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Abstract

This report describes Proof-Carrying Code, a software mechanism that allows a host system to
determine with certainty that it is safe to execute a program supplied by an untrusted source. For
this to be possible, the untrusted code supplier must provide with the code a safety proof that
attests to the code’s safety properties. The code consumer can easily and quickly validate the proof
without using cryptography and without consulting any external agents.

In order to gain preliminary experience with proof-carrying code, we have performed a series of
case studies. In one case study, we write safe assembly-language network packet filters. These
filters can be executed with no run-time overhead, beyond a one-time cost of 1 to 3 milliseconds
for validating the attached proofs. The net result is that our packet filters are formally guaranteed
to be safe and are faster than packet filters created using Berkeley Packet Filters, Software Fault
Isolation, or safe languages such as Modula-3. In another case study we show how proof-carrying
code can be used to develop safe assembly-language extensions of the a simplified version of the
TIL run-time system for Standard ML.
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1 Introduction

In this report we address the problem of how a host (the code consumer) can determine with absolute
certainty that it is safe to execute code supplied by an untrusted agent (the code producer). There
are many manifestations of this problem.

For example, in the realm of operating systems, it is often profitable to allow application
programs to install code fragments in the operating system kernel. This mechanism allows applica-
tions to customize the operation of the kernel without incurring the cost of frequent address space
changes and the limitations of a fixed application—kernel interface. The problem is how can the
kernel determine that the inherently untrusted application code respects its internal invariants.

The problem is exacerbated in the case of distributed and web computing, when mobile code is
allowed. In this kind of situation the code producer on one part of the network produces a software
component that is transmitted to the code consumer on another node for execution. How can the
code consumer know that the untrusted code behaves correctly according to a set of predefined
safety rules?

Finally, consider an example from high-level programming languages, which are designed and
implemented with the assumption of a closed world. Taking ML [15] as an example, the programmer
must normally assume that all components of the program are written in ML in order to establish
that the program will have the properties conferred by type safety. In practice, however, programs
often have some components written in ML and others in a different language (perhaps C or even
assembly language). In such situations, we lose the guarantees provided by the design of ML, unless
extremely expensive mechanisms (such as sockets and processes) are employed. In implementation
terms, it is extremely difficult to determine whether the invariants of the ML heap will be respected
by the foreign code, and so we must use some kind of expensive firewall or simply live dangerously.

In the situations described above, a code consumer must somehow become convinced that the
code supplied by an untrusted code producer has some (previously agreed upon) set of properties.
Sometimes this is referred to as establishing “trust” between the consumer and producer. Cryp-
tography can be used to ensure that the code was produced by a trusted person or compiler [1, 19].
This scheme is weak because of its dependency on personal authority—even trusted persons, or
compilers written by them, can occasionally make errors.

We propose a mechanism that allows the code consumer to define a safety policy and then verify
that this policy is respected by native-code binaries supplied to it by an untrusted code producer.
The mechanism stipulates that the code producer creates its binaries in a special form, which we
call proof-carrying code, or simply PCC. A PCC binary contains an encoding of a formal proof
that the enclosed native code respects the safety policy. The proof is structured in such a way
that makes it easy and foolproof for any agent (and in particular, the code consumer) to verify its
validity without using cryptographic techniques or consulting with external trusted entities; there
is also no need for any program analysis, code editing, compilation, or interpretation. Besides
being safe, PCC binaries are also extremely fast because the safety check needs to be conducted
only once, after which the consumer knows it can safely execute the binary without any further
run-time checking.

The safety policy is defined and published by the code consumer and comprises a set of proof-
formation rules, along with a set of preconditions. Safety policies can be defined to stipulate
not only standard requirements such as memory safety, but also more abstract and fine-grained
guarantees about the integrity of data-abstraction boundaries. In this respect, PCC goes beyond
the safety guarantees provided by other mechanisms such as Software Fault Isolation. To take a
simple example, consider the abstract type of file descriptors. In this case, a client is said to preserve



the abstraction boundaries if it does not exploit the fact that file descriptors are represented as
integers (by incrementing a file descriptor, for example).

There is an analogy between safety proofs and types. The analogy carries over to proof validation
and type checking. With this analogy in mind we note that most attempts to tamper with either
the code or the safety proof result in a validation error. In the few cases when the code and the
proof are modified such that validation still succeeds, the new code is also safe. Another feature of
the PCC method is that the proof checking algorithm is very simple, allowing fast and easy-to-trust
implementations.

In our main experiment, we implemented several network packet filters [12, 16] in DEC Alpha
assembly language [21] and then used a special prototype assembler to create PCC binaries for
them. We were motivated to use an unsafe assembly language in order to place equal emphasis
on both performance and safety, as well as-to demonstrate the generality of the PCC approach.
In addition to the assembler, we implemented a proof validator that accepts a PCC binary, checks
its safety proof, and if it is found to be valid, loads the enclosed native code and sets it up for
execution.

Another case study we performed considers the case of DEC Alpha assembly language extensions
to the TIL compiler [23] for Standard ML [15]. In this case the safety proof certifies that the
foreign code preserves the data-type representation and the heap invariants of the run-time system.
Currently we are only able to certify very simple extensions that do not contain function calls and
heap allocation, but we plan to expand on this in the future.

The results of these and other experiments are encouraging. For our collection of packet filters
and run-time extensions, we are able to automate completely the generation of the PCC binaries.
The one-time cost of loading and checking the validity of the safety proofs for our current examples
is between 1 and 3 milliseconds. Because a safety proof guarantees safety, our hand-tuned packet
filters can be executed safely in the kernel address space without adding any run-time checks.
Predictably, they are much faster than safe packet filters produced by any other means with which
we are familiar. In particular, we show that PCC leads to faster and safer packet filters than
previous approaches to code safety in systems software, including Berkeley Packet Filters [12],
Software Fault Isolation [24], and programming in the safe subset of Modula-3 [1, 9, 17].

Although we have worked out many of the theoretical underpinnings for PCC (and indeed,
most of the theory is based on old and well-known principles from logic, type theory [4, 11], and
formal verification [5, 6, 8]), there are many difficult problems that remain to be solved before the
approach can be considered practical. To mention just one here, we do not know at this moment
what is the most practical way to generate the safety proofs. A more in-depth discussion of where
we see the major difficulties in using PCC is given in Section 8.

We believe that our early results show that proof-carrying code is a new point in the design space
that is worthy of further attention and study. This report presents an overview of the approach.
We begin with a brief overview of the process of generating and validating the safety proofs. Then,
we make this more concrete by showing how a safety policy can be defined and proofs created for
a generic assembly language and a simple resource access service. In the context of this example,
we show a sample formal system for PCC and state the necessary theorems for soundness and
adequacy of the methodology. This is followed by a description of our main experiment involving
safe network packet filters. The benchmark results provide some preliminary indication that the
PCC methodology has the potential to surpass traditional approaches from a safety point of view
while maintaining or improving performance. We continue in Section 6 with a description of how
we use PCC to develop safe extensions to language run-time systems. Finally, we conclude with



a discussion of the remaining difficulties and speculate on what might be necessary to make the
approach work on a practical scale.



2 Prbof-Carrying Code

Figure 1 depicts the typical process of generating and using proof-carrying code. The whole process
is centered around the safety policy, which is defined and made public by the code consumer.
Through this policy, the code consumer specifies precisely under what conditions it considers the
execution of a foreign program to be safe.
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Figure 1: Overview of Proof-Carrying Code.

The safety policy consists of two main components: the safety rules and the interface. The safety
rules describe all authorized operations and their associated safety preconditions. The interface
describes the calling conventions between the code consumer and the foreign program, that is the
invariants holding when the consumer invokes the foreign code and the invariants that the foreign
code must establish before calling functions provided by the consumer. In the analogy with types,
the safety rules are the typing rules and the interface is the signature that the foreign module must

implement.

The life of a PCC binary spans three stages. In the first stage—called certification—the code
producer compiles (or assembles) and generates a proof that a source program adheres to the safety
policy. In the general case, certification is essentially a form of program verification with respect
to the specification described by the safety policy. In addition, a proof of successful verification
is produced and suitably encoded to yield the safety proof, which together with the native code
component forms the PCC binary. The code producer can store the resulting PCC binary for future
use, or can deliver it to code consumers for execution.

In the second stage—called wvalidation—a code consumer validates the proof part of an PCC
binary presented for execution and loads the native code component for execution. The validation
is quick and driven by a straightforward algorithm. It is only the implementation of this simple
algorithm that the consumer must trust in addition to the soundness of its safety policy.

This organization allows for the verification process to be performed off-line and only once
for a given program, independently of the number of times it is executed. This has important
engineering advantages, especially in cases when verification is hard and time consuming or requires



user interaction. In such cases it would be undesirable to perform verification at the consumer site.

Finally, in the last stage of the process, the code consumer executes the machine-code program
possibly many times. This stage can proceed without performing additional run-time checks because
the previous validation stage ensures that the code obeys the safety policy.

This completes our overview of the general proof-carrying code technique. Before we can at-
tempt a practical implementation of PCC we must decide on concrete representations for the safety
policy, safety proofs and their validation procedure. We present next a summary of our current
choices and continue in the next section with the details and formal soundness theorems.

In our current experiments we use extensions of first-order predicate logic as the basis for
formalizing the safety policy. The extensions are predicates denoting application-specific safety
requirements, together with their proof rules. In this setup, the interface part of the safety pol-
icy consists of a set of precondition and postcondition predicates for the foreign function and the
functions exported by the code consumer. The safety rules are expressed as a Floyd-style verifica-
tion condition generator, which given the program and a set of preconditions and postconditions
produces a verification condition (also referred to as the safety predicate) in our logic. The safety
predicate has the property that if it can be proved using the proof rules in our logic, then the
program satisfies the safety requirements of the code consumer. In this case the safety proof is an
appropriate encoding of a proof of the safety predicate, proof is reduced to theorem proving in our
logic and validation to proof checking. For the particular safety policy of an example safety policy,
we show that the above choices are adequate.

2.1 Defining a Safety Policy

The first order of business is to define precisely what constitutes safe code behavior. We do this by
specifying a safety policy in three parts:

1. A Floyd-style verification-condition generator (also referred to as the VC generator) [6], which
is a procedure that computes a predicate in first-order logic based on the code to be certified.
We will refer to this predicate as the safety predicate.

2. A set of axioms that can be used to prove the safety predicate.

3. The precondition, which is essentially a “calling convention” that defines how the code con-
sumer will invoke the PCC binaries, and the posicondition that specifies the properties of
system state that the code must establish before returning to the consumer.

It is the job of the designer of the code consumer (e.g., the operating system desiguer) to define
the safety policy. In practice, several different safety policies might be used, each one tailored to
the needs of specific tasks or services.

We obtain the VC generator by first specifying an abstract machine (also called the operational
semantics), that simulates the execution of safe programs on the physical machine. The abstract
machine is not strictly required but it simplifies the design of the safety policy and provides a basis
for proving the soundness of the whole approach.

In order to make all of this more concrete, we will now present an example of an abstract
machine that specifies a general form of memory safety for a subset of the DEC Alpha processor
language, and then show how the safety policy of a simple resource access service can be defined
by a precondition. The VC generator and axioms will then be given in the next subsection.



Instr = ADD rs, Op,ry

| SUB r, Op,rg
| LD  rg,n(rs)
| ST rsan(rd)
| BEQ rs,n
| BNE r,,n
| RET
| INV »p

Op = n | o

Figure 2: The subset of DEC Alpha assembly language.

2.1.1 An Abstract Machine for Memory-Safe DEC Alpha Machine Code

Because the experiments in this paper use the DEC Alpha assembly language, our abstract machine
is essentially a high-level formal description of a subset of the Alpha architecture [21]. To see how
this is done, consider the subset of the Alpha instruction set shown in Figure 2. (Actually, we use
a larger subset of the DEC Alpha assembly language in our experiments, but this smaller subset
will suffice for presentation purposes.) In this table, n denotes an integer constant and r; refers
to machine register 4. All instructions operate on 64-bit values. For the purpose of this report we
are not considering function calls. With this arrangement we can easily ensure that the foreign
code does not write the reserved or callee-saves registers by not making them available at all.
We therefore allow the use of only 11 temporary and caller-save machine registers (which, for the
purpose of this presentation, we rename ry through ryp). Note that the invariant instruction INV
is not an actual DEC Alpha instruction. It is just a code annotation whose purpose purpose will
be explained shortly.

To define how programs are executed, we define an abstract machine as a state-transition
function. The state of the abstract machine consists of the program counter pc, the values of
machine registers and the state of the memory. This is sufficient for the experiments presented in
this report. For applications that require more state (e.g., the state of a hardware device or the
state of the code consumer’s locks) the extra state can be added in a manner similar to the memory
state presented below.

Following the model of the DEC Alpha processor, a machine register value is a positive integer in
therange 0, .. .,26*—1, with negative values represented using the two’s-complement representation.
The state of the memory is modeled as a total mapping from the range of addresses to machine
register values. In our case the range of addresses consists of those machine register values that are
a multiple of 8.

It is convenient to introduce a pseudo-register of the abstract machine, called ry,, that holds the
state of the memory at any point in the computation. With this convention we denote the state of
the abstract machine by the pair (p, pc), where p is the register state and pc is the program counter
value. The register state is a mapping of register names to register values (or to memory values in
the case of the register rpy,). The notation p(r;) (often abbreviated as r; when p can be recovered
from the context) refers to the value of register r; in state p. In particular the notation p(ry)(a)
denotes the contents of the memory address a in state p. Also, we write p[r; < v] to denote the
new register state obtained from p by setting the register r; to v.

We introduce next a language of expressions e and of memory expressions m. The syntax of



these expression languages is as follows:

e u=n | r | eePes | e16ez | sel(m,e) n € [0,2% — 1]
m u= rgm | upd(m,ei,ez)

The circled operations @ and © denote addition and subtraction on 64-bits, as implemented by
the arithmetic unit of a DEC Alpha processor. They are defined in terms of the usual arithmetic
operations as follows:

e1 ® ez = (e1 + eg) mod 264
e1 © ey = (e — eg) mod 264

The expression sel(rm, ) in a state p denotes the contents of the memory location denoted by
e. This is equivalent to p(rm)(p(e)). The expression upd(rm, €1, e2) denotes the new memory state
obtained by writing the register value denoted by the expression ey to the address denoted by e;.
These expressions are defined only in states where the address expressions denote values that are
multiple of 8.

Finally, we extend the notation p(e) to denote substitution in the expression e of register names
with register values.

For a more succinct specification of the abstract machine we introduce a notation to express
that in a given state an expression denotes an address that can be safely read or written. This will
be useful for safety policies that include memory safety, as is the case for all examples presented in
this report. For the purpose of specifying the abstract machine we do not care how it is established
that a given memory location is readable or writable. The next section describes one method for
the code consumer to communicate to the code producer information about memory accessibility.
Yet other methods are discussed in Section 5.

Definition 2.1 We write

e p = e:ro_addr iff the ezpression p(e) denotes an aligned memory address (p(e) mod 8 =0)
that can be safely read in state p.

e p = e : addr iff the expression p(e) denotes an aligned memory address (p(e) mod 8 = 0)
that can be safely read and written in state p.

We are now prepared to give the specification of the abstract machine as presented in Figure 3.
In this specification, a DEC Alpha program is a vector of instructions, II, and the current instruction
is referred to as II,.. The abstract machine is described as a state-transition function that maps a
machine state (p, pc) into a new state (o', pc’) by executing the current instruction IT,.

(plra < p(rs) ® p(op)], pc + 1), if Tpe = ADD 14, 0p,rg

(plra + sel(p(rm), p(rs) & n)], pe + 1), if Iy =LD ry4,n(rs) and [p Er.:®n: ro_addr|
(5, pc) — (plrm + upd{p(rm), p(rd) & n, p(rs))], pc + 1), if Mo = ST rs,n(rq) and |p Erq®n:addr|

(p,pc +n+1), if I, =BEQ rs,n oand r;=0

(pspc+1), if e =BEQ rs,n and r, #0

(p,pc+1), if M. =INV p

Figure 3: The Abstract Machine.



So, for example, the DEC Alpha instruction “ADD ry, op,ry” is defined in Figure 3 to have the

following semantics:

(plra < p(rs) ® p(op)], pc + 1)
where p is the current register and memory state. This specification states that the ADD instruction
updates register ry with the 64-bit sum of ry; and op, and also increments the program counter.

In the definition of the load and store instructions, there is a crucial difference between the
DEC Alpha processor and our abstract machine. The difference is that our abstract machine
checks the assertions that are shown in boxes in Figure 3. For example, consider the definition of
the “LD ry,n(r;)” instruction:

(plra + sel(p(rm), p(rs) ®n)], pc + 1), if |p = rs © n: ro.addr

When executing a LD instruction the abstract machine first checks that it is safe to read from
the corresponding address. The memory write operations are checked similarly. In conclusion
our abstract machine only executes memory-safe programs. Of course, the presence of the safety
checks means that the abstract machine is not a faithful abstraction of the DEC Alpha processor.
Moreover, the careful reader might have noted that it is in fact impossible to have a practical
realization of our abstract machine because the safety checks are defined in terms of the abstract
notion of accessibility of memory locations. This is not a problem, however, because the purpose
of certification is to prove that all safety checks always succeed. If we have a valid safety proof
for a program, we know that we can safely execute it on a real DEC Alpha and get the same safe
behavior as on our abstract machine, even though the Alpha does not implement the safety checks.

Note that the pseudo-instruction INV behaves like a NOP for the abstract machine. This
is appropriate as there is no such instruction in the DEC Alpha instruction set. In practice the
invariants are kept separate from the code, allowing the code to be executed directly by the physical
Processor.

Mathematically, the abstract machine does not return errors when a safety check fails. Instead,
the execution blocks because there are no transition rules covering the error cases. With this
arrangement, a program is safe if and only if it runs without blocking on the abstract machine.

Another interesting aspect of the abstract machine is the level of abstraction of our specification.
We might try to be ambitious and make a complete specification of the DEC Alpha processor.
However, this would be extremely complex and probably difficult to trust. And, as a practical
matter, for specific tasks such as the ones we are considering, many details and features of the
Alpha are irrelevant. This justifies working at a level of abstraction above the details of the
pipeline, cache, timing, and interrupt behavior.

We can also consider encoding other kinds of safety checks into our abstract machine. For
the sake of simplicity, we have specified only a notion of fine-grained memory safety. With some
ingenuity, an abstract machine designer can define safety policies involving other kinds of safety,
like control over resource usage or preservation of data-abstraction boundaries. Once a safety policy
is defined, application writers are free to use it to create PCC binaries that guarantee safety.

2.1.2 The Formalism for Expressing the Safety Policy

The abstract machine introduced above describes safety in terms of the abstract notions of readable
and writable memory locations. It is the code consumer who, through the safety policy, specifies
which locations are readable and which are writable. In particular the safety policy includes a
precondition that specifies what such properties can be assumed to hold when the PCC code is

invoked.



The preconditions are expressed in a language of predicates that includes the predicate true,
conjunction, implication, universal quantification, expression equality and disequality and a typing
predicate, as shown below:

P == true | PAP, | PPDP, | Vr.P | eg=ex | er#ex | e:T
7 = addr | ro._addr

Conjunction is used to specify sequences of safety requirements, while implication is used to
introduce assumptions, usually due to program branching constructs or the precondition. We use
universal quantification to specify that a given predicate should hold in any state.

The typing predicate is meant as a general way of expressing properties of expressions by
defining appropriate types. For example, in the present case we are interested in memory safety
and we define the types addr and ro_addr to express memory read/write rights. The type addr
is used to denote valid memory addresses that can be read or written. This implies not only that
the address is accessible but also that it is aligned on an 8-byte boundary. The type ro_addr is
similar with the exception that no writes are permitted to the given memory address. We note
here that the type addr is a subtype of ro_addr in the sense that an address that has type addr
also has type ro_addr.

Together with the syntax of the logic, the safety policy designer must also give an interpretation
of the syntactic logical constructs. This can be done in two ways. The way that we are taking
in this section is to give a set of proof rules that allows the code producer to prove predicates in
the logic. Another possibility for giving a meaning to predicates in our logic is to define rules for
computing their truth values in a given machine state. This is effectively done by extending the
Definition 2.1 to cover all the expressible predicates in our logic. The main purpose of such an
interpretation of predicates is to serve as a model for proving correctness of the proof system. We
defer this construction to Section 4 where we discuss the correctness of the PCC technique.

2.1.3 The Proof System

The proof system is an integral part of the safety policy and consists of axioms and inference rules
that are declared valid by the code consumer for the purpose of proving predicates in the given
logic. Because the logic introduced in the previous sections is composed of a fragment of first-order
predicate logic and application-dependent predicates, the proof system is similarly composed of
first-order predicate logic proof rules and application-dependent proof rules. We denote by £ the
entire set of proof rules in our logic and we write > P when the predicate P can be proved using
the proof rules in L.

Figure 4 shows the inference rules of first-order predicate logic from £. For our current exper-
iments we only need conjunction, implication and universal quantification. If more complicated
safety conditions need to be expressed, the technique can be extended to negation, disjunction and
existential quantification by adding the appropriate proof rules.

The proof rules are shown in natural deduction style. The rules for implication and universal
quantification introduction are hypothetical in v and parametrical in v. This means that the
hypothesis u and the parameter v can only be used locally for the purpose of proving the implication
or quantification.

In addition to the rules of first-order predicate logic, the code consumer must specify proof rules
for dealing with application-specific predicates. In our case this means reasoning about the typing
predicates (typing rules) and two’s complement arithmetic (arithmetic rules). There is only one
typing rule we need in our example, namely the subtyping relation between addr and ro_addr.

10
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Figure 4: Fragment of the first-order predicate logic proof rules.

From the arithmetic rules, we only need for our example the five rules shown in Figure 5. The
choice of axioms and inference rules for reasoning about arithmetic is a delicate point. In our
experiments, we have chosen the rules and axioms a bit haphazardly, extending the logic as the
need arose. While this approach might be workable in some circumstances, widespread use of PCC
for, say, safe applets would require that all proof validators adopt the same logic. How to choose
the right system may be a difficult task, though in practice this amounts to establishing a kind of
standard basis library.

_>e:addr pe:T e=¢
b e : ro_addrSUP-2ddr o d 7 tp-congr
= e > e 75 e be=¢
e=e
sel_congr eq.
> sel(m, e) = sel(m, ¢') 8 o £ neq_congr
pel =e
eq-+- ——;eqsym
(e@€')96'=eq+ [>6=6I q-8y

Figure 5: Application specific proof rules.

This completes the presentation of the basic mechanisms required for expressing the safety
policy. For illustration purposes we introduce a specific application of PCC and show in that
context an example safety policy.

2.2 A Sample Application and its Safety Policy

Consider the following simple example. Suppose an operating-system kernel maintains an internal
table with data pertaining to various user processes. Each table entry consists of two consecutive
memory words—a tag and a data word. The tag describes whether the data word is user writable
or not. The kernel also provides a resource access service through which user processes are given
permission to access their table entry by installing native code in the kernel. To make this possible
the kernel invokes the user-installed code with the address of the table entry corresponding to the
parent process in machine register rg. This address is guaranteed by the kernel to be valid and
aligned on an 8-byte boundary.

Although this example is somewhat contrived, we can imagine that entries in the table represent
capabilities (perhaps file descriptors), and so we would like to provide user-installed code with full
access to the correct table entries, while maintaining the integrity of the rest of the table and other
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parts of the kernel state.

Informally, the safety policy for the resource access service requires that: (1) the user code
cannot access other table entries besides the one pointed to by rg, (2) the tag is read only, (3) the
data word is also read only unless the tag value is non zero, and, (4) the code does not modify
reserved and callee-saves registers. The last condition ensures that the kernel can safely invoke the
user code using a normal C function call.

More formally, the kernel specifies a precondition Pre,, which states that it is safe to read the
tag and data pointed to by rp, and that it is also safe to write the data at offset 8 from rq if the
contents of the tag is not 0. In formal notation, this is written as follows:

Pre, =rp:ro_addr A ro @ 8:ro_addr A sel(rpy,rg) #0 Dry®8:addr

What remains now is to prove for a particular client of the resource access service that all typing
assertions will always succeed, given this precondition and abstract machine. In general, we can
also specify a postcondition as part of the safety policy, which would require particular invariants
to be valid when the user code terminates. Conceptually, in our example the postcondition is the
predicate true, meaning that no additional conditions are imposed on the final machine state.

Before moving on to a discussion of the certification process, we note that the safety policy we
have described here can be thought of as enforcing fine-grained memory protection. In general, one
could imagine having much more involved safety requirements. For example, we could change the
tag word in the table entry to be a semaphore that the user code must acquire (e.g., atomically
test-and-set to zero) before trying to write the data word; furthermore, we could also require (via a
simple postcondition) that the code releases the semaphore before returning. Again, for purposes
of the current presentation, we stick to the simpler memory-safety requirements.

2.2.1 An Example of an Untrusted Program

We continue the presentation of the PCC technique in the context of the resource access service
introduced in the previous section and a sample client for this service. Consider the DEC Alpha
assembly language program shown in Figure 6. The overall effect of this program is to increment
the data word if it is writable. We have intentionally written the program in Figure 6 in a slightly
complicated way, to show that low-level code transformations do not pose significant problems in
generating and validating safety proofs. Three of the interesting properties of this program are (1)
the instructions are somewhat scheduled, including speculative execution of the load in line 2 and
of the addition in line 4, to accommodate the DEC Alpha pipeline latency?, (2) register ry is reused
in line 2 to hold the data word instead of the tag address, and (3) even though the precondition
is expressed as a function of the value in register ry, some of the actual memory accesses are done
through register r;. In general, we expect scheduling and register allocation to have no effect on
the complexity of the PCC technique.

It is a simple exercise for the reader familiar with assembly-language programming to verify that
the code shown in Figure 6 is indeed correct with respect to the resource access safety policy. The
problem, of course, is how to convince even the most suspicious kernel that this code is absolutely
safe. We discuss next how PCC can be used for this purpose.

!These operations are speculative because they are not required if the branch in line 5 is taken.
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%Address of tag in rg

1 ADD rg, 8, r; %Address of data in ry
2 LD rp, 8(rg) %Data in ryg
3 LD r9, -8(r;) %Taginr,
4 ADD rg, 1, ro %Increment Data in rg
5 BEQ rs, L %Skip if tag == 0

ST rg, 0(r;)  %Write back data
L; RET %Done

Figure 6: DEC Alpha assembly code for resource access. Initially register ro holds the address of
the tag. The data is at the offset 8 from rg.

2.3 Certifying the Safety of Programs

To create safety proofs for a program, we must prove that executing it does not violate any of the
abstract machine safety checks (and also that the postcondition, if one is given, is satisfied if and
when the program execution completes). Standard techniques exist for building such proofs. Our
technique is based on Floyd’s verification conditions [6], because they are powerful enough to deal
with unstructured assembly-language programs and a broad range of safety invariants. Similar
techniques have been used before to verify assembly-language programs [2, 3].

Certification of programs involves two steps:

1. Compute the safety predicate for the program. This essentially encodes the semantic meaning
of the program in logical form and constitutes a formal statement that the program, when
executed, will not violate any typing assertions.

2. Generate a proof of the safety predicate, written out in a checkable form.

These steps are described in the following subsections.

2.3.1 Computing the Safety Predicate

In order to illustrate the complete algorithm for computing the safety predicate we add to the
untrusted program shown in Figure 6 two invariant instructions. The resulting program is shown
in Figure 7.

The purpose of the invariant instruction in line 6 is to communicate to the certification process
a hint about the state invariant at that point in the program. Specifically the invariant instruction
says that if the branch in line 5 is not taken, it is invariably true that the address is register ry
can be safely read and written. This invariant is not trusted blindly: it is first verified and only
then used, as will become clear in the next subsection. We want to stress that, for the example at
hand, it is not required to have invariant instructions. We use them here only so that our example
uses all of the current features of the PCC technique. Invariant instruction are crucial for dealing
with programs with loops and procedure calls. Such non-trivial uses of invariants are shown in
Sections 6 and 7 where examples with loops are considered.

Another invariant instruction was added at program point 0 with the invariant predicate being
the precondition. We make the convention that before the safety predicate is computed for a
program the precondition is prepended to it. We allow invariants to be associated with arbitrary
points in the program. These points are marked by INV pseudo-instructions, and their set is
denoted by Inv. For such a point ¢, we write Inv; to denote the corresponding invariant. With the
above convention regarding the precondition we have that 0 € Inv and Invg = Pre.
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INV Pre, %Precondition

ADD 1y, 8, r;  %Address of data in r;
LD rg, 8(rg) %Datainrg

LD ry, -8(r;) %Taginry

ADD ry, 1, rg  %lIncrement Data in ry
BEQ ro, L %Skip if tag ==

INV r;:addr

ST rg, 0(r;)  %Write back data

RET %Done

E~NOOd W~ O

=

Figure 7: DEC Alpha assembly code for resource access. Initially register ro holds the address of
the tag. The data is at the offset 8 from ry.

( [rs @ op/r] Vi, if Il = ADD r, op,1g
rs ®n:ro.addr A [sel(rm,rs ®n)/rgVCiy1, i II; =LD rg,n(rs)

Ve, - )T ®n: addr A [upd(rm,rq ®n,r;s)/rm|VCit1, if II; = ST rg,n(ry)
i =

(rs =02 VCiyny1) A (rs # 0D VCiy1), if II; = BEQ r,,n
Post, if II; = RET
| P, of Il; =INV P

Figure 8: The verification condition generator.

The safety predicate of a program is a function of the code itself, the precondition and the
postcondition that the code consumer specifies, and of the invariants present in the code. The
computation of the safety predicate requires a vector VU of predicates, one for each instruction,
that is computed using the rules shown in Figure 8. The notation [e/r;]P stands for the predicate
obtained from P by substituting the expression e for all occurrences of r;.

Our current implementation requires that every backward-branch target be an invariant in-
struction. In these conditions the entire vector VC can be computed in one backward pass through
the program. The only cases when the computation of an element of the VC' vector would require
a not-yet-computed value is for the backward branches. If backward-branch targets are invariant
instructions, then VC; can be found by a table lookup in nv. We could relax the requirement on
the placement of invariants but we must still require that every loop in the program contains at
least one invariant instruction.

The rules in Figure 8 are derived in a straightforward manner from the abstract machine spec-
ification of Figure 3; in fact, we imagine that experienced kernel and safety policy designers would
skip the abstract machine specification and give only the VC generator rules. In an ideal world,
the VC generator rules might even be taken from a standards document.

Based on the vector VC, we define the safety predicate for the entire program as follows:

SP(II, Inv, Post) = Vr. /\ Inv; D VCiy
i€lny
The intuition behind a valid safety predicate is that for any initial state that satisfies the
precondition Invg, the code II starting at the first instruction executes without blocking and, if it
terminates, the final state satisfies the postcondition Post.
For every invariant instruction a separate conjunct is added to the safety predicate. In essence

the safety predicate contains a conjunct for every path through the program starting at the begin-
ning or immediately after an invariant instruction and ending at a return or invariant instruction.
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This effectively breaks the task of proving a large program into several simpler proving tasks for
smaller segments of code. We have found that this use of invariant instructions greatly simplifies
the generation of the safety proofs, especially when user interaction is involved.

Returning to our example program, the vector II is as shown in Figure 7, the postcondition is
the predicate true and the invariants are defined for program points 0 and 6. With this data, we
apply the above formula and, after some minor simplifications, obtain the following safety predicate:

SP, =Vro.Vr1.Vrm. (Pre, D ((ro®8)©8:ro.addr Ary @8 :ro_addr) A
(sel(rm, (ro © 8) ©8) =0 D true) A
(sel(rm, (ro ®8) ©8) # 0 D ro ® 8 : addr))
A(rp:addr D rp:addr)

The above safety predicate is composed of two conjuncts, one corresponding to the precondition
and one to the invariant from line 6. Informally, the first conjunct says that for all values of registers
rg, r1 and states of memory ry, satisfying the precondition Pre,, the memory locations rg @ 8 and
ro @ 8 © 8 must be readable and if the tag (at address ro @ 8 © 8) is non zero, the data (at address
ro ® 8) must be writable. All these conditions must be true for the code to be safe with respect to
the resource access safety policy. The second conjunct is not very informative, demonstrating that
the use of the invariant instruction in line 6 is gratuitous.

Up to this point we have shown how to compute the safety predicate given the untrusted code,
the invariants (including the precondition) and the postcondition. In order to prove the safety
predicate, the code producer uses the safety rules which are part of the safety policy.

The proof D of the safety predicate for the example program is shown in a tree form in Figure 9.
To simplify the figure we introduce some abbreviations that are shown at the bottom of the figure.
Also, several proof subtrees, labelled D; to Dg'™* are shown separately. The superscripts on
the proof subtrees denote proof dependency on logical parameters introduced by the implication
introduction rules.

You can read the proof tree from top to bottom, interpreting every node as a valid inference of
the predicate below the line using the assumptions above the line. Each node in the proof tree is
labelled with the proof rule that is used at that stage.

The proof shown in Figure 9 was generated automatically by our PCC system, which incorpo-
rates a simple theorem prover. We defer the discussion of proof generation to Section 8.
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Figure 9: The formal proof of the predicate SP, in tree form.
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3 Encoding Safety Proofs

We argued in the previous section and we prove in Section 4.1 that a proof of validity of the VC
predicate is sufficient to ensure compliance with the safety policy. The safety proof must therefore
be a suitable encoding of a derivation > SP(II, Inv, Post).

We use a two-stage encoding of derivations. In the first stage we represent predicates and
proofs as expressions in the Edinburgh Logical Framework (also referred to as LF) [7]. The major
benefit of this encoding is that checking the validity of a proof is equivalent to typechecking the
LF representation of the proof. In the second stage, we encode LF objects in a compact binary
format, suitable for storage or transmission to code consumers.

3.1 LF Representation

LF has been introduced by Harper, Honsell and Plotkin [7] as a metalanguage for high-level specifi-
cation of logics. LF provides natural support for the management of binding operators, hypothetical
and schematic judgments. For example it captures the convention that expressions that differ only
in the names of bound variables are considered identical. Similarly, it allows direct expression of
contexts and variable lookup as they arise in a hypothetical and parametrical judgement. The fact
that these techniques are supported by the logical framework is a crucial factor for the succinct
formalization of proofs.

It is convenient to use the LF representation both for encoding safety proof and the safety policy
itself. In our implementations it is the LF representation of the safety policy that is exported to
code producers and it is the LF representation of the safety predicate that is expected to accompany
the untrusted code. We proceed therefore to present the representation of our logic in LF.

The formalization task ahead consists of two stages. The first stage is the representation of
the abstract syntax of the logic under investigation. For example, we will show how to represent
expressions, types and predicates in the logical framework. The second stage is the representation
of the semantics. We do this by representing in LF the proof rules set £. Then we show how actual
proofs can be constructed from instances of proof rules.

The LF type theory is a language with entities of three levels: objects, types and kinds. Types
are used to qualify expressions and similarly, kinds are used to qualify types. The abstract syntax
of these entities is shown below:

Kinds K == Type | Iz:AK
Types A == a | AM | Iz:A;.4s
Objects M u= ¢ | =z | MiMy, | Ax:AM

Here Type is the base kind, a is a type constant and c is an object constant.

We represent our logic in LF by means of a signature X that assigns types to a set of constants
describing the syntax of expressions and predicates, and the proof rules of our logic. Then we define
a representation function that will map expressions, types, predicates and their proofs in our logic
to LF objects constructed with constants declared in the signature . It is the code consumer who
specifies the LF signature ¥ and the representation function. In fact it is the signature X, together
with the VC generator, which constitutes the concrete representation of the safety policy exported
by the code consumer.

The main representation strategy in LF is that judgements (e.g., statements about the validity
of predicates) are represented as LF types and judgement derivations (e.g. a proof of a predicate)
are represented as objects whose type is the representation of the judgments they prove. Type
checking in the LF type discipline can then be used to check the validity of logic proofs.
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We start now to present the signature ¥ corresponding to our example resource access service
introduced in Section 2.2. Most of the signature can then be reused for other applications.
3.1.1 Representing Abstract Syntax: Expressions, Types and Predicates

First, we define in Figure 10 the LF types exp of expressions, pred of predicates and tp of types.
All of these are atomic LF types of kind Type.

exp : Type
pred : Type
tp : Type

Figure 10: LF signature (part 1). Base type constants.

Then for each expression, type and predicate constructor we define an LF constant as shown
in Figure 11. One of the most interesting cases is the universal quantification. Care must be
taken when dealing with universal quantification because of the presence of bound variables. For
example, we must ensure that the representation captures the fact that the bound variable is local
to the body of the quantification and that two expressions differing only in the name of the bound
variables are equal. Moreover, when an expression is substituted for the bound variable we must
ensure that no free variable of the substituted expression is captured.

One of the main reasons we chose LF as a proof representation language is that it provides
mechanisms for dealing with bound variables. Note how the universal quantification is represented
as a higher-order construct by representing the bound logical variable by a bound LF variable. This
effectively delegates all the tedious manipulations of bound variables to LF.

In the predicate and proof examples we have seen so far, the machine register names are used as
logical variables. In particular, once the safety predicate is computed and completely quantified over
all registers, the register names lose all their special significance for a physical machine. Moreover,
the problem of proving the safety predicate as well as checking its proof is independent of any
physical machine or safety policy. This separation of phases allows us to use the same theorem
prover independently of the specific application or machine considered and similarly to use the
same proof validator independently of the theorem prover used.

The LF representation function ™ 7 is inductively defined on the structure of expressions, types
and predicates as shown in Figures 12 and 13.

3.1.2 Representing Semantics: Proofs

Up to this point we have defined the representation of expressions, types and predicates in LF.
Our ultimate goal is to be able to represent proofs of predicates or equivalently derivations of the
validity of predicates. We follow the same pattern as for syntactic constructs and we introduce
a type of proofs pf and then define each proof rule as an LF constant of this type. Things are
actually more involved due to the fact that we want the type of a proof to determine the predicate
that is being proved. In this way we verify by type checking not only that a proof is valid but also
that it proves the desired predicate. This is possible to express in the LF type discipline by using
type families indexed by terms.
Thus pf is actually a type family indexed by LF representation of predicates:

pf : pred — Type
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0 : exp

oplus ! exXp — exp — exp
ominus : exp — eXxp — exp
= : exp — exp —> exp
<> I exp — exp — exp
sel I exp — exp — exp
upd ! exp —r exp — exp —> exp

= ! exp — exp — pred
hastype : exp — tp — pred

addr : tp

ro_.addr : tp

true : pred

and : pred — pred — pred
impl : pred — pred — pred
all : (exp — pred) — pred

Figure 11: LF signature (part 2). Expression, types and predicate constructors.

f_m—l . T

Fei ey’ = oplus e’ ey

"e1 © ey = ominus "e; ' ey’

l_el - ez—l — — 1-617 I_62_l

'—61 # 621 = <> I_el_| l_eZ_l

"e: 7' = hastype "e' 7"
Tsel(m,e)?’ = sel m’ e
Tupd(m,e,ez)” = upd™m™ Te; " ey

Figure 12: LF representation (part 1). Expressions.

Following the model of expressions and predicates we add to the signature X a constant for each
proof rule in £. The constants corresponding to the proof rules used by our example are shown in
Figure 14 (first-order logic proof rules) and Figure 15 (application-specific proof rules).

We then extend the representation function ™7 to derivations. When doing so care must
be taken with hypothetical and schematic judgments, such as the implication introduction and
the universal quantification introduction rules. We show in Figure 17 the representation of the
introduction rules for conjunction, implication and universal quantification. The representation of
the conjunction introduction is typical for all other rules not shown here, including the typing and
arithmetic proof rules.

The implication introduction rule introduces the hypothesis labelled u for the purpose of deriving
P,. Checking an instance of this rule schema involves verifying that it discharges properly the
hypothesis u. Equivalently, the derivation D, must be hypothetical in ». This is expressed naturally
in LF by representing the hypothesis as a variable bound in the derivation D,. Finally, the LF
representation of our logic contains also the representation of the application-specific proof rules.
Their representation is straightforward because they do not involve hypothetical judgments. As an
example we show below the LF representation of the subtyping rule sub_addr:

As an example of a proof representation in LF we show in Figure 18 the representation of the
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Faddr? = addr
"ro_addr™ = ro_addr
"true' = true
"TPARY = and"P7'TR™
"TPOR" = impl "P'™R"

Vz.P? = all (Az:exp."P7)

Figure 13: LF representation (part 2). Types and predicates.

true.i : pf true

andi : Ilp:pred.Ilr:pred.pf p — pfr — pf (andp r)
andel : Ilp:pred.llr:pred.pf (andp 7) — pfp

and er : Ilp:pred.llr:pred.pf (andp r) — pfr

impl_i : IlIp:pred.Ilr:pred.(pf p — pf r) — pf (implp r)
impl e : Ilp:pred.Ilr:pred.pf (implp r) > pfp > pfr
allii : Ilp:exp — pred.(Ilv:exp.pf (p v)) — pf (all p)
alle : Ilp:exp — pred.lle:exp.pf (all p) — pf (pe)

Figure 14: LF signature (part 3). First-order logic proof constants (see Figure 4).

proof of the safety predicate for our example SP,. Notice the one-to-one mapping between the proof
in the tree-form and in the LF form. Actually what is shown in Figure 18 is only the skeleton of
the proof representation. For example for the and_i constant we only show the last two arguments
and we omit the predicates. Also we do not show the argument types in LF abstractions. The
complete representation is about an order of magnitude larger and somewhat difficult to read.

We have discussed in this section how to represent the abstract syntax (expressions, types and
predicates) and semantics (logic proofs). This is enough for our purposes but we could go even
further using the same logical framework. For example we could represent meta-theory of the logic
in LF. In the case of PCC this could mean introducing uniform derivations of validity and prove
that this constitutes an equivalent proof system. This gives the code producer the flexibility of
choosing the proof system it wants to use, provided it convinces the code consumer of its soundness
with respect to the “official” proof system. For example, it is often the case that for given logics,
uniform derivations are significantly easier to produce.

sub_addr : Ile:exp.pf (hastype e addr) — pf (hastype e ro_addr)
tp_congr : Ilej:exp.lles:exp.llt:tp.

: pf (hastype e; t) = pf (= e;1 e2) — pf (hastype e; t)
sel_congr : IIm:exp.lle;:exp.lles:exp.pf (= e e2) = pf (= (sel mey) (sel m eg))
neq_congr : Ile;:exp.lles:exp.Iles:exp.pf (neq e; e2) = pf (= ez e3) — pf (neqe; e3)
eq-+ — : Ile;:exp.Iles:exp.pf (= (ominus (oplus e; e2) e2) €1)
eq.sym : Ilej:exp.lleg:exp.pf (=e1 e2) = pf (= ez €1)

Figure 15: LF signature (part 4). Application-specific proof constants (see Figure 5).
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_be:addr  _ oy o44r el
> e : ro_addr

Figure 16: LF representation (part 4). Fragment of the application-specific rule representation (see
Figure 5).
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Figure 17: LF representation (part 3). Fragment of the first-order logic rule representation (see
Figure 4).

Our purpose in using the LF representation of proofs is to use the LF type-checking algorithm
for checking the validity of proofs. This has the advantage that the code consumer need only trust
one implementation of proof checking. Other logics can be encoded in the same framework and
their derivations checked by the same type checker just by changing the signature. Furthermore,
the LF typing rules are so simple that a naive implementation takes only about 4 of pages of C
code. This is important because it minimizes the concern that the type checker must be trusted.

We do not show here the typing rules for full LF. Instead we define next a fragment of LF that
is expressive enough to encode first-order and higher-order logics but is strictly simpler and less
expressive than full LF. For this fragment, called LFy, we show the typing rules and the adequacy
of the encoding of predicates and derivations.

3.2 LF;, Type Checking

In this section we introduce LFy, a fragment of full LF defined in [7]. The benefits of using LFy
instead of full LF for proof representation and validation is that LFy admits a simpler type-checking
algorithm that is still complete for our purposes. The results that we are deriving in this section
for LF¢ mirror similar results for full LF [7].

The first observation is that LF( has the same syntactical elements as full LF. As a consequence
the signature and LF representation function presented in the previous subsection are inherited to
LFq. It is only the typechecking algorithm that changes from full LF to LFy.

We note also that the set of kinds in our logic (and in many possible extensions of it) is very
simple and is also introduced by the trusted code consumer. We only make use of the kinds Type
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all_i (A rp: exp .
all_ i (A r;: exp .
all_i (A rm: exp .
and_i
(Ampl_i (Aup : _ .

and_i (and_i (tp_congr (and_el (and_el wu1))

(eq_sym (eq_+- rg)))

(and_er (and_el u7)))

(and_i (impl_i (Au3 : _ . true_i))
(dmpl_i (Aug : _ .
impl_e (and_er wu;)
(neqg_congr uy
(sel_congr (eq_+- 1rg))))))))

(Ampl_i (Aug : _ . u2)))))
Figure 18: LF representation of the proof shown in Figure 9.

and pred — Type. This suggests that the process of checking proofs does not have to get involved
in checking well-formedness of kinds.

Similar simplifications can be made with types. All of the types involved in checking the validity
of proofs are specified in the signature. These types can be assumed to be well-formed because
the signature is defined by the code consumer. The first simplification of LFy over full LF is that
signatures are trusted to be well-formed.

Another distinguishing feature of LFy is that it only allows second-order constants and first-
order abstractions. This means that the type of all constants involved are at most second-order
and in all abstractions the type of the argument is first-order. This is enough for representing a
wide array of first-order and higher-order logics [7]. The benefit gained is that the normalization
judgment is syntax directed and admits simple and efficient implementations. Intuitively, functions
can only be applied to atomic arguments, which when substituted in the body of the function
cannot generate new redices.

Finally, by examination of the LF encoding functions we notice that only LF objects in canonical
form are produced. This is in fact a crucial technical detail in the proofs of adequacy in [7]. In LF,
we define typing judgments only for objects in canonical form, thus simplifying the typing rules
and the adequacy proofs. An object is in canonical form if it is in Bn-long-normal-form.

We start by defining canonical forms for objects and types. An object (type) is in canonical
form when it is either an abstraction or an atomic object (type) of type (kind) non-functional. An
object is atomic if it is a constant or variable applied to “enough” canonical arguments. Formally
this is defined by the judgments:

Well-typed canonical objects T'ky M : A
Well-typed atomic objects TEM:\,A

We write I' iz M :; A if the object M is in canonical form of type A with respect to the type
assignment I' and the LFy signature 3. This judgment is defined in Figure 19 in terms of the
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atomic typing judgment I' i M :; A. An object is atomic if it is a constant or a variable applied
to zero or more arguments. Enough arguments must be present such that the application has a
non-functional (atomic) type.

Canonical Objects

Nz Ak M: B T'k A:, Type

Tk Az AM ., Tlz:AB canpi
''EM: A 'k A:, Type
TR A can_at
Atomic Objects
I'z)=A4 Ye)=4A 't M:Iz:AB TTkN: A [N/z]B| B
———F,_Ew:aAat_var Theu 4 t_ct TR MN. B at_app
Atomic Types
Sa) =K PisAqBK ThMiB
ThauK -2 ThAM: K P
Normalization
na_a Ay A MAM na-a AL A BB na pi
afa® AMUA M “PP Mz:AB Iz A B P
o mvar ——nm.c M| M N.UN’nma My Az:AM N@N’nmbeta
z Pz g™ MN M N PP M N §[N'/z]M’ -

L]

Figure 19: Typing rules for LF,

One variation from typical presentations of LF is that instead of a definitional equivalence
judgment we use a normalization judgment. Furthermore, use of normalization is localized to the
at_app rule. This makes both the canonical and atomic typing judgments syntax directed, which
simplifies the adequacy proofs.

Abstractions are restricted to be first order by the can_pi rule, because an atomic type cannot
be a function type. This in turn, justifies the syntax-directed form of the normalization judgment.
In particular, in the nm beta rule, the term [N'/z]M' is known to be in canonical form if M’ is
canonical and N’ has an atomic type.

We first state a theorem that justifies the claim the LFy is a fragment of full LF. We use the
judgement I' i M :;» A to denote typing in the full LF type discipline. The following theorem
says that typing in LFy is a subrelation of typing in full LF. The converse holds only for canonical
objects and types. Furthermore the theorem states that reduction to canonical form as defined in
LFg preserves definitional equality of full LF.

Theorem 3.1 (Soundness of LFy )
1. fTEM:  AthenT'ly M :1p A.
2. IfTEM: AthenT |y M :p A.
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3 If T Ay KthenT ik A :r K.
4. If T A:p Type and A} A’ then A=, A and T g A" ;1 Type.
5. T M A and M | M’ then M = M' and T & M’ i1 A.

Proof: The proof is by simultaneous induction on the structure of LFq derivations.
0

To recapitulate, we have given a representation function which can be used effectively to trans-
late expressions, types, predicates and their proofs to LF. The LF objects produced are constructed
using type constants and object constants drawn from the signature X. Both the signature ¥ and
the representation function are defined by the code consumer as part of specifying the safety policy.
In fact the signature ¥ is the concrete representation of the logic £ that we have established in
previous sections for the purpose of expressing the safety policy.

The code producer has to compute the safety predicate SP of the code that it intends to submit
for execution to the code consumer. Then the producer must generate a proof D of the safety
predicate according to the proof rules established by the consumer and described in the signature
Y. Finally, the last task that the producer must perform is to represent the proof as an LF object
M = "D7. Note that the code producer can choose to use the LF representation of proofs as its
own internal representation, saving thus the expense of converting its internal representation of
proofs to LF.

In the next stage of the process the code consumer receives the machine code program II together
with the LF object M that represents the proof of safety predicate of II. The code consumer then
computes the safety predicate SP on its own. The code consumer is most likely using internally
the LF representation of predicates, and thus the concrete safety predicate that is computed is
TSP7. The final validation step is to perform the typechecking - 5 M :. pf "SP7. If this check is
successful, the code consumer knows that the safety predicate is valid or, equivalently that there
exists a proof of it using only the proof rules established as part of the safety policy. The formal
proof that this procedure does indeed establish safety with respect to the safety policy see Section 4.

This method ensures safety even if the native code or the proof in the PCC binary is tampered
with. If the code is modified, then in all likelihood its safety predicate changes, so the given
proof will not correspond to it. If the proof is modified, then either it will be invalid, or else not
correspond to the safety predicate. If the code is modified in such a way that the safety predicate
is unchanged (for example, instruction scheduling and register allocation might do this in typical
circumstances), or if both the code and the proof are modified so that we still have a valid proof of
the new safety predicate, the validation succeeds and we continue to retain a guarantee of safety.
This kind of tampering with a PCC binary can be viewed as a valid code transformation.

3.3 A Binary Encoding of LF objects

At the end of the previous section we have given an overview of the PCC technique when the
safety is enforced through Floyd-style verification conditions and the proofs are encoded in LFy.
We have skipped over an important engineering aspect that must be addressed by any practical
implementation of PCC: the binary representation of LF objects and types. We feel that this
is an important issue because in our experiments we achieved improvements in the size of proof
representations and the time to typecheck them of an order of magnitude just by optimizing the
representation.

A typical PCC binary in our system contains a section with the native code ready to be mapped
into memory and executed, followed by a symbol table used to reconstruct the LF representation
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at the code consumer site, the binary encoding of the LF representations of invariants, and the
binary encoding of the LF representation of the safety proof. We briefly describe here our current
binary format for LF objects.

There are four kinds of LF objects and types: constants, variables, abstractions and applica-
tions. We represent constants as indices in the current signature. This is appropriate because each
constant must be declared in the signature. However, for flexibility it is sometimes useful to allow
the code consumer and the code producer to use different signatures, as long as they agree on the
set of constants used in the proof representation. (Such a situation occurs when the code producer
uses a signature containing declarations for multiple applications and logics.) To achieve this flexi-
bility we include with each PCC binary a symbol table, which contains a list of the external names
of LF constants that occur in the proof or invariant representations. Constants in the invariant
or proof are then represented externally as an index in the symbol table. When the PCC binary
is loaded in memory each symbol in the symbol table is resolved using the resident signature and
each constant is changed to point in the resident signature.

The next issue to be addressed is the issue of LF variables. We chose to represent variables as
deBrujin indices. That means that each variable occurrence in a closed LF object is represented
as an integer whose value is the number of nested abstractions between the binding abstraction
and the actual occurrence. This representation has the advantage that two objects which are a-
equivalent have identical representations. The disadvantage is that substitution has to take care of
avoiding variable capture.

Finally abstraction and application are represented by a tag followed by a variable number
of subterms. The tag specifies whether it is an application or an abstraction and the number of
subterms that follow. In the case of an application the first subterm is the application head followed
by all the arguments. For an abstraction the last subterm is the body and all the preceding subterms
are the types of the parameters.

We stop here with the presentation of the binary representation of LF terms, noting that
although the representation that we are currently using seems to be quite practical, we have only
explored a tiny part of a huge design space. Figure 20 shows the sizes of these sections for the PCC
binary corresponding to the resource access example. In our experiments we have observed that
the size of the symbol table increases only very slightly with the size of the proof.

NATIVE CODE 0

SECTION

45

RELOCATION
SECTION

220

PROOF
SECTION

340

Figure 20: The layout of the PCC binary for the resource access example. The offsets are in bytes.
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4 Correctness of the Proof-Carrying Code Technique

In the previous sections we have described a particular realization of the Proof-Carrying Code
concept. We have used Floyd-style verification conditions to capture properties about programs and
we represented proofs of first-order predicate logic in the Logical Framework (LF) for the purpose
of easing their verification. In this section we argue formally that these choices lead to a sound
technique for establishing the safety of untrusted code. Even though the proofs in this section are
somewhat customized to the particular choices we made and sometimes even to a particular safety
policy, this section is intended to be a model for proving the safety of any particular realization of
PCC.

There are several issues to be dealt with when considering correctness of PCC. The first issue is
the soundness of the safety policy. We show in the next subsection how this can be done for the case
when the safety policy is expressed as a VC-generator (Figure 8) together with some application
specific proof rules (Figure 5). Then we consider in Section 4.2 the issue of adequacy of using LFy
typechecking as a means of validating proofs of safety predicates.

The main result of this section is Theorem 4.1 stated below. The statement of the safety
theorem refers to the abstract machine defined in Figure 3. The purpose of the abstract machine
is to provide a model for specifying the properties of safety predicates. If the safety policy designer
does not feel the need for a formal proof of soundness then the abstract machine is not strictly

required.

Theorem 4.1 (Safety) LetII be the native code part of a PCC binary and M be the LF object rep-
resenting the safety proof contained in the PCC binary. If M such that - &5 M :; "SP(II, Inv, Post)™
then for any initial state py that satisfies the precondition ( po = Invg ) and for any abstract machine
state (p, pc) originating from the initial state (po,0), one of the following is true:

1. The state (p, pc) is a final state (i.e. 11, = RET) satisfying the postcondition Post, or

2. The ezecution is not stuck, i.e., there exists a new state (p, pc’) such that (p, pc) — (o', pc’).

Proof: By Corollary 4.14 (see Section 4.2) we know that there exists a derivation D
> SP(II, Inv, Post), that is the safety predicate is valid. Now by using Theorem 4.7 (see Sec-

tion 4.1) we immediately get the desired result.
0

Since the abstract machine gets stuck when there is any violation of a typing assertion, this
theorem provides an absolute guarantee that a certified program will not have such violations, as
long as its execution is started in a state that satisfies the precondition. For the particular case of
our safety policy this means that the program only reads from memory locations that are defined
as readable by the safety policy and only writes to writable memory locations.

The rest of this section presents the technical details of the main lemmas and theorems used in
the proof of safety above. This is necessarily somewhat technical and thus the reader might want
to skip any or all of the subsections and go directly to the next section where we present the first
of our case studies.

4.1 Soundness of the VC-based Certification

In this subsection we prove that the safety predicate as defined in the body of the paper is indeed
sufficient to ensure compliance with the safety policy. In the context of our example, this means that
every memory read operation references a readable address and every write operation references
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a writable memory location. Also we check that upon termination, the postcondition holds. This
soundness proof can be extended easily to other examples.

The first order of business is to prove define a meaning of the predicates in our logic, following
the model of Definition 2.1, and then prove the soundness of the proof system £. This is required
because the safety predicate is proved using the rules in £ while the abstract machine safety checks

are defined in the terms of the |= relation.
We extend the |= relation introduced in Definition 2.1 to the entire set of predicates. We write
p = P when the predicate P is true in the state p. This relation is defined below.

Definition 4.2 The relation p = P is defined on the structure of P as follows:
* p = true.

pPEPIANP iff pl= P and p = Ps.

p = P D P, iff whenever p |= Py then p |= Ps.

o p =V P iff plr; « n] |= P for any n €[0,25 —1].

* pEer=eziff pler) = plez).
e p = e # e iff pler) # ple2).

¢ p |= e:ro_addr iff the expression p(e) denotes an aligned memory address (p |= e mod 8 = 0)
memory address that can be safely read in state p.

p = e : addr iff the expression p(e) denotes an aligned memory address (p |= e mod 8 =0)
memory address that can be safely read and written in state p.

We say that the predicate P (possibly containing free register names) can be derived in state
p if and only if > p(P). The following soundness theorem establishes that the proof rules in ©
preserve the intuitive meaning of predicates as defined by the |= relation.

Theorem 4.3 (Soundness of L) If > p(P) then p = P.

Proof: The proof is by induction on the structure of the derivation D :: © p(P). The cases when
the last rule in D is one of the first-order predicate logic rules is very similar to the traditional
soundness proofs for first-order predicate logic. Of the application-specific rules we consider here
only the sub_addr rule.
Case: o
_ > p(e:addr)
" b p(e: ro_addr)

sub_addr

By induction hypothesis on the derivation D’ we get that p |= e : addr. By definition of = we
deduce that p = e mod 8 = 0 and that in state p the memory address denoted by p(e) can be safely
read and written. Because of the readability property we can use again the definition of |= and

deduce the desired conclusion: p |= e : ro_addr.
]

We also need to check the substitutivity property of the = relation, as defined by the following
lemma.
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Lemma 4.4 (Substitutivity) If p |= [e/r;]P then p[r; «+ p(e)] = P.

The central result in this subsection is the progress lemma for the abstract machine. Informally,
this lemma says that if the current state satisfies the VC predicate for the current instruction then
either the execution terminates immediately in a state the satisfies the postcondition, or else there
is a subsequent state (the execution does not halt there.)

Lemma 4.5 (Progress) For any program II, precondition Pre and postcondition Post such that
Iy = INV Pre, if > SP(II, Inv, Post) and p |= VC), then either:

e II,. = RET, and p |= Post, or
e Ezists a new state p' such that (p, pc) — (o', pc’) and p' = VCpe.

Proof: The proof is by case analysis of the current instruction.

Case: II,. = RET. Because p |= VCp and VCy, = Post, we conclude that p = Post.

Case: II,. = ADD r,,0p,ry. From the hypothesis p = [r; @ n/rg]VCpct1. Using the substitutivity
lemma, we get that p[rqg < p(rs) ® n] |= VCpey1. The conclusion follows immediately if we pick
pc’ = pc+ 1 and p' = p[rg + p(rs) ®nl.

Case: I, = LD ry,n(rs). From the hypothesis

pEr; ®n:ro_addr A [sel(ry,rs @ n)/rg)VCpei1

By definition of = in the conjunctive case, it follows that p |= r; ® n : ro_addr and p = [sel(rm, rs®
n)/r4]VCpe41, which means that the side condition in the memory read rule of the abstract machine
is satisfied. If we pick pc’ = pc + 1 and p' = p[ry < sel(p(rm), p(rs) ® n)] we deduce (using the
substitutivity lemma) that p' = VCp,.

Case: Il = BEQ rg,n. We distinguish two cases depending on the value of p(r;). We only
show here the case when p(r;) # 0. The other case is similar. From the hypothesis we get
plETs =02 VCpt1 Ars #0 D VCpeqni1- Using the definition of |= for conjunction and
implication we get that p = VCpcynt1, which is exactly what we have to prove.

Case: II,. = INV P. From the hypothesis we have that p |= P. Now we use the validity of the
safety predicate. By universal quantification elimination (with the instantiation p) and conjunction
elimination on the proof of the safety predicate we get that > p(P O VCp11). By the soundness
of £ we deduce that p = P D VCpc+1 and from here using the definition of |= that p = VCpey1,

which is the desired conclusion.
O

Lemma 4.6 For any program II, set of invariants Inv and postcondition Post such that Ily =
INV Pre, if > SP(II, Inv, Post) and the initial state py satisfies the precondition Pre (p | Pre ),
then for any subsequent state p of the abstract machine such that (po,0) —* (p, pc), we have that

p = VCpe.

Proof: By induction on the length of the derivation (pg,0) —* (p,pc). The base case follows
immediately from the hypothesis observing that V(Cy = Pre. The inductive case is Lemma 4.5.
O

Lemmas 4.6 and 4.5 can be easily used to show that at any point during the execution of a
program with a valid safety predicate, the safety check in the memory load rule is satisfied, and
furthermore whenever the program terminates, it does so in a state that satisfies the postcondition.
This is stated formally as Theorem 4.7, which is the main correctness result related to using
verification conditions for ensuring compliance with the safety policy.
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Theorem 4.7 For any program II such that Iy = INV Pre, if o SP(II, Inv, Post) and the initial
state satisfies the precondition Pre, then for any abstract machine state (p, pc) originating from the
initial state (pg,0), one of the following is true:

1. The state (p,pc) is a final state (i.e. I, = RET) satisfying the postcondition Post ( p |
Post ), or

2. The ezecution is not stuck, i.e., there exists a new state (p', pc’) such that (p, pc) = (o', pc’).

Proof: From the Lemma 4.6 we know that for any state (p,pc) following from the initial state
p = VCpc. Then by using the Lemma 4.5 we get the desired conclusion.
O

The proof of soundness of VC-based certification shown here is much simpler than other cor-
rectness arguments for Floyd’s VC generators, mainly because of the more precise definition of
programs, invariants and program points for assembly language programs than for flowcharts. This
concludes the issue of soundness of using Floyd-style verification conditions to capture program
safety. We explore next the issue of using LFy typing as a way to check the validity of first-order
predicate logic proofs.

4.2 Adequacy of the LF Representation of Proofs

We have argued in previous sections that there are many advantages of using LF for proof repre-
sentation. The major advantage is that verifying the validity of a proof is reduced to type-checking
its LF representation. Therefore, we can base our proof validation on well-understood principles
from type theory. Furthermore, the same type-checking algorithm is utilized for many logics and
applications, just by varying the signature.

We prove in this section that with the LFy proof representation given in Section 3.1 and the
typing rules for LFg shown in Figure 19, LF; typechecking is sufficient to ensure the validity of a
proof. At the same-time, by typechecking the representation of a proof we can check the identity
of the proved predicate. This property is called in the literature [7] the adequacy of the proof
representation.

We state below the adequacy theorems for expression, predicate and proof representation as
defined by the signature ¥. The proofs for the adequacy theorems follow closely the model of
similar adequacy theorems for full LF in [7]. Technically, the proofs are somewhat simpler for LF
because of the syntax-directed form of the typing judgments and canonical forms. If we extend
the signature of first-order predicate logic with first-order proof constants, the adequacy still holds
because typically problems only arise for hypothetical and parametric judgements. The theorems
below are intended to be a model for proving representation adequacy of any such extension of
first-order predicate logic.

In order to prove the main result we first need to prove representation adequacy for expressions
and predicates. We state these theorems without proof here. Their proof is very similar but simpler
than that for derivation representation.

Theorem 4.8 (Adequacy of Expression Representation.) There is a compositional bijection
T.7 between expressions e with free variables among x1,...,Z, and atomic LF objects "e” such
that 1 iy €Xp,...,Tn o €xp k& "€ i exp. The bijection is compositional in the sense that

Tler/zlex™ = [Ter/z] ex™.
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Theorem 4.9 (Adequacy of Predicate Representation.) There is a compositional bijection
F.7 between predicates P with free variables among x1,...,2n and canonical LF objects " P~ such
that 1 :; exp,...,ZTn o €xp kg "P7 i pred. The bijection is compositional in the sense that

Tle/z]P=["e/z]"P".

Theorem 4.10 (Adequacy of Derivation Representation.) There is a bijection ™7 between
derivations D :: > P with parameters v; (i = 1,...,n) and from hypothesesu; :: > P; (j=1,...,m)
and canonical LF objects "D™ such that v; :q exp,u; :q pf "P;7 g "D7 i pf TP,

An important observation is that a canonical object of type pf " P for some predicate PP must
be also an atomic object (by inversion on the rules of canonical typing). Then we observe that an
atomic object must be a variable or a constant applied to “enough arguments of the right type.”
This notion will be stated formally starting with the next paragraph. The next observation is that
if the head of the application is a variable it can only be one of the assumptions ;. The case of
constant application head is done by case analysis on all the constants in the signature.

We introduce two new judgements for dealing with applications represented as head and argu-
ment list. Let A range over argument lists:

A = - | M)A

We define the completion judgement M + A = M’ to say that the term M applied in order to all
the arguments in A yields term M’. This is actually needed because application is left-associative.
Formally the completion judgement is defined by the two rules below:

MN+A=N'
M+N,A=N'

compl 0 compl-1

Then we introduce the canonical typing judgement for argument lists I' i A :(; A = A’
Informally this judgement is saying that the arguments in A can be applied in order to any term
of type A. Furthermore the type of the resulting term would be A’. This judgement is defined by
the rules below:

Tl M:Ar  [Mja]ds VA, Tl A Ay = Al
=————arg-0 7
'k -:(cA= A F}EM,A:CHQ::Al.A2=>A2

arg_1

Now we can state formally the fact that an atomic object must be a variable or a constant
applied to “enough arguments of the right type.”

Lemma 4.11 (Atomic Forms.) If Tk M :;; Aand T A:. A= A and M + A = M/, then
ezactly one of the following is true:

"o D(z) = A

1. There is a variable T and an argument list A" such that z+A' = M' andT' i A’ :
Al Y(e) = A

2. There is a constant ¢ and an argument list A’ such that c+ A’ = M' and T k5
‘a

Proof: The proof is by induction on the structure of the derivation D :: T' g M :, A.

Case:
Mz)=A4

Thaog AT

D=
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Then M = z and A = I'(z). We pick A’ = A and then verify using the rule arg_0 that case 1 is
satisfied.

Case:
_ E()=A
D= mat.ct
Similar with the previous case.
Case:
Dy Do Dy
D= ' My :p z:A;. Ay 'k My : A [My/z]As || A ¢
o F’EM1 M2 :aA -at-app

We try now to setup the required facts for applying the induction hypothesis on D;. By assumption
MM, + A = M'. By using the rule compl_1 we get that My + My, A = M’'. Let A’ be M,, A.
Using the rule arg_1 with hypotheses Dy, D3 and the assumption I' 5 A :c A = A’, we get that
L'y A’ :;Iz:A1. Ay = A'. Now we finish be applying the induction hypothesis on D; and get the

desired conclusion.
a

The above lemma is stated in a more general form than we will use it. That was required for
the induction proof to go through. The corollary that we actually use is:

Corollary 4.12 (Canonical Forms.) IfT' iz M :. pf "P" then there exists M’ which is either
a variable or a constant of type A', and a list of arguments A such that M' + A = M and
'k A: A =pf P

Proof: The proof of the corollary is immediate by observing that A must be also atomic and then
using Lemma 4.11 with an empty initial argument list.
O
The next lemma states the difficult part of the adequacy for derivations, the completeness of
LF representation of derivations. This is actually the implication direction that is most relevant to
PCC because it states that the existence of a well-typed LF object of type pf "P™ guarantees that
there exists a derivation of the proof of P.

Lemma 4.13 (Completeness of LF representation for derivations.) If I' = v; :; exp,u; i,
pf "P;" and if 'ty M :. pf "P7 then there exists a derivation D :: > P with parameters v; and
hypotheses u; such that M = "D

Proof: The proof is by induction on the structure of the derivation £ =T | M : pf "P". By
inversion on the structure of £ we deduce that M must actually be an atomic object. Then we use
Corollary 4.12 to deduce that there exist M’ (a variable or a constant) of type A’ and the list of
arguments A such that M + A= M and F:: Tk A: A = pf "P.

We continue by case analysis on whether M’ is a variable or a constant from the signature 3.
Case: M' =z and A’ = I'(z). Because all the types in I" are atomic it must be the case that A = -
(only rule arg_0 could be the last rule in F). Then M = z and the derivation £ is

[(z) =pf "P" ¢
Thzoupt P2 T'lz pf "P7:, Type
I'gz: pf P

-var

E= can_pi
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It must be the case that M = u; for some j and therefore the derivation that we are looking for is

the hypothesis u;.

Case: M = c and A" = ¥(c¢). Of all the possible constants in the signature ¥ we only consider
here the cases of true (as an example of a case that actually does not apply here) and impl_i.
Case: M = true and A’ = pred. Following a similar line of reasoning as in the variable case it must
be that the argument list is empty and arg_0 is the last rule in F. It follows that pred = pf " P~
which is false. The significance of the contradiction is that the constant true is not an actual
possibility in our case. Similar contradictions occur for all constants in 3 whose result type is not

a proof.
Case: M = impl i and A = IIp:pred.Ilr:pred.(pf p — pf r) — pf (impl p r). We follow a
sequence of deductions as follows:

1. Only the rule arg_1 could be the last in F, thus
2. A= Ml,Al, and
3. I' & My :. pred, and

4. [My/p|(Ilr : pred.(pf p — pf r) — pf (impl p 7)) | A;. It follows that
A; =llr:pred.(pf M1 — pf r) — pf (impl M; r), and

5. ' Ay :e Ay = pE P

6. Ouly the rule arg_1 could be the last one in derivation 5, thus
7. Ay = M, Ag, and

8. I' g My . pred,

9. [My/r]((pf My — pf r) — pf (impl M r) § Ag. It follows that Ay = (pf M; — pf M) —
pf (impl M; M>), and

10. Tk Ay :p Ay = pf TP

11. Only the rule arg_1 could be the last one in derivation 10, thus

12. Ay = M3, A3, and

13. T' s M3 ;. pf M) — pf My,

14. [M3/z]pf (impl M; Ms) | As. It follows that A3 = pf (impl M| M>), and
15. Tty Ag:c A3 = pf TP

16. Only the rule arg_0 could be the last in derivation 15. By inversion we get that impl My My =
TP, Also Aj must be empty.

17. Because of 3 and the adequacy of predicate representation there exists P; with appropriate
free variables such that "P; 7 = Mj.

18. Because of 8 there exists P such that " P, ' = Ms. Therefore P must be P, D P,.
19. By inversion on the derivation 13 we get that Ms = Au:pf "Py".Mj and I',u :, pf "P " k5
My :.pf TP

32



20. From 2, 7, 12 and 16 we get that A = M;, My, M3,-. Remember that impl i + A = M. A
simple calculation shows that M = impl i My M> M3. We can recover now the structure
of D:: Tk M :. pf "P? (which we do not show here). Note that the derivations 3, 8, 13
and therefore 19 are included in D. This allows us to apply the induction hypothesis on the
derivation 19 and deduce that there exists a derivation D' :: > P, from hypothesis u :: > P,
(in addition to all of u; :: > Fj).

21. Now we construct the derivation

—5- U
> Pl

D
L . .
T >pPDP impli
It is easy to verify that "D = M.

O
Now we return to the proof of adequacy of derivations (Theorem 4.10).
Proof: In one direction it is easy to verify that "D :: > P is a canonical LF object of type pf "P™.
In the other direction we use Lemma 4.11 to decompose the atomic object of type pf "P™ in a
variable or constant head followed by arguments of the right type. Then we use Lemma 4.13 to

deduce the existence of the derivation D :: » P.
O

The adequacy of derivation representation is the central result that justifies the use of LFj type
checking as a sufficient procedure for checking validity of proofs. This is stated formally in the
following corollary.

Corollary 4.14 If P is a closed predicate and M is a canonical LF object such that - 5 M .
pf "P7, then there exists a deriwation D :: v P, that is P is valid. Furthermore, M = "D,

Proof: The proof is immediate from Theorem 4.10 by using an empty typing environment T'.
O
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5 Case Study: Safe Packet Filters

In order to gain more experience with PCC and to compare it with other approaches to code
safety, we have performed a series of experiments with safe network packet filters. We describe in
this section the particulars of the PCC approach to network packet filters. Then in Section 5.3,
we compare it with other approaches including interpreted packet filters (as exemplified by the
BSD Packet Filter system), code editing (through Software Fault Isolation), and using a safe
programming language (the approach taken in the SPIN kernel).

A packet filter is an application-provided subroutine that scans each incoming network packet
and decides whether the user application is interested in receiving it or not. Packet filters are
supported by most of today’s workstation operating systems. Since their first introduction in [16],
packet filters have been used successfully in network monitoring and diagnosis.

5.1 The Safety Policy

In our approach a packet filter is a PCC binary whose native code component is invoked by the
kernel on each incoming network packet. Kernel safety is ensured by validating the safety proof.

Following the procedure described in Section 2 we first establish a safety policy. To allow for a
fair comparison we follow the BSD Packet Filter model of safety. The packet filter code can examine
the packet at will and can also write to a statically allocated scratch memory. Informally, the safety
policy requires that: (1) memory reads are restricted to the packet and the scratch memory; (2)
memory writes are limited to the scratch memory; (3) all branches are forward; and (4) reserved
and callee-saves registers are not modified. These rules establish memory safety and termination
assuming that the kernel calls the packet filter with valid packet and scratch memory addresses.

We write the packet filter code assuming that the return value must be in rg, the aligned address
and the length of the packet filter are given in r; and r; respectively, and the address of a 16-byte
aligned scratch memory is given in r3. Moreover the packet’s length is positive and at least 64-bytes
(the minimum length of an Ethernet packet).

There is a wide range of techniques that the safety policy designer can use to express the pre-
condition and the application-specific safety rules. For uniformity we choose to use the framework
developed in Section 2 for the resource access service and extend it so that it covers the case at
hand. We extend the logic with another kind of a typing predicate written m e : 7. The differ-
ence between this typing predicate and the one already existent in the logic is the presence of the
memory state. We extend the system of types as follows:

7 == addr | ro_addr | unit | array(m,Ts,ep,¢€;)

The type unit describes an expression of which no significant properties can be asserted. It
is used for convenience in places where a type is required but there is nothing interesting to say
about the qualified expression. We also introduce the type array to characterize a sequence of
memory locations. Informally, m F e : array(ri, 72, €9, €;) means that in the memory state m, the
expression e denotes a memory address of a subarray of length e;. The subarray is part of the array
starting at ep and each of its elements have type 79 (possibly unit). The type 7; can be either
ro_addr or addr or and is used to distinguish between a read-only array and a writable one.

The definition of an array implies more that the memory addresses covered by the array are
accessible. For example, a subarray always starts on an aligned address. Also all arrays are allocated
far-enough from the end of the virtual memory range (2%4) such that overflow cannot occur when
doing address arithmetic. Finally, arrays are allocated such that that there is no aliasing between
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>m b e: array(m, T, €p,€r) > m ke : array (i, T, €g, €)

arr_lbound arr_align
peg<e >emod 8 =0 g
>m e : array(m, 72, €o, €1) ) > m F e :array(r, T2, €o, €1)
X arr_idx arr_sel
CHE >m F sel(m,e) : 7o
>m b e: array(m, T2, €0, €1) e mod8=0 pej+e <e
arr_sub

>m ke +e :array(r, 2, eo,e€))

>m + e: array(m, T2, €9, €1) e < e >m t e: array(m, T2, €o, €1)

arr_sub0 — arr_overflow
>m b e: array (7, T2, €0, €]) bede =e+e
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; ,, arr_alias
pe #e

Figure 21: Application-dependent typing rules.

two arrays starting at different addresses eg. This final property is crucial when reasoning about

programs with side-effects.
We now extend the definition of the |= relation to cover the new types.

Definition 5.1 p |=mt e: array(r, 72, eq,€;) iff
e 71 is either addr or ro_addr, and
* pE=eymod8 =0, and

e pEe>ey and pl=emod 8 =0, and

pEede=e+e, and

e For any i such that i >= p(eg) and ¢ < p(e+ ¢;) and i mod 8 = 0 we have that p =14 : 71 and
p E mt sel(m,i) : 72, and

o For any € such that p = m |- ¢ : array(7{, 73, €p,€)) such that p(eg) # p(e}) we have that
pEe#¢€.

We note that it is in fact possible to express all the above properties of arrays within the logic
we have used for the resource access service without introducing the type array. In fact we briefly
explore this alternative in Section 5.4. The major advantage of using high-level types, such as
array, is that it is easier to reason about them than about the equivalent universally quantified
formulas and consequently the proofs involving them are shorter and easier to produce.

The properties of the array type are expressed formally in Figure 21. Keep in mind that all of
the arithmetic in our logic involves only positive values. For convenience, we have used in the proof
rules for arrays the usual arithmetic operators + and — (in addition to the machine operations &
and ©). These operations could have results outside the range 0, ...,25% but they are only used in
assertions that rule out these cases.

As expected we want to convince ourselves that the set of proof rules from Figure 21 are sound
with respect to the agreed upon definition of arrays. This is formalized in the following theorem:
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Theorem 5.2 (Soundness of array proof rules) If > p(P) then p |= P.

Proof: We only consider here the rules dealing with arrays. The proof is as usual by induction on
the structure of the derivation D :: > p(P). Note that the soundness of the rules arr_lbound,
arr_align and arr_alias follow directly from the induction hypothesis and the definition of |= for
arrays. The rest of the rules can be proven easily if we remember that all expressions e are positive.
O
Returning to the precondition of packet filters in the BPF semantics we express it naturally
using arrays as follows:

Pre = ry - 1y @ array(ro_addr,unit,ry,ry) A ry b rs:array(addr,unit,rs, 16) A r{ #r;3

The above precondition is read as follows: register r; points to a read-only array of length
denoted by ra (the packet); register r3 points to a writable array of length 16 (the scratch memory);
the packet and the scratch memory are distinct arrays (there is no aliasing).

The postcondition in our packet filter experiment is the predicate true, meaning that no addi-
tional conditions are placed on the final state.

5.2 The Foreign Code

We have implemented four typical packet filters in assembly language and certified their safety with
respect to the packet filter safety policy. In addition to the DEC Alpha instructions introduced in
Section 2 we also use the following instructions in developing packet filters:

Instr == ... Previously defined instructions
| SHL r,,0p,rg Shift left ry by op bits
| SHR rg, o0p,rq Shift right ry by op bits
| EXTW rg,0p,rg Extract a word (2 bytes) from position op in the register r;
| EXTB r;,op,rg Extract a byte from position op in the register r;
| LDAH rg,n[rs] Addn=x21®tor,

The definition of EXTW ry, op, rg4 is (rs>>(op *8)) mod 216, The abstract machine definitions for
the other instructions are obvious. Also the VC rules for the new instructions are very similar to
those for previously defined instructions.

Although in the previous sections of the paper we have used register names from 0 through 10
we remind the reader that in fact when we write actual assembly language we use the names of the
11 caller-saves and temporary registers. In the code listings below we use the actual DEC Alpha
registers. In particular the address of the packet is in register rig, the length of the packet in ry7
and the address of the scratch memory is in rig. We now proceed with the description of the 4
filter that we implemented.

Filter 1 accepts all IP packets. This is done by comparing a 16-bit word at offset 12 in the
packet to the constant ETHER_IP. The DEC Alpha assembly language code for this packet filter is
given in Figure 22.

Filter 2 accepts IP packets originating from a given network (with number 128.2.206). This
involves checking a 24-bit value (at offset 27 in the packet) in addition to the work done by Filter
1. The DEC Alpha assembly language code for this packet filter is given in Figure 23.

Filter 3 accepts IP or ARP packets exchanged between two given networks (128.2.206 and
128.2.209). This is the filter with the most complex control-flow among those considered in our
experiments. This filter first branches depending on whether the packet is an IP packet or an ARP
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LD ro,8[r16] % Load bytes at offset 8-15
EXTW r9,4,r; % Extract 2 bytes at offset 12
SUB r11,8,r3 % Compare to ETHER._IP

BNE 13, L
MOV 1g,1 % Accept
RET

Lep: MOV 1,0 % Fail
RET

Figure 22: DEC Alpha assembly language for Filter 1. The address of the packet is in rig and its
length in rq7. This filter accepts exactly the IP packets.

LD ro,8[r16] % Load bytes at offset 8-15

MOV 14,640 % Prepare address 128.2 in big-endian
EXTW 1p,4,1y % Extract 2 bytes at offset 12

LDAH r13,206[r2] % Prepare address 128.2.206 in big-endian
SUB  11,8,rg % Compare to ETHER IP

BNE 1o, Lail

LD rg,24[rig] % Load bytes at 24-31

SHL rg,24,1r;

SHR r1,40,r; % 3 bytes at offset 27

SUB rp,rs,rg % Compare with address

BNE 19, Ltail
MOV 1,1 % Accept
RET

Lgn: MOV 1p,0 % Fail
RET

Figure 23: DEC Alpha assembly language for Filter 2. On input the start address of the packet is
in r;g and its length in ry7. This filter accepts exactly the IP packets originating from the network

128.2.206.

packet (the packet is rejected if neither is true). Then in each case the originating network address
(3 bytes at offset 27 for IP packets and at offset 28 for ARP packets) is compared to 128.2.206 and
then to 128.2.209. If the originating address test passes, the same test is done for the destination
address (3 bytes at offset 30 for IP packets and at offset 38 for ARP packets). The filter code is
further complicated by the fact that the DEC Alpha only loads aligned 8-byte words and some of
the quantities we compare spread across alignment boundaries. The DEC Alpha assembly language
code for this filter is given in Figure 24. We have made an attempt to schedule the code for this
filter to accommodate the DEC Alpha pipeline latencies:

Finally, filter 4 accepts all TCP packets with a given destination port. This filter has to check
that the Ethernet packet is an IP packet, then that it is a TCP packet, then that this is the first
packet in a sequence and lastly that the destination port matches a given value. The interesting
feature of this filter over the others is that the offset TCP destination port is computed based
on a byte in the IP header (the length of the IP header). Because it is not guaranteed that this
computation yields an offset less than the minimum packet size (64 bytes), filter 4 contains a run-
time bounds check. Furthermore the possible lack of alignment of the TCP port byte requires a few
extra instructions. The DEC Alpha assembly language code for this filter is shown in Figure 25.

The effort involved in hand-coding packet filters in assembly language is repaid in increased
performance, because packet filters are usually small and very frequently executed. Hand-coding
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Lip:

Lipdest :

Larp :

Larpdest :

Lace :

Liair

Figure 24

LD
MOV
EXTW
LDAH
SUB
LDAH
LD
BEQ
SUB
BNE
JMP
LD
SHL
SHR
SUB
BEQ
SUB
BNE
EXTW
SUB
BNE
AND
SUB
BEQ
SUB
BNE
JMP
SHL
LD
SHR
SUB
LD
BEQ
SUB
BNE
EXTW
SUB
BNE
AND
SUB
BEQ
SUB
BNE
MOV
RET
MOV
RET

16, 8[r16]
r3,640
r6747r1
r4,206[rs]
r1,8,r5
r3,209(r;s]
Tg, 24[1‘16]
rs, Lip
r1,1544, 19
T2, Ltail
Lagrp

Iz, 32[1‘16]
r6,24,r0
r05405r1
ry,r3,ro
To, L1pdest
r1,Ty4,Xp
1o, Leail
r3,6,r0
r0,640,r0
ro, Liail
Iy, 255, I
r1,206,r0
ro, Lace
r1,209,r0
ro, Ltait
Lace

rg, 87 Iy
I'g, 32[1‘16]
r0’40’r1
ry,rs3, ro
7, 40[1‘16]
ro, LARPdest
r;,r4,I'o
ro, Lfail
16, 6,10
r0,640,r1
1, Leail
r7,255,11
r1,206,ro
10, Lace
ri,209,rg
ro, Ltail
ro,l

I'U,O

% Load bytes at offset 8-15

% Prepare address 128.2 in big-endian

% Extract 2 bytes at offset 12

% Prepare address 128.2.206 in big-endian
% Compare to ETHER IP

% Prepare address 128.2.209 in big-endian
% Load bytes at offset 24-31

% Compare to ETHER_-ARP

% Load bytes at offset 32-39

% 3 bytes at offset 27-29
% Compare to 128.2.209

% Compare to 128.2.206

% Extract 2 bytes at offset 30-31
% Compare to 128.2

% Byte at offset 32
% Compare to 128.2.206

% Compare to 128.2.209

% Load bytes at offset 32-39
% 3 bytes at offset 28-30
% Compare to 128.2.209
% Load bytes at offset 40-47
% Compare to 128.2.206

% Extract 2 bytes at offset 38-39
% Compare to 128.2

% Byte at offset 40
% Compare to 128.2.206

% Compare to 128.2.209
% Accept

% Fail

: DEC Alpha assembly language for Filter 3. On input the start address of the packet
is in rig and its length in ry7. This filter accepts IP or ARP -packets with originating network
128.2.206 or 128.2.209 and destination network 128.2.206 or 128.2.209.
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LD ro,8[r1s] % Load bytes at offset 815
EXTW rg,4,11 % Extract 2 bytes at offset 12
SUB 1,8,T9 % Compare to ETHER._IP

BNE  r2, Lfail
LD r1,16[r1s] % Load bytes at offset 16-23
MOV 15,23 % Prepare Telnet port

EXTB r1,7,T3 % Extract byte at offset 23

SUB r,6,r3 % Compare to IP_TCP

SHL r;,8,1r5 % Prepare Telnet port in big-endian
BNE  r3, L

EXTW ri,4,r2 % Extract 2 bytes at offset 20
BNE 12, L % Reject if not first in sequence
SHR Iro, 46, Ty

AND 15,60,r3

ADD r3,16,r; % Offset of the TCP port

AND 1,7,14 % Check alignment

SUB  ro,ry,r3 % Align

SUB  rs,ri7,rg % Bounds check

BGE 19, Lrait

ADD rig,r3,Iri % Address of TCP port

LD ro,0[r1] % Load TCP port

EXTW rp,r4,r3 % Extract TCP port

SUB r3,r5,r9 % Compare with Telnet port

BNE g, Ltail
MOV 1,1 % Accept
RET

Lgin - MOV 10,0 % Fail
RET

Figure 25: DEC Alpha assembly language for Filter 4. On input the start address of the filter is
in rig and its length ri7. This filter accepts only TCP packets destined for the Telnet application

(TCP port = 23).

provides the opportunity to perform optimizations that are difficult to obtain from an optimizing
compiler. The important point is that these optimizations are not an impediment to generation
and validation of safety proofs. Here are a few optimizations that we incorporated in our packet

filters:

e The number of memory operations is minimized by using the DEC Alpha 64-bit load followed
by byte extraction. -

e The TCP port number can be found at packet offset ([14]s & 15) x4+ 16, where [14]g denotes
the byte at offset 14. If loading 64 bits at a time on a little-endian machine, the formula
becomes ((([8]¢4 >> 48) & 255) & 15) x 4 + 16. With further simplification we reduce this to
(([8]64 > 46) & 60) + .16, which is exactly how we coded Filter 4.

After we write a packet filter, our prototype assembler produces its safety predicate using the
verification-condition method presented in Section 2 and the precondition show before. The safety
predicate is then proved using a theorem prover. We currently use our own theorem prover, which is
admittedly a toy. When it gets stuck, it requires intervention from the programmer, mainly to learn
new axioms about arithmetic (for example, to know that r; > 0 D r; > 0). The process is easy,
and because user-provided axioms are remembered for future sessions, by now our system works
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automatically for most practical packet filters. With state-of-the-art theorem proving technology
we expect to be able to prove completely automatically most arithmetic facts involved in certifying

packet filters.
With our primitive theorem-prover we can generate safety proofs for packet filters in about 5

to 10 seconds, in the cases when no user-intervention is required.

5.3 Performance Comparisons with Previous Approaches

All performance measurements were done on a DEC Alpha 3000/600 with a 175-MHz processor,
a 2-MByte secondary cache and 64-MByte main memory, running OSF/1. All measurements were
performed off-line using a 200,000-packet trace from a busy Ethernet network at Carnegie Mellon
University.
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Figure 26: Comparison of average per-packet run time.

We measured the average per-packet run time of the four PCC packet filters and of functionally
equivalent filters implemented using alternative approaches: the BSD Packet Filter architecture,
Software Fault Isolation and programming in the safe subset of Modula-3. In our experiments
with Modula-3 packet filters we use the VIEW extension [9] for pointer-safe casting. The result
of the measurements are shown in Figure 26. From a per-packet latency point of view, the PCC
packet filters outperform filters developed using any other considered approach. However, the PCC
method has a startup cost significantly larger than the other approaches. This cost is the proof
validation time, which is presented in Table 1 together with the PCC binary size for all four filters
and maximum heap space used for validation. The maximum depth of the stack during validation
was under 4 Kbytes.

Despite the relatively high validation cost, the run-time benefits of PCC packet filters are large
enough to amortize the startup cost after processing a reasonable number of packets. Figure 27
shows the overall running time, including startup cost, as a function of the number of packets
processed, for Filter 4. In this particular case, the cost of proof validation is amortized after 860
packets when compared to the BPF version of the filter, after 8300 packets when compared to the
Modula-3 version and after 22,000 packets when compared to the SFI packet filter. Note that at
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Packet Filter [1 2] 8 ] 4|
Instructions 8 | 16 | 47 | 28
Binary Size (bytes) 315|404 | 835 | 757
Validation ] Time (us) || 358 | 546 | 1327 | 850
Cost | Space (KB) |[3.3 5.3 |15.4 | 8.6

Table 1: Proof size and validation cost for PCC packet filters.

the time we collected the packet trace used for the experiments we counted about 1000 Ethernet
packets per second on the average.
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Figure 27: Startup cost amortization for Filter 4.

We proceed now to describe in more detail each considered approach focusing on how it relates
to PCC from the safety point of view, and how we set up the performance measurements.

The standard way to ensure safe execution of packet filters is to interpret the filter and perform
extensive run-time checks. This approach is best exemplified by the BSD Packet Filter architec-
ture [13], commonly referred to as BPF. In the BPF approach the filter is encoded in a restricted
accumulator-based language. According to the BPF semantics, a filter that attempts to read out-
side the packet or the scratch memory, or to write outside the scratch memory, is terminated and
the packet rejected.

The BPF interpreter makes a simple static check of the packet filter code to verify that all
instruction codes are valid and all branches are forward and within code limits. We measured this
one-time overhead to be a few microseconds, which is negligible. BPF packet filters, however, are
about 10 times slower than our PCC filters. In the PCC approach all checks are moved to the
validation stage, allowing for much faster execution.

In order to collect data for the BPF packet filters, we extracted the BPF interpreter as imple-
mented by the OSF/1 kernel and compiled it as a user library.

It is possible, of course, to eliminate the need for interpretation. For example, we could replace
the packet-filter interpreter with a compiler. This approach is taken by several researchers [10,
25]. The problem here is the startup cost and complexity of compilation, especially if serious
optimizations are performed.
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Another approach to safe code execution is Software Fault Isolation (SFI) [24]. SFI is an
inexpensive method for parsing binaries and inserting run-time checks on memory operations.
There are many flavors of SFI depending on the desired level of memory safety. If the entire code
runs in a single protection domain whose size is a power of 2, and if only memory writes are checked,
then the run-time cost of SFI is relatively small. If, on the other hand, the untrusted code interacts
frequently with the code consumer or other untrusted components residing in different protection
domains and the read operations must be checked also, the overhead of the run-time checks can
amount to 20% [24]. A more serious disadvantage of SFI is that it can only ensure memory safety.
We believe that this level of safety is not enough in general, and that it is important to be able
to check abstraction boundaries and representation invariants, as shown by the resource access
example in Section 2.

In order to accommodate SFI for packet filters, we allowed some concessions to the packet
filter semantics. For example, we assumed that the kernel allocates the packets on a 2048-byte
boundary. Furthermore, we assume that the filter can safely access the entire segment of 2048
bytes, independently of the packet size. Note that the BPF packet filter semantics, which we
followed for all other experiments, specifies that a filter should be terminated if it tries to access
beyond the packet boundary. This means that some working packet filters in the BPF semantics
will not behave as expected in the SFI semantics for packet filters, and vice-versa.

One common way of performing SFT is at the code producer site, usually as part of the code-
generation phase in a compiler. In this case, the code consumer performs a load-time checking
that SFI was done correctly. The load-time SFI validator is reportedly simple if it must deal only
with binaries for which run-time checks have been inserted on every potentially dangerous memory
operation [24]. On the other hand, in the case where the validator must accept binaries for which
the number of run-time checks has been optimized through program analysis, the validator itself
has to redo the analysis that led to the optimization. This means a more complex and slower
validation, and in fact such an SFI validator does not presently exist.

We inserted run-time checks for the memory operations in the assembly language packet filters
implemented for the PCC experiment. This process can be done by a simple and easy-to-trust
implementation of SFI. In our experiments, PCC packet filters run about 25% faster than SFI
filters.

As part of our SFI experiment, we produced safety proofs attesting that the resulting SFI packet
filter binaries are safe with respect to the packet filter safety policy. We achieve the same effect as
an SFI load-time validator but using the universal typechecking algorithm and a few application-
dependent proof rules. The precondition for this experiment says that it is safe to read from any
aligned address that is in the same 2048-byte segment with the packet start address. Proof sizes
and validation times are very similar to those for plain PCC packets.

Another approach to safe code is to use a type-safe programming language. This approach is
taken by the SPIN extensible operating system [1], and the language used is Modula-3 [17] extended
with pointer-safe casting (VIEW). SPIN allows applications to install extensions in the kernel but
only if they are written in the safe subset of Modula-3. The extensions are compiled by a trusted
compiler and the resulting executable code is then believed to be safe (at least according to the
Modula-3 model of safety). Note that such extensions written in Modula-3 are intrinsically safe, as
anyone who believes in the safety of Modula-3 can check their compliance with Modula-3 syntactic
and typing rules.

We believe that encoding kernel extensions as PCC binaries instead of Modula-3 source code
can provide important benefits. One such benefit is the increased flexibility for extension writers
because any native code extension can be accepted, independent of the original source language or
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even the compiler used, as long as a valid safety proof accompanies it. Another potential benefit
is overcoming the limitations of the Modula-3 safety model: the PCC safety proof should be able
to express properties such as disciplined use of locks or array bounds compliance with no need for
run-time checks.

"We wrote the four packet filters in the safe subset of Modula-3 and compiled them with the
version 3.5 of the DEC SRC compiler extended with the VIEW operation [25]. VIEW is used to
safely cast the packet filter to an array of aligned 64-bit words allowing fewer memory operation
for accessing packet fields. In contrast, in plain Modula-3 the packet fields must be loaded a byte
at a time, and a safety bounds check is performed for each such operation. The compiler tries to
eliminate some of these checks statically but it is not very successful for packet filters. The main
reason is that a critical piece of information, the fact that packets are at least 64 bytes long, cannot
be communicated to the compiler through the Modula-3 type system.

We measured a 20% improvement in the Modula-3 packet filter performance when using VIEW.
Similar performance improvements over the DEC SRC Modula-3 compiler have been reported [20]
for the more recent Vortex compiler. However, since we have not conducted any experiments with
the Vortex compiler on our packet filters, it is not clear what kind of improvements we would realize
in practice.

In an alternate implementation of untrusted code certification using Modula-3, the source code
is compiled by a trusted and secure compiler that signs the executable for future use. Validation
then means cryptographic signature checking and like in the PCC approach there is no run-time cost
associated with it. We do not have a complete implementation of such a cryptographic validation,
so we do not know exactly how large is the startup cost for the digital signature approach. It is
likely however that a good implementation of digital signatures would achieve faster validation and
significantly faster generation of certificates. The essential drawback of cryptographic techniques
over PCC is that validation establishes only a trusted origin of the code and not its absolute safety
relative to the safety policy. In particular, a digital signature can be ascribed to an unsafe program
just as easily as to a safe one. Also, the cost of managing and transmitting encryption keys is not
incurred by PCC.

We should mention here one more approach to safe code execution, although we do not have
an actual quantitative comparison. The Java Virtual Machine [22] is a proposed solution to safe
interaction of distributed, untrusted agents. Mobile code is encoded in the Java Virtual Machine
Language (also referred to as Java Bytecode), which is basically a safe low-level imperative language.
Safety is achieved through a combination of static typechecking and run-time checking.

However, the Java Bytecode safety model is relatively limited as a result of limitations of the
type system. For example the Java Bytecode type information encoded in the instruction codes can
only express a few basic abstract types (e.g., integers, objects) and has no provisions for expressing
safety policies like the one for the resource access example in Section 2. Also, invariants involving
array bounds compliance cannot be expressed in the Java Bytecode type system and must be
checked at run time.

Although Java Bytecode is a low-level language, it still requires substantial processing before it
can be executed on a general-purpose processor. In contrast, PCC segregates the safety proof from
the program code, allowing for the code portion to be encoded in a variety of languages, including
native code, without any safety loss.
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Figure 28: Comparison of proof sizes and validation times between the safety policy with and
without arrays.

5.4 Expressing the Safety Policy with Low-Level Constructs

In this section we briefly explore a variation of the PCC technique for safe packet filters. The
variation is that we express the same BPF packet filter safety but without using the type array.
There are various reasons for doing this. First, this is the most obvious thing to do, especially for a
safety policy designer who is not familiar with type systems. Secondly, a safety policy designer might
feel more comfortable avoiding high-level types such as arrays with the purpose of avoiding semantic
gaps between the low-level machine (or abstract machine) and the high-level type system. In reality
the series of soundness Theorems 4.3 and 5.2 completely close the semantic gap, but nevertheless
some people may want to avoid high-level type systems. We performed such an experiment to
measure the benefits of using a safety policy based on high-level types in the case of packet filters.
We can define the precondition for packet filters in low-level terms as follows:

Pre= r9>64 A
Vi.(i >0Ai<rz Aimod8=0)

Ory&i:ro_addr A
Vj.(j > 0A j <16 A (j mod 8) = 0)
Dr3®j:addr A

Vivi(i>0Ai<ra Aj>0Aj <16)
D1 ®i#r3dj)

By careful comparison of the above precondition and the one using arrays (from page 36) we
note that they are equivalent in all respects but size. Up to this point the major drawback of a
bulkier safety precondition seems to be the danger of making a mistake and the increased difficulty
in understanding it. Our experience is that in addition to these, the size of the safety proofs and the
time to certify them is increased considerably. The main culprit is the presence of the universally
quantified formulas in the precondition. It is much easier to reason about the typing predicates
involving arrays than about the universally quantified formulas that appear in the precondition.
The only drawback of using arrays is the need to extend the safety policy with proof rules involving
arrays and to prove the soundness of such rules. But once this is done, all future proofs of client
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will be easier to generate, smaller and faster to validate. The results of our experiments are shown

in Figure 28.

One conclusion that we draw from these experiments is that there is much hope that with
careful choice of the safety policy and application-specific proof rules the theorem proving effort as
well as the PCC binary size and the validation time can be further improved.
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6 Case Study: Safe Extensions of the TIL Run-Time System

The practice of software development in languages such as ML and Haskell often involves extending
the run-time system, usually by writing C code, to implement new primitive types and operations
or functionality that is not easily programmed in the high-level language. This raises the question
of how to ensure that the foreign code respects the basic assumptions of the run-time system. Even
without considering user-extensions, the run-time systems of high-level languages usually include
a sizeable part written in unsafe languages such as C or even assembly language. The mechanism
that allows an untrusted user to safely extend the run-time can also be used by a small kernel of
the run-time system to bootstrap the rest, increasing the level of confidence in the system.

We propose the use of proof-carrying code to allow arbitrary untrusted users to link foreign
functions to a safe programming language run-time system. For this to be safe the compiler
designer defines the safety policy, which is basically a formal description of the data-representation
invariants to be preserved and calling conventions to be obeyed by foreign functions. Then, the
user produces and attaches to the foreign code a safety proof attesting to the preservation of the
invariants.

To make the presentation more concrete we show in detail how we use PCC to develop safe
DEC Alpha assembly-language [21] extensions to the run-time system of the TIL [23] compiler for
Standard ML [15]. We consider here only a very small example with several simplifying assumptions.
For example, we only consider leaf procedures that do not allocate memory. Scaling the technique
to the entire Standard ML language is subject of current research.

Consider the Standard ML program fragment shown in Figure 29. This program defines a union
type T and a function sum that adds all the integers in a T 1ist. The plan for the rest of this
section is to define a safety policy for extensions to the TIL run-time system and then prove the
type safety of a hand-optimized assembly language version of the sum function.

datatype T = Int of int | Pair of int * int

fun sum (1 : T list) =
let
fun foldr £ [] acc = acc
| foldr £ (h :: t) acc = foldr £ t (f(acc, h))
in
foldr (fn (acc, Int i) => acc + i
| (acc, Pair (i, j)) => acc + i + j)
10
end

Figure 29: The Standard ML source program.

6.1 The Safety Policy

The first order of business is to define the safety policy for the TIL run-time system in the pres-
ence of foreign functions. This is the job of the compiler designer, or a trusted person who is
intimately familiar with the data-representation conventions and basic invariants maintained by
the TIL compiler and run-time system.

46



The safety policy in our case requires that foreign code maintains the data-representation in-
variants chosen by the TIL compiler. Data representation in TIL is type directed and the types
involved in our example are the following:

Tu=int | Tk | m+7e | 7list

For convenience we use T as an abbreviation for the type int + (int * int). For this subset of
ML types the TIL data-representation rules are as follows: an integer value is represented as an
untagged 32-bit machine word; a pair is represented as a pointer to a sequence of two memory
locations containing values of appropriate types; a value of type 71 + 72 is represented as a pointer
to a pair of locations containing respectively the constructor value (0 for inj; and 1 for inj,) and
the value carried by the constructor; the empty list is represented as the value 0 and the non-empty
list as a pointer to a list cell. See Figure 30 for examples of TIL representations of several SML

values.

val r0 : int = 5 %o 5 / -

val rl : int * int = (2, 3) no | —" o T}

val r2 : T = Pair r1 n [e——" —

val r3 : T = Int 6 n [ /_’I_T_ﬂﬁ r\\
val r4 : T list = [r3, r2] I e L2 \

Figure 30: Data Representation in TIL. Each box represents a machine word.

The compiler designer describes formally the data-representation strategy by means of the
typing predicate m - e : T introduced in Section 5. The meaning of this typing judgement in the
case of the newly introduced types is:

Definition 6.1 We say that pl=mbe:m * 72 iff
e pl=emod8=0, and

pEedd=e+4, and
e p|=e:ro_addr, and
e pl=e®4:ro_addr, and

p Emktsel(m,e): n, and

o p=mtsel(m,e®4): 7.
Definition 6.2 We say that pl=mbe:n + 72 iff
e pl=emod8 =0, and
e pEedd=e+4, and
e p |=e:ro_addr, and
e p=e®4:ro_addr, and
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e p =mtsel(m,e): int, and
e if p=sel(m,e) =0 then p=mt sel(m,e®4) : 11, and
e if pl=sel(m,e) £0 then pl=mt sellm,e®4) : 2.
Definition 6.3 We say that p = m & e: 7 list iff whenever p(e) # 0 we have:
e pE=emod8=0, and
e pEe®d=e+4, and

e p = e:ro_addr, and

pEe®4:ro_addr, and
o p=mtsel(m,e): 7, and
e pEmkbtsel(m,e®4): 7 1list.

A major difference between previous examples and this case is that the precondition and post-
condition are different for each foreign function. They are computed according to the declared type
of the foreign function as shown in the next subsection. Another difference is that for the purpose
of this section we use 32-bit memory operations and modify the alignment requirement accordingly.

6.2 The Foreign Function

In our experiment, the code producer writes a DEC Alpha assembly language implementation of
the sum function, as shown in Figure 31. This code assumes that register ro contains the argument
of type T list on entry and the integer result on exit. The registers ri, rs and r3 are used as
temporaries. This code is written to respect the TIL data-representation strategy, and it is this
fact that must be proved for the consumer.

Note that the above assembly-language program is optimized by hand. One of our goals is to
show that proof-carrying code does not pose restrictions on using register allocation, scheduling or
other low level optimization techniques.

The precondition and the postcondition for this experiment vary depending on the type of the
foreign function. In the case of the function sum of type T 1ist — T 1ist the precondition and the
postcondition are as follows:

Pre = rpmbry:Tlist
Post = rpytbrg:int

As we promised before, the foreign code explored here exhibits a required use of the invariant
instruction. The invariant in line 2 is the loop invariant and corresponds to the backward branch
from line 13. By examining the code we note that at the loop entry point (line 2) there are two
live registers: ry of type T list, corresponding to the rest of the list to be scanned and, r1 of type
int corresponding the the accumulated sum so far. The invariant derived from this information is

Invg =rpmbFrg: Tlist Ary, Frp : int

In general, the loop invariant for type-safety policies is the conjunction of all typing predicates
for the registers that are live at the invariant point.
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%I'() isl
0O sum: INV rpp Frg:Tlist

%r; is acc
1 MOV r1,0 %Initialize acc
2 Ly INVrpmbrg:Tlist Ary,bHrp:int

%Loop invariant

3 BEQ rg, L14 %Is list empty?

4 LD ro,0(rg) %Load head

5 LD rg,4(rg) %Load tail

6 LD r3,0(rs) %Load constructor
7 LD ry,4(rg) %Load data

8 BEQ r3, L1 %Is an integer?

9 LD r3,0(rs) %Load i

10 LD 1y, 4(1‘2) %Load J

11 ADD ro,r3,190 %Add i and j

12 L13 ADD ry,ra,11 %Do the addition
13 BR L, %Loop

14 L4 MOV rg,rq %Copy result in rq
15 RET %Result is in g

Figure 31: DEC Alpha assembly language implementation of the sum function.

For our example program, the VC predicate has two conjuncts, one for the precondition and
another for the invariant associated with L. The first conjunct corresponds to the control path
from the function entry point to the start of the loop. This conjunct says that the loop invariant
is established when the loop conditional is first executed:

I'm Yy :Foolist D (rm Frp: Foolist Arm - 0: int)

The second conjunct corresponds to the rest of the program and says both that the the loop
invariant is preserved around the loop and that it entails the postcondition when the loop finishes.
This part of the VC predicate is more complicated and we do not show it here.

In order to prove the safety predicate the code producer needs proof rules specific to this
application. These proof rules are shown in Figure 32. By careful examination of the rules we note
that there is a close relationship between these rules and the definition of the |= relations for the
newly introduced types. Thus it is not difficult to verify that the soundness theorem for the proof
system still holds:

Theorem 6.4 If > p(P) then p |= P.

The type int has a different purpose in this example. It is not used to express representation
invariants? but to enforce abstraction boundaries. The intention is for int to be an abstract type
whose values can only be constructed using certain operations. In the case at hand we only consider
two valid constructors: the constant 0 and the addition of two integers. This is enforced in the safety
policy by ensuring that the only proof rules that introduce integer typing predicates correspond to
the valid constructors.

*In TIL any machine word can be legitimately viewed as the representation of an integer.
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pmbe:T *xm

*
be@d=e+4 A e:addr A ed4:addr A mtFsel(m,e): 71 A ml sel(m,ed4) :Tgtp_

>pmbe:T + 7
pe®d=e+4 A e:addr A e®4:addr

tp_+1

pmbe:r + 7o

> sel(m,e) =0 D mt sel(m,e®4): 7y A sel(m,e) #0 D mt sel(m,e®4): Tgtp_+2

>mbe:Tlist >e#0

pmbe:Tx7 list tp-list

> e :int > e : int
>e; +ez:int

tp_int+ mtp_ﬂ
Figure 32: The typing rules.

This example of abstract types is admittedly contrived but it still illustrates the basic method-
ology for enforcing abstraction boundaries. More involved examples could be constructed if the
framework supported function calls. Then the framework would check that values declared to be of
an abstract type are only manipulated with functions intended for that purpose. More concretely,
static checking has the ability to distinguish between two machine words with the same value but
of different types. For example, the machine word 0 can be the representation of the integer 0 and
the empty list. In the former case it can be validly incremented but in the latter not.

Extending the framework to deal with the entire Standard ML is subject of current research.
As we mentioned, we want to deal with function calls. We also want to integrate well with the
garbage collection, exceptions and higher-order functions.
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7 Case Study: Internet Checksum

The experiment we present in this section has been inspired by the network packet filter experiment
and is intended to test the viability of the PCC technique for dealing with loops. Another inspiration
source was the FoxNet, a TCP/IP protocol stack developed by the Fox Project at Carnegie Mellon
University. It is well-known to the networking community that the most expensive operations in a
TCP/IP protocol stack are those that touch the data, namely the checksumming and copying. This
is also the case in the FoxNet protocol stack. What differentiates FoxNet from other implementation
of TCP/IP is the use of advanced programming language constructs for achieving performance while
maintaining a high degree of flexibility, safety and robustness. In particular, the FoxNet is written
almost entirely in Standard ML.

In the context of the FoxNet it would not be acceptable to implement performance-critical oper-
ations in machine language because it would destroy all the safety guarantees that the programming
language offers. It seemed natural to think that if the PCC technique were able to guarantee the
safety of assembly language extensions to the runtime of an ML system then we could achieve the
best of two worlds: strong safety guarantees and high-performance. Incidentally, the current state
of the PCC is able to certify the safety of a IP checksum routine because there is no interaction
with garbage collection and such a routine can be implemented easily as a leaf-procedure.

7.1 The Safety Policy

The safety policy in this case specifies that the register ris (the standard argument register) holds
on input the start of the packet whose length is in register r;7. There is no postcondition. This is
expressed as follows:

Pre = rmylrig:array(ro_addr, unit,rig,r17)
Post = true

As for the application specific proof rules we use those for packet filters.

7.2 The Foreign Code

We wrote the IP checksum routine in DEC Alpha assembly language assuming that the register rig
holds on input the address of the data to be checksummed, and register r;7 holds the length of this
data. We also assume that the packet is aligned on a 8-byte boundary. We make no assumptions
about its length being a multiple of 8. The code is shown in Figure 33. The program is composed of
three main sections. The first section is the main loop stating at Lioep, which iterates through the
data, loading 8 bytes at a time and accumulating a 32-bit checksum in the register ry. The register
r3 holds the current pointer in the data array and register r4 contains 8 less than the number of
remaining bytes to be summed. Thus the loop invariant is expressed as:

Invioop = rm I r3 : array(ro_addr, unit,ry,ry + 8)

Note that we preserve the information that rs points somewhere in the array starting at address
r15. We make no use of this fact here because we need not reason about pointer aliasing. Also note
that the loop is only started if the register rq4 has a value that is smaller than 253 (i.e., is the two’s
complement representation of a positive integer).

The second section of the checksumming program starts at Lepg and its purpose is to accumulate
in the checksum the leftover bytes after the loop terminates. The number of such bytes is r4 @ 8,
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which must be from 0 to 7. Note that it is important here to use the modulo 2%¢ addition as
the value of ry represents a negative integer. We have introduced an invariant instruction at the
beginning of this section, although it was not strictly necessary. As we have mentioned before
the invariant instructions break a large safety predicate in smaller conjuncts, making the theorem
proving task simpler.

The third and last section of the checksum program computes the final 16-bit checksum from
the accumulator ro. There are no memory operations in this section, thus the safety predicate
corresponding to it is true.

7.3 Performance Measurements

The entire PCC binary for the IP checksum example is 859 bytes. On our DEC Alpha running at
175MHz it takes 1.3ms to validate the safety proof. As far as runtime performance is concerned
we have compared it with the standard C version that is part of the OSF/1 kernel. We noticed
that our code runs two times faster than the OSF/1 version over a wide range of packet sizes (140
MBytes/s compared to 65 MBytes/s for packets of 1500 bytes and 100 MBytes/s compared to 47
MBytes/s for packets of 100 bytes). The C version has the main loop unrolled 16 times but it
does all memory operations on 32 bits. Upon closer inspection we noticed that for each 8 bytes
processed the C version uses 16 instructions, of which 2 are loads. The assembly language version
uses 8 instruction (of which one is a load) for the same number of bytes. We believe that this is
the main contributing factor in the performance discrepancy.

The PCC version has an initial latency of 1.3ms due the proof validation cost. However, this
cost is only incurred once and it is completely amortized after processing approximately 150 KBytes
of data.

We did not perform this experiment to surpass the performance of the OSF/1 implementation
of the IP checksum. Our purpose was to show again that even hand-optimized code is considered
the PCC technique can still be used to certify the safety of programs. Performance does not have
to be sacrificed to achieve safety with PCC.

7.4 Expressing the Safety Policy with Low Level Constructs

We have used arrays to express the safety policy and the invariants for the IP checksum program
presented before. We consider here a small variation of the experiment in which we do not use
arrays to express the safety policy. The safety precondition becomes:

Pre = Vii>rigNi<rig+rizsAtmod8=0D2¢:ro_addr
Arig®ris=rig+ri7 Arigmod8 =20

Post = true

Invigep = Viii20Ai<rs®8Dr3@¢:ro_addr

Ary 8 <28 Arsmod8=0

Not only the invariants become more clumsy but also the theorem proving process becomes
more difficult to supervise. And ultimately the proof size that we obtained was 1620 bytes (88%
larger than before) and the proof validation time was 3.6ms (176% larger than before). These
results are in line with the similar experiments done with packet filters. Our conclusion is that it
is beneficial for the safety policy to be expressed in terms of higher-level constructs that subsume
universal quantification.
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MOV r3,Ti6 % Copy the packet start address in r3

SUB r7,8,T4 % Packet length - 8 in ry4
MOV 1,1
SHL rg, 32, I'g
MOV 1rg,0 % Init the checksum in rq
SUB rg,1,rg % Put in rg the mask 0xFFFFFFFF
BLT ry4,Lend % Jump if less than 8 bytes left
Ligop : INV 1y | r3:array(ro_addr, unit,rig,rs + 8)
LD r5,0[rs] % Load next 8 bytes
ADD r3,8,r3 % Advance pointer
AND r5,r¢,T7 % Get LO 4 bytes
SHR r5,32,r3 % Get HI 4 bytes
ADD rg,T7,T7 % Accumulate LO
SUB r4,8,14 % Decrease remaining length
ADD r7,r8,TQ % Accumulate HI
BGE 14, Ligop % Loop if not done
Lend INV rs B8 <2% Ory:ro_addr
ADD 14,814 % This is the number of bytes left
BLE r4,Ldone % Nothing left
LD r5,0[rs) % Load the leftover
SHL r14,3,14 % Number of bits left
MOV r7,1
SHL r7,r4,r7
SUB ry,1,r7 % The mask for extracting the leftover
AND rs,T7,T5 % Extact the leftover
SHR rs,32,17 % This is HI
AND I's5,Ig,I's % This is LO
ADD rg,r7,T7 % Accumulate HI
ADD r7,r138,T0 % Accumulate LO
Laone AND 1g,re,T7 % checksum LO
SHR 1g,32,19 % checksum HI
ADD rg,r7,Tg % Now at most 33 bits
SHR 14,16,14 % Mask is 0xFFFF
SHR 1o,16,r7 % HI 17 bits
AND r1p,Tg,To % LO 16 bits
ADD 1q,r7,Ig % At most 17 bits
SHR 1, 16,17

AND I'g,TIg, I'g
AND r1g,r7,To
RET

Figure 33: The DEC Alpha code for the Internet Checksum. On input the packet start address is
in r15 and its length in ry5.
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8 Practical Difficulties

Although we have worked out many of the theoretical underpinnings for PCC (and indeed, most
of the theory is based on old and well-known principles from logic, type theory [4, 11], and formal
verification [5, 6, 8]), there are many difficult problems that remain to be solved. In this section we
discuss some of the problematic issues that were brought to light by our experiment. Fortunately
we think that we have found good practical solutions to the part of the PCC pertaining to the code
consumer: safety proof representation and validation. Moreover, in this we are faced with such a
vast and unexplored range of engineering choices that we think major performance improvements
can still be achieved on the code consumer side. We consider next the three main issues that
concern us: establishing the safety policy, generating the safety proof and the size of the safety

proofs.

8.1 Establishing the Safety Policy

Establishing a sound safety policy is a critical step in the use of PCC. This is known to be a
problem even without considering automatic verification of compliance with the safety policy. The
first difficult problem that arises in the process of establishing a formal safety policy is to find
the most appropriate logic for expressing the required properties. For example, the first-order
predicate logic as described in this report is not expressive enough to encode temporal properties
easily. Also, concurrent programs typically require a different formalism, and the same might be
true for programs that use higher-order functions. We recognize this problem as important and the
PCC technique does not alleviate it in any way. In our own experiments we have relied on expertise
developed in the program specification and verification field for answers to such questions.

As we have seen in the experiments with packet filters and the IP checksum it is often the case
that a given formalism can be extended to suit the needs of the safety policy. We have observed in
these practical cases that extending the notion of types with arrays made the safety policy simpler
and the theorem proving task easier.

Once the issue of the formalism is settled, the safety policy designer has to specify the safety
precondition and the postcondition, as well as the proof rules. The major danger at this step is
that the safety policy contains “loopholes” that the foreign code can exploit to circumvent the
protection boundaries. In the particular case of PCC such “loopholes” can be either a precondition
that is too strong (i.e., allows the code to assume fact that are false), a postcondition that is too
weak (i.e., fail to request the code to establish some properties upon termination) or an unsound
proof system.

The problem of specifying a safety policy is a difficult one independently of the technology used
to enforce it. In the case of PCC, the safety policy designed is forced to use formal specification
techniques that could increase the effort required for specification. However, it is generally believed
that using formal specification forces a better and safer design. In addition, a good choice of the
underlying logic and proof system for the safety policy can make the interface simpler and less error
prone (see for example the packet fitters with and without arrays).

As for the soundness of the proof system, there are well-known techniques for verifying it. All
the application-specific proof systems presented in this report are accompanied by soundness proofs,
that relate the derivability relation > with the intuitive definition of truth (the |= relations). We
think that it is important that in all application of PCC the soundness of the proof system be
proven. A flaw in the proof system will allow a malicious code producer to produce a “certified”
program that does anything the physical machine can do.
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8.2 Generating the Safety Proofs

One of the most difficult problems that must be solved for any practical implementation of PCC is
the methodology for producing the safety proofs.

In the experiments reported here, we have in fact achieved fully automatic proof generation. In
general, however, this problem is similar to program verification and is not completely automatable.
Actually, the problem is somewhat easier than verification because we have the option of inserting
extra run-time checks (as is done in Software Fault Isolation [24]), which would have the effect of
simplifying the proving process at the cost of reducing the performance of the foreign code. By
“extra”, we mean run-time checks that are not intrinsically a part of the algorithm of the extension
code. (For example, SFI will actually edit the code and insert “extra” checks; PCC does not
normally do this.) Fortunately, we have not yet had any need or desire to insert extra run-time
checks in any of our PCC examples. Still, automation of proof generation remains as one of the
most serious obstacles to widespread practical application of PCC.

The process of generating a proof is closely related with the process of “guessing” the loop in-
variants. The standard approach of verifying loops using Floyd-style verification conditions involves
introducing loop invariants explicitly, which is a challenge for any theorem-proving technology and
often requires user intervention. In fact, for general assembly-language programs this represents
the most important problem to be solved, as it is the main obstacle in automating the generation
of proofs. Since this is beyond the capabilities of our system, we are forced to write the invariants
out by hand. This also means that the native code must be accompanied by a loop invariant for
every loop.

We currently produce the proofs using a very simple theorem prover that outputs a witness for
every successful proof. For our experiments we use the programming language EIf [18] to prove
VC predicates and produce LF representation of their proofs. Elf is a logic programming language
based on LF. A program in Elf is an LF signature and execution in Elf is search for canonical
LF objects inhabiting an LF type in the context of a signature. In our case the program is the
signature ¥ and we are interested in finding a closed object M of type pf "SP™ for some safety
predicate SP. If such an object is found, according to Theorem 4.1, it constitutes the canonical LF
representation of a proof » SP. Incidentally, this is exactly the required safety proof.

Proof search in Elf is performed in depth-first fashion, as in Prolog. With this operational
view, the natural deduction style presentation of our logics is not appropriate for proof search,
because any of the elimination rules would lead to non-termination. Our solution to this problem
is based on the observation that all of the VC predicates in our current experiments are either first-
order Horn clauses, or first order hereditary Harrop formulas. These fragments of first-order logic
admit a complete sequent-style proof system where the declarative meaning of logical connectors
coincides with their search-related reading [14]. The resulting proofs are called uniform. The LF
representation of an uniform proof system for our logic can then be used as a logic program to
perform proof search.

We represent in LF the uniform derivation rules for our logic in a manner similar to the natural
deduction representation. We use this representation in EIf to perform a goal-directed search for
a uniform derivation of the validity of the VC predicate. We also represent in LF the proof of
soundness of uniform derivations with respect to the natural deduction formulation of our logic.
We exploit the operational reading of this soundness proof in EIf to convert the uniform derivation
of the VC predicate to a natural deduction proof of it.

Using this method, in the packet-filter experiments, the certification process is nearly automatic,
and we have not been forced to insert any extra run-time checks into the code. In fact, we find that
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safety predicates for packet filters are fairly easy handled by existing theorem-proving technology.
The same is true for other experiments with the difference that currently we have to insert all the

loop invariants by hand.

Of all the experiments presented in this paper the one involving safe runtime extensions to the
TIL runtime system stands out as the one that is more promising. Remember that this example
involved loop invariants, but there was a simple algorithm that produced them. Similarly the
precondition and the postcondition are generated by the same type-directed algorithm.

8.3 Safety Proof Size

Besides the problem of how to generate the proofs, there is also the matter of their size. In principle,
the proofs can be exponentially large (in the size of the program). This has not been a problem
for any of the examples we have tried thus far, however. The blowup would tend to occur in
programs that contain long sequences of conditionals, with no intervening loops. Perhaps we have
not yet seen the problem in a serious way because such programs tend to be hard for humans to
understand, and we are writing the programs by hand. But as a general matter, the size of the PCC
binaries is an issue that must be addressed carefully. We have implemented several optimizations
in the representation of the proofs, and much more is possible here. But ultimately, we need more
practical experience to know if this is a serious obstacle for PCC in practice.

For programs with loops, the loop invariants break a program with cycles into a set of acyclic
code fragments. We treat each code fragment as a separate program, using the invariants as
preconditions for each. This has the beneficial effect of partitioning the safety predicate and its
proof into smaller pieces, and overall tends to reduce the size of the proof dramatically. For this
reason, even for sections of programs that do not contain loops, it may be beneficial to introduce
invariants, as a way of controlling the growth of the PCC binaries.
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9 Conclusion

We have presented proof-carrying code, a mechanism that allows a code consumer to interact safely
with native code supplied by untrusted code producers. PCC does not incur the run-time overhead
of previous solutions to this problem. Instead, the code producer is required to generate a proof
that attests to the code’s safety properties. The kernel can easily check the proofs for validity, after
which it is absolutely certain that the code respects the safety policy. Furthermore, PCC binaries
are completely tamper-proof; any attempt to alter either the native code or proof in an PCC binary
is either detected or harmless.

The main contribution of the work presented in this paper is the principle of staging program
verification into certification and proof validation, with the proof acting as a witness that the
certification was performed correctly. This staging has great engineering advantages, all based on
the intuition that proof checking is, in general, much easier than proof generation.

For example, the application-specific proving strategies—goal directed search, interactive theo-
rem proving or just brute-force search guided by heuristics—and their associated complexity and
computational costs are moved off-line to the certification stage. In the validation stage, we only
need a simple and reliable proof checker which in many cases is inexpensive enough to be used in
performance critical paths. Moreover, the same proof checker covers many practical applications,
which increases the reliability of the methodology. Lastly, the certification must be done only once
independently how many times the code is used.

Proof-carrying code has the potential to free the system designer from relying on run-time
checking as the sole means of ensuring safety. Traditionally, system designers have always viewed
safety simply in terms of memory protection, achieved through the use of rather expensive run-
time mechanisms such as hardware-enforced memory protection and extensive run-time checking
of data. By being limited to memory protection and run-time checking, the designer must impose
substantial restrictions on the structure and implementation of the entire system, for example by
requiring the use of a restricted application-kernel interaction model (such as a fixed system call or
application-program interface.)

Proof-carrying code, on the other hand, allows the safety policy to be defined by the kernel
designer and then certified by each application. Not only does this provide greater flexibility for
designers of both the system and applications, but also allows safety policies to be used that are
more abstract and fine-grained than memory protection. We believe that this has the potential to
lead to great improvements in the robustness and end-to-end performance of systems.

We have also shown a way to use standard verification techniques to check type safety at the
assembly-language level. This is important for certifying extensions to safe programming languages
and as a main building block in constructing certifying compilers. Similar techniques have been
applied to assembly language before [2, 3] but neither as a basis for creating safety proofs nor for
checking type safety.

We show an encoding of safety proofs as first-order logic derivations in LF. Our contribution
in this area is to identify a fragment of LF which is both sufficient for many applications of PCC
and also admits a simple and fast type-checking algorithm.

Proof-carrying code is an application of ideas from program verification, logic and type theory,
in this case to extend to low-level languages safety properties that are normally enjoyed only by
high-level languages. We have shown that this technique is useful both for safe interoperability of
programming languages and operating system components. With the growth of interest in highly
distributed computing, web computing, and extensible kernels, it seems clear to us that ideas from
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programming languages are destined to become increasingly critical for robust and good-performing
systems.

While we hope to have brought convincing arguments in favor of the “Proof-Carrying Code”
technique, we recognize that there are difficult practical obstacles to wide-spread application of
this technology. For example, we do not know at this moment what is the most practical way
to generate safety proofs. While this problem is undecidable in general it is possible in restricted
settings to achieve automatic generation of proofs. However, more exploration is needed to validate
the PCC technique and to discover new application domains where it can be applied effectively.
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