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1. Introduction

The ability to access information on demand at any location confers competitive advantage on individuals in an
increasingly mobile world. As users become more dependent on this ability, the span of access of data repositories
will haveto grow. Theincreasing socia acceptance of the home or any other location as a place of work is a further
impetus to the development of mechanisms for mobile information access.

These considerations imply that data from shared file systems, relational databases, object-oriented databases and
other repositories must be accessible to programs running on mobile computers. For example, atechnician servicing
ajet engine on a parked aircraft needs access to engineering details of that model of engine as well as past repair
records of that specific engine. Similarly, a businessman who is continuing his work on the train home from
Manhattan needs access to his business records. Y et another example involves emergency medical response to a
case of poisoning: the responding personnel will need rapid access to medical databases describing poison
symptoms and antidotes, as well as access to the specific patient’s medical records to determine drug sensitivity.

This paper is a status report on our work toward meeting such challenges. We begin by describing a scenario that
offers atantalizing glimpse of the power of mobile information access. We then examine the major obstacles on the
path toward this vision. The rest of the paper is a summary of our research on overcoming these obstacles in the
context of the Coda and Odyssey systems.

2. A Vision of Tomorrow

Imagine this hypothetical scenario of abusinesstrip in the year 2000:

You are sitting at your office desk, editing a report stored in a shared file system. The machine you are
using is a small notebook, but it lets you use the larger and more comfortable display and keyboard on
your desk via a tabletop infrared link. Soon it istime to leave for the airport.

When the limo arrives, you pick up your notebook and leave. On the ride to the airport you continue your
work. Your notebook recognizes that it is no longer on a LAN, but continues communication with the
servers via a cellular modem. You finish your editing, save the file, and send mail to your coauthor
letting him know that he can now review your edits. You then begin working on the slides for your talk in
Paris. Upon arrival at the airport, you board your transatlantic flight and continue working. Although
each seat is provided with an outlet for air-to-ground telephone service, your notebook inquires and
discovers that telephone charges are very high. It therefore wisely decides to let you operate
disconnected and to defer all communication until you have landed.

When you arrive in your Paris hotel room, your notebook discovers that the hotel’s late-night telephone
charges are low, and that there is a HDTV set in your room. It therefore propagates the changes you
have made so far, fetches new versions of some of the files you had cached, picks up your mail, and uses
the HDTV set as your display. You work late into the night, putting the finishing touches on your dlides.
The next morning, you present your talk. Your notebook senses the presence of a large wall-sized display
in the conference room, and shows your dlides on it. Since your talk is about a new piece of user-
interface software, you are able to give a live demo of it using the notebook.

Once your business is complete, you decide to play tourist for a day before returning home. The
concierge at your hotel subscribes you to an excellent guided walking tour, and rents you a heads-up
display and headphones. Setting out with your notebook in your backpack, you pick a route from the map
displayed. As you walk, you indicate items of interest on the map. A short video describing the unique
historical and architectural features of the site is seen, and the accompanying audio commentary is
heard. As you pass through a major shopping district, advertisements of sales (translated by your
notebook into English) pop up on your display. One of these interests you, and you walk into the store
and purchase a gift. The store clerk obtains your travel itinerary from your notebook and arranges for
your duty-free purchase to be delivered to the correct gate for your flight home tomorrow.



You continue on your walking tour for many more hours. Exhausted, you decide to take the metro back to
your hotel. On the metro, you watch CNN on your notebook. From time to time, as the train goes
through regions of poor reception, the displayed image degenerates from full-motion color to slow-scan
black-and-white.

The next morning, you head for the airport, pick up your gift at the gate, and board the flight home. You
can relax and watch the movie: your notebook has been recording your purchases and is now
automatically preparing an expense report. When you reach home, it will transmit the report to your
secretary for reimbursement.

3. Adaptation: the Key to Mobile I nfor mation Access

What makes this scenario fiction rather than reality today? Not the absence of proper hardware, since most of the
hardware technologies needed are close at hand. What is missing is the software support. Developing this software
isthe goal of our research.

3.1. Constraints of Mobility
Our goal is made challenging by four fundamental constraints of mobility:

» Mobile elements are resource-poor relative to static elements.
At any given cost and level of technology, considerations of weight, power, size and ergonomics will exact a
penalty in computational resources such as processor speed, memory size, and disk capacity. While mobile
elements will undoubtedly improve in absolute ability, they will always be resource-poor relative to static
elements.

» Mobility is inherently hazardous.
A Wall Street stockbroker is more likely to be mugged on the streets of Manhattan and have his or her laptop
stolen than to have the workstation in a locked office be physically subverted. Even if security isn't a
problem, portable computers are more vulnerable to loss or damage.

» Mobile connectivity is highly variable in performance and reliability.
Inside some buildings, a mobile element may have reliable, high-speed wireless LAN connectivity. But in
other buildings, it may only have modem or ISDN connectivity. Outdoors, it may have to rely on a
low-bandwidth wireless WAN with gapsin coverage.

» Mobile elementsrely on a finite energy source.
While battery technology will undoubtedly improve over time, the need to be sensitive to power consumption
will not diminish. Concern for power consumption must span many levels of hardware and software to be
fully effective.

These constraints are not just artifacts of current technology, but are intrinsic to mobility. Together, they
complicate the design of mobile information systems and require us to rethink traditional approaches to information
access. In addition, scalability will be a growing concern because of the ubiquity of mobile computers. Diversity of
data will be another key concern because the data repositories of tomorrow will be much richer in content than
traditional file systems or databases.

3.2. The Need for Adaptation

Mobility exacerbates the tension between autonomy and interdependence that is characteristic of all distributed
systems. To function successfully, mobile elements must be adaptive. The relative resource poverty of maobile
elements as well as their lower trust and robustness argues for reliance on static servers. But the need to cope with
unreliable and low-performance networks, as well as the need to be sensitive to power consumption argues for
self-reliance.

Any viable approach to mobile computing must strike a balance between these competing concerns. This balance
cannot be a static one; as the circumstances of a mobile client change, it must react and dynamically reassign the
responsibilities of client and server.



3.3. Taxonomy of Adaptation Strategies

The range of strategies for adaptation is delimited by two extremes, as shown in Figure 1. At one extreme,
adaptation is entirely the responsibility of individual applications. While this laissez-faire approach avoids the need
for system support, it lacks a central arbitrator to resolve incompatible resource demands of different applications
and to enforce limits on resource usage. It also makes applications more difficult to write, and fails to amortize the
development cost of support for adaptation.

Application-aware
(collaboration)

! T

Laissez-faire Application-transparent
(no system support) (no changes to applications)

Figure 1. Range of Adaptation Strategies

At the other extreme, referred to as application-transparent adaptation, the responsibility for adaptation is borne
entirely by the system. This approach is attractive because it is backward compatible with existing applications:
they continue to work when mobile without any modifications. The system provides the focal point for resource
arbitration and control. The drawback of this approach is that there may situations where the adaptation performed
by the system is inadequate or even counter-productive for some applications.

Between these two extremes lies a spectrum of possibilities that we collectively refer to as application-aware
adaptation. By supporting a collaborative partnership between applications and the system, this approach permits
individual applications to determine how best to adapt, but preserves the ability of the system to monitor resources
and to enforce allocation decisions.

We have been exploring application-transparent adaptation since about 1990. Our research vehicle has been the
Coda File System, a descendant of AFS[4]. More recently, we have begun exploration of application-aware
adaptation in Odyssey, a platform for mobile computing.

4. Coda: Application-Transparent Adaptation

Codais an experimental file system whose goal is to offer clients continued access to data in the face of server and
network failures[16]. It inherits many of the usage and design assumptions of its ancestor, AFS. Clients view Coda
as asingle, location-transparent shared Unix file system. The Coda namespace is mapped to individual file servers
at the granularity of subtrees called volumes. At each client, a cache manager, Venus, dynamically obtains and
caches data as well as volume mappings.

4.1. Disconnected Operation

Disconnected operation, a concept first conceived and demonstrated in Coda, is an important initial step in mobile
computing [6, 7, 17]. In this mode of operation, a client continues to have read and write access to data in its cache
during temporary network outages. Transparency is preserved from the viewpoint of applications because the
system bears the responsibilities of propagating modifications and detecting update conflicts when connectivity is
restored.

The ability to operate disconnected can be useful even when connectivity is available. For example, disconnected
operation can extend battery life by avoiding wireless transmission and reception. It can reduce communication
expense, an important consideration when rates are high. It allows radio silence to be maintained, a vital capability
in military applications. And, of course, it isaviable fallback position when network characteristics degrade beyond
usability.



4.1.1. Cache Management

To support disconnected operation, Venus operates in one of three states. hoarding, emulating, and reintegrating,
as show in Figure 2. Venusis normally in the hoarding state, relying on servers but always on the alert for possible
disconnection. The hoarding state is so named because a key responsibility of Venusin this state is to ensure that
critical objects are cached at the moment of disconnection. Upon disconnection, Venus enters the emulating state
and remains there for the duration of disconnection. Upon reconnection, Venus enters the reintegrating state,
resynchronizes its cache with servers, and then reverts to the hoarding state.

Hoarding

Reintegrating

physical
reconnection

While connected, Venus is in the hoarding state. Upon disconnection, it enters the emulating state and stays there until
successful reconnection to aserver. |t then transits temporarily to the reintegrating state, and thence to the hoarding state, where
it resumes connected operation.

Figure2: Venus State and Transitions for Disconnected Operation

While disconnected, Venus services file system requests by relying solely on the contents of its cache. Since
cache misses cannot be serviced or masked, they appear as failures to application programs and users. The
persistence of changes made while disconnected is achieved via an operation log, called the CML, implemented on
top of atransactional facility called RVM [18, 19].

Venus implements a number of optimizations to reduce the size of the CML. Before alog record is appended to
the CML, Venus checksiif it cancels or overrides the effect of earlier records. For example, consider the cr eat e of
afile, followed by a st or e. If they are followed by an unl i nk, al three CML records and the data associated
with the st or e can be eliminated. Both trace-driven simulations and measurements of Coda in actual use confirm
the effectiveness of log optimizations[14, 17].

Venus combines implicit and explicit sources of information into a priority-based cache management algorithm.
The implicit information consists of recent reference history, as in LRU caching agorithms. Explicit information
takes the form of a per-client hoard database (HDB), whose entries are pathnames identifying objects of interest to
the user at that client. A simple front-end program called hoar d allows a user to update the HDB directly or via
command scripts called hoard profiles. Venus periodically reevaluates which objects merit retention in the cache
viaa process known as hoard walking.

4.1.2. Conflict Detection and Resolution

Coda addresses the problem of concurrent partitioned updates using an optimistic replica control strategy. This
offers the highest degree of availability, since data can be updated in any network partition. Upon reintegration, the
system ensures detection of conflicting updates and provides mechanisms to help users recover from these
situations.

Coda uses different strategies for handling concurrent updates on directories and files[9]. For directories, Venus
possesses enough semantic knowledge to attempt transparent resolution of conflicts. Resolution fails only if a
newly created name collides with an existing name, if an object updated at the client or the server has been deleted
by the other, or if directory attributes have been modified at the server and the client [8].

Since Unix treats files as uninterpreted byte strems, Coda does not possess sufficient semantic knowledge to
resolve file conflicts. Rather, it offers a mechanism for installing and transparently invoking application-specific
resolvers (ASRs) [10]. An ASR is a program that encapsulates the detailed, application-specific knowledge



necessary to distinguish genuine inconsistencies from reconcilable differences. Appointment calendars, electronic
checkbooks, and project diaries are examples of applications where an application-specific approach to conflict
resolution can have high payoff. If an ASR is unsuccessful, the inconsistency is exposed to the user for manua
repair.

When the manual repair tool is run on a client, Venus presents the illusion of an in-place "explosion” of
inconsistent objects into their distinct versions. Since inconsistencies appear as read-only subtrees in the existing
name space, Unix utilities such as di ff and gr ep can be used to construct appropriate replacements for the
inconsistent objects. Upon completion of repair, the exploded subtrees are collapsed, thus reverting to a normal
name space.

4.2. Weakly-Connected Operation

Weak connectivity, in the form of intermittent, low-bandwidth, or expensive networks is a fact of life in mobile
computing. Disconnected operation can be viewed as the extreme case of weakly-connected operation — the
mobile client is effectively using a network of zero bandwidth and infinite latency. But although disconnected
operation isviable, itisnot apanacea. A disconnected client suffers from many limitations:

 Updates are not visible to other clients.
 Cache misses may impede progress.

 Updates are at risk due to theft, loss or damage.
* Update conflicts become more likely.
 Exhaustion of cache space is aconcern.

We have implemented a series of modifications to Coda that aleviate these limitations by exploiting weak
connectivity [13]. Our modifications span a number of areas. At the lowest level, the transport protocol has been
extended to be robusgt, efficient and adaptive over a wide range of network bandwidths. Modifications at the higher
levels include those needed for rapid cache validation after an intermittent failure, for background propagation of
updates over a slow network, and for user-assisted servicing of cache misses when weakly connected.

4.2.1. Rapid Cache Validation

Coda's original technique for cache coherence while connected was based on callbacks [4, 16]. When aclient is
disconnected, it can no longer rely on callbacks. Upon reconnection, it must validate all cached objects before use
to detect updates at the server. Unfortunately, the time for this validation can be substantial on a slow network.

Our solution allows clients to track server state at multiple levels of granularity. A server now maintains version
stamps for each of its volumes, in addition to stamps on individual objects. When an object is updated, the server
increments the version stamp of the object and that of its containing volume. Clients cache volume version stamps
in anticipation of disconnection.

When connectivity is restored after a network failure, the client presents volume stamps for validation. If a
volume stamp is still valid, so is every object cached from that volume. If a volume stamp is not valid, cached
objects from the volume must be validated individually. Even in this case, performance is no worse than in the
original scheme. Controlled experiments as well as measurements from Coda in actual use confirm that this
approach dramatically improves the speed of cache validation.

4.2.2. Trickle Reintegration

Trickle reintegration is a mechanism that propagates updates to servers asynchronously, while minimally
impacting foreground activity. Supporting trickle reintegration required major modifications to the structure of
Venus. As depicted in Figure 2, reintegration was originally a transient state through which Venus passed en route
to the hoarding state. Since reintegration is now an ongoing background process, the transient state has been
replaced by a stable one called the write disconnected state. Figure 3 shows the new states of Venus and the main
transitions between them.

Trickle reintegration reduces the effectiveness of log optimizations, because records are propagated to the server
earlier than when disconnected. Thus they have less opportunity to be eliminated at the client. A good design must
balance two factors. On the one hand, records should spend enough time in the CML for optimizations to be
effective. On the other hand, updates should be propagated to servers with reasonable promptness. Our solution,
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This figure shows the states of Venus, as modified to handle weak connectivity. The state labelled "Write Disconnected”
replaces the reintegrating state in Figure 2. In this state, Venus relies on trickle reintegration to propagate changes to servers.
The transition from the emulating to the write disconnected state occurs on any connection, regardless of strength. All
outstanding updates are reintegrated before the transition to the hoarding state occurs.

Figure 3: Venus States and Transitions for Exploiting Weak Connectivity
illustrated in Figure 4, uses a simple technique based on aging. A record is not eligible for reintegration until it has
spent aminimal amount of time in the CML. This amount of time, called the aging window, (A), establishes a limit

on the effectiveness of log optimizations. Based on the results of trace-driven simulations, we have set the default
value of Ato 10 minutes.

Older than A

Log | | | | B | |eeceeceesose Log
Head Tail

Reintegration
Barrier

This figure depicts atypical CML scenario while weakly connected. A is the aging window. The shaded records in this figure
are being reintegrated. They are protected from concurrent activity at the client by the reintegration barrier. For st ore
records, the corresponding file datais locked; if contention occurs later, a shadow copy is created and the lock released.

Figure4: CML During Trickle Reintegration

At the beginning of reintegration, alogical divider called the reintegration barrier is placed in the CML. During
reintegration, which may take a while on a slow network, the portion of the CML to the left of the reintegration
barrier is frozen. Only records to the right are examined for optimization. If reintegration is successful, the barrier
and al recordsto its left are removed. If anetwork or server failure causes reintegration to be aborted, the barrier as
well as any records rendered superfluous by new updates are removed.

Reintegrating all records older than A in one chunk could saturate a slow network for an extended period. The
performance of a concurrent high priority network event, such as the servicing of a cache miss, could then be
severely degraded. To avoid this problem, we have made reintegration chunk size adaptive, thus bounding the
duration of degradation. If afileisvery large, we transfer it as a series of fragments, each smaller than the currently
acceptable chunk size. If afailure occurs, file transfer is resumed after the last successful fragment.

4.2.3. User-Assisted Cache MissHandling

When weakly connected, the performance impact of cache misses is often too large to ignore. In many cases, a
user would rather be told that a large file is missing than be forced to wait for it to be fetched over a weak
connection. But there are also situations where afileis so critical that a user iswilling to suffer considerable delay.
We refer to the maximum time that a user iswilling to wait for a particular file as his patience threshold for that file.

Codaincorporates a user patience model to provide adaptivity in cache miss handling. This model helps maintain
usability at all bandwidths by balancing two factors that intrude upon transparency. At very low bandwidths, the
delays in fetching large files annoy users more than the need for interaction. As bandwidth rises, delays shrink and



interaction becomes more annoying. To preserve usability, Coda handles more cases transparently. In the limit, at
strong connectivity, cache misses are fully transparent.

Our initial user patience model is logarithmic, based on the conjecture that patience is similar to other human
processes such as vision. Figure 5 illustrates this model. Rather than expressing the patience threshold in terms of
seconds, we have converted it into the size of the largest file that can be fetched in that time at a given bandwidth. 1f
the estimated cache miss service time for a file is below its patience threshold, Venus services the miss
transparently; otherwise Venus reports the miss by returning an error. At any time, users can examine the history of
recent cache misses and augment the hoard database appropriately. They can aso interactively control the files
fetched in hoard walks.

o210 T — g6kos
§ - — 64Kb/s
o || 2 Mb/s
N gl| © 1kBFile
%) A 1MBFile
() o 4MBFile
E o  8MBFile
6t
4 F o
ot
A
o) — = = - N N Q s
0 200 400 600 800 1000

Hoard Priority

Each curve in this graph expresses patience threshold, (t), in terms of file size. Superimposed on these curves are points
representing files of various sizes hoarded at priorities 100, 500, and 900. At 9.6 Kb/s, only the files at priority 900 and the
1KB file at priority 500 are below 1. At 64 Kb/s, the IMB file at priority 500 is also below 1. At 2Mb/s, all files except the
4MB and 8MB files at priority 100 are below T.

Figure5: Patience Threshold versus Hoard Priority

4.3. I solation-Only Transactions

Coda's emulation of the Unix file system model has the benefit of compatibility with existing applications.
Unfortunately, the Unix model is weak in terms of consistency support for concurrent file accesses. In particular,
Unix has no notion of read-write file conflicts. This deficiency becomes especially acute in mobile computing,
because extended periods of disconnected or weakly-connected operation may increase the probability of read-write
inconsistencies.

Consider, for example, a CEO using a disconnected laptop to work on a report for an upcoming shareholder’s
meeting. Before disconnection he caches a spreadsheet with the most recent budget figures available. He writes his
report based on the numbers in that spreadsheet. During his absence, new budget figures become available and the
server's copy of the spreadsheet is updated. When the CEO returns and reintegrates, he needs to discover that his
report is based on stale budget data. Note that this is not a write-write conflict, since no one else has updated his
report. Rather it is a read-write conflict, between the spreadsheet and the report. No Unix system has the ability to
detect and deal with such problems.

We have extended Coda with a new mechanism called isolation-only transactions (I0Ts) to aleviate this
shortcoming [11]. The IOT mechanism offersimproved consistency for applicationsin a convenient and easy to use
fashion. The mechanism is efficient, minimally demanding of resource-poor mobile clients, and upward compatible
with existing Unix software.

An IOT is a sequence of file operations that are treated as a unit for purposes of conflict detection and resolution.
Thename ' IOT"’ stems from the fact that this mechanism focuses solely on the isolation aspect of the classic ACID
transactional properties[2]. In other words, 10Ts do not guarantee failure atomicity and only conditionally
guarantee permanence. The IOT subsystem of Venus performs automatic read/write conflict detection based on



certain serializability constraints. It supports a variety of conflict resolution mechanisms such as re-execution and
the use of ASRs.
Coda provides two ways to use IOTs. Users can use a specia 10T shell to transactionally encapsulate selected

unmodified Unix applications. Alternatively, they can modify applications using the IOT programming interface.
Figure 6 shows an example of the use of IOTsin Coda.
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The work window displays the process of disconnecting the client, setting make and | at ex as transactions in the specia 10T
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and the committing of thel at ex transaction.

Figure 6: Example of IOT Usage

4.4, Status and Experience

4.4.1. Evolution

Disconnected operation in Coda was implemented over a period of two to three years. A version of disconnected
operation with minimal functionality was demonstrated in October 1990. A more complete version was functional
in early 1991 and has been used since then by members of the Coda project.

Work on the extensions for weak connectivity began in 1993. The transport protocol extensions and rapid cache
validation mechanism have been in regular use for over a year. The trickle reintegration and user advice
mechanisms were implemented between 1994 and early 1995, and have recently been released for general use.

A prototype implementation of |OT support in Coda has been completed. An evaluation of this prototype based
on controlled experiments confirms that the resource demands of IOTs are indeed acceptable in a mobile
environment. This prototype now awaits more extensive use.

4.4.2. Current Deployment

Codais currently deployed to a user community of Coda developers and other computer science researchers. Our
deployment is currently on Mach 2.6, but we are porting Coda to NetBSD. We have over 40 user accounts, of
which about 25 are used regularly. Many users run Coda on both their desktop workstations and their laptops. We
have a total of about 35 Coda clients, evenly divided between workstations and laptops. The |laptops are 486-based
DEC 425SL"sand IBM ThinkPad 701C’s, while the workstations are mostly DECStation 5000/200’s. These clients
access almost 4.0 GB of data stored on Coda servers. Indeed, there are many more people wishing to use Coda than
we can accommodate with hardware or support services.



4.4.3. Empirical Study

How will people use mobile computing? The answer to this question is important because it will critically
influence the future designs of mobile computing systems. As a first step in answering this question, we have
instrumented our deployed Coda system and have been conducting an ongoing empirical study of system and user
behavior [14].

Our data shows that Coda clients do experience various kinds of service failures, but that Coda is able to mask
these failures effectively. Our observations confirm many earlier simulation-based predictions on resource usage, as
well as many anecdotal reports from our user community. Our study has also produced some surprises. For
example, the number of transient failures observed has been far larger than anticipated. Another surprise is the
tendency of usersto limit mutation activity while voluntarily disconnected.

4.4.4. Sour ce Code Distribution

Since 1992 Coda has been distributed in source code form to several sites outside of CMU. Porting Codato a new
machine type has proved to be relatively straightforward. Most of the code is outside the kernel. The only in-kernel
code, a VFS driver [21], is small and entirely machine independent. Porting simply involves recompiling the Coda
client and server code, and ensuring that the kernel works on the specific piece of hardware.

5. Odyssey: Application-Awar e Adaptation

Although the viahility of application-transparent adaptation has been demonstrated by Coda, there are important
situations where it is inadequate. Thisislikely to be especialy true of applications involving multimedia data such
as videos and maps. Further, the Coda approach relies heavily on caching, and is likely to fall short when thereisno
temporal locality to exploit. This situation is likely to arise in scenarios involving search of data repositories from
mobile clients.

We are exploring solutions to these problems in the context of Odyssey. Our approach is not to invent a new
operating system but to extend Unix with a small yet powerful set of extensions for mobile computing. In keeping
with this minimalist philosophy, we aso strive to keep changes to existing applications small and consistent with
Unix programming idiom. Since application transparency is a degenerate case of application awareness, we expect
to eventually incorporate Coda as part of Odyssey. However, the initial development of the two systems is
proceeding along separate paths.

5.1. Support for Application-Aware Adaptation

The need for application-aware adaptation can be seen from a simple example. Consider a movie player capable
of displaying stored video images. Below a certain bandwidth and network quality, it will not be possible for the
player to display the images in full-motion color. Extensive compression will help, but cannot solve the problem
completely. But if the application is also capable of displaying the image in slow-scan black and white, it could
automatically do so when bandwidth falls below acritical threshold.

5.1.1. Fiddlity

That slow-scan black and white display is a reasonable form of degradation is specific to video data. Other data
types may have entirely different forms of degradation that are meaningful to them. For example, increasing the
minimum feature size displayed may be an appropriate form of degradation for map data. We define fidelity as the
degree to which a copy of data presented for use at a client matches the reference copy at a server. Fidelity has
many dimensions. One well-known, universal dimension is consistency; other dimensions depend on the type of
data in question. The dimensions of fidelity are natural axes of adaptation for mobility. But the adaptation cannot
be solely determined by the type of data; it also depends on the application. For example, if the application were a
video editor rather than a video player, slowing the frame rate would be a more appropriate form of degradation than
dropping frames to preserve frame rate.

5.1.2. Resour ce Negotiation API

Odyssey provides an interface for resource negotiation [15]. The resources in question may be generic, such as
network bandwidth, cache space, processor cycles, or battery life. Resources may also be application-specific, such
as the number of queries left to alimited-subscription stock quotation service.

An application initially tries to access data at the highest level of fidelity. If the resources needed for this exceed



what is currently available, Odyssey informs the application of this fact. The application then selects afidelity level
consistent with available resources. It also registers a window of tolerance for each resource of interest. At alater
time, if the availability of aresource improves or degrades beyond this window, Odyssey will notify the application.
It is the application’ s responsibility to then renegotiate the resources needed for an appropriate level of fidelity.

5.1.3. Name Space and Client Structure
Odyssey provides a single, global namespace to its clients, as shown in Figure 7. This namespace is broken into
subspaces called tomes. Tomes are conceptually similar to volumes in Coda and AFS, but incorporate the notion of

type. The type of atome determines the type-specific resources, operations, and dimensions of fidelity for all items
in the tome.

(T sQL Tome
[ ] Unix Tome
E== Mpeg Tome
[payroll Eball.mpg =—Icalmpg}}

This figure illustrates a sample Odyssey namespace. |n this example, there are three tomes, each of a different type. The first
tome, rooted at odyssey, containsthe single UNIX filehel | 0. ¢c. The second, rooted at payr ol | , isadatabase. Note that
no nodes appear inside of payr ol | ; it is named associatively rather than hierarchically. The third tome, rooted at novi es,
contains two MPEG movies, bal | . npg and cal . npg.

Figure7: Tomesin Odyssey

As illustrated in Figure 8, the structure of an Odyssey client reflects the decomposition of functionality into
generic and type-specific components. Generic functionality is implemented by the viceroy, whose most important
task is to act as the single point of resource control in the system. The viceroy also services requests for generic
resources, and plays a central role in resource negotiation.

The Viceroy

Generic Support

The Wardens
Type-Specific Support

Application Cache Manager
API
Extensions Kernel

This figure illustrates the architecture of an Odyssey client. Odyssey applications make use of the Odyssey APl extensions
along with the operating system’s API. Operations on Odyssey objects are redirected by the kernel to the cache manager, which
is at user level for ease of implementation. The cache manager is split into two logical pieces: the viceroy, providing generic
support, and a set of wardens, each supporting a single type.

Figure8: Odyssey Client Architecture

Type-specific functionality is implemented in cache managers subordinate to the viceroy, called wardens. Thereis
one warden for each tome type, and it is invoked by the viceroy to service requests on Odyssey objects of that type.
The wardens are responsible for implementing the access methods on objects of their type, and for providing support
for different levels of fidelity. They also provide reasonable default policies to allow a modicum of backward
compatibility with legacy applications.



5.2. Support for Dynamic Sets

How does one support search of data repositories from mobile clients that are weakly connected? Since there is
little temporal locality to exploit, caching is unlikely to be helpful. Instead, our approach is to exploit the
associativity inherent in search operations to overlap prefetching of data over dow networks with the computation or
think time involved in a search task.

The vehicle we are using for this aspect of our research is a new operating system abstraction called dynamic
sets[22, 23]. The essence of the abstraction is the explicit grouping of sets of file accesses and the communication
of this grouping by applications to the operating system. This simple abstraction can have surprisingly powerful
performance implications for mobile search. Figure 9 presents the most important system calls in the Odyssey API
for dynamic sets.

set Handl e setOpen(char *set Pat hnane) ;
error Code setClose(set Handl e set);

fileDesc setliterate(set Handl e set, int flags);

error Code setDigest(set Handl e set, char *buf, int count);

A dynamic set is created by calling set Open with a set pathname, and receiving a set handle for the open set in return. The
system can expand the set into its members and fetch these members as aggressively as resources warrant. Once open, the
membership of a set can be browsed using set Di gest . Anindividual member can be accessed using set | t er at e, which
returns afile descriptor as if an open had been performed on the member selected. The system is free to iterate through the set
inany order. set Cl ose terminates use of a set handle.

Figure9: Core Subset of Dynamic Sets AP

By using dynamic sets, an application discloses the membership of a group of related files. This disclosure offers
the system a strong hint of future file accesses that can be exploited for prefetching. In addition, by using a set to
represent the grouping, the system is free to optimize the order in which the set members are fetched. For example,
if some members of the set happen to be cached they can be returned first. The fetching of the later members can be
overlapped with the processing of earlier members.

5.3. Status and Experience

We have completed a simple, skeletal implementation of the Odyssey architecture. This includes a library
implementation of the API for application-aware adaptation, as well as the wardens, servers, and applications for
video and map data. Although the prototype is rudimentary in many respects, it provides initia evidence of the
overall validity of our approach. Based on this positive feedback, we are implementing a more complete, in-kernel
prototype.

Our work in dynamic sets has gone through two phases. In the first phase, we built a user-level library
implementation of the dynamic sets API. Although the prototype’'s absolute performance was modest due to
implementation inefficiencies, it was adequate to confirm the substantial benefit of dynamic sets. We codified our
experience into a validated performance model, and used it to explore whether the effort of a more complete and
efficient implementation of dynamic sets was justified. Based on the encouraging results of our analysis, we have
embarked on the second phase and are close to completing an in-kernel implementation of dynamic sets.

6. Conclusion

Our work bears a complementary relationship to the other efforts described in this specia issue. Mobile IP,
described by Johnson and Maltz [5], represents a networking layer below Coda and Odyssey. The different quality
streams of Generative Video, described by Moura et a [12], correspond to different levels of video fidelity on an
Odyssey client. The applications described by Bruegge and Bennington [1] could benefit from Coda’'s support for
mobile file access. The Wireless Andrew Network, described by Hills and Johnson [3], provides the infrastructure
nececssary for the Coda user community to remain connected while mobile. Finally, the wearable computers
described by Smailagic and Siewiorek [20] are now powerful enough to run Coda, thus enabling a hew and unique
class of applications.



The ability to access information on demand when mobile will be a critical capability in the 21st century. As
elaborated in this paper, adaptation is the key to this capability. Our research is exploring two different approaches
to adaptation: application-transparent and application-aware. Our experience with Coda confirms that application-
transparent adaptation is indeed effective in many cases. In circumstances where it is inadequate, our initial
experience with Odyssey suggests that application-aware adaptation is the appropriate strategy.
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Further Reading

This paper provides only the briefest overview of our work. A detailed annotated guide to Coda and Odyssey papers may be
found on the World Wide Web at this URL.:

http://ww. cs. cnmu. edu/ af s/ cs. cnu. edu/ proj ect/ coda/ Wb/ coda. ht m
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