPRESENTATION
In the discussion of representations, it was mentioned that if the vertices are randomly assigned a number, methods such
as PBIL or GAs will not perform well. A comparison of the PBIL method using both neighborhood and random encoding

is given on the Venus model in Table 5. The PBIL algorithm used a population size of 50 for each experiment. All of the
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parameters were held constant across both runs. Assigning values to the vertices randomly does not work as well as assign-

ing numbers based on neighborhoods.

Table 5: Effects of Representation (PBIL population size is 50 per population)

Point Set Size
Representation
30 60 90
Neighborhood Assignment 1.8 3.7 5.4
Random Assignment 1.3 2.6 35

6 CONCLUSIONS & FUTURE WORK

This paper has presented novel techniques for selecting point data for object localization. In this paper, the object localiza-
tion problem was explored in the context of computer assisted surgery; however, object localization is a problem which
occurs in many areas of science and engineering. The point selection problem described has application to any localization
problem in which it is desirable to minimize the amount of measurement data. The techniques developed in this paper are
currently employed for selecting discrete point measurement configurations for use in surgical i'egistration. Initial results
from a cadaver trial suggest that these methods will lead to more accurate and reliable registration compared to existing
methods. Additional details regarding shape-based registration and intelligent selection of registration data with application

to computer-assisted surgery can be found in [Simon, 1996].

Discrete point data selection for maximizing sensitivity is a high dimensional combinatorial optimization problem. This
paper explored several techniques for exploring this space: two variants of hillclimbing, genetic algorithms, and Population

Based Incremental Learning. Empirically, it was found that a combination of PBIL and hillclimbing provided the best re-
sults.

There are several immediate future directions of this research. The most important direction is to determine how well the
selected point sets work in practice. In order to perform this evaluation, it is necessary to have highly accurate estimates of
true object pose. Accurately estimating the true object pose for use as ground-truth is a difficult engineering problem. Initial
progress on this problem is reported in [Simon et al., 1995b].

The near-optimal measurement point configurations which are generated in this work represent blueprints or plans for the

acquisition of measurement data. The actual measurements remain to be acquired by either a human (e.g., a surgeon), or

an automated data collection device (e.g., arobot). In the process of acquiring the measuremens, the precise locations spec-
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ified in the acquisition blueprints may not be faithfully maintained. Due to this “acquisition uncertainty”, registration ac-
curacy may not be as good as predicted by the sensitivity analysis in [Simon et al., 1995a]. Experiments are currently being

performed to evaluate the effects of this acquisition uncertainty. The sensitivity analysis may be modified to account for
this uncertainty.

Discrete point measurements have been used in this paper for object localization. In general, other types of measurement
data are possible. For example, the work described in [Lavallee and Szeliski, 1995] uses contour data extracted from X-
Ray images to perform object localization. Since X-Ray radiation is harmful to humans, it is desirable to minimize the num-
ber of X-Ray images required to perform localization while ensuring sufficient localization accuracy. A variant of the dis-

crete point selection method can be applied to selecting near-optimal contour measurements.

In this paper, only one search space encoding was used; however, there are many ways to encode the solution strings. An
alternative to representing the points explicitly in the solution string (as was done in this study) is to allow the 3-D coordi-
nates for N points to be selected. The selected point in 3-D space could then be mapped onto the closest point on the surface
of the model. One of the advantages of this method is that it is easy to find neighboring points, as it is possible to directly
move the search point in any direction. The largest disadvantage, and the reason that this method was not chosen, is the
computation cost. Finding the closest point is an expensive operation.l Another expense is that the number of parameters
which must be searched is tripled. Since many evaluations (10°-10%) are performed per run, these expenses should be care-
fully considered. Another encoding currently under investigation is using Kohonen Feature Maps to assign the points which
are close to each other with “similar” values. Similarities can be defined by differences in integer values, or their Hamming

distance from each other when the integers are represented in binary. Both methods are under investigation.

Finally, in terms of the search mechanisms, one of the promising directions found in this study was a combination of PBIL
and hillclimbing. PBIL has the ability to find regions of high performance quickly. However, like genetic algorithms, it
performs local optimization slowly. Hillclimbing has complementary properties; it is very quick for lIocal optimization. The
combination of these two techniques provided the best performance. In the future, studies should be done to determine the

percentage of search which should be done by each of these methods, and the best way to integrate these methods.

1. However, methods such as k-d trees may be able to reduce this cost.
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