Modeling Analogical Problem Solving
in a Production System Architecture

Dario D. Salvucci and John R. Anderson
July 1, 1996
CMU-CS-96-151

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research is supported by a National Science Foundation Fellowship awarded to Dario Salvucci
and Office of Naval Research grant N00014-96-1-0491 awarded to John Anderson.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the National Science
Foundation, the Office of Naval Research, or the United States government.



Keywords: Cognitive science, cognitive modeling, analogy, ACT-R.



Abstract

We propose an approach to developing models of analogical reasoning within production system
architectures. Though existing theories of analogy have succeeded in capturing many aspects of
analogical behavior, they have several limitations. First, the theories use empirical support that
focuses almost exclusively on high-level data that illustrate the results of analogy, ignoring low-level
data that illustrate step-by-step processes during analogy. Second, the theories cannot fully account for
variability prevalent in analogical behavior, nor can they account for the adaptation of analogical
strategies in learning. Third, some of the theories cannot be readily incorporated into a unified theory
of cognition. We show how production rule models of analogy can address and to some extent overcome
these limitations. As our exemplar, we describe empirical and modeling results for a task in which
subjects solved simple physics problems by analogy. The empirical results, which include both high-
and low-level data, give evidence that subjects use multiple analogical strategies and shift between
strategies. The modeling results show that an ACT-R (Anderson, 1993) production rule model of the
task can account for much of subjects” observed behavior. We also present a model for a similar
analogical task involving picture analogies (Sternberg, 1977) to illustrate how the simple physics
model can generalize to other tasks.






Analogical Problem Solving, 1

1. Introduction

Recent times have witnessed the birth and development of several unified cognitive theories
which use production rules as the building blocks of problem-solving knowledge (e.g., Anderson, 1993;
Just & Carpenter, 1992; Kieras & Meyer, 1995a; Laird, Newell, & Rosenbloom, 1987). Production rule
systems allow for a great deal of flexibility in modeling, and can represent both high- and low-level
thought processes. The systems also predict observable events in time, so solid empirical support can be
gathered to test and evaluate them in a straightforward manner. As these systems have proven useful
for modeling a wide range of tasks, we employ them on a phenomenon central to human learning—
analogy. After a brief overview of analogy, we consider how a production rule framework can capture
analogical behavior. We then examine subject performance on a simple physics problem-solving task,
looking at high-level data (total latency, correctness, etc.) as well as low-level data (visual scans, key
presses, etc.).. We also present a model developed under the ACT-R framework (Anderson, 1993) which
succeeds in predicting much of the experimental data collected. We conclude by discussing related work
and the implications of our work for other research in analogy.

Numerous theories of analogy and analogical reasoning have emerged in the past two decades
(e.g., Gentner, 1983, 1989; Holyoak & Thagard, 1989a, 1989b; Keane, Ledgeway, & Duff, 1994). These
theories approach analogy in its most general sense, describing how some process of mapping can infer
relations between concepts. Colloquially, people often use the term “analogy” to refer to this process of
mapping, or finding correspondences between two conceptual structures; for instance, students often think
of analogy in terms of problems like

herd : buffalo : school : ?

for which the student must infer the relation between the first and second objects and apply it to the
third to obtain the solution (in this case, fish). Researchers have overwhelmingly agreed that
mapping is the core essential component of analogy, though each has taken a slightly different
approach to the problem. Gentner’s (1983, 1989) influential research has postulated that mapping
centers on finding structural relations between concepts, with a certain systematicity that favors
higher-order relations. Holyoak and Thagard (1989a) have used similar ideas to implement an
analogy mechanism based on constraint satisfaction. Keane et al. (1994) presented an incremental
mapping engine that incorporates constraints on working memory. Regardless of their particular
approaches, these and other theories have considered mapping the centerpiece of the analogy process.

Successful problem solving by analogy requires more than just mapping, however. First, it is
necessary to represent the problem in a way that allows or facilitates analogical mapping.
Representation, or encoding, of the mental structures that participate in mapping is crucial to the
ability of any theory to construct analogical mappings. Of course, representation is important not only
for analogy, but for all problem solving; as just one example, Hinsley, Hayes, and Simon (1977) have
discussed the importance of representation for word problem solving. Representation is pervasive in
the analogy process, and though we sometimes label it as the first subprocess of analogy (e.g., Reeves &
Weisberg, 1994), we may more appropriately think of it as a precondition for successful analogizing.

Another key element of analogical reasoning is the retrieval of an appropriate source analog
for mapping. The source may constitute some mental structure stored in memory (e.g., Anderson &
Thompson, 1989), or may come from the external world in another form, such as written text (e.g.,
VanLehn & Jones, 1993). Successful retrieval proves to be extremely difficult for humans in certain
situations, as has been manifested in several experiments using a hint/no-hint paradigm. For instance,
in Gick and Holyoak’s (1980) study based on Duncker’s (1945) tumor problem experiment, subjects heard
a story of how a general attacked a well-defended fortress and were then asked to determine how a
doctor might eradicate a tumor; the solution for the doctor-tumor problem was analogous to the solution
for the general-fortress problem. Some subjects were told explicitly that the general-fortress story
provided a useful analogous solution, while the others were given no such hint. Gick and Holyoak
found that 92% of subjects in the hint condition answered the problem correctly, while only 20% of the



Analogical Problem Solving, 2

no-hint subjects gave a correct response. Such studies provide strong support that the retrieval stage is
crucial to analogical mapping, and that retrieving an appropriate source analog can at times be very
difficult.

Some researchers have named a fourth essential component of analogy, that of schema
induction. Anderson (1993) and Anderson and Thompson (1989) have used analogical reasoning in the
creation of new production rules that act as schemata for similar problems. Novick and Holyoak (1991)
provided evidence that schema induction is a natural consequence of successful analogical transfer. Ross
and Kennedy (1990) found that the cueing of memorized sample problems can facilitate generalization
of already known formulas. The literature is somewhat undecided on whether schema induction occurs
during mapping, as a separate stage, or along with some other component of analogy. Nevertheless,
further use of analogical mappings after the initial application seems to involve inference of some
schematic knowledge.

- These four components (representation, retrieval, mapping, and induction) all play a role in a
person’s “strategy of analogy” for a particular task. We will use the term “strategy of analogy,” or
“analogical strategy,” to refer to the step-by-step cognitive processes executed while solving a problem
by analogy. For instance, consider the following verbal analogy problem discussed by Grudin (1980):

Thursday : Monday :: Friday : ?

Grudin reported that subjects exhibited two different strategies while solving this problem. Some
subjects noted that Friday is the day after Thursday, and thus concluded that the answer is the day
after Monday, namely Tuesday. Other subjects computed the number of days between Thursday and
Monday, then counted off the days from Friday to determine the solution. Thus, subjects can solve this
analogy using one of at least two distinct strategies of analogy, and possibly others. Our goal in
modeling analogical reasoning in problems like this one is to account for the analogical strategies
exhibited by subjects solving the problem.

Existing theories of analogy have modeled many aspects of analogical behavior. However,
most theories tend not to use detailed empirical data concerning what happens during the analogy
process, focusing instead on the results of the analogy process. For example, Keane et al. (1994)
presented empirical data for subjects” performance on the attribute mapping task. They compared their
empirical data to the predictions of three analogical theories: SME (Falkenhainer, Forbus, & Gentner,
1989), ACME (Holyoak & Thagard, 1989a), and their own IAM. Since none of the theories make
predictions about directly observable quantities like latency, Keane et al. compared the theories by
relating subjects’ total time for completion to the number of mappings generated by the models. For
comparison purposes, this metric works well in showing how IAM captures several aspects of analogical
problem solving in the attribute mapping task. However, arguing for the plausibility of such metrics in
general could be difficult, and the metrics may not generalize when considering observables during the
analogy process. Ideally, we would like the theory to make predictions about both observable events
during the analogy process and observable results of the process. Some work has been done in this vein
(e.g., Sternberg, 1977; Sternberg & Gardner, 1983), but there have not been detailed process models of

analogical strategies.

Another limitation of many existing theories is their inability to account fully for variability
and adaptation of analogical strategies. Researchers have found that people use different strategies
when analogizing (e.g., Chi, Feltovich, & Glaser, 1981; Novick, 1988; Spellman & Holyoak, 1993;
Whitely & Barnes, 1979) and can adapt these strategies during learning (e.g., Zhu & Simon, 1987).
Existing theories that define a single deterministic mechanism to implement analogy can account for
some variability, to the extent that the theory expresses the differences in terms of the problem
representation. Such theories make the implicit assumption that all humans with the same knowledge
representation perform analogy in the same way. However, representation is not the only variant
when considering analogy; people with similar backgrounds, and even the same person on separate
occasions, may analogize in different ways. While these single-mechanism theories may capture
aggregate subject performance, they cannot account for such variability in analogical strategies, nor can



Analogical Problem Solving, 3

they predict adaptation or learning of these strategies. Thus, another goal for a theory of analogy is to
account for what analogical strategies subjects utilize and how they shift between strategies.

One further limitation of some theories of analogy is that they are not incorporated into a more
general processing system. Analogy in the real world arises in various forms, each of which has unique
aspects to its solution, just as any problem-solving task may have domain-specific components. As such,
analogy encompasses a broad spectrum of tasks that involve not only analogical reasoning, but a great
number of other skills. For example, in Grudin’s days-of-the-week analogy above, both of the proposed
strategies require domain-specific knowledge; namely, the strategies necessitate knowledge of the days
of the week, the order in which they occur, and how to count the days between them. Any approach to
analogy which does not incorporate domain-specific knowledge cannot account for such phenomena.
Thus, any theory of analogy must lie within a more general processing system, as do some existing
theories (e.g., Anderson & Thompson, 1989; Holyoak & Thagard, 1989b).

To summarize, the goals for a theory of analogy include incorporating the theory into a general
processing system, creating detailed process models of analogical behavior, and predicting variability
and adaptation of analogical strategies. In the remaining sections, we address how production system
architectures can help achieve these goals.

2. The Production Rule Approach to Analogy

2.1. Overview of Production System Architectures

In recent decades, several major cognitive architectures based on production rules have emerged;
among others, ACT-R (Anderson, 1993), Soar (Laird, Newell, & Rosenbloom, 1987; Newell, 1990), CAPS
(Just & Carpenter, 1992), and EPIC (Kieras & Meyer, 1995a) have enjoyed some success in the modeling
world. Though their particular implementations differ, these architectures have several common
goals. They all provide a unified approach to general problem solving, that is, they can model any
problem-solving task. The architectures also make specific predictions about observable data,
allowing direct comparison with experimental results. Given these advantages, the theories have
given rise to modeling work in a broad range of areas, including human-computer interaction (John,
Vera, & Newell, 1991; Kieras, Wood, & Meyer, 1995b), natural language comprehension (Just &
Carpenter, 1992; Lehman, Lewis, & Newell, 1991), working memory and memory span (Anderson &
Matessa, in press; Anderson, Reder, & Lebieére, in press), visual attention (Anderson, Matessa, &
Douglass, 1995), robotic planning and execution (Laird & Rosenbloom, 1990), reasoning (Polk & Newell,
1995), strategy selection (Lovett & Anderson, 1995), and mathematical problem solving (Anderson,
Corbett, Koedinger, & Pelletier, 1995).

All production system architectures have production rules as the basic units of skill-related
knowledge, represented as a condition-action pair. The condition tests whether the current situation
matches the situation in which the rule would be active; conditions may test aspects of both the
external world, such as visual information, and internal states, such as the knowledge brought to a task.
When the condition holds, the production rule may fire, causing its action side to take effect. Rule
actions can modify the internal state of the model, like adding a unit of knowledge, or they can perform
some external action, like a motor response. Cognition, then, is simply the sequence of matching rule
conditions and firing rule actions.

When the conditions for several productions match the current situation, the architecture must
define what subset of the competing productions will fire. Some architectures rely on conflict
resolution, or the process by which the system chooses one production to fire. Which production the
system selects can depend on many factors: the number of times the production has fired, the recency of
its firings, the ease of retrieving matches for the condition, the frequency with which its actions lead to
successful states, etc. Some architectures allow firing and execution of productions in parallel, and thus
need not decide on one particular production—all competing productions can fire simultaneously.




Analogical Problem Solving, 4

In a later section, we explore the details of our exemplar production system architecture, ACT-
R. For now, though, this overview of production rule systems is sufficient for describing a general
approach to analogy within a production rule framework.

2.2. Analogy in a Production System Framework

Our production system approach to analogy centers on the belief that analogy is fundamentally
a problem-solving skill. Modeling analogy within a production system framework simply means
creating a production rule model of an analogical task. The model would incorporate all skills
necessary for the task, including analogical and domain-specific skills. In some sense, then, we model
analogical tasks as we would any problem-solving task. However, models for analogical tasks all
share a specific set of productions that implement analogy. In other words, the common thread that
binds models of analogical tasks is the presence of these analogy productions. Production rule models
already incorporate this idea for other common processes (see Singley & Anderson, 1989); for instance,
two models that require adding numbers could use the same productions to implement addition.
Drawing an analogy to computer programming, we can think of the common productions as implementing
a subroutine that would be called in any task requiring a specific type of analogy. The analogy
“subroutine” could then call domain-specific subroutines that implement mapping, induction, etc. for a
particular task.

Production system architectures can address all three goals for a theory of analogy described
earlier. First, production system models of analogy are necessarily incorporated into a general
processing system, since they are designed within the framework of general problem-solving
architectures. The productions that implement analogy can be easily combined with models of domain-
specific skills. This allows for the integration of analogical reasoning and other skills necessary to

solve problems.

Second, production systems allow detailed, low-level process models that can capture behavior
exhibited during the analogy process. Given that production rule models are powerful enough to model
this behavior, it is important that comparison of model predictions to empirical data is relatively
straightforward. As productions fire, their action sides can execute both unobservable actions, such as
modifications to memory chunks, and observable actions, such as motor responses. A model trace of a
particular run includes information about what behavior occurs and when it occurs (assuming the
architecture predicts real-time latencies). Typically the “behaviors” exhibited in a production model
trace are closely related to real-world behaviors; for instance, the model presented herein predicts
times and locations of all mouse clicks during the task. Production rule model predictions thus allow
easy comparison to both high-and low-level empirical data which illustrate subjects’ strategies of

analogy.

Third, production system models of analogy can address the issue of variability in analogical
strategies. Production rule models have several ways of reproducing variance between and within
individuals. Conflict resolution allows for possibly stochastic choices among productions, so that the
model can utilize different strategies on different runs (e.g., Lovett & Anderson, 1995). Different
strategies can be used for both domain-specific and analogical skills. Thus, production systems allow
for multiple implementations of the analogy process and can decide between them probabilistically.
Certain architectures also allow for erroneous firings of productions that mimic systematic errors in
problem solving, another source of subject variability (e.g., Lebiére, Anderson, & Reder, 1994). Such
techniques provide methods of generating different traces for each run, such that one run represents the
actions of one “simulated individual.” Of course, a modeler can easily derive aggregate results for the
model by averaging traces from multiple stochastic runs.

Production systems also allow learning and adaptation of analogical strategies. Most
architectures allow learning on both a symbolic and subsymbolic level. At the symbolic level, new
knowledge units, and even new productions, can be acquired during the learning process. At the
subsymbolic level, the system can adjust continuous parameters of the model, such as the activation of
knowledge units or the firing strengths of productions. Such learning can help account for strategy



Analogical Problem Solving, 5

Experiment Window ————

Sample Problem:
| £

A coiled wire forms an inductor.
The flux through the inductor is 4.
The number of windings is 9. SP
The current through the wire is 2.

Test Problem #1:

A coiled wire forms an inductor.
The current through the wire is 3.
The number of windings is 2.

The flux through the inductor is 3.

TP

Ihat is the inductance L of the inductor? What is the inductance L of the inductor?

Solution: Solution:
S1
L=N=*f / ¢ L= | TS
=0 *x 4 / 2 -7

Figure 1. Simple physics experiment screen, without blocks. The labels in grayed boxes indicate the
names of the visual areas.

changes in analogical (as well as domain-specific) skills. Thus, production systems can handle not only
multiple analogical strategies, but also the shifts between multiple strategies during learning.

Production systems thus provide integration of analogical and domain-specific knowledge,
straightforward comparison of process model predictions to empirical data, and the ability to model
variability and adaptation of analogical strategies. Interested readers can refer to Schunn & Klahr (in
press) for further discussion and general advantages of production system architectures. We now
proceed to analyze in detail a particular task in which subjects solved simple physics problems by
analogy. Our presentation begins with a description of the task and a discussion of the data collected in
the experimental study. We then present the specifics of the production rule model and evaluate how
its predictions match the empirical data collected.

3. The Simple Physics Task

Our study of the simple physics task examines the analogical strategies utilized by subjects in
solving simple physics problems. We consider data that illustrate not only the results of the analogy
process (high-level data), but also the strategies exhibited during the process (low-level data).

The experimental task involved solving several sets of simple physics problems by analogy to a
given sample problem and solution. We chose this task for several reasons. First, many researchers
have used physics problems in exploring the role of analogy (e.g., Chi, Bassok, Lewis, Reimann, &
Glaser, 1989; Chi, Feltovich, & Glaser, 1981; VanLehn & Jones, 1993); thus the physics domain is a
familiar one in the literature, facilitating comparison of other work to our own. Second, the task
allowed relatively terse problems and solutions with a small natural language component, allowing us
to ignore language comprehension to a large extent. Third, the task is representative of real-world
physics homework from a textbook; we can imagine the student doing a test problem at the end of the
chapter, referring back to a worked-out example in an earlier section.



Analogical Problem Solving, 6

Table 1. Experiment topics and equations.

Set Topic Equations PC NC

1 capacitance area / spacing Als s/A

2 thermal resistance thickness / conductivity T/c c/T

3 contracted length length / factor L/t f/L

4 force — constant * distance —*d —d*c

5 velocity ¢ / index c/i c/1

6 slit width number * wavelength n*w/Sa w*a/Sn
/ sin angle

7 volume R * temperature / pressure R*T/p R*p/T

8 inductance number * flux / current N*f/c c*N/f

In the task, problems were presented to subjects on computer screens similar to (but not exactly
like) Figure 1. The left half of the screen contained the worked-out sample. The sample problem first
gave a description of the problem situation, then listed the relevant quantities (in short phrases) with
their respective values. The sample solution used variables (e.g., “P” for pressure), operators (e.g.,
“+"), and constants (e.g., “c” for speed of light) in the first step; and values (e.g., “4”), operators, and
constants in the second step. The right half of the screen contained the test problem to be solved and an
editable text field in which to enter the answer. The test problem had a structure similar to the sample
problem, except for different quantity values and a possibly different ordering of quantity-value pairs.
For future reference, we define the screen’s visual areas (labeled in Figure 1 in grayed boxes) as: sample
problem quantities and values (SP), sample solution step 1 symbols (S1), sample solution step 2 symbols
(52), test problem quantities and values (TP), and a test solution block (TS).

Subjects were asked to solve sets of five problems in each of eight topics, all dealing with basic
physics and all involving instantiation of a single equation. Table 1 shows the equations used for each
topic; the first three equations are of equal complexity, while the others range in difficulty from fairly
easy to fairly difficult. All topics and equations were taken from a standard physics textbook
(Halliday & Resnick, 1988), massaged in some cases to fit the task, but still mathematically correct.
Subjects were to type their answers as instantiated equations, without simplifying; for example, they
were to type answers such as “3*6/2,” instead of simplifying this quantity and entering “9.” In
summary, the task involved learning a schematic equation such that values could be plugged in for
quantities to produce the desired answer.

The task certainly involves analogy, assuming we define analogy by the stages of
representation, retrieval, mapping, and induction described earlier. First, subjects must visually process
the information on the screen to build up a mental representation of the problems. Second, subjects must
retrieve the sources of analogy (i.e., the sample problem and solution) from memory, reading or
reviewing parts of the screen if necessary. Third, subjects must infer a mapping between the sample
problem and solution, applying the mapping to the test problem to obtain the test solution. Finally, the
subject can perform induction by memorizing a schematic equation that facilitates the solution of later
problems. We can also think of the task in terms of the standard A:B::C:D schema for analogy
problems, where A is the sample problem, B the sample solution, C the test problem, and D the test
solution.

To shed light on subjects” behavior during the analogy process, we needed some way of recording
subjects’ scanning and typing activity during the task. We modified the program so that parts of the
screen were covered with opaque blocks, which would disappear when clicked on and reappear on
release of the button. An actual experiment screen, namely the screen in Figure 1 with blocks included,
is shown in Figure 2. The program concealed each symbol in S1 and 52, allowing us to examine which



Analogical Problem Solving, 7

- [yperiment Window —————

Sample Problem: Test Problem #1:

A coiled wire forms an inductor. A coiled wire forms an inductor.

The current through the wire is [Jij

The number of windings is [

The flux through the inductor is [JJij

What is the inductance L of the inductor? lWhat is the inductance L of the inductor?

] Solution: Solution:

L- HNEEN L= |
o | | | [

( Done |

ernempn et
Figure 2. Simple physics experiment screen, as seen by subjects.

equation and symbol subjects were scanning. Blocks also covered the SP quantities and the TP values, but
left the SP values and TP quantities uncovered. The reason for leaving the latter pair uncovered
centered on the strategies expected of subjects. When a subject reads a value in 52, we expect them to
search for that value in SP; to facilitate the search, and to obtain simpler data, we left the SP values
uncovered so that subjects can quickly locate the desired value. Similarly, when typing the solution
equation, subjects search for a TP quantity to obtain its value; we thus uncovered the TP quantities. One
could argue that the setup of the blocks changes the character of the task, since the blocks may alter
strategies subjects utilize during the analogy process. Though this argument may be valid, it does not
change the fact that the task is fundamentally analogical and can provide rich empirical data

concerning strategies of analogy.

The block approach for recording scanning activity is an adaptation of a common information-
search paradigm where text or pictures appear on the backs of cards, such that subjects must turn the
card over to reveal the information. For example, Payne (1976) used this paradigm in studying
strategies of gathering evidence for decision making. Our technique differs from Payne’s in that the
information is re-concealed after being looked at, whereas the information in Payne’s experiment
remained visible for the duration of the task. We used the re-concealing technique to record not only
the order in which symbols are scanned, but also how often they need to be scanned. A third option for
uncovering blocks would not require the subject to click on the block, but only move the pointer to it (e.g.,
Anderson, Matessa, & Douglass, 1995). We decided against this option to avoid an inevitable flux of
unintended references in the data, when subjects incidentally uncover blocks as they move to the
intended block.

During an experiment, the program recorded two types of information: the time, location, and
duration of each mouse click; and the time and character of each key press. Therefore, the program not
only logged subject responses after each problem, but also much of how subjects went about solving the
problem. In fact, the experiment program (in a different mode) can read in subject data files and
simulate all mouse clicks and key presses, allowing the experimenter to “watch” the subject at work.



Analogical Problem Solving, 8

In order to induce subjects to learn different analogical strategies, we manipulated the
presentation of variables in S1. Subjects were randomly assigned to one of two conditions. In the
positive-correlation (PC) condition, each variable was named using the first letter of the quantity it
represented; for instance, m would represent mass and L length. In the negative-correlation (NC)
condition, each variable was named using the first letter of a quantity it did not represent; for example,
L might represent mass and m length. Thus, while the PC variables suggested correct relations, the NC
variables deliberately misled the subject by suggesting incorrect relations. The equations used in each
condition appear in Table 1. Note that in both conditions, the 52 values did correspond to the correct
quantities, and so the solutions remained correct—the only discrepancy between conditions is the
mapping from variable to quantity.

Because of the different variable namings in the conditions, we can predict different strategies
for the two groups. PC subjects, encountering names they would likely expect, should utilize a “solve-
by-variable” strategy. That is, they should eventually tend to focus on S1 rather than 52, using
variables more heavily than values for inferring the correct schema.l Indeed, the most efficient
strategy for PC subjects involves looking only at 51; the subject can infer mappings from variable to
quantity by referring to the visible TP quantities. NC subjects should utilize a “solve-by-value”
strategy, relying more heavily on SP and S2. Here the most efficient strategy involves finding a
corresponding SP quantity for each S2 value and storing the mapping from value to quantity. Of course,
since the S1 variable names are misleading, NC subjects can get no (or little) useful information from the
variables in the sample solution.- In addition, since we expect NC subjects to be deceived initially by
the incorrect namings, we also expect them to make more errors in the initial sets of the experiment.

3.1. Method

Subjects. A total of 38 Carnegie Mellon undergraduates, 6 women and 32 men, participated for
course credit. The subjects were randomly assigned to either the PC or NC condition, with a total of 19
subjects per condition. Three additional subjects participated but were excluded from the analysis; one
subject failed to follow instructions, the second produced inexplicable repeated clicks, and the third did
not complete the task within the allotted time.

Design. The study’s independent factor was the naming of variables in the 51 equation. The PC
condition used the expected variable namings, while the NC condition used deliberately misleading
namings. The resulting data from the study came in the traces produced by the experiment program for
each subject. The traces gave detailed information about mouse clicks, key presses, and final answers

observed during the experiment.

Materials. We designed eight sets of five simple physics problems, where each set dealt with
a different topic (as shown in Table 1). The equations were adapted from those in a standard
introductory physics textbook (Halliday & Resnick, 1988) and simplified to use only basic arithmetic
operations. For each topic, we created a sample problem and five test problems. The sample problem’s
solution comprised a step with the variables and operators, and a step where the variables were
replaced with their corresponding values. In the PC condition, the variables were named with the first
letter of the represented quantity; in the NC condition, they were named with the first letter of a
different quantity. The numeric values used were constrained to one-digit integers, so that typing times
would be comparable across all problems. The Appendix lists the sample problems and solutions used in
each of the eight topics.

Subjects performed the task using a Macintosh application that presented each problem
individually, one per screen. The screen (see Figure 2) comprised the sample problem and solution on

1 1t is feasible that PC subjects might use the S2 values exclusively when analogizing, which would in
fact yield correct results. However, the empirical results indicate that very few subjects follow this

trend.



Analogical Problem Solving, 9

the left and the test problem on the

right. The program presented the

eight sets in the same order, and the 1.00

five problems within each set in the 0.90

same order. The same sample problem 9.80

and solution were used for all problems ’

within a particular set. Also, the B 0.70

order of the quantities in each test £ 0.60

problem varied from screen to screen. 8 i —8——PCData

The program covered certain areas e ¥

with black blocks, which could be | & 0.40 4 — % —NCData

uncovered by clicking and would 2 o030l -=-0--- PC Model

reappear upon release. The areas

covered by blocks were the SP 0.20 + -=--<®--- NC Model

quantities, the S1 and S2 symbols (one 0.10 +

block per symbol), and the TP values. 0.00 . : . . ; ' .
During an experiment the program 1 N 5 4 5 z . 8
recorded the time and position of all

clicks, plus the time and key of all key set

presses. No feedback was given for

either correct or incorrect answers. Figure 3. Average correctness for all sets. Correctness denotes
Procedure. The experiment the percentage of the five set problems answered correctly.
-was performed within a 45 minute Solid lines show subject data, dashed lines show learning

period. Initially, subjects were given a model predictions.

brief introduction to the task, allowed

to practice uncovering blocks, and instructed to enter answers as unsimplified instantiated equations.
When ready, they began solving the 40 problems in the task. First, a screen appeared noting that they
were beginning a new set of problems. The subjects then solved the five problems in the first set, clicking
the lower-right button to indicate completion for each screen. Then subjects were warned of another new
topic, and went on to solve the next five problems. They continued solving problems in this manner until
all eight sets were completed. Subjects were given a similar but more complex task for the remaining
time; we will not address this task in our discussion. Finally, subjects were debriefed and thanked for
their participation. During the task subjects received no assistance from the experimenter and were
forbidden from using external materials such as pencil and paper.

3.2. Results

We discuss the results in two stages. First, we consider high-level data for the entire task,
examining total latency and correctness per set of problems. Second, we look at low-level data for the
final set, since we expect fairly stable behavior by the end of the experiment. Since the sets were
presented in the same order, the final set always corresponded to the final topic in Table 1. On
average, subjects required approximately 20 minutes to complete all 40 problems.

We begin by analyzing the correctness summary in Figure 3, where solid lines represent subject
data in each condition. PC subjects worked essentially at ceiling, hovering around 95% correct for all
sets. NC subjects exhibited more numerous errors in the initial sets, but eventually approached ceiling
as well. A two-factor analysis of variance (ANOVA) shows that the effects of set, F(7,288) = 2.59, MSE
= 5.63, condition, F(1,288) = 20.0, MSE = 43.50, and their interaction, E(7,288) = 2.50, MSE = 5.44, are all
significant, p < .02. Particularly, PC and NC errors differ significantly in earlier sets, namely in the



Analogical Problem Solving, 10

first, second, and fourth sets, 21(36) =

3.63, t(36) = 3.52, t(36) = 2.75, ——0—— PC Data
respectively, p < .01; the differences 250.00
between PC and NC errors on other sets ——&—— NCData
are not significant, p > .1.

1T b 200.00 4+, -=--D--- PC Mode!

We explain the correctness
results as follows. Both PC and NC ====#--- NC Model

subjects initially rely on the Sl » 150.00
variables to induce the meaning of the §
equations and to solve the test 2 100.00 4

problems. For PC subjects, this method
works well, since the wvariables
correspond directly to the first letters 50.00 +
of the quantities they represent. For
NC subjects, however, this strategy
leads to incorrect solutions, given that
the variables are mismatched. 1 2 3 4 5 6 7 8
Eventually, NC subjects experience an set

epiphany; they notice the discrepancy
in the S1 variable namings, and begin
to use the S2 values and SP quantities
for mapping. The aggregate
correctness graph reflects how subjects
one by one arrive at this epiphany, predictions.

and eventually NC subjects too perform

at ceiling. It is important to note that when subjects made errors, they typically made them across all
five problems in a particular set, so singleton errors appear infrequently. Also, every subject answered
at least a few problems correctly, so we cannot attribute all errors in later sets to only a small handful of

subjects.

We can also examine the total latency per set of five problems. The solid lines in Figure 4 show
the average time (in seconds) taken by subjects to complete sets one through eight. The first three points
manifest the beginnings of the familiar power learning curve (Newell & Rosenbloom, 1981); recall that
the problems in these sets have the same complexity, each having an equation with two variables and
one operator. Subjects here were both familiarizing themselves with the system and honing their
analogy skills as they pertain to these problems. For the other sets, the total latency corresponds
roughly to the complexity of the problems in the set. The sixth and most complex set has the highest
latency; in fact, the latency is unexpectedly high given that the complexity difference between the
sixth and eighth sets is only one operator. The fifth and least complex set shows the lowest overall
latency. A two-factor ANOVA shows a very significant effect of set, E(7,288) = 48.85, MSE = 56193.80, p
<.001. The ANOVA also shows a significant effect of condition, E(1,288) = 8.36, MSE = 9615.60, p < .0L.
This effect arises primarily because NC subjects required additional time to reach their epiphanies and
additional mouse clicks to analogize. There is no set-condition interaction, F(7,288) = .72, MSE = 828.12,

p> 6.

0.00

Figure 4. Average set latency for all sets. Set latency denotes
the time needed to complete all five problems in the set. Solid
lines show subject data, dashed lines show learning model

We now focus on their performance in the eighth and final set, which, roughly speaking,
reflects asymptotic performance in the task. We first examine the average latency per problem in the
final set, shown as solid lines in Figure 5. Not surprisingly, the subjects took more time in the first
problem, as they needed to study the sample and understand the meaning of the equation before solving
the test problem. The latency curves flatten out quickly in later problems, most notably in the PC

2 All t-tests conducted are two-tailed.



Analogical Problem Solving, 11

condition; subjects were essentially just
checking the TP values and enter the

solution equation. The problem effects 70.00

are very significant, F(4,180) = 1.72, 60,00 —O—PCData

MSE = 10876.01, p < .001, while the : :

effects of condition, F(1,180) = 2.64, \, NC Data

MSE = 231.18, and the interaction of 50.00 A\ . ---O--- PC Model

problem and condition, F(4,180) = 1.72, N )

MSE = 150.92, are not, p > .1. g 0T N --=#-=- NC Model
Subject latency data illustrate § 30.00 +

approximately when and how often

subjects analogized. Visual scanning 20.00

data, on the other hand, give

important clues to how subjects 10.00 +

analogized. We first consider our

original hypothesis that PC subjects 0.00

would rely more heavily on the Sl 1 2 3 4 5

variables, whereas NC subjects would problem

favor the S2 values. Table 2 contains

the number of references? per area item
in the final set, across all subjects. Figure 5. Average problem latency for final set. Problem

From the table we see that PC subjects latency denotes the time needed to complete a single problem.
did indeed scan $1 more often than NC Solid lines show subject data, dashed lines show terminal

subjects, who exhibited more references model predictions.

to SP and S2. The effects of area,

E(3,144) = 29.31, MSE = 761.38, and the area-condition interaction, F(3,144) = 8.21, MSE = 213.25, are
very significant, p < .001, while the effect of condition is not, F(1,144) = 1.42, MSE = 37.01, p > .2. Each
pair of values across conditions for SP, S1, and S2 differ significantly, £(36) = 2.23, £(36) = 3.18, and (36)
=3.31,p <.05.

Though subjects” area references correspond with our predictions, it is interesting to note that
overall subjects do not utilize the most efficient strategy. On the one hand, PC subjects could have
safely ignored the S2 values if desired and looked only at the S1 variables, yet they still scanned the
S2 values. On the other hand, NC subjects needed not look at the S1 variables, since the variables were
always misleading; nevertheless, they clicked on the S1 variables approximately half as often as they
did on the S2 values. Of course, subjects were not aware that the experimental condition would not
change during the task, so these extra clicks can be viewed as checking that mapping conventions
remained the same.

We can also analyze the time taken to look at objects in each area, as shown in Table 3. The
reference time corresponds to elapsed time between the click on some item and a subsequent click or key
press; note that duration of a click may not be an accurate measure, since some subjects may hold the
button down while processing information, while others may release the button. The reference times
shown in the graph reveal no significant effect of condition, F(1,189) = .78, MSE = 0.27, p > .3, or of the
interaction between condition and area, F(5,189) = .35, MSE = 0.12, p > .8. The effect of area, however,
is very significant, F(5,189) = 47.80, MSE = 16.67, p < .001. This effect arises partly because of the high
latency for the SP area; the SP times reflect the fact that the SP quantity blocks covered not only
letters or words but partial sentences. Other significant differences occur in the times between S1

3 In these and all other reference data reported, multiple references to a single block with no
intervening actions were collapsed into one reference. This adjustment was made because of subjects who
tended to click several times on the same block.




Analogical Problem Solving, 12

Table 2. Subject References per Area Item.

SP S1 52 TP
PC 1.74 2.11 1.13 1.11

(1.75) (2.30) (1.00) (1.00)
NC 2.96 1.05 2.22 1.11

(3.10) (1.05) (2.35) (1.00)

Note: Values represent average number of references per item in each area. Unparenthesized values
represent subject data, parenthesized values represent terminal model predictions.

Table 3. Subject Reference Times per Area Item.

Sp 51 52 P
variables  operators  values operators
PC 2.74 1.77 0.94 1.57 0.79 1.38
(2.60) (2.32) (0.91) (1.77) (0.85) (1.25)
NC 2.76 1.76 0.97 1.59 1.12 1.45
(2.85) (1.78) (0.87) (1.77) (0.76) (1.25)

Note: Values represent average reference times, in seconds, per reference in each area.
Unparenthesized values represent subject data, parenthesized values represent terminal model

predictions.

variables and S1 operators and between 52 values and 52 operators, {(34) = 4.46 and £(28) = 3.98 for PC,
1(21) = 3.11 and £(35) = 3.90 for NC, p < .01. Ostensibly, subjects took only half as much time to process
an operator in comparison with a variable or value.

These data give us a general sense of subjects’ strategies of analogical behavior during the task,
but we can characterize their behavior in more detail. We define a reference path as the sequence of
area scans or area groupings that a subject accesses during a problem. An area scan, denoted by a single
area such as “S1,” represents a scan of all objects within the area, hitting each at least once. An area
grouping enclosed in parentheses, such as “(52 SP),” indicates a “bouncing” scan between two or more
groups. A bouncing scan does not necessarily hit every object within the groups. Area groupings with a
single area, such as “(52),” indicate an incomplete scan of a single area bracketed by (complete) area
scans; such groupings that represent only one item access are considered spurious and are-omitted from
our analyses. For example, assume we observe the following subject behavior: scan all S1.symbols,
bounce between the S2 symbols and the SP quantities, and bounce between the TP values and the test
solution block TS. We can characterize this behavior in the reference path S1 (S2 SP) (TP TS).

Table 4a shows the reference paths for each PC subject in the five final-set problems. The
variability between subjects is quite striking; even with this rough characterization of analogical
strategies, very few used identical strategies. Only one subject (PC1) used the most efficient strategy,
scanning only S1 before proceeding to enter the solution. Approximately half the subjects began with a
scan of SP, and generally continued by scanning S1. It seems that these subjects read top-down from the
sample problem until they reached the relevant equation for mapping (the S1 equation for PC subjects).
Also, most subjects exhibited some bouncing scans between SP and S2 after scanning S1, apparently
checking the quantity equation derived from S1 by mapping S2 values to their respective SP quantities.
Only one subject (PC15) utilized an obvious solve-by-value strategy, scanning SP and S2 exclusively;
this fact provides evidence that subjects tend toward the more efficient (solve-by-variable) strategy in
the PC condition. Finally, PC subjects showed very little dependence on the sample problem and



Analogical Problem Solving, 13

solution after the first problem. They seem to have abstracted out the solution during the first
presentation.

Table 4b lists the reference paths for NC subjects. We see a fair number of scans of the 51
equation, even though the S1 variables are misleading. Again the subjects seem to manifest the top-
down reading behavior, frequently reading SP and S1 before using the variable equation 52. NC subjects
also exhibited the (S2 SP) bouncing, but for the purpose of inferring the correct equation rather than for
checking the variable equation. Several subjects inferred a mapping by scanning SP and S2 separately
rather than bouncing between them. As in the PC condition, only one NC subject (NC16) exhibited the
most efficient strategy, scanning SP and S2 once. Use of the test problem and entering of the solution are
fairly similar across conditions. Subjects prefer to bounce between the test problem TP and the solution
TS, as the behavior (TP TS) lightens working memory load. However, a minority of subjects showed the
behavior TP TS, scanning all the test values first, then entering the entire equation into the solution

block.
Table 4a. PC subject reference paths.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
PC1 |[S1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
PC2 | SPS1 (52 SP S1) (TP TS) (SP S1 TP TS) | (TP TS) (TP TS) (TP TS)
PC3 | SP (82 SP S1) S1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
PC4 | SPS1(S2SP S1 TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
PC5 |S1SPS1TPTS TP (TP TS) TP TS TP TS TP TS
PC6 |[(SP)S1SP(S2SPS1TPTS) |(S1 TP TS) (S1 TP TS) (TP TS) TS (TP TS)
PC7 |SP S1(S2SP S1) (TP TS) (TP TS) S2 (TP TS) (TP TS) (TP TS)
PC8 |[SPS1SPS1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
PC9 |SPS1(TPTS) (TP TS) (TP TS) (TP TS) (TP TS)
PC10 | SP S1 S2 (S2 SP) (TP TS) SP S2 (TP TS) | (TP TS) (TP TS) (TP TS)
PC11 | S1SPS2 TP TS TP TS TP (TP TS) TP TS (51) TP TS
PC12 SI; (52 SP S1) TP (TP TS) S1| TPTSTPTS | TP TS (TP) TP TS TP TS
T
PC13 | SP S1 (TP TS) (TP TS) (S2)| TP TS TP TS (TP TS)
51
PC14 | (S2 SP S1) (TP TS) TP TS TP TS TP TS TP TS
PC15 | S2SPS2 TP TS TP TS TP TS TP TS TP TS
PC16 |S1(S2SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
PC17 |SPS1(52S1)S1(S1TPTS) |S1(TPTS) (TP TS) S1 (TP TS) (TP TS)
PC18 |SP (S2S1)SP S2S1(TPTS) | (TP TS) (TP TS) 51 (TP TS) (TP TS)
PC19 |SP S1 52 (S2 SP) (TP TS) (TP TS) TP (TP TS) (TP TS) (TP TS)




Table 4b. NC subject reference paths.

Analogical Problem Solving, 14

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

NC1 |[SPS2(SPTP) TP TS TP TS TP TS TP TS TP TS

NC2 | (52 51) SP (52 SP TP TS) SP (82 SP TP | (S2SP TP TS) | (TP TS) (TP TS)
TS)

NC3 | St (TP TS) (TP TS) (S2|TP (S1) S2 (82| (TP TS) (TP TS)
SP) SP TP TS)

NC4 |SPS1 (5251 TP TS) S1 (TP TS) (TP TS) (TP TS) (TP TS)

NC5 | SP (S2SP)SP (S2SP TP TS) | (TP TS) (TP TS) (TP TS) (TP TS)

NCe6 |SP(S2SPS1TPTS) (S1) (TP-TS) | (TP TS) (TP TS) (TP TS)

NC7 | SP (52 SP TP TS) (S2SP TP TS) | (TP TS) (52SP TP TS) | (TP TS)

NC8 | SP (S1) S2 (SP TP TS) (52 TP TS) (SP TP TS) (TP TS) (TP TS)

NC9 |S2SP S2SP (TP TS) (TP TS) (TP TS) (TP TS) TS| (TP TS)

(TP TS)

NC10 | S2 (S2 SP TP TS) S2 (52 SP TP|(S2SP TP TS) [ S2 (S2 SP TP | (S2 SP TP TS)
TS) TS)

NC11 | SP S2 (SP TP TS) (SP TP TS) (S2SP TP TS) | TP TS TP TS

NC12 | SP (52 SP TP TS) TP (TP TS)S1 TP | (TP TS) (TP TS) (TP TS)

NC13 | SP S1 (S1) S2 (S1) TP TS TP TS TP TS TP TS TP TS

NC14 | 51 (52 SP) TP TS TP TS TP (TP TS) TP TS TP TS

NC15 | (51) 52 (52 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)

NC16 | SP S2 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)

NC17 | SP )(SZ SP S1) SP (S2 S1) (TP | (TP TS) (TP TS) (TP TS) (TP TS)

TS
NC18 | SP S1 (52 SP TP TS) (S2SP TP TS) | (TP TS) (S2SP TP TS) | (TP TS)
NC19 | SP S1 (52 SP S1) S2 SP (TP | (S52) SP (S2)| (TP TS) (TP TS) (TP TS)

TS)

(SP TP TS) S2
SP TP




Analogical Problem Solving, 15

In summary, PC subjects generally followed the solve-by-variable strategy, while NC subjects
followed the solve-by-value strategy. We have also seen that subjects exhibited a great deal of
variability in analogizing, and adapted their strategy of analogy to either solve-by-variable or solve-
by-value according to experimental condition. In the discussion of the model for these empirical data,
we will characterize subjects” behavior more formally and show how a production rule model can
provide good fits to the data. Before doing so, however, we need to explain further the production rule
framework in which we design our model—ACT-R.

4. The ACT-R Architecture

ACT-R is a unified theory of cognition based on production rules. The theory postulates two
major components of knowledge, declarative and procedural. Declarative knowledge comprises
individual units of information that can be recalled and explicitly reported. Procedural knowledge
comprises production rules, that is, the system’s knowledge of how to carry out various tasks. In this
section we describe the specifics of how ACT-R represents and manipulates these two bodies of
knowledge. Refer to Anderson (1993) for an extensive treatment of the theory.

In ACT-R, declarative knowledge contains individual chunks that encode single facts; for
instance, one chunk might state that Harrisburg is the capital of Pennsylvania. To represent such facts,
each chunk is associated with a chunk type that defines its structure. A chunk type defines several
slots which, for each instance of the type, are filled in with the names of other chunks. Returning to our
example, we might create a “state-capital-fact” chunk type with two slots, “state” and “capital”, and
create a new chunk:

Pennsylvania-capital isa state-capital-fact
state Pennsylvania
capital Harrisburg

Here, “Pennsylvania-capital” is the name of the chunk, the “isa” description defines its type, and the
names “Pennsylvania” and “Harrisburg” represent other chunks. Each chunk has a real-valued
activation that indicates its ease of retrieval. Chunks also spread activation to other chunks, namely,
the chunks specified in their slots (see Anderson, Reder, & Lebiére, in press). A chunk’s total activation
is the sum of its base-level activation, representing how often the chunk is accessed, and the spreading
activation that comes from chunks in the current context.

ACT-R’s production rules, like those of similar architectures, represent condition-action pairs.
The condition contains one or more patterns that match chunks, where the first pattern always matches
the current goal. Thus for the condition to hold, it must match both the current goal and any chunk
retrievals specified. Also, the chunks matched from declarative memory must be readily retrievable,
so chunks with very low activations will not match. Production actions can create new chunks and
modify existing ones; the system never loses chunks, although chunks that go unretrieved for long
periods of time are so difficult to retrieve that they are effectively lost. Actions can also push and pop
goals from the goal stack, which is essentially a LIFO (last in, first out) queue of chunks that represent
the goal currently being worked on and other goals waiting to be executed.

There are several continuous parameters that influence the performance of a production rule.
The strength of the production determines how easily the production can be used; production strength is
in some ways analogous to chunk activation, as strength depends on the frequency and recency of the
production’s firings. Productions also have two “cost” parameters, measured in seconds, that represent
the immediate cost a of firing the production and the estimated eventual cost b of later production
firings. Similarly, productions have two “success” parameters that state the probability g that the
production will succeed immediately (i.e., have its intended effect), and the estimated probability r
that firing the production will eventually lead to success.

During a simulation, ACT-R must choose which productions to fire, and must define how much
time each firing takes. Conflict resolution, or the selection of an appropriate production to fire, is



Analogical Problem Solving, 16

guided by the expected gain of firing each production. Assume that achieving the current goal has some
value G. The probability P of achieving the goal with a particular production is gr, and the expected
value of the goal is PG. To calculate expected gain, we need to subtract from the expected value of the
goal the expected cost of achieving the goal; for a given production, the total cost Cisa +b. In
summary, we can calculate the expected gain for each production as PG -~ C. Thus when two or more
productions may fire in a given situation, we simply choose the production that maximizes our expected
gain.

Once we have chosen the production, we can compute its total latency. Let A; represent the
activation of each chunk i that matches the rule condition, and let S be the strength of the rule. The
latency T of the production can then be computed as:

T=FY o AHS)
‘ (1)

The scaling parameters F and £ default to 1. The actual details of rule latencies and conflict resolution
are slightly more complicated, but this treatment will suffice for our description of the simple physics
model.

Having discussed some of the low-level details of ACT-R, let us take a step back and consider
what goes into a typical simulation. The simulation begins by pushing an initial goal onto the goal
stack. The system then evaluates all productions that operate for that goal, and using conflict
resolution selects one to fire. The production’s actions may change the slot values of chunks, add new
chunks, push new goals onto the stack, or pop the current goal from the stack. Execution continues with
the current (top-most) goal on the goal stack, and terminates when the stack is empty or no production

can fire.

Thus far we have neglected one of the central components of the architecture—learning. ACT-R
can learn on several levels, but we will limit our discussion to the two learning mechanisms relevant to
our task: base-level learning and strength learning. Base-level learning adjusts chunk base-level
activations based on the frequency and recency of uses of the chunk. As mentioned earlier, the base-
level activation is added into the total activation A; of a chunk. Specifically, the system computes
base-level activation as

B= log(z t].'dJ
! )

where the ti’s represent the time since each use of the chunk, and d represents a decay constant. This
equation captures the fact that repeated uses of the chunk increase its activation, thus facilitating
future retrievals. It also gives a higher priority to recently used chunks. In the next section, we will see
how base-level learning plays a central role in determining how many times the model needs to review

the mapping formed during analogy.

The other learning mechanism relevant to this discussion is the learning of production rule
strengths. There are many parallels between strength learning and base-level learning; in fact, their
defining equations are almost identical:

S= log[z t}.‘?’]
I (3)

Here the ts represent the time since each firing of the production, and d represents a constant decay
parameter. Frequency and recency again play a key role, as more frequent and recent firings help to



Analogical Problem Solving, 17

increase a production’s strength. Both strength learning and base-level learning influence the timings
of production firings as described by Equation 1; strength learning estimates the S value, while base-
level learning influences the A; values.4

Many of ACT-R’s computations are noisy in order to help model individual performance
differences. Our model adds noise to the computation of the expected gains of productions and the
activations of chunks. The expected gain noise is added to the PG - C calculation during conflict
resolution, allowing the model to make different choices of which production to fire. The activation
noise affects both the latency and selection of productions. Since the latency of a production depends on
the activation of the retrieved chunks, activation noise raises or lowers the timings of rule firings.
Also, since matched chunks must be readily retrievable, activation noise affects whether chunks match
at all. The combination of these effects allows ACT-R to produce varying traces on different runs, such
that each trace can be interpreted as a distinct simulated subject.

5. The Simple Physics ACT-R Model

We now know enough about the workings of ACT-R to describe the production rule model of the
simple physics task. The major test for this model is its ability to predict the high- and low-level
data presented earlier. Recall that these data reflect much variability in both the results of the
analogy process and the actions of subjects during the process. We intend to capture as many aspects of
the data as possible. Since the final model is quite large (over 120 production rules), we cannot simply
present the rules as they are.” We will, however, give a sense of how we designed and implemented
the model at a high level, and illuminate its most crucial elements. For ease of explanation, we
introduce the model as two “terminal” models that represent the asymptotic behavior of subjects. That
is, the terminal models capture the behavior of subjects after the subjects have optimized their strategy
for a particular condition. Thus we present one terminal model that executes the solve-by-variable
strategy (for the PC condition), and another that executes the solve-by-value strategy (for the NC
condition). After describing the terminal models and their predictions, we will merge the two terminal
models into a single “learning” model. The learning model can account for the evolution to the
appropriate terminal model based on the condition (PC vs. NC) of the simulation.

5.1. Terminal Models

As the first step in creating the terminal models, we need to perform a task analysis to
determine the overall strategy that subjects undertake in analogizing. The data support our original
predictions that PC subjects focus on S1 whereas NC subjects focus on S2 and SP. The correciness data
suggests that subjects begin using the solve-by-variable strategy, and eventually adjust to the
appropriate strategy for their condition. The reference paths manifest, for some subjects, a tendency to
read the sample problem from the top down to the area relevant for analogy. Finally, the data show
that PC subjects seem to look at the S2 equation to check that the equation derived from the variables is
correct. Taking all these facts into account, we can propose a general strategy for subjects upon first
seeing the problem. The general strategy applies to both the PC and NC terminal models, but as we
will see, is implemented slightly differently for each model. |

The overall strategy is illustrated in Figure 6; the control flow for the initial problem in a set
appears on the left, while the graph for subsequent problems appears on the right. First, subjects either
read top-down to the relevant area, or skip directly to the area. For PC subjects, the relevant area is
the 51 equation; for NC subjects, it is the S2 equation. Second, subjects use the equation to build a mental

4 In addition to base-level learning, ACT-R can learn inter-associative strengths between chunks which

can influence the values of A;. We do not discuss inter-associative learning here.
5 The full model and the program needed to run the model can be found on the World Wide Web at:

http:/ /www.cs.cmu.edu/afs/cs.cmu.edu/user/dario/www/analogy /analogy.html.



Analogical Problem Solving, 18

skip read (.28)

?

read (.72)

read top-down

re-read
(.10)

maove on

move on ?
(.90)

study mapping

review

review mapping

re-study

re-review

move on

skip check (.13) move on *

solve problem

check
(.87)

check mapping

re-check
(-20)

move on
(.80)

solve problem

Figure 6. Main control flow graph for the simple physics model. The
graph on the left illustrates the control flow for the initial problem,
and the graph on the right represents the flow for subsequent problems.
Percentages in parentheses indicate statically-computable frequencies
for their respective paths.

representation of the mapping or “true” equation. This true equation, which we call the quantity
equation, contains quantity names in place of the variables or values, such that the representation could
be used to solve the test problem. For instance, for the induction problem shown in Figure 1, the equation
“N*/c” would map to the quantity equation “number*flux/current.” Third, subjects either check the
quantity equation or skip the check. PC subjects would check the quantity equation against the equation
represented by the 52 equation, while NC subjects cannot perform any check, since the variable names
are known to be misleading. Fourth, subjects solve the test problem using the quantity equation and the
TP values. For subsequent problems, the quantity equation may need to be reviewed before solving the
problem, and this review would constitute re-studying the equation.

The terminal models implement this general strategy in their highest level production rules,
summarized in Table 5. The first stage allows two options, reading top-down to the study equation or
skipping ahead. Reading top-down means reviewing material in the problem that appears before the
critical material, that is, the S1 equation for PC subjects and the 52 equation for NC subjects. To decide
between reading top-down and skipping ahead, the model has two productions that compete through
conflict resolution. If the model opts to read top-down, this subgoal is pushed onto the goal stack. For



Analogical Problem Solving, 19

Table 5. Simple physics general strategy productions.

read-top-down
IF current stage is read-top-down
THEN set subgoal to read top-down
and move to stage study-mapping

skip-ahead
IF current stage is read-top-down
THEN move to stage study-mapping

study-mapping
IF current stage is study-mapping
THEN set subgoal to study mapping

retrieve-mapping
IF current stage is study-mapping
and mapping can be retrieved
THEN move to stage check-mapping

check-mapping
IF current stage is check-mapping
THEN set subgoal to check mapping
and move to stage solve-problem

skip-check
IF current stage is check-mapping
THEN move to stage solve-problem

solve-problem
IF current stage is solve-problem
THEN set subgoal to solve-problem
and move to stage review-mapping

review-mapping
IF current stage is review-mapping
THEN set subgoal to study mapping

stop-review
IF current stage is review-mapping
and mapping can be retrieved
THEN move to stage solve-problem

PC subjects, reading top-down involves simply reading the SP quantities and values in order. For NC
subjects, reading top-down involves reading SP and 51.

The second stage requires studying the mapping, namely the quantity equation. The PC
terminal model uses S1 to infer the quantity equation. The model performs a different action for each 51
symbol type (variable, constant, or operator). For each S1 variable, the model scans TP for the quantity
that begins with the variable letter.® It then creates a knowledge chunk that stores the quantity name
along with its position within the equation. For each S1 constant, the model similarly scans TP, but

6 We could ask why subjects would scan TP for the quantity names, rather than SP. Since the SP
quantity names are covered by blocks, searching them would take make more time, thus searching TP is
more efficient. The reference paths for PC subjects exhibit little bouncing between S1 and SP, confirming

these conclusions.



Analogical Problem Solving, 20

finds no quantity with the same first letter. Thus it assumes that the letter is a constant and stores the
constant along with its position. For each S1 operator, the model simply stores the operator with its
position. In contrast to the PC terminal model, the NC terminal model focuses on S2 and SP to infer the
quantity equation. For each 52 value, the model finds the value in SP and clicks on its covered block,
exposing the corresponding SP quantity. Constants and operators are immediately recognized, and all
three types are again stored with their position.

In summary, the study-mapping stage uses either S1 or S2 and SP to build a representation of
the quantity equation, of which each element (quantity, constant, or operator) is associated with its
position in the equation. After the model studies the equation, it must decide whether to stop studying
or to review. If the equation can be readily retrieved, the model advances to the checking stage and
studying terminates. Otherwise, the model reviews (or re-studies) the equation. Base-level learning
(see Equation 2) controls how easily the equation can be retrieved; as the equation is reviewed, its
activation increases steadily, facilitating retrieval on the next attempt.” Thus more reviews make it
more likely that the model can recall the equation and move on.

The third stage allows the models to check the quantity equation created in the study stage.
Since NC subjects can use only the 52 equation to solve the problem correctly, only PC subjects can
actually check their equations. As before, the model contains two competing productions, one for
checking and one for skipping the check. To check, the PC model goes through the same steps as the NC
model does for studying, bouncing between 52 and SP. By definition in the PC case, the check will never
fail, so after the check the model simply continues to the next stage. We will modify this check stage
later when we merge the terminal models into a single learning model.

The fourth stage, where the terminal models solve the current test problem, is relatively
straightforward. The model traverses the mental representation of the quantity equation, beginning
with the first symbol. If the symbol is a quantity, the model searches TP for that quantity, clicks on its
corresponding value, and types the value. If the symbol is an operator, the model simply types it in.
Finally, when the model has traversed the entire equation, it clicks on the lower-right button to
indicate that it has finished with the problem. For subsequent problems, the model enters a review
stage in which the quantity equation is reviewed until it can be readily retrieved (just as in the study
stage). When this review finishes, the model shifts back to the solve stage to enter the solufion.

The stage descriptions above refer to many subprocesses, such as scanning the sample problem
for a particular value or searching the test problem for a quantity. Each of these processes is
implemented by a separate subgoal and a set of production rules. In this sense, the models are rather
low-level, since they describe what the model is “looking at” during all stages of the analogy process.
The leaf subprocesses are primarily visual- or motor-related, such as clicking on a block or typing in a
number. The models do not actually perform these actions, but rather output a trace item indicating the
time and location of each action. The trace created by the interface productions can be compared with
experimental results, or even run through the experiment program in simulation mode.

At this point we have provided a broad overview of the models at the symbolic level.
However, we still need to define the subsymbolic, real-valued parameters associated with chunks and
productions. For chunks, base-level learning handles the setting of all base-level activations, so we
need not concern ourselves with them. For productions, we used the default settings7 for strength, b, and
g for all productions. We used fixed strengths in the terminal models because we assumed that
productions were already at peak strength; these strengths will be learned in the learning model. This
leaves only the settings for the a and r parameters.

The a parameter controls the latency for each production. We set all productions to have the
standard ACT-R default latency of 50 ms, except the rules which implement the visual and motor
actions. In setting the latencies for the visual and motor rules, we followed the general guideline that

7 The default settings for these parameters are strength=0, b=1, and g=1.



Analogical Problem Solving, 21

“short” actions take approximately 100 ms while “long” actions take approximately 1 s. Reading a
single digit or symbol, or noticing an empty space, has a latency of 100 ms. For partial sentences (i.e.,
the SP and TP quantities) reading takes 1 s. Long-distance mouse movements (e.g., from SP to S1 or 52)
have a latency of 1 s. Typing after moving the mouse, or vice-versa, takes an additional 1 s, modeling
the latency for shifting the hand between mouse and keyboard. Clicking on the “Done” button also
takes 1 s. To fit our data more accurately, we stretched our guidelines in two specific cases. Short-
distance mouse movements have a latency of 300 ms, and typing a character has a latency of 650 ms.8

The r parameter allows for adjustment of the conflict resolution between productions in cases
where we design the model to have competing productions. For most productions, setting the r
parameter is straightforward, merely reflecting which rule we prefer over others. However, the
parameters for certain crucial decision points need to be estimated using empirical data. We would like
the parameters to be estimated such that the model makes each decision with approximately the same
probability as our subjects. Given the above parameter settings, we proceeded to estimate the r
parameters for the decision points shown in Figure 6. Fitting the model to the data was essentially a
hill-climbing search manipulating these crucial r parameters. We performed this search manually;
that is, we ran several simulations, examined the output, and adjusted the parameters accordingly. We
repeated this process until the parameters produced satisfactory results.

Stating the actual values of the estimated r parameters would not be highly illustrative, since
it is not obvious how they correspond to the probabilities of firing the respective productions.
However, we can actually derive the expected probabilities using the r parameters and the amount of
PG - C noise. Let E; be the evaluation, or PG — C value, of production i. The probability of choosing
production i among all competing productions j is

eE,-/s

7 (4)

The parameter s relates to the standard deviation O of the PG-Cnoiseass= & \/g / 7. This formula
allows us to compute the probability of choosing each path in the general control flow graph. There is
one caveat, however: The likelihood of firing a production that retrieves the studied (quantity)
equation depends on the current activation of the equation, thus we cannot statically compute the
probabilities for these paths. The control flow graph in Figure 6 includes probabilities for all
statically computable paths.

Pr(i)=

From our presentation, one might get the impression that so many parameters could easily fit
almost any data set. This is far from true. Although the two terminal models are indeed distinct
models, they actually differ in only a few productions. Specifically, we vary only the specific subgoals
pushed for the “read-top-down,” “study-mapping,” “check-mapping,” and “review-mapping”
productions in Table 5; all other productions, and all continuous parameters, are kept the same across
models. This high degree of overlap allows us to combine the models into one learning model, as we
shall see later. More importantly, though, the overlap manifests the real predictive power behind
these models. It highly constrains the predictions of one terminal model given the parameters of the
other. Thus, if both models provide good fits to their respective data sets, we have strong evidence to

support our underlying theory.
5.2. Terminal Model Results

Let us now examine the predictions and behavior of the terminal models in comparison with the
final set data. Given the two models, we can run repeated simulations that model individual subjects

8 This typing speed is slower than continuous typing speed, but justifiably, since subjects are entering
numbers and operators rather than words in text.



Analogical Problem Solving, 22

performing the final set of five problems. To compare the models’ results with the experimental data,
we ran 20 simulations for each model and examined the resulting traces.® Overall, the models produced
good fits to many aspects of the data.

We first compare the total latencies to complete each problem, for both the models and subjects.
Figure 5 includes the models” predictions (dashed lines) with the experimental data (solid lines) for
the PC and NC conditions. Both models’ latency curves fit their respective data nicely. Most of the
analogizing is completed in the first problem, with the latencies flattening out quickly in later
problems. The fit is especially good considering our rigid demand that every production’s latency be set
at 50 ms (with the exception of the visual and motor productions).

Regarding the visual data, Table 2 shows the predicted (parenthesized) and observed
(unparenthesized) number of references per item. Again, the models capture many of the nuances of the
data. For example, recall that NC subjects scanned S1 almost half as much as S2, even though the S1
variables were misleading. The NC model reproduces this phenomenon in the read top-down stage,
predicting that many subjects read S1 on the scan from the top of the screen down to the relevant
equation for analogizing (52 for the NC condition). Also, the PC model explains why PC subjects
referred to the 52 equation, namely, to check that their inferences from the S1 equation are correct.

Table 3 shows the empirical data and model predictions for reference times across the two
experimental conditions. The high latency for reading SP quantities stems from a higher production
latency for reading sentences rather than single words or symbols. The models also predict that
reference latencies for S1 variables and 52 values are significantly longer than those for S1 or S2
operators. The extra time spent arises from the visual scans necessary for variables and values; for
instance, after reading a value, the model must scan SP for that value. The only real discrepancy
between the model predictions and the experimental data occurs in the reference latency for S1
variables in the PC condition. The data showed no significant difference between latencies for S1
variables and S2 values in either condition; however, the PC model predicts some additional processing
for S1 variables, namely, storing or strengthening the mental representation of its corresponding
quantity. In the NC condition, the extra latency needed for the quantity representation appears in the
higher SP latency. The effect arises for SP, rather than for 52, because subjects must click on SP to find
the correct quantity to store. On the whole, the models do account for much of the time spent looking at
and processing the items in the various visual fields.

The reference paths for the experimental data revealed a great deal of variability in the
strategies of analogy during the task. Though the models do not exhibit as much variability as the
subjects, they are able to produce some of the important facets of these differences. Tables 6a and 6b
illustrate the reference paths for the 20 simulation runs for each model. In both cases, we see varying
amounts of studying and reviewing across simulations. Also, many of the simulations begin by reading
SP, just as many subjects did. We can observe several reviews of the equation in later problems, though
the reviews are less frequent than in the empirical data. Interestingly, only two simulations (MNC6
and MNC10) executed the most efficient strategy; recall that of our 38 subjects, exactly two (PC1 and
NC16) did the same. Thus the models not only reproduce the latency and visual data present in the
experiment, but also some of the crucial differences exhibited by subjects.

9 Terminal model simulations were run with base-level learning enabled (decay rate of 0.3), strength
learning disabled, an expected gain (PG - C) noise of 0.2, and an activation noise of 0.1.



Analogical Problem Solving, 23

Table 6a. PC terminal model reference paths.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
MPC1 |SP )Sl S1 (S2 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS
MPC2 | S1 (82 SP) (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC3 | S1S1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC4 | SP S1 S1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC5 | SP S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC6 | SP S151S1(S2SP) (TP TS) | (TP TS) (TP TS) (TP TS) (TP TS)
MPC7 | S1 S1 (S2 SP) (TP TS) S1 (TP TS) (TP TS) (TP TS) (TP TS)
MPC8 | SP S1 S1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC9 | 'SP S1 S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC10 | SP S1 S1 (S2 SP) (S2 SP) (S2| (TP TS) (TP TS) (TP TS) (TP TS)
SP) (TP TS)
MPC11 SI;)Sl S1 S1 S1 (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
T
MPC12 | SP S1 (52 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC13 | SP S1 S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC14 | SP S1S1S1 (S2 SP) (TP TS) | (TP TS) (TP TS) (TP TS) S1 (TP TS)
MPC15 SP)Sl S1 S1 S1 (S2 SP) (TP| (TP TS) (TP TS) (TP TS) (TP TS)
TS
MPC16 | SP S1 $1S1 S1 (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC17 | S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC18 | SP S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC19 | S1 S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)
MPC20 | SP S15151(S2SP) (TP TS) | (TP TS) (TP TS) (TP TS) (TP TS)




Table 6b. NC terminal model reference paths.

Analogical Problem Solving, 24

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

MNC1 |SP S1 (S2 SP) (S2 SP) (S2| (TP TS) (TP TS) (TP TS) (TP TS)
SP) (TP TS)

MNC2 | SP SP S1 (S2 SP) (S2 SP) (S2| (TP TS) (TP TS) (TP TS) (TP TS)
SP) (TP TS)

MNC3 | SP S1 S1 (S2 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS)

MNC4 |SP S1 (S2 SP) (S2 SP) (S2| (TP TS) (TP TS) (TP TS) (TP TS)
SP) (TP TS) '

MNC5 | (52 SP) (S2 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS)

MNCé6 | (82 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)

MNC?7 | SP S1 S1 (S2 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS)

MNC8 |SP S1 (82 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS)

MNC9 |SP S1 (82 SP) (52 SP) (TP | (TP TS) (82 SP) (TP| (TP TS) (52 SP) (TP
TS) TS) TS)

MNC10 | (82 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)

MNC11|SP S1 (S2 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS)

MNCI12 | SP S1 (S2 SP) (S2 SP) (S2| (TP TS) (TP TS) (TP TS) (TP TS)
SP) (TP TS)

MNC13 | (82 SP) (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)

MNC14 | SP S1 (S2 SP) (TP TS) (TP TS) (TP TS) (TP TS) (TP TS)

MNC15| SP S1 S1 S1 (S2 SP) (S2 SP) | (TP TS) (TP TS) (TP TS) (TP TS)
(TP TS)

MNCI16 | SP S1 S1 S1 (S2 SP) (S2 SP) | (TP TS) (TP TS) (TP TS) (TP TS)
(TP TS)

MNC17 | SP S1 (S2 SP) (S2 SP) (S2| (TP TS) (TP TS) (TP TS) (TP TS)
SP) (TP TS)

MNC18 | SP S1 S1 (S2 SP) (52 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)
TS)

MNC19 | (82 SP) (52 SP) (TP TS) (52 SP) (TP| (TP TS) (TP TS) (TP TS)

TS)
MNC20 | (52 SP) (S2 SP) (S2 SP) (TP | (TP TS) (TP TS) (TP TS) (TP TS)

TS)




Analogical Problem Solving, 25

5.3. Learning Model

We have seen how the PC and NC terminal models operate to fit the final set data. However,
there is still the question of how these terminal models might evolve. We would like for the models to
arise from a single initial model which would itself evolve into one of the terminal models. That is, we
desire a learning model that runs on the entire task (i.e., all eight sets), and depending on the problems
presented to the model, would shift to either the solve-by-variable strategy (the PC terminal model)
or the solve-by-value strategy (the NC terminal model).

Since the terminal models were designed with the learning model in mind, merging them is
fairly straightforward. The learning model retains a single chunk that describes the current strategy to
utilize, either to solve by variable or to solve by value. The few productions which differ between the
terminal models are modified to retrieve this chunk and determine the current strategy. If the strategy
dictates to solve by variable, the production pushes the subgoal(s) corresponding to the PC terminal
model; otherwise, it pushes the subgoal(s) corresponding to the NC terminal model. Initially, the
strategy chunk is set to solve by variable. As the model simulates the task, it eventually checks the 52
values to ensure that they correspond to the S1 variables. In the PC condition, the variables and values
always correspond, so the learning model continues to use the solve-by-variable strategy. In the NC
condition, the check fails, and the model decides whether or not to consider the check; this choice
models how some subjects perform the sequence of clicks for a check but do not notice the discrepancy in
variable namings. When the check is both performed and considered, the model switches to the solve-
by-value strategy. The learning model thus adjusts to the condition in which the simulation is run,
shifting to either the solve-by-variable or solve-by-value strategy as appropriate.

Because the terminal models assume that the relevant task skills are already present and
highly tuned, they ignore the strengthening of productions during simulation. The learning model, on
the other hand, should account for the tuning of appropriate productions. We thus activate strength
learning in the learning model simulations, as defined by Equation 3. This learning increases the
production strength for frequently-fired productions, resulting in lower firing latencies. The model also
incorporates the assumption that all subjects read top-down for the first problem in the first set of the

task.
5.4. Learning Model Results

We now present the results of 20 learning model simulations of the entire task in each
condition.10 The learning model correctness results are included in Figure 3. Comparing the model’s
predictions (dashed lines) with the empirical data (solid lines), we see that the model captures
several aspects of subjects’ behavior. The PC model, like PC subjects, performs at ceiling. This behavior
arises from the fact that the learning model always tries initially to solve by variable, which is the
correct approach in the PC condition. In the NC condition, the model requires some number of trials
before it notices the discrepancy between the sample solution variables and values; recall that subjects
exhibited similar epiphanies. The NC error curve then essentially maps out when the model
simulations reached their epiphanies.

Figure 4 shows the average set latencies for the model (dashed lines) and the experiment (solid
lines). We see that the learning model nicely reproduces the shape of our empirical data; namely, the
sets involving more complex problems require more time to complete. In the three initial sets (which
have identical complexities), we observe a steady decrease in latency, due primarily to the
strengthening of relevant productions. Also, the model requires slightly more time in the NC condition

10 Learning model simulations were run with base-level learning enabled (decay rate of 0.3), strength
learning enabled (decay rate of 0.5), an expected gain (PG - C) noise of 0.2, and an activation noise of 0.1.



Analogical Problem Solving, 26

than in the PC condition, since the NC times include an overhead for epiphanies that occur during the
sets.

Generally the learning model captures the important aspects of the data. Nonetheless, we can
point to two incompletenesses of the model. First, the model does not account for the acquisition of
productions specific to the task. Presumably, many of the rules (for scanning, typing, etc.) are in place
at the onset of the task. However, we could argue that the task invokes the creation of certain
specialized productions that act as schemata for problem solving (see Anderson & Thompson, 1989).
This crucial issue is beyond the scope of this model; much further analysis of the task would be required
to determine how and when such rules are created. Second, there may be other strategies which subjects
utilize when first attempting the task. Our model assumes that subjects begin with the solve-by-
variable strategy, and sometimes (i.e., in the NC condition) shift to the solve-by-value strategy. It is
possible, however, that subjects initially use a different strategy, perhaps a hybrid of solve-by-
variable and solve-by-value, perhaps an altogether different approach. Again, further work is needed
to look for systematic strategies in the early stages of the task that evolve to the terminal strategies.

6. Generalizing the Simple Physics Model: The People-Piece Model

We have seen how a production rule model can capture many aspects of the simple physics task.
Nevertheless, we might reasonably question how useful the model is when considering the broader
picture of problem solving by analogy. Can we generalize the simple physics model to make predictions
about other analogical tasks? More generally, can production rule models for specific analogical tasks
assist in modeling similar tasks? The answer is yes, and centers on our earlier claim that models for
similar analogical tasks share common production rules that implement analogy. We now provide
evidence for this claim by presenting a rule model for a similar analogical task, where the model uses
specific productions taken from the simple physics model.

Our comparison task is the Sternberg (1977) “people-piece” analogy task. Sternberg presented
subjects with picture analogies of the form A:B::C:D. The elements of the analogy were drawings of
people varying four binary attributes: sex (male-female), color (blue-red), height (short-tall), and
girth (fat-thin). Sternberg asked subjects to respond whether the analogy was true or false. His datall
show that subject response latencies increased as elements A and B differ by more attributes; the data
show a similar effect for differences between A and C. The solid lines in Figure 7 graph Sternberg’s
results for differences of one and two attributes for both the A-B and A-C pairs. The data thus suggest
that subjects consider both A-B and A-C mappings, and take more time as these mappings become more
complex.

We can further characterize subject behavior in the people-piece task by considering the
process models of Sternberg (1977) and Grudin (1980). Sternberg provided four distinct process models for
solving people-piece analogies. Though the models differ in specifics, each requires encoding of the
elements, mapping between source and target elements, and application of the mapping to derive a
solution. Sternberg proposed that subjects map both A to B and A to C during the process. Grudin
suggested a change to Sternberg’s model: Subjects map either A to B or A to C, but do not infer both
mappings. We combine the ideas of both researchers into our process model for the people-piece task.
Our process model first decides to execute one of two strategies, one using the A-B mapping, the other
‘using the A-C mapping. If the model chooses to use the A-B strategy, it runs through the following
sequence of steps: encode A and B, infer the A-B mapping, encode C and D, apply the mapping to C to
create D’, compare D and D’ for equality, and respond. If the model chooses the A-C strategy, it follows
the same steps with B and C switched.

11 Sternberg (1977) also presented data for verbal and geometric analogies, including effects of cueing
and degenerate analogies. We do not address these data here.



Analogical Problem Solving, 27

We can frame this process model
within the general strategy for the simple
physics task (Figure 6). The study-mapping
stage of the simple physics model handles the
encoding of the sample and the formation of 2.00
the mapping. Similarly for the people-piece
model, we bundle the encoding and mapping of
A and B (or C) into a study-mapping stage.
The solve-problem stage of the simple physics
model corresponds to the application of the 1.00 L
mapping. For the people-piece model, the em=-O=-= Model 1
solve-problem stage similarly involves the
application of the A-B or A-C mapping. The 0.50 +
read-top-down and check-equation stages in
the simple physics model have no analog in
the people-piece model, so they are omitted.
Thus, the two models share the study-
mapping and solve-problem stages.

2.50 -

Changes, A-C

1.50 4 —{—Dpata 1

—®&——Data 2

seconds

---®--- Model 2

0.00 i

Changes, A-B

The production rule specification for
the people-piece process model utilizes this Figure 7. People-piece data and model predictions.
overlap between models. The common stages The solid lines show the empirical data from
allow us to borrow productions from the simple Sternberg (1977) for one and two attribute changes from
physics model and insert them directly into A to B and A to C. The dashed lines show the people-
the people-piece model. Specifically, the piece model predictions.
people-piece model uses the productions in the
simple physics model that implement the study-mapping and solve-problem stages; these productions
are the “study-mapping,” “retrieve-mapping,” and “solve-problem” rules in Table 5. We also insert
productions that skip over the read-top-down and check-equation stages, since they are not applicable
here. Other productions are then added to implement subprocesses specific to the people-piece task.
Before analogizing, the rule model decides using competing productions whether to use the A-B or A-C
strategy. It encodes people-piece drawings as chunks with four slots for each of the binary attributes.
The model handles mapping by examining the four attributes sequentially and creating a linked-list of
attribute mapping chunks. Each mapping chunk indicates a single attribute which changes from source
to target. To apply the mapping, the model first copies the source person chunk into a target person
chunk. It then runs through the list of mapping chunks and changes each mapped attribute. The model
finally compares the target chunk to the solution chunk and responds true or false.

We set production parameters for the people-piece model by following the basic assumptions of
the simple physics model. Productions which were copied from the simple physics model maintained
the same parameter settings. For other productions, latencies (a parameters) were set to 50 ms. The
only crucial r parameters are those for the competing productions that choose the A-B or A-C strategy;
in that case, the r parameters were given identical values so that the model would choose each with
equal likelihood. We also increased the productions’ strength parameters to model repeated trials,
since subjects solved over 1000 people-piece analogies in the original Sternberg task; we estimated these

strengths to have a value of 1.5.

Figure 7 includes the predictions of the model (dashed lines) along with Sternberg’s empirical
data (solid lines). The model provides an excellent fit to the data. The model predicts increasing
latencies as the number of differing attributes between A and B (or C) increases. This behavior arises
from both the mapping and application stages. In the mapping stage, different attributes call for
several extra productions that handle the creation of a new mapping chunk. In the application stage,
each attribute that must be mapped requires several additional production firings to change values in
the target person chunk. Because the model chooses the A-B and A-C strategies with equal likelihood,
the effects are the same for attribute changes in the A-B and A-C pairs.



Analogical Problem Solving, 28

We have thus shown that it is possible to transfer the implementations of analogical skills
between models for similar analogical tasks. The simple physics and people-piece models share
several analogy productions, and also incorporate domain-specific knowledge relevant to the
particular task. Both models also illustrate how production rule models can account for multiple
strategies of analogy: The simple physics model can use either a solve-by-variable or solve-by-value
strategy, and the people-piece model can choose between the A-B and A-C strategies. Presumably, if
either the A-B or A-C strategy proved more effective (which is not the case in Sternberg’s experiment),
the people-piece model could incorporate learning of the appropriate strategy similar to the learning
in the simple physics model.

7. General Discussion
7.1. Related Theories of Analogy

Our approach to analogy relates to a number of theories in the literature. The work of Holyoak
and Thagard (1989b) perhaps most resembles ours, in that they consider analogy within the broader
context of general problem solving. In fact, their PI (processes of induction) system and ACT-R share
several important traits. PI uses condition-action rules to act upon a store of memory elements, called
“concepts.” Like ACT-R, the system incorporates spreading activation from the current context, but it
also spreads activation to rules related to the context. The rule activation reduces the number of
possible productions that can fire, since the system only considers active rules in the matching stage.
Also, in contrast to ACT-R’s sequential operation, PI rules can fire in parallel.

PI models analogical mapping and schema formation in seven distinct stages. First, the system
modifies the sample problem and sample solution concepts to include a relation between them. Second,
the system attempts to solve the test problem using rules. Third, given that the current rule set cannot
solve the test problem, the relevant concepts in the current context must provide sufficient activation to
trigger analogical mapping. Fourth, the system determines a partial mapping which relates concepts
to other concepts to which they have spread activation. Fifth, the system completes the mapping
using the constraints imposed by the relations in the partial mapping. Sixth, PI uses this mapping to
perform analogous actions on the test problem. Finally, assuming the analogy has led to a successful
solution, the system builds and stores a schema in which appropriate values are variabilized.

In these stages PI makes a clear distinction between rule matching and analogical mapping.
When solving a problem, the system first attempts to use existing rules. If the current rule set cannot
solve the test problem, the system begins the process of analogical mapping. Regarding this
distinction, Holyoak and Thagard (1989b) claimed that “analogical mapping is more cognitively
demanding than rule matching.” In the models we have presented, analogical mapping involves the
matching and firing of many production rules to execute the mapping. Thus mapping actually comprises
a number of rule firings. This illustrates one way in which analogy may be “more cognitively
demanding” than rule matching.

Gentner’s (1983) original structure-mapping theory seems very amenable to a production system
framework. In fact, it seems likely that one could actually implement the theory using only basic
production rules. The theory represents facts in a simple predicate language comprising relations and
objects. Gentner proposed three principles for inferring mappings between a source and target analog:
discard attributes of objects, preserve relations between objects, and prefer systems of relations (i.e.,
systematicity; see also Gentner & Toupin, 1986). To build a production rule model of the theory, we
would need to represent the relevant concepts as hierarchical structures of declarative knowledge units.
The model would contain production rules that can traverse such a structure and build up a
representation of a mapping. These rules would implement Gentner’s three principles and would
produce a structure mapping from source to target. Such a production rule model would decompose
analogy into a number of discrete steps rather than treating it as a single act. As such it would be
possible to predict observables like the sequence of visual scanning actions that subjects would make in
performing the analogy. Decomposing the overall process into a number of rules would also enable us to



Analogical Problem Solving, 29

make predictions about how the analogy process would improve with practice. Such predictions could
be made by ACT-R’s strength learning mechanism, as we have seen with respect to the simple physics
learning model in Figure 4.

Another analogy mechanism, the Incremental Analogy Machine (IAM), centers on an
incremental mapping strategy from source to target (Keane et al., 1994). IAM addresses working
memory constraints by incrementally mapping parts of the source to parts of the target. The algorithm
operates in six steps. First, a seed group, or group of predicates with the most higher-order
connectivity, is selected from the base domain. Second, IAM chooses a seed match for an element of this
group, based on various theoretical constraints. Third, the mechanism finds a one-to-one set of matches
between the source and target of the seed match. Fourth, JAM uses these matches to infer transfer
relations between unmapped relations, forming a complete mapping. Fifth, if the mapping is
suboptimal (by some predefined metric), the system attempts to map an alternative seed match. Sixth,
IAM moves on to map other groups.

Keane et al. (1994) discussed several experiments that provide convincing empirical support for
their theory. We believe that such support could be strengthened in two ways. The addition of a
dedicated limited-capacity working memory would help in solidifying the argument that IAM
addresses working memory constraints; Keane et al. mentioned this idea as a viable option. Also, they
based their empirical support on comparisons between subject latencies and the number of alternative
mappings computed by the theory. Though the comparison works well in this context, this metric may
not generalize well to other theories; in fact, even within the paper, the authors noted a “caveat”
when applying the metric to the Structure Mapping Engine (Falkenhainer et al., 1989). Production
system architectures can help address such problems. Since most architectures have a limited-capacity
memory built into the system, any analogy model developed in the architecture must necessarily deal
with working memory constraints. Also, rule models produce traces that can be directly compared with
empirical evidence, avoiding the problem of determining suitable metrics for comparison.

Like the above mechanisms, Holyoak and Thagard’s (1989a) Analogical Constraint Mapping
Engine (ACME) considers analogy as the creation of mappings between structures, but takes a slightly
different approach. ACME builds up a network of mapping propositions with excitatory and inhibitory
connections, and uses constraint-satisfaction methods to arrive at a solution. Although some work has
linked network-based systems to rule-based systems (e.g., Cho, Rosenbloom, & Dolan, 1991; Lebiére &
Anderson, 1993), fitting ACME into a production rule framework seems awkward and certainly non-
trivial. We can discuss, however, how our framework addresses some of the same issues as ACME.
Holyoak and Thagard emphasized three constraints that affect analogical behavior: structural,
semantic, and pragmatic. Structural constraints state that the system can form correspondences between
the objects and relations of the source and target analogs; the mappings are usually one-to-one.
Semantic constraints add a similarity metric between objects and predicates that allow the system to
prefer certain mappings over others. Finally, pragmatic constraints guarantee that analogy is relevant
to the current context, that is, that the current goal directs the mapping process.

Production rule models of analogy can implement each of these constraints. Structural
constraints arise from the particular rules that implement the mapping process. Modelers can design
these productions so that relations map to relations and objects to objects; for instance, the simple
physics model contains rules that find one-to-one correspondences between the symbols in the solution
equation and the schematic quantity equation. Semantic constraints fall out of the spreading activation
process for facts in declarative memory. During rule matching, the source facts being considered help to
activate similar target facts, thus facilitating retrieval of similar target objects and relations.
Pragmatic constraints arise from the fact that we handle analogy within a general problem-solving
framework. Within such a framework, all actions are purpose-directed, taking into account the current
goal and context. Thus production rule systems are well-suited to address all three constraints.

It is important to note that all of the above theories use a single, deterministic mechanism to
implement analogy. Therefore, as discussed earlier, these theories cannot predict variability in
analogical strategies that does not arise from representational differences, nor can they predict



Analogical Problem Solving, 30

adaptation of these strategies during learning. In addition, the theories as presented (with the
exception of PI) are not incorporated into a more general processing system, though the current trend
seems to indicate a move toward this incorporation (e.g., Gentner, 1989). Production system models of
analogy do not have these limitations, as evidenced in the simple physics and people-piece models.

7.2. Other Related Work

Ross’s work (1989) discusses the effects of superficial similarities when analogizing. Ross
showed that superficial similarities between the sample and test problems can affect the quality of
solution by analogy. In several studies, he manipulated the similarity between corresponding objects in
probability problems presented to subjects. To summarize his results, performance on the problems
increased with high similarity between corresponding objects, and decreased with high similarity
between non-corresponding objects. Our simple physics task reflects similar subject behavior. The
variable namings used in each condition hint at superficial similarities between variables and
quantities; for instance, subjects are more likely to associate the variable m with the quantity mass
rather than area, though there is no structural justification for such reasoning. In the PC condition, we
see high initial performance, since the similarity between corresponding objects is high. In the NC
condition, we see poor initial performance because of superficial similarities between non-corresponding
objects.

The results of the simple physics study, then, corroborate the results of Ross (1989). If we look
more closely at the cause of high versus poor performance, though, we can see subtle differences in the
origin of subjects’ behavior. In the simple physics task, the misleading variable names almost
certainly lead to a mistaken schematic structure, in the form of an erroneous quantity equation. Subjects
seem to map variables to quantities incorrectly, thus remembering the schematic equation with the
quantities in the wrong places. Errors in Ross’s probability problems arose from superficial similarities
between the sample and test problems, rather than between the sample problem and sample solution.
Thus superficial similarities can affect both the mapping process that produces a schema (our research)
and the use of the schema (Ross’s research).

Anderson (1993) has discussed the creation of schematic ACT-R productions as a result of
analogy (see also Anderson & Thompson, 1989). ACT-R’s so-called “analogy mechanism” builds new
productions that map a subgoal to another subgoal using an example from declarative memory. The
analogy mechanism and our analogical framework both involve what might be called analogy, but
they operate on very different levels. The analogy mechanism in ACT-R acts at a lower level of
cognition, creating single rules based on individual facts stored in declarative memory. Our framework
describes how production systems can account for high-level analogical reasoning, mapping between
arbitrarily complex cognitive structures and possibly involving many other skills (e.g., visual
processing). In fact, the framework says nothing about the specific mechanisms for production
compilation, so the ACT-R analogy mechanism may very well fit into many models of high-level
analogy. We avoid using the analogy mechanism in the simple physics and people-piece models
primarily so that the models can more easily generalize to other production systems. However, it may
be the case that the analogy mechanism could be incorporated into these and other models.

7.3. Conclusions

We believe our results have shown that production system architectures are well-suited for
modeling analogical behavior. Production systems can account for the variability and adaptation of
analogical strategies. The systems also allow direct comparison of model predictions to both high- and
low-level empirical data. Furthermore, production systems offer a unified approach to cognition and
can thus incorporate analogy within the broader scope of problem solving. We have also demonstrated
that comparison of model predictions to high- and low-level observable data is an effective method of
evaluating theories of analogy. Past empirical support for many theories of analogy has concentrated
on relating high-level data to some aspect of the analogy mechanism using a predefined metric. We
have shown that it is also possible to make predictions about the time and identity of observable low-

level events (visual scans, key presses, etc.).



Analogical Problem Solving, 31

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995). Cognitive tutors: Lessons learned.
The Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., & Matessa, M. P. (in press). A production system theory of serial memory.
Psychological Review.

Anderson, J. R., Matessa, M., & Douglass, S. (1995). The ACT-R theory and visual attention. In
Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society. Hillsdale, NJ:

Lawrence Erlbaum Associates.
Anderson, J. R., Reder, L. M., & Lebiére, C. (in press). Working memory: Activation limitations on

retrieval. Cognitive Psychology.

Anderson, J. R., & Thompson, R. (1989). Use of analogy in a production system architecture. In S.
Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge, England: Cambridge

University Press.
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How
students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics
problems by experts and novices. Cognitive Science, 5, 121-152.

Cho, B., Rosenbloom, P. S., & Dolan, C. P. (1991). Neuro-Soar: A neural-network architecture for goal-
oriented behavior. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science

Society. Hillsdale, NJ: Lawrence Erlbaum Associates.
Duncker, K. (1945). On problem solving. Psychological Monographs, 58, 270.
Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). Structure-mapping engine. Artificial

Intelligence, 41, 1-63.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155-
170.

Gentner, D. (1989). The Mechanisms of Analogical Learning. In S. Vosniadou & A. Ortony (Eds.),
Similarity and analogical reasoning. Cambridge, England: Cambridge University Press.

Gentner, D., & Toupin, C. (1986). Systematicity and surface similarity in the development of analogy.
Cognitive Science, 10, 277-300.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.

Grudin, J. (1980). Processes of verbal analogy solution. Journal of Experimental Psychology: Human
Perception and Performance, 6, 67-74.

Halliday, D., & Resnick, R. (1988). Fundamentals of physics. New York, NY: John Wiley & Sons.
Hinsley, D. A., Hayes, ]J. R, & Simon, H. A. (1977) From words to equations: Meaning and
representation in algebra word problems. In M. A. Just & P. A. Carpenter (Eds.), Cognitive processes in
comprehension. Hillsdale, NJ: Erlbaum.

Holyoak, K. J., & Thagard, P. R. (1989a). Analogical mapping by constraint satisfaction. Cognitive
Science, 13, 295-355.

Holyoak, K. J., & Thagard, P. R. (1989b). A computational model of analogical problem solving. In S.

Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge, England: Cambridge
University Press.




Analogical Problem Solving, 32

John, B. E., Vera, A. H., & Newell, A. (1991). Toward real-time GOMS (Tech. Rep. No. CMU-CS-90-
195). Pittsburgh, PA: Carnegie Mellon University, Department of Computer Science.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in
working memory. Psvchological Review, 99, 122-149.

Keane, M. T., Ledgeway, T., & Duff, S. (1994). Constraints on analogical mapping: A comparison of
three models. Cognitive Science, 18, 387-438.

Kieras, D. E., & Meyer, D. E. (1995a). An overview of the EPIC architecture for cognition and
performance with application to human-computer interaction (EPIC Tech. Rep. No. 5, TR-95/ONR-
EPIC-5). Ann Arbor: University of Michigan, Department of Electrical Engineering and Computer
Science.

Kieras, D. E., & Wood, S. D., & Meyer, D. E. (1995b). Predictive engineering models based on the EPIC
architecture for a multimodal high-performance human-computer interaction task (EPIC Tech. Rep.
No. 4, TR-95/0ONR-EPIC-4). Ann Arbor: University of Michigan, Department of Electrical Engineering
and Computer Science.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence.
Artificial Intelligence, 33, 1-64.
Laird, J. E., & Rosenbloom, P. S. (1990). Integrating execution, planning, and learning in Soar for

external environments. In Proceedings of the Eighth National Conference on Artificial Intelligence.
Menlo Park, CA: AAAI Press.

Lebiere, C., & Anderson, J. R. (1993). A connectionist implementation of the ACT-R production system.
In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society. Hillsdale, NJ:

Erlbaum.
Lebiére, C., Anderson, J. R., & Reder, L. M. (1994). Error modeling in the ACT-R production system. In
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society. Hillsdale, NTJ:

Erlbaum.

Lehman, J. F., Lewis, R. L., & Newell, A. (1991). Integrating knowledge sources in language
comprehension. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum.

Lovett, M. C., & Anderson, ]J. R. (1995). Making heads or tails out of selecting problem-solving
strategies. In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Newell, A. (1990). Unified theories of Cognition. Cambridge, MA: Harvard University Press.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. InJ. R.
Anderson (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ: Lawrence Erlbaum Associates.
Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 510-520.

Novick, L. R., & Holyoak, K.J. (1991). Mathematical problem solving by analogy. Journal of

Experimental Psychology: Learning. Memory, and Cognition, 17, 398-415.

Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information
search and protocol analysis. Organizational Behavior and Human Performance, 16, 366-387.
Polk, T. A., & Newell, A. (1995). Deduction as verbal reasoning. Psychological Review, 102, 533-566.

Reeves, L. M., & Weisberg, R. W. (1994). The role of content and abstract information in analogical
transfer. Psvchological Bulletin, 115, 381-400.




Analogical Problem Solving, 33

Ross, B. H. (1989). Distinguishing types of superficial similarities: Different effects on the access and

use of earlier problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 456-

468.
Ross, B. H,, & Kennedy, P. T. (1990). Generalizing from the use of earlier examples in problem solving.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 42-55.
Schunn, C. D., & Klahr, D. (in press). Stances: Production systems. In W. Bechtel & G. Graham (Eds.),
A companion to cognitive science. Oxford: Basil Blackwell.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard
University Press.

Spellman, B. A., & Holyoak, K. J. (1993). An inhibitory mechanism for goal-directed analogical

mapping. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Sternberg, R. J. (1977). Component processes in analogical reasoning. Psychological Review, 84, 353-378.

Sternberg, R. J., & Gardner, M. K. (1983). Unities in inductive reasoning. Journal of Experimental

Psychology: General, 112, 80-116.

VanLehn, K., & Jones, R. M. (1993) Better learners use analogical problem solving sparingly. In
Machine Learning: Proceedings of the Tenth International Conference. San Mateo, CA: Morgan

Kaufman.
Whitely, S. E., & Barnes, G. M. (1979). The implications of processing event sequences for theories of
analogical reasoning. Memory & Cognition, 7, 323-331.

Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing. Cognition and
Instruction, 4, 137-166.




Analogical Problerh Solving, 34

Appendix: Simple Physics Sample Problems

This appendix lists the sample problems and solutions for each of the eight topics presented in
the simple physics PC condition. The solutions in the NC condition were identical except for the
variable names in the first equation; refer to Table 1 for the NC equations used. The test problems used
were similar to these sample problems, but the values were changed and the ordering of the quantity
lines varied.

Set1

Sample Problem:
Two spaced metal plates form a capacitor.
The area of each plate is 9.
The spacing between the plates is 7.
What is the capacitance C?

Solution:
C =A/s
=9/7

Set 2

Sample Problem:
A sheet of glass is put between a hot stone and a cooler one.
The thickness of the glass is 8.
The conductivity of the glass is 3.
What is the thermal resistance R of the glass?

Solution:
R =T/c
=8/3

Set3

Sample Problem:
A rod traveling near the speed of light contracts.
The rod's proper length is 5.
The Lorentz factor is 9.
What is the rod's length L' at that speed?

Solution:
L” =L/f
=5/9

Set4

Sample Problem:
A block is fastened to a spring attached to a wall.
The spring constant is 4.
The distance from equilibrium is 7.
What is the force F exerted by the spring on the block?

Solution:
F =-c*d
=-4*7

Set5



Sample Problem:

A beam of light is traveling through some medium.

The index of refraction is 5.
What is the velocity of light v in the medium?

Solution:
v =c/1
=c/b

Set 6

Sample Problem:
Light shines through a narrow slit.
Consider minimum number 2,
which falls at angle 5.
The wavelength of the light is 7.
What is width s of the slit?

Solution:
s =n*w/Sa
=2*7/S85

Set7

Sample Problem:

A cylinder contains 1 mole of oxygen under pressure.

The pressure of the gas is 4.
The temperature of the gas is 7.
What is the volume V of the cylinder?

Solution:
V =R*T/p
=R*7/4

Set 8

Sample Problem:
A coiled wire forms an inductor.
The flux through the inductor is 4.
The number of windings is 9.
The current through the wire is 2.
What is the inductance L of the inductor?

Solution:
L =N*f/c
=9*4/2

Analogical Problem Solving, 35



