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Abstract

This paper surveys methods for simplifying and approximating polygonal surfaces. A polygonal surface is a piecewise-
linear surface in 3-D defined by a set of polygons; typically a set of triangles. Methods from computer graphics, com-
puter vision, cartography, computational geometry, and other fields are classified, summarized, and compared both
practically and theoretically. The surface types range from height fields (bivariate functions), to manifolds, to non-
manifold self-intersecting surfaces. Piecewise-linear curve simplification is also briefly surveyed.
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1 Introduction

The simplification of surfaces has become increasingly
important as it has become possible in recent years to cre-
ate models of greater and greater detail. Detailed sur-
face models are generated in a number of disciplines. For
example, in computer vision, range data is captured us-
ing scanners; in scientific visualization, isosurfaces are
extracted from volume data with the “marching cubes”
algorithm; in remote sensing, terrain data is acquired
from satellite photographs; and in computer graphics and
computer-aided geometric design, polygonal models are
generated by subdivision of curved parametric surfaces.
Each of these techniques can easily generate surface mod-
els consisting of millions of polygons.

Simplification is useful in order to make storage, trans-
mission, computation, and display more efficient. A com-
pact approximation of a shape can reduce disk and mem-
ory requirements and can speed network transmission. It
can also accelerate a number of computations involving
shape information, such as finite element analysis, colli-
sion detection, visibility testing, shape recognition, and
display. Reducing the number of polygons in a model can
make the difference between slow display and real time

display.

A variety of methods for simplifying curves and sur-
faces have been explored over the years. Work on this
topic is spread among a number of fields, making literature
search quite challenging. These fields include: cartogra-
phy, geographic information systems (GIS), virtual real-
ity, computer vision, computer graphics, scientific visual-
ization, computer-aided geometric design, finite element
methods, approximation theory, and computational geom-
etry.

Some prior surveys of related methods exist, notably a
bibliography on approximation [45], a survey of spatial
data structures for curves and surfaces [106], and surveys
of triangulation methods with both theoretical [6] and sci-
entific visualization [89] orientations. None of these sur-
veys surface simplification in depth, however.

The present paper attempts to survey all previous work
on surface simplification and place the algorithms in a tax-
onomy. In this taxonomy, we intermix algorithms from
various fields, classifying algorithms not according to the
application for which they were designed, but according
to the technical problem they solve. By doing so, we
find great similarities between algorithms from disparate
fields. For example, we find common ground between
methods for representing terrains developed in cartogra-
phy, methods for approximating bivariate functions devel-
oped in computational geometry and approximation the-
ory, and methods for approximating range data developed
in computer vision. This is not too surprising, since these
are fundamentally the same technical problem. By calling
attention to these similarities, and to the past duplication
of work, we hope to facilitate cross-fertilization between
disciplines.

Our emphasis is on methods that take polygonal sur-
faces as input and produce polygonal surfaces as output,
although we touch on curved parametric surface and vol-
ume techniques. Our polygons will typically be planar tri-
angles. Although surface simplification is our primary in-
terest, we also discuss curve simplification, because many
surface methods are simple generalizations of curve meth-
ods.

1



1.1 Characterizing Algorithms

Methods for simplifying curves and surfaces vary in their
generality and approach – among surface methods, some
are limited to height fields, for example, while others are
applicable to general surfaces in 3-D. To systematize our
taxonomy, we will classify methods according to the prob-
lems that they solve and the algorithms they employ. Be-
low is a list of the primary characteristics with which we
will do so:

Problem Characteristics

Topology and Geometry of Input: For curves, the
input can be a set of points, a function y(x), a
planar curve, or a space curve. For surfaces, the
input can be a set of points, samples of a height
field z(x, y) in a regular grid or at scattered
points, a manifold1, a manifold with boundary,
or a set of surfaces with arbitrary topology (e.g.
a set of intersecting polygons).

Other Attributes of Input: Color, texture, and sur-
face normals might be provided in addition to
geometry.

Domain of Output Vertices: Vertices of the output
can be restricted to be a subset of the input
points, or they can come from the continuous
domain.

Structure of Output Triangulation: Meshes can
be regular grids, they can come from a hier-
archical subdivision such as a quadtree, or
they can be a general subdivision such as a
Delaunay or data-dependent triangulation.

Approximating Elements: The approximating
curve or surface elements can be piecewise-
linear (polygonal), quadratic, cubic, high
degree polynomial, or some other basis
function.

Error Metric: The error of the approximation is
typically measured and minimized with respect

1A manifold is a surface for which the infinitesimal neighborhood of
every point is topologically equivalent to a disk. In a triangulated mani-
fold, each edge belongs to two triangles. In a triangulated manifold with
boundary, each edge belongs to one or two triangles.

to L2 or L∞ error2. Distances can be measured
in various ways, e.g., to the closest point on a
given polygon, or closest point on the entire sur-
face.

Constraints on Solution: One might request the
most accurate approximation possible using a
given number of elements (e.g. line segments
or triangles), or one might request the solu-
tion using the minimum number of elements
that satisfies a given error tolerance. Some
algorithms give neither type of guarantee, but
give the user only indirect control over the
speed/quality tradeoff. Other possible con-
straints include limits on the time or memory
available.

Algorithm Characteristics

Speed/Quality Tradeoff: Algorithms that are opti-
mal (minimal error and size) are typically slow,
while algorithms that generate lower quality or
less compact approximations can generally be
faster.

Refinement/Decimation: Many algorithms can
be characterized as using either refinement, a
coarse-to-fine approach starting with a minimal
approximation and building up more and more
accurate ones, or decimation, a fine-to-coarse
approach starting with an exact fit, and dis-
carding details to create less and less accurate
approximations.

1.2 Background on Application Areas

The motivations for surface simplification differ from field
to field. Terminology differs as well.

2In this paper, we use the following error metrics: We define the L2

error between two n-vectors u and v as ||u−v||2 =
[∑n

i=1(ui − vi )
2
]1/2

.
The L∞ error, also called the maximum error, is ||u − v||∞ =
maxn

i=1 |ui − vi|. We define the squared error to be the square of the L2
error, and the root mean square or RMS error to be the L2 error divided
by
√

n. Optimization with respect to the L2 and L∞ metrics are called
least squares and minimax optimization, and we call such solutions L2–
optimal and L∞–optimal, respectively.
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Cartography. In cartography, simplification is one
method among many for the “generalization” of geo-
graphic information [86]. In that field, curve simplifica-
tion is called “line generalization”. It is used to simplify
the representations of rivers, roads, coastlines, and other
features when a map with large scale is produced. It is
needed for several reasons: to remove unnecessary detail
for aesthetic reasons, to save memory/disk space, and to
reduce plotting/display time. The principal surface type
simplified in cartography is, of course, the terrain. Map
production was formerly a slow, off-line activity, but it
is currently becoming more interactive, necessitating the
development of better simplification algorithms.

The ideal error measures for cartographic simplification
include considerations of geometric error, viewer interest,
and data semantics. Treatment of the latter issues is be-
yond the scope of this study. The algorithms summarized
here typically employ a geometric error measure based on
Euclidean distance. The problem is thus to retain features
larger than some size threshold, typically determined by
the limits of the viewer’s perception, the resolution of the
display device, or the available time or memory.

Computer Vision. Range data acquired by stereo or
structured light techniques (e.g. lasers) can easily produce
millions of data points. It is desirable to simplify the sur-
face models created from this data in order to remove re-
dundancy, save space, and speed display and recognition
tasks. The acquired data is often noisy, so tolerance of and
smoothing of noise are important considerations here.

Computer Graphics. In computer graphics and the
closely related fields of virtual reality, computer-aided ge-
ometric design, and scientific visualization, compact stor-
age and fast display of shape information are vital. For
interactive applications such as military flight simulators,
video games, and computer-aided design, real time perfor-
mance is a very important goal. For such applications, the
geometry can be simplified to multiple levels of detail, and
display can switch or blend between the appropriate lev-
els of detail as a function of the screen size of each object
[13, 52]. This technique is called multiresolution model-
ing. Redisplaying a static scene from a moving viewpoint
is often called a walkthrough. For off-line, more realistic

simulations such as special effects in entertainment, real
time is not vital, but reasonable speed and storage are nev-
ertheless important.

When 3-D shape models are transmitted, compression is
very important. This applies whether the channel has very
low bandwidth (e.g. a modem) or higher bandwidth (e.g.
the Internet backbone). The rapid growth of the World
Wide Web is spurring some of the current work in surface
simplification.

Finite Element Analysis. Engineers use the finite ele-
ment method for structural analysis of bridges, to simulate
the air flow around airplanes, and to simulate electromag-
netic fields, among other applications. A preprocess to
simulation is a “mesh generation” step. In 2-D mesh gen-
eration, the domain, bounded by curves, is subdivided into
triangles or quadrilaterals. In 3-D mesh generation, the do-
main is given by boundary surfaces. Surface meshes of tri-
angles or quadrilaterals are first constructed, and then the
volume is subdivided into tetrahedra or hexahedra. The
criteria for a good mesh include both geometric fidelity
and considerations of the physical phenomena being simu-
lated (stress, flow, etc). To speed simulation, it is desirable
to make the mesh as coarse as possible while still resolving
the physical features of interest. In 3-D simulations, sur-
face details such as bolt heads might be eliminated, for ex-
ample, before meshing the volume. This community calls
simplification “mesh coarsening”.

Approximation Theory and Computational Geometry.
What is called a terrain in cartography or a height field in
computer graphics is called a bivariate function or a func-
tion of two variables in more theoretical fields. The goal in
approximation theory is often to characterize the error in
the limit as the mesh becomes infinitely fine. In compu-
tational geometry the goal is typically to find algorithms
to generate approximations with optimal or near-optimal
compactness, error, or speed or to prove bounds on these.
Implementation of algorithms and low level practical op-
timizations receive less attention.
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2 Curve Simplification

Curve simplification has been used in cartography, com-
puter vision, computer graphics, and a number of other
fields.

A basic curve simplification problem is to take a poly-
gonized curve with n vertices (a chain of line segments or
“polyline”) as input and produce an approximating poly-
gonized curve with m vertices as output. A closely related
problem is to take a curve with n vertices and approximate
it within a specified error tolerance.

Douglas-Peucker Algorithm. The most widely used
high-quality curve simplification algorithm is probably the
heuristic method commonly called the Douglas-Peucker3

algorithm. It was independently invented by many peo-
ple [99], [31], [30, p. 338], [5, p. 92], [125], [91, p.
176], [3]. At each step, the Douglas-Peucker algorithm at-
tempts to approximate a sequence of points by a line seg-
ment from the first point to the last point. The point far-
thest from this line segment is found, and if the distance
is below threshold, the approximation is accepted, other-
wise the algorithm is recursively applied to the two sub-
sequences before and after the chosen point. This algo-
rithm, though not optimal, has generally been found to
produce the highest subjective- and objective-quality ap-
proximations when compared with many other heuristic
algorithms [85, 130]. Its best case time cost4 is �(n), its
worst case cost is O(mn), and its expected time cost is
about 2(n logm). The worst case behavior can be im-
proved, with some sacrifice in the best case behavior, us-
ing a2(n logn) algorithm employing convex hulls [54].

A variant of the Douglas-Peucker algorithm described
by Ballard and Brown [4, p. 234] on each iteration splits
at the point of highest error along the whole curve, instead
of splitting recursively. This yields higher quality approx-
imations for slightly more time. If this subdivision tree is

3Pronounced, and later spelled, due to name change, “Poiker”.
4A function is in O( f (n)) if it is less than or equal to c f (n) as n→∞,

for some positive constant c. “O” is used for upper bounds.
A function is in2( f (n)) if it is between c1 f (n) and c2 f (n) as n→∞,
for some positive constants c1, c2.
A function is in�( f (n)) if it is greater than or equal to c f (n) as n→∞,
for some positive constant c. “�” is used for lower bounds.

saved, it is possible to dynamically build an approximation
for any larger error tolerance very quickly [18].

A potential problem is that simplification can cause a
simple polygon to become self-intersecting. This could be
a problem in cartographic applications.

Faster or Higher Quality Algorithms. There are faster
algorithms than Douglas-Peucker, but all of these are
generally believed to have inferior quality [84]. One
such algorithm is the trivial method of regular subsam-
pling (known as the “nth-point algorithm” in cartography),
which simply keeps every kth point of the input, for some
k, discarding the rest. This algorithm is very fast, but will
sometimes yield very poor quality approximations.

Least squares techniques are commonly used for curve
fitting in pattern recognition and computer vision, but they
do not appear to be widely used for that purpose in cartog-
raphy.

Polygonal Boundary Reduction. While the Douglas-
Peucker algorithm and its variants are refinement algo-
rithms, curves can also be simplified using decimation
methods. Boxer et al. [8] describe two such algorithms
for simplifying 2-D polygons. The first, due to Leu and
Chen [75], is a simple decimation algorithm. It considers
boundary arcs of 2 and 3 edges. For each arc, it computes
the maximum distance between the arc and the chord con-
necting its endpoints. It then selects an independent set of
arcs whose deviation is less than some threshold, and re-
places them by their chords. The second algorithm is an
improvement of this basic algorithm which guarantees that
the approximate curve is always within some bounded dis-
tance from the original. They state that the running time of
the simple algorithm is 2(n), while the bounded-error al-
gorithm requires O(n+ r2) time where r is the number of
vertices removed.

Optimal Approximations. Algorithms for optimal
curve simplification are much less common than heuristic
methods, probably because they are slower and/or more
complicated to implement. In a common form of optimal
curve simplification, one searches for the approximation
of a given size with minimum error, according to some
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definition of “error”. Typically the output vertices are
restricted to be a subset of the input vertices. A naive,
exhaustive algorithm would have exponential cost, since
the number of subsets is exponential, but using dynamic
programming and/or geometric properties, the cost can be
reduced to polynomial. The L2–optimal approximation
to a function y(x) can be found in O(mn2) time, worst
case, using dynamic programming. Remarkably, a slight
variation in the error metric permits a much faster algo-
rithm: the L∞–optimal approximation to a function can
be found in O(n) time [63], using visibility techniques
(see also [123, 91]). When the problem is generalized
from functions to planar curves, the complexity of the best
L∞–optimal algorithms we know of jumps to O(n2 log n)
[63]. These methods use shortest-path graph algorithms
or convex hulls. For space curves (curves in 3-D), there
are O(n3 log m) L∞–optimal algorithms [62].

Asymptotic Approximation. In related work, McClure
and de Boor analyzed the error when approximating
a highly continuous function y(x) using piecewise-
polynomials with variable knots [82, 21]. We discuss
only the special case of piecewise-linear approximations.
They analyzed the asymptotic behavior of the Lp error of
approximation in the limit as m, the number of vertices
(knots) of the approximation, goes to infinity. They
showed that the asymptotic Lp error with regular subsam-
pling is proportional to m−2, for any p. The Lp–optimal
approximation has the same asymptotic behavior, though
with a smaller constant. McClure showed that the spacing
of vertices in the optimal approximation is closely re-
lated to the function’s second derivative. Specifically, he
proved that as m→∞, the density of vertices at each point
in the optimal L2 approximation becomes proportional to
|y′′(x)|2/5. For optimal L∞ approximations, the density is
proportional to |y′′(x)|1/2. Also, as m→∞, all intervals
have equal error in an Lp–optimal approximation.

The density property and the balanced error property
described above can be used as the basis for curve sim-
plification algorithms [82]. Although adherence to nei-
ther property guarantees optimality for real simplification
problems with finite m, iterative balanced error methods
have been shown to generate good approximations in prac-
tice [91, p. 181]. Another caveat is that many curves in na-
ture do not have continuous derivatives, but instead have

some fractal characteristics [80]. Nevertheless, these theo-
retical results suggest the importance of the second deriva-
tive, and hence curvature, in the simplification of curves
and surfaces.

Summary of Curve Simplification. The Douglas-
Peucker algorithm is probably the most commonly
used curve simplification algorithm. Most implemen-
tations have O(mn) cost, worst case, but typical cost
of 2(n logm). An optimization with worst case cost of
O(n logn) is available, however. Optimal simplification
typically has quadratic or cubic cost, making it impractical
for large inputs.

3 Surface Simplification

Surfaces are more difficult to simplify than curves. In the
flight simulator field, lower level of detail models have
traditionally been prepared by hand [17]. The results can
be excellent, but the process can take weeks. Automatic
methods are preferable for large and dynamic databases,
however.

If only a single level of detail is needed, then in some
cases, simplification can be obviated by simply avoiding
generation of redundant data in the first place. In scientific
visualization, for example, the marching cubes algorithm
[90] is widely used. It generates many tiny triangles with-
out testing for coplanarity between neighbors. A more so-
phisticated alternative is adaptive polygonization that sub-
divides finely only where the surface is highly curved [7].
In computer aided geometric design, when polygonizing
parametric surfaces, rather than subdivide and polygonize
a surface with a regular (u, v) grid, better results are of-
ten possible by subdividing adaptively based on curvature
[10].

When simplification is needed however, one of the al-
gorithms summarized below can be used.

Taxonomy of Surface Simplification Algorithms. We
categorize algorithms at the highest level according to the
class of surfaces on which they operate:

• height fields and parametric surfaces,
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• manifold surfaces, and

• non-manifold surfaces.

Within each surface class we often group algorithms ac-
cording to whether they work by refinement or decima-
tion. Within the subclasses, methods are generally listed
chronologically. We have attempted to be fairly compre-
hensive, so consequently the good methods are described
along with the bad. As we summarize algorithms, we
list their computational complexities and quote empirical
times, where known (of course, hardware, compilers, lan-
guages, and programming styles differ between individu-
als, so we must be careful when judging based on this in-
formation). Complexities are given in terms of n, the num-
ber of vertices in the input, and m, the number of vertices
in the output. Typically, m� n.

3.1 Height Fields and Parametric Surfaces

Height fields and parametric surfaces are the simplest
class of surfaces. Within this class of surfaces, we divide
methods into the following six sub-classes: regular grid
methods, hierarchical subdivision methods, feature meth-
ods, refinement methods, decimation methods, and opti-
mal methods.

Regular grid methods are the simplest techniques, us-
ing a grid of samples equally and periodically spaced in
x and y. The hierarchical subdivision methods are based
on quadtree, k-d tree, and hierarchical triangulations us-
ing a divide and conquer strategy. They recursively subdi-
vide the surface into regions, constructing a tree-structured
hierarchy. The next four categories employ more general
subdivision and triangulation methods, most commonly
Delaunay triangulation. Feature methods select a set of
important “feature” points in one pass and use them as
the vertex set for triangulation. Refinement methods are
essentially generalizations of the Douglas-Peucker algo-
rithm from curves to surfaces, where intervals are replaced
by triangles and splitting is replaced by retriangulating.
They start with a minimal approximation and use multiple
passes of point selection and retriangulation to build up the
final triangulation. Decimation methods use an approach
opposite that of refinement methods: they begin with a tri-
angulation of all of the input points and iteratively delete

vertices from the triangulation, gradually simplifying the
approximation. Refinement methods thus work top-down,
while decimation methods work bottom-up. The final cat-
egory, “optimal methods” are distinguished more for their
theoretical focus than for their method.

For many height field simplification tasks, the input is a
height field and the output is a general triangulation, called
a triangulated irregular network, or TIN, in cartography.
A TIN is a mesh of triangles where height is a function of
x and y: H(x, y). Examples of a height field and general
triangulation are shown in Figures 1 and 2.

3.1.1 Triangulation

Most polygonal surface simplification methods employ
triangles as their approximating elements when construct-
ing a surface. For height fields and parametric surfaces,
there is a natural 2-D parameterization of the surface. Ba-
sic triangulation methods are described in a 2-D domain,
or in a 3-D domain where height z is a function of x and y.

In general, the topology of the triangulation can be cho-
sen using only the xy projections of the input points, or it
can be chosen using the heights of the input points as well.
The latter approach is called data-dependent triangulation
[32].

The most popular triangulation method that does not use
height values is Delaunay triangulation; it is a purely two-
dimensional method. Delaunay triangulation finds the tri-
angulation that maximizes the minimum angle of all tri-
angles, among all triangulations of a given point set. This
helps to minimize the occurrence of very thin sliver trian-
gles. Delaunay triangulations have a number of nice the-
oretical properties that make them very popular in com-
putational geometry. In a Delaunay triangulation, the cir-
cumscribing circle (circumcircle) of each triangle contains
no vertices in its interior [71]. Delaunay triangulations
of m points can either be computed whole, using divide-
and-conqueror sweepline algorithms, or incrementally, by
inserting vertices one at a time, updating the triangula-
tion after each insertion [48]. The former approach has
cost O(m logm), while the latter, incremental method has
worst case cost of O(m2). Typical costs for the incremen-
tal approach are much better than quadratic, however.
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Figure 1: Top view of a regular grid triangu-
lation of 65× 65 height field.

Figure 2: A triangulation using 512 vertices
approximating the height field.

Sometimes equilateral triangles are not optimal, and
maximization of the minimum angle is not the appropriate
goal. Triangulation methods that attempt to optimize the
approximation of z or other data associated with the trian-
gulation are called data-dependent triangulation methods.
Several researchers have shown that slivers can be good
when the surface being approximated is highly curved in
one direction, but not the other [102, 88, 20, 32]. Such
slivers would not be generated by Delaunay triangulation,
which minimizes slivers by tending to choose “fat” trian-
gles.

3.1.2 Regular Grid Methods

The simplest method for approximation of surface grids
is regular subsampling, in which the points in every kth
row and column are kept and formed into a grid, and all
other points are discarded. Regular grids are also known
as uniform grids, and sometimes the term DEM (digital el-
evation model) is used in the specific sense of a regular
grid terrain model. As with curves, regular subsampling
is simple and fast, but low quality, since the points dis-
carded might be the most important ones. The results are

improved if a low pass filter [51] is run across the data be-
fore subsampling, but this still does not fix the basic prob-
lem with this method, its non-adaptive nature.

Kumler 94. An extensive comparison of regular grids
(DEMs) and general triangulations (TINs), and the
space/error tradeoffs between them, was done by Kumler
[70]. He concluded, surprisingly, that for a given amount
of storage space, regular grids approximate terrains
better than general triangulations. His comparison seems
biased against general triangulations, however, since
he compares models of equal memory size, not equal
rendering time, and the simplification algorithms he uses
are not the best known [39]. Kumler assumes that general
triangulations require three to ten times the memory of
regular grids with the same number of vertices.

Pyramids. Regular subsampling can be done hierarchi-
cally, forming a pyramid of samples [131, 121]. Despite
the wealth of research on hierarchical triangulations and
TINs, pyramids are probably the most widely used type
of multiresolution terrain model in the simulator commu-
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nity [16, 17] and in the visualization/animation commu-
nity [60], because of their simplicity and compactness.

3.1.3 Hierarchical Subdivision Methods

Hierarchical subdivision methods construct a triangula-
tion by recursively subdividing a surface. They are the
adaptive form of pyramids. The hierarchical pattern of
subdivision, even if not stored explicitly in the data struc-
ture, forms a tree, each node of which has no more than one
parent. With Delaunay triangulation and other general tri-
angulation algorithms, the topology is not hierarchical, be-
cause a triangle might have multiple parents. Hierarchical
subdivision methods are generally fast, simple, and they
facilitate multiresolution modeling. In perspective scenes
where nearby portions of the terrain require more detail
than distant regions, the hierarchy facilitates rendering at
adaptive levels of detail. Nearby portions are drawn at at a
fine level, while distant regions are drawn at a coarse level.
The penalty for their simplicity and speed is that hierar-
chical subdivision methods typically yield poorer quality
approximations than more general triangulation methods.

Quadtrees and k-d Trees. Terrains and parametric sur-
faces are easily simplified using adaptive quadtree and k-d
tree subdivision methods [106, 105]. DeHaemer and Zyda
used quadtree and k-d tree splitting at the point of max-
imum error within each cell to approximate general 3-D
surfaces described by a grid [27]. Taylor and Barrett de-
scribed a similar method for terrains [122]. Von Herzen
and Barr discuss a method for crack-free adaptive triangu-
lation of parametric surfaces using quadtrees [128]. Gross,
Gatti, and Staadt have used wavelets to construct quadtree
approximations of height fields [44]. With an unoptimized
implementation, they were able to simplify a 256×256 ter-
rain in about 2 seconds on an SGI Indy.

Gómez-Guzmán 79. A quaternary triangulation
method for height field approximation was proposed by
Gómez and Guzmán [42]. In their method, each triangle
is recursively subdivided into four subtriangles until
a maximum error tolerance is met. To subdivide each
triangle, a “significant” point near the midpoint of each
edge is chosen (in some unspecified way), and the triangle

is split into four nearly congruent triangles (Figure 3).
Since the new vertices are not constrained to lie on the
edges, however, the surface develops unsightly cracks,
rendering the method unsuitable for most purposes.

De Floriani-Falcidieno-Nagy-Pienovi 84. In 1984, De
Floriani et al. published a hierarchical ternary triangula-
tion method in which points are inserted in triangle inte-
riors and each triangle is split into three subtriangles by
adding edges to its vertices [23]. No edge swapping is
done (Figure 4). Consequently, all of the initial edges
remain in the triangulation forever, most notably the di-
agonal across the entire grid rectangle, leading to spuri-
ous knife-edge ridges and valleys through the terrain. The
flaws of this method make it unacceptable.

Schmitt 85. Schmitt and Gholizadeh simplified a grid
with rectangular topology in 3-D using a triangulated sur-
face [112]. Their method is similar to that of Faugeras
et al. [34], described later. Having the input points in a
grid allows the partition of points into triangles to be done
in a two dimensional parametric space. The method be-
gins with a small number of triangles and repeatedly splits
those triangles whose associated input points are above the
error tolerance. Triangles are subdivided into 2–4 subtri-
angles by splitting one, two, or three edges of the triangle.
Triangle splitting is done in no particular order. They re-
port that simplifying a grid of n=288×360 points down
to about m=3,500 points takes 1.5 hours on a DEC VAX
780. The computational complexity of their algorithm is
O(mn).

Scarlatos-Pavlidis 92a. The hierarchical triangulation
algorithm for height fields developed by Scarlatos and
Pavlidis employs a recursive triangulation approach [108,
107]. Their method begins with a minimal triangulation
(typically two triangles) as level of detail 0. Error toler-
ances for each level of detail in the tree are specified by the
user. To create level i from level i−1, the point of highest
error along each triangle edge and in each triangle interior
is found, those points with error above the threshold for
level i are taken as new vertices, and each triangle is retri-
angulated using one of five simple subdivision templates
(Figure 5). Passes of vertex selection and retriangulation
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Figure 3: Quaternary triangulation. Figure 4: Ternary triangulation.

or or or or

Figure 5: Subdivision templates for Scarlatos and Pavlidis’ hierarchical triangulation.

for level i are repeated until no more candidates for that
level are found. All levels of the hierarchy are retained in
the data structure, facilitating adaptive display at any de-
sired detail level. In their analysis, Scarlatos and Pavlidis
suggest that the cost of the algorithm is O(n logn). Our
analysis of their algorithm is that their expected case is
O(n logm), but if the hierarchy is very unbalanced, the
worst case cost is O(mn).

De Floriani-Puppo 92. A similar method was devel-
oped by De Floriani and Puppo [26]. The triangle subdivi-
sion is more general, however. To subdivide a triangle for
a given level in the hierarchy, a curve approximation algo-
rithm [4] is used to add new vertices along the edges, then
additional points are inserted in the interior of the trian-
gle until the error threshold is met throughout the triangle,
and the interior of the triangle is retriangulated using De-
launay triangulation. The method appears to have nearly
identical flexibility and speed compared to Scarlatos and
Pavlidis’ method [108], but it will probably yield slightly
better simplification for a given error threshold.

3.1.4 Feature Methods

A simple, intuitive approach to height field simplification
is to make one pass over the input points, ranking each of
them using some “importance” measure, to select the most
important points as the vertex set, and construct a triangu-
lation of these points. Typically, Delaunay triangulation
is used. Feature methods are quite popular in cartogra-
phy. Overall, our conclusion is that their quality relative
to many of the other methods is inferior, so we only sur-
vey them briefly here.

Important points, also known as “features” or “criti-
cal points” and the edges between them, often known as
“break lines”, include such topographic features as peaks,
pits, ridges, and valleys. The philosophy of many of the
feature approaches is that some knowledge about the na-
ture of terrains is essential for good simplification [129,
108]. In a feature approach, the chosen features become
the vertex set, and the chosen break lines (if any) become
edges in a constrained triangulation [6]. The most com-
monly used feature detectors are 2 × 2 and 3 × 3 lin-
ear or nonlinear filters, sometimes followed by a weeding
process that discards features that are too close together,
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such as a sequence of points along a ridge line. Such ap-
proaches were employed by Peucker-Douglas and Chen-
Guevara [92, 12]. Some methods examine larger neigh-
borhoods of points in an attempt to measure importance
more globally.

Southard 91. One of the more interesting feature meth-
ods is Southard’s [120]. He uses the Laplacian as a mea-
sure of curvature. The rank of each point’s Laplacian is
computed within a moving window, analogous to a me-
dian filter in image processing, and all points whose rank
is below some threshold are selected. This is an im-
provement over the selection criteria of Peucker-Douglas
and Chen-Guevara cited earlier, because it is less sus-
ceptible to noise and high frequency variations, but un-
fortunately, Southard’s ranking approach tends to dis-
tribute points roughly uniformly across the domain, wast-
ing points and leading to inferior approximations, in many
cases. After computing the Delaunay triangulation of the
selected points, Southard performs a data-dependent re-
triangulation, swapping edges where that would reduce the
sum of the absolute errors along the edges in the triangu-
lation.

3.1.5 Refinement Methods

Refinement methods are multi-pass algorithms that begin
with a minimal initial approximation, on each pass they
insert one or more points as vertices in the triangulation,
and repeat until the desired error is achieved or the desired
number of vertices is used. For input data in a rectangular
grid, the minimal approximation is two triangles; for other
topologies, the initial approximation might be more com-
plex. Incremental methods are typically used to maintain
the triangulation as refinement proceeds.

To choose points, importance measures much like those
of the feature methods can be used. Whereas feature meth-
ods typically use importance measures that are indepen-
dent of the approximation, in refinement algorithms, the
importance of a given point is usually a measure of the
error between it and the approximation. For a height
field, the most common metric for the error is simply
the maximum absolute value of the vertical error, the L∞
norm. This is the error measure most closely related to the

Douglas-Peucker algorithm.

Greedy Insertion. We call refinement algorithms that
insert the point(s) of highest error on each pass greedy in-
sertion algorithms, “greedy” because they make irrevoca-
ble decisions as they go [15], and “insertion” because on
each pass they insert one or more vertices into the trian-
gulation. Methods that insert a single point in each pass
we call sequential greedy insertion and methods that in-
sert multiple points in parallel on each pass we call paral-
lel greedy insertion. The words “sequential” and “paral-
lel” here refer to the selection and re-evaluation process,
not to the architecture of the machine. Many variations on
the greedy insertion algorithm have been explored over the
years; apparently the algorithm has been reinvented many
times.

Fowler-Little 79. In 1979, Fowler and Little published
a hybrid algorithm that uses an initial pass of feature
selection using 2 × 2 filters to “seed” the triangulation,
followed by multiple passes of parallel greedy insertion
[37]. On each of these latter passes, for each triangle, the
point with highest error, or candidate point, is found, and
all candidate points whose error is above the requested
threshold are inserted into the triangulation. (When the
point of highest error falls on an edge, they expand their
search for the candidate to a sector of the triangle’s circum-
circle, a quirk unique to their algorithm.)

Fowler and Little discussed two methods for finding
candidates. In their exhaustive search method, the error at
each input point is computed and tested against the high-
est error seen so far for that triangle. In the initial passes
of a greedy insertion method, the triangles are big, neces-
sitating the testing of many points, but in later passes the
triangles shrink and less testing per triangle is required.
As a way to speed the selection of candidates, they pro-
pose an alternative method using hill-climbing, in which a
test point is initialized to the center of the triangle, and it
repeatedly steps to the neighboring input point of highest
error until it reaches a local maximum, where it becomes
the candidate. This latter method can be much faster, espe-
cially for the initial passes, but it would also yield poorer
quality approximations in many cases, because the hill
climbing might fail to find the global maximum within the
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triangle. Unfortunately, Fowler and Little did not show a
comparison of the results of the two methods, and did not
analyze the speed of their algorithm. An approach similar
to Fowler and Little’s was very briefly described by Lee
and Schachter [72].

De Floriani-Falcidieno-Pienovi 83. In 1983, De Flo-
riani et al. presented a sequential greedy insertion algo-
rithm [24, 25]. Their method is purer than Fowler and
Little’s: it does not seed the triangulation using feature
points, and it inserts a single point on each pass, not multi-
ple points. Consequently, the quality of its approximations
can be higher than Fowler and Little’s. The point inserted
in each pass is the point of highest absolute error from the
input point set. To find this point they apparently visit all
input points on each pass, computing errors. Their paper
says that their algorithm has worst case cost of O(n2), but
too few details of the algorithm or its data structures are
provided to verify this. We will refer to this paper and al-
gorithm as “DeFloriani83”.

De Floriani 89. In later work, De Floriani published
an algorithm to build a “Delaunay pyramid” [22], a hier-
archy of Delaunay triangulations, using a variant of her
1983 greedy insertion algorithm to construct each level
of the pyramid. Her 1989 paper describes the greedy in-
sertion algorithm in greater detail than her earlier papers
([24, 25]).

Each triangle stores the set of input points it contains
and the error of its candidate point. On each pass, the set of
triangles is scanned to find the candidate of highest error,
this point is inserted using incremental Delaunay triangu-
lation, and the candidates of all the triangles in the mod-
ified region are recomputed. Recomputing the candidate
of a triangle requires calculating the error at each point in
the triangle’s point set.

De Floriani states that the worst case time cost to create
a complete pyramid of all n points is O(n2). We believe
that the expected time cost of her algorithm, to select and
triangulate m points, is O(n logm+m2) (compare to Al-
gorithm III in [40]).

Because point set traversal is used, rather than triangle
scan conversion [36], this algorithm is not limited to input

points in a regular grid, as are most height field approxima-
tion algorithms. The price of this generality is speed; the
inner loops of a set traversal method cannot be optimized
as much as those of a scan conversion approach.

Heller 90. Heller explored a hybrid technique that he
called “adaptive triangular mesh filtering” [53, p. 168].
This technique is much like Fowler and Little’s. The prin-
cipal difference is that the features are chosen not with
a fixed-size local filter but by checking a variable-sized
neighborhood to determine if each point is a local ex-
tremum within some height threshold. This feature selec-
tion method, while more expensive than Fowler and Lit-
tle’s, probably yields higher quality approximations.

His insertion method is sequential, like that of DeFlo-
riani83. He optimizes the algorithm by storing the set of
candidates, one candidate from each triangle, in a heap5.
Below is an excerpt of Heller’s brief explanation of his al-
gorithm [53, p. 168]:

The [insertion] of a point requires a local retrian-
gulation which consists of swapping all neces-
sary triangles, and readjusting the [importances]
of all affected points. It is clear that the time for
retriangulation is proportional to the number of
readjusted points and the logarithm of the num-
ber of queued points. It is, therefore, advisable
to start the process with as many [feature] points
as possible.

Due to his optimizations, Heller’s algorithm is probably
faster than most others of comparable quality, such as
DeFloriani83, but unfortunately, beyond the statements
quoted above he does not analyze the speed of his algo-
rithm theoretically or empirically. It appears that the ex-
pected complexity of the greedy insertion portion of his
algorithm is O((m+n) logm), like Algorithm III in [40].

Schmitt-Chen 91. In order to segment computer vision
range data into planar regions, Schmitt and Chen use a
two stage process called split-and-merge [110, 91]. The

5Christoph Witzgall has also employed a heap. Personal communi-
cation. 1994.
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splitting stage is a form of greedy insertion with Delau-
nay triangulation similar to DeFloriani83. The merging
stage joins together adjacent regions with similar normals,
in the process destroying the triangulation, but yielding a
segmentation of the image. Their splitting stage approxi-
mated a height field with n=2562 points using about m=
3,060 vertices in 67 seconds on a DEC VAX 8550.

Scarlatos-Pavlidis 92a and De Floriani-Puppo 92.
The hierarchical triangulation methods of Scarlatos-
Pavlidis [108] and De Floriani-Puppo [26] discussed
earlier are analogous to greedy insertion in many ways,
although their triangulations are quite different. Their
techniques will typically use more triangles to achieve a
given error than sequential greedy insertion with Delau-
nay triangulation, but on the other hand, they have the
advantage of a hierarchy.

Rippa 92. Rippa generalized the greedy insertion algo-
rithm of DeFloriani83 to explore data-dependent triangu-
lation and least squares fitting [101].

In place of incremental Delaunay triangulation, Rippa’s
algorithm computes a data-dependent triangulation using
a version of Lawson’s local optimization procedure [71],
repeatedly swapping edges around a new vertex until the
global error reaches a local minimum. He tested two defi-
nitions of global error. The first is a purely geometric mea-
sure: the sum of the absolute values of the angles between
normals of all pairs of adjacent triangles in the triangula-
tion, and the second is a simple L2 measure: the sum of
squares of absolute vertical errors over all input points.

From experiments with Delaunay and data-dependent
triangulation on several smooth, synthetic functions,
Rippa concluded that data-dependent triangulation usu-
ally yields more accurate approximations using a given
number of vertices than Delaunay triangulation. The
angle criterion performed well in most cases, so he mildly
recommended it over both the L2 criterion and Delaunay
triangulation. Rippa observed that the L2 criterion oc-
casionally allowed long, extremely thin sliver triangles
that did not fit the surface well to enter and remain in
the triangulation. The algorithm failed to eliminate such
triangles because they were so thin that they contained no
input points, and hence they contributed zero error to the

L2 measure.

The angle criterion also made poor choices in some
cases, so Rippa tried a hybrid scheme that on each pass
compares the errors resulting from Delaunay triangula-
tion and data-dependent triangulation with the angle crite-
rion, and updates using the one with the smaller global er-
ror. The hybrid scheme generated high quality approxima-
tions more consistently than the other methods that Rippa
tested. Unfortunately, the hybrid is less elegant, and it ap-
pears slower than the other methods. Margaliot and Gots-
man reported an error measure yielding a better fit than the
angle criterion [81].

Rippa also explored least squares methods that approx-
imate the input points instead of interpolating them. The
(x, y) coordinates of the vertices are frozen, but their
heights are allowed to vary, and the combination of heights
that minimizes the global sum of squared errors is found.
This involves solving a large, sparse, m×m system of lin-
ear equations. He found that high quality results could be
achieved fairly efficiently, on low-noise data, if the least-
squares fitting was done as a post-process to greedy in-
sertion. His empirical tests on simple functions showed
that least squares fitting roughly halved the error of the
standard interpolative methods. Overall, Rippa’s methods
appear expensive (data-dependent triangulation, particu-
larly so) but the resulting approximations are higher qual-
ity than those of simpler sequential greedy insertion meth-
ods. The least squares technique appears to be particularly
effective at improving the approximation.

Rippa tested his algorithm on rather small height fields
and did not discuss computational costs of data-dependent
triangulation much.

Polis-McKeown 93. Polis and McKeown explored
a somewhat parallel variation of the greedy insertion
method [95]. Their basic algorithm, in each pass, com-
putes the absolute error at each input point. The set of
points of maximal absolute error is found, and these are
inserted into the triangulation, one at a time, rejecting
any that are within a tolerance distance of vertices al-
ready in the triangulation (see paper for details). This
method might insert multiple points per triangle, unlike
the greedy insertion algorithms previously discussed. It
would typically insert fewer points per pass than Fowler
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and Little’s algorithm, however.

Several practical issues in the creation of large ter-
rain models for simulators are raised by Polis and McK-
eown. To facilitate dynamic loading of the terrain as a
viewer roams, many display programs require that ter-
rain databases be broken into small square blocks or “load
modules”. This necessitates extra care along block bound-
aries to avoid cracks between polygons. Polis and McKe-
own also proposed selective fidelity, in which regions of
the terrain could be assigned error weights according to
their visual importance, their likelihood of being seen, or
some other criterion. Thus, for example, for a tank simu-
lator, one might weight navigable valleys more than inac-
cessible mountain slopes.

Polis and McKeown tried a data-dependent triangu-
lation method involving summing the squares of er-
rors along all edges of the triangulation [94], much like
Southard’s method. They found Delaunay triangulation
to be preferable to data-dependent triangulation, however,
because the former was much faster [95].

Polis and McKeown’s algorithm appears to have an ex-
pected cost of O(mn) (like Algorithm I in [40]). They re-
ported a compute time of 18 hours to select m= 76,500
points total from an n=1,9792 terrain broken into 36 tiles
on a DECstation 5000. Speed was not the major issue for
them, however, since they were creating their TINs off-
line. They later optimized their algorithm to select m=
50,000 points from a terrain of n= 8,966,001 points in
89 minutes on a DEC Alpha [93].

Franklin 93. Franklin has released code for a sequen-
tial greedy insertion algorithm (PL/I code from 1973, C
code from 1993) [38]. His algorithm is quite similar to De-
Floriani83, but optimized in a manner similar to De Flo-
riani’s Delaunay pyramid method ([22]). With each tri-
angle, Franklin stores a candidate pointer, and he updates
only the candidates of new or modified triangles on each
pass. He stores an array of input points with each triangle,
as in [22], so the algorithm is more general but typically
slower than a comparable surface simplification algorithm
limited to height fields.

Between his two implementations, Franklin has exper-
imented with several triangulation methods: swapping an

edge if it reduces the maximum error of the approximation,
swapping an edge if it has shorter length, and Delaunay tri-
angulation.

Unfortunately, Franklin has not published his results
and conclusions. By comparison to De Floriani’s De-
launay pyramid algorithm and Algorithm III of [40], we
conclude that the expected cost of Franklin’s algorithm is
O(n logm+ m2). Franklin’s program can select m=100
points from an n=2572 height field in 7 seconds on an SGI
Indy.

Puppo-Davis-DeMenthon-Teng 94. Puppo et al. ex-
plored terrain approximation algorithms for the Connec-
tion Machine that are parallel both in the computer archi-
tecture sense and also in the greedy insertion sense [98].
Their algorithm is much like that of DeFloriani83, except
they insert all candidate points with error above the re-
quested threshold on each pass, like Fowler and Little.
They found that the number of points inserted on each pass
grew exponentially, so the number of passes required to
insert m points would typically be2(log m). On a Think-
ing Machines CM-2 with 16,384 processors, they reported
compute times of 8 seconds to select m=379 points from
an n=1282 terrain [98], or 86 seconds to select m=2,933
points from an n=5122 terrain [97].

The algorithm was parallelized by assigning each in-
put point to a different logical processor. Most of the par-
allelization was straightforward, but parallel incremental
triangulation required the use of special mutual exclusion
techniques to handle simultaneous topology changes in
neighboring triangles.

Puppo et al. implemented both sequential and parallel
greedy insertion and concluded, surprisingly, that the latter
is better. Our own experiments have indicated otherwise
[40].

Chen-Schmitt 93. Chen and Schmitt explored a hybrid
feature/refinement approach for triangulation of computer
vision range data [11]. To best approximate the step and
slope discontinuities that are common in range data, they
first use edge detection to identify significant discontinu-
ity features. These then become constraint curves during
greedy insertion of additional vertices, using either con-
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strained Delaunay or data-dependent triangulation. Chen
and Schmitt found that data-dependent triangulation sim-
plified better on surfaces with a preferred direction, such
as cylinders.

Silva-Mitchell-Kaufman 95. A rather different ap-
proach to height field triangulation was proposed by
Silva et al. [117]. We classify it here as a refinement
method, although it is different in spirit from the previous
methods. Their method uses greedy cuts, triangulating
the domain from the perimeter inward, on each pass
“biting” out of the perimeter the triangle of largest area
that fits the input data within a specified maximum error
tolerance. The method is thus a generalization of greedy
visibility techniques for curve simplification [123, 63],
and also a form of data-dependent triangulation. In a
comparison with Franklin’s greedy insertion algorithm,
their unoptimized program was about two to four times
slower, but produced triangulations of a given quality
using fewer vertices. They reported running times of
about 8 seconds to select m=1,641 points from grids of
n=1202 points on a one-processor SGI Onyx.

Garland-Heckbert 95. Our own work in height field
simplification has explored fast and accurate variations of
the greedy insertion algorithm [40, 39].

We explored two optimizations of the most basic greedy
insertion algorithm (as in DeFloriani83). First, we ex-
ploited the locality of mesh changes, and only recalcu-
lated the errors at input points for which the approxima-
tion changed, and second, we used a heap to permit the
point of highest error to be found more quickly. When ap-
proximating an n point grid using an m vertex triangulated
mesh, these optimizations sped up the algorithm from an
expected time cost of O(mn) to O((m + n) logm). We
were able to approximate an n=10242 grid to high quality
using 1% of its points in about 21 seconds on a 150 MHz
SGI Indigo2.

We also explored a data-dependent greedy insertion
technique similar to Rippa’s method. We found an algo-
rithm that yielded, in a fairly representative test, a solu-
tion with 88% the error of Delaunay greedy insertion at a
cost of about 3–4 times greater. Source code for these al-
gorithms is available.

In that paper, we propose several ideas for future work
that could improve the performance of the greedy inser-
tion algorithm in the presence of cliff discontinuities, high
frequencies, and noise.

Arc/Info Latticetin. The geographic information sys-
tem Arc/Info sold by the Environmental Systems Research
Institute (ESRI) can approximate terrain grids. Its “Lat-
ticetin” command employs a hybrid feature/refinement ap-
proach that starts with a regular grid of equilateral trian-
gles and refines it with parallel greedy insertion [70, 95].

3.1.6 Decimation Methods

In contrast to refinement methods, the decimation ap-
proach to surface simplification starts with the entire input
model and iteratively simplifies it, deleting vertices, trian-
gles, or other geometric features on each pass. The deci-
mation approach is not so common for height field simpli-
fication; we will see far more decimation methods in the
section on manifold simplification.

Lee 89. A “drop heuristic” method for simplifying ter-
rains was proposed by Lee [73]. We call it a vertex deci-
mation approach because on each pass it deletes a vertex.
The algorithm takes the height field grid as input and cre-
ates an initial triangulation in which each 2× 2 square be-
tween neighboring input points is split into two triangles
[73]. On each pass, the error at each vertex is computed
and the vertex with lowest error is deleted. The error at a
vertex is found by temporarily deleting the vertex from the
triangulation, doing a local Delaunay retriangulation, and
measuring the vertical distance from the vertex to its con-
taining triangle. The process continues until the error ex-
ceeds the desired level, or the desired number of vertices is
reached. Deletion in a Delaunay triangulation can be done
incrementally to avoid excessive cost [68].

The drop heuristic method yields high quality approx-
imations, but its computational cost and memory cost ap-
pear very high. When Lee compared his algorithm to Chen
and Guevara’s method and to De Floriani’s ternary trian-
gulation method [23], he found, not surprisingly, that his
method yielded superior results [74]. The drop heuristic
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method is expensive because of the need to visit each ver-
tex on every pass. Its memory cost is high because a tri-
angulation with n vertices must be created6.

Scarlatos-Pavlidis 92b. Scarlatos and Pavlidis explored
a method for adjusting a triangulation in order to equalize
the curvature of the input data within each triangle [109],
extending McClure’s and Pavlidis’ earlier work [82, 91,
83]. Their algorithm takes an initial triangulation and ap-
plies three passes: shrinking triangles with high curvature,
merging adjacent coplanar triangles, and swapping edges
to improve triangle shape and fit. In tests, the method
achieved little improvement when applied to the output
of their hierarchical triangulation algorithm [108, 107]: in
most cases, the method reduced the number of triangles,
but it also increased the maximum error unless explicit er-
ror tests were added [109]. Curvature equalization was
more successful at improving regular subsampling meshes
[107, p. 89]. No unshaded pictures of the resulting meshes
were given, however, so it is difficult to compare the qual-
ity of the results to other methods.

Scarlatos 93. In addition to the recursive subdivision
method described earlier, Scarlatos also developed a ver-
tex decimation method for constructing hierarchical trian-
gulations [107]. The method begins with an initial trian-
gulation and, to generate each level of the hierarchy, com-
putes the “significance” of each vertex and deletes vertices
in increasing order of significance until no more can be
deleted. Significance is an (unspecified) function of the er-
ror between a vertex and a weighted average of its neigh-
bors, and the degree of a vertex. The method is similar to
that of Schroeder et al., discussed later, except that Scar-
latos’ method is limited to height fields, and it takes more
precautions to minimize error accumulation. Scarlatos re-
ported a running time of 7.75 minutes to build a complete
hierarchy for about n=5,900 points on a VAX 8530.

Hughes-Lastra-Saxe 96. The simplification algorithm
described by Hughes, Lastra, and Saxe [59] is targeted
towards simplifying global illumination meshes resulting

6We find that storing a triangulation with n vertices uses 5 to 100
times the memory of a height field of n points because of the extra ad-
jacency information required.

from radiosity systems. Consequently, the algorithm must
simplify both the mesh geometry and the color values as-
sociated with each mesh vertex. They rejected a greedy in-
sertion algorithm because of its inability to deal well with
sharp discontinuities (i.e., shadow borders). Instead, they
chose a combination of local vertex decimation and sim-
plification envelopes as in [126, 14]. Interestingly, they
chose to select vertices for removal at random rather than
in order of increasing error. They claim that this provides
more uniform meshes, which they believe to be advan-
tageous. Their method also uses higher-order elements
(quadratic, cubic, etc.) for reconstructing the surface, a
possibility which most simplification methods ignore.

3.1.7 Optimal Methods

The error of an optimal piecewise-linear, triangulated ap-
proximation to a smooth function of two variables has
been analyzed in the limit as the number of triangles goes
to infinity. Nadler showed that the L2–optimal approxima-
tion has L2 error proportional to m−1 [88].

Finding the optimal approximation of a grid or surface
using triangulations of a subset of the input points could be
done by enumerating all possible subsets and all possible
triangulations, but this would take exponential time, and
it would clearly be impractical. As with curves, certain
problems in optimal surface approximation are well under-
stood, while others are not. It is known that L∞–optimal
polygonal approximation of convex surfaces is NP-hard
(requires exponential time, in practice) [19, 9]. This im-
plies, of course, that L∞–optimal approximation of height
fields and more general surfaces (in the space of all tri-
angulations) is also NP-hard, since they are a superset of
convex surfaces. We do not know if there are polyno-
mial time algorithms for optimal surface simplification us-
ing any other error metric (such as L2), or within a more
restricted class of triangulations. Even if some form of
this problem permits an optimal algorithm with polyno-
mial time, it would be surprising if it were as fast as the
heuristic methods we have summarized above.

Polynomial time algorithms are known, however, for
sub-optimal solutions with provable size and quality
bounds. If the optimal L∞ solution for a given error
tolerance has mo vertices, there is an O(n7) algorithm
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to find an approximation with the same error using m=
O(mo log mo) vertices [87, 1], but this is far too slow to be
practical for large problems.

3.2 Manifold Surfaces

We now turn our attention from height fields and paramet-
ric surfaces to manifolds and manifolds with boundary. In
general, the manifold can have arbitrary genus and be non-
orientable7 unless stated otherwise. Manifolds are more
difficult to simplify than height fields or parametric sur-
faces because there is no natural 2-D parameterization of
the surface. Delaunay triangulation is thus less easily ap-
plied. We group manifold simplification methods into two
classes: refinement methods and decimation methods.

3.2.1 Refinement Methods

Faugeras-Hebert-Mussi-Boissonnat 84. Faugeras
et al. developed a technique somewhat similar to De
Floriani’s 1984 algorithm, but it does not have persistent
long edges, and it is applicable to the simplification of any
3-D triangulated mesh of genus 0, not just height fields
[34]. The method begins with a pancake-like two-triangle
approximation defined by three vertices of the input mesh.
Associated with each triangle of the approximation is a
set of input points. In successive passes, for each triangle
of the approximation, the input point farthest from the
triangle is found, and if the distance is above threshold,
the triangle is split into 3–6 subtriangles by inserting
new vertices at the interior point of highest error. Edges
common to two subdivided triangles are split at their
points of highest error (Figure 6). Splitting in this way
eliminates the long edges of ternary triangulation.

During subdivision, each triangle’s point set must be
partitioned into 3–6 subsets. In methods that are limited to
height fields, the partition of input points to subtriangles is
done with simple projection and linear splitting. To parti-
tion point sets on a surface in 3-D, Faugeras et al. instead
split using the shortest path along edges of the input mesh.

7A manifold is orientable if its two sides can be consistently labeled
as “inside” and “outside”. A Möbius strip is non-orientable.

The method simplified an n= 2,000 point model in 1
minute on a Perkin Elmer computer. The approximations
generated were sometimes poor, however, and the method
had particular problems with concavities [96]. A later sub-
division data structure, the “prism tree”, addressed these
problems by recursively subdividing surface points into
truncated pyramidal volumes [96].

Delingette 94. A related method for the simplification
of orientable manifolds was developed by Delingette [28].
He fits surfaces to sets of 3-D points by minimizing an en-
ergy function which is a sum of an error term, an edge
length term, and a curvature term. The algorithm starts
with a mesh that is the dual to a subdivided icosahedron.
It then iteratively adjusts the geometry, attempting to min-
imize the global energy [29]. After a good initial fit is
achieved with this fixed topology, the mesh is refined. Re-
gions of the mesh with high curvature, high local fit er-
ror, or elongated faces are subdivided and vertices migrate
to points of high curvature [28]. Delingette reports that it
takes 2 to 7 minutes to approximate a set of n=260,000
points with a mesh of m= 1,700 vertices on a DEC Al-
pha. The method is much faster than the related method
of Hoppe et al. [58], but it does not achieve comparable
simplification, and it has a number of parameters that ap-
pear to require careful tuning.

Lounsbery-Eck-et al. 95. A two-stage method for mul-
tiresolution wavelet modeling of arbitrary triangulated
polyhedra was developed by Lounsbery, Eck, et al. [76,
33]. The method is not limited to height fields or even to
triangulated meshes with spherical topology; it can be ap-
plied to any triangulated manifold with boundary. The ap-
proach first constructs a base mesh which is a triangulated
polyhedron with the same topology as the input surface.
Geodesic-like distance measures are used in this step, rem-
iniscent of the method of Faugeras et al.. It then uses re-
peated quaternary subdivision of the base mesh to con-
struct a new mesh that approximates the input surface very
closely. A multiresolution model of the new mesh is then
built using wavelet techniques, after which an approxima-
tion at any desired error tolerance can be quickly gener-
ated. Eck et al. simplified a model with about n=35,000
vertices to m=5,400 vertices in 22 minutes of resampling
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or or or

Figure 6: Subdivision pattern of Faugeras et al..

plus 5 minutes of wavelet analysis/synthesis, on an SGI
Onyx. The intermediate, approximating mesh had about
twice as many vertices as the original.

While the approach is very attractive for interactive sur-
face design and surface optimization, it may not be the best
method for multiresolution modeling of static surfaces be-
cause of the cost of resampling. For the approximation of
height fields, resampling is not needed, and simpler ten-
sor product wavelet techniques could be used instead [79].
Another disadvantage is that the method does not resolve
creases at arbitrary angles well, since the final mesh sub-
divides the triangles of the base mesh on a regular grid.

3.2.2 Decimation Methods

The next class of surface simplification algorithms we will
consider is decimation methods: algorithms that start with
a polygonization (typically a triangulation) and succes-
sively simplify it until the desired level of approximation
is achieved. Most decimation algorithms fall into one of
the following categories:

vertex decimation methods delete a vertex and retriangu-
late its neighborhood,

edge decimation methods delete one edge and two trian-
gles, and merge two vertices,

triangle decimation methods delete one triangle and three
edges, merge three vertices, and retriangulate the
neighborhood, and

patch decimation methods delete several adjacent trian-
gles and retriangulate their boundary.

Several variants of the decimation approach have been
used for the problem of simplifying manifolds, particu-

retessellate

Before After

Figure 7: Vertex decimation. The target vertex and its ad-
jacent triangles are removed. The resulting hole is then
retessellated.

larly for thinning the output of isosurface polygonizers.

Kalvin 91. Kalvin et al. developed a two phase method
to create surface models from medical data [65]. The first
phase approximates a surface with tiny polygons using an
algorithm similar to marching cubes [90], and the second
phase then does patch decimation on the model by merg-
ing adjacent coplanar rectangles. Since it only merges pre-
cisely coplanar faces, the method does not allow control
over the degree of simplification, so it is quite limited.

Schroeder-Zarge-Lorensen 92. Schroeder et al. devel-
oped a general vertex decimation algorithm primarily for
use in scientific visualization [116]. Their method takes
a triangulated surface as input, typically a manifold with
boundary. The algorithm makes multiple passes over the
data until the desired error is achieved. On each pass, all
vertices that are not on a boundary or crease that have er-
ror below the threshold are deleted, and their surrounding
polygons are retriangulated (see Figure 7). The error at
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a vertex is the distance from the point to the approximat-
ing plane of the surrounding vertices. Note that errors are
measured with respect to the previous approximation, not
relative to the input points, so errors can accumulate (this
flaw was fixed in later versions of the algorithm). Their
paper demonstrated simplifications of models containing
as many as 1,700,000 triangles. The computation time to
simplify a model of n= 400,000 vertices to m= 40,000
vertices is about 14 minutes on an R4000 processor [115].
This method uses significant memory, like Lee’s. To con-
serve memory, compact data structures were developed
[115]. Source code for this algorithm is available [114].

Relative to Lee’s method, the technique of Schroeder et
al. is more general since it is not limited to height fields,
it uses a less expensive and less accurate error measure,
and it deletes multiple vertices per pass. Consequently, it
is faster, but probably has lower quality.

Soucy and Laurendeau 92. To simplify manifolds with
boundary, Soucy and Laurendeau also developed a vertex
decimation algorithm [118, 119]. Their application was
the construction of surface models from multiple range
views. On each pass, the vertex with least error is deleted,
and its neighborhood (the set of adjacent triangles) is
retriangulated. The process stops when the error rises
above a specified tolerance or the desired size of model is
achieved.

To compute rigorous error bounds, a set of deleted ver-
tices is stored with each triangle. We will call these points
the ancestors of the triangle. To compute the error at a
vertex, a temporary vertex deletion and retriangulation are
done. The error of a vertex is a measure of the error that
would result from its removal. More precisely, it is de-
fined to be the maximum distance between either an an-
cestor from the neighborhood or the vertex itself to the re-
triangulated surface. Deletion of a non-boundary vertex is
considered legal if the neighborhood triangles can be pro-
jected to 2-D without foldover.

To retriangulate, Soucy and Laurendeau first compute
a constrained Delaunay triangulation in a 2-D projection,
then this triangulation is improved using a version of Law-
son’s local optimization procedure [71] adapted to sur-
faces in 3-D. To update the data structures after retriangu-
lation, first the ancestor lists are redistributed among the

new triangles, then the error of each formerly neighboring
vertex is updated.

We can relate the method to several of its precursors.
Like Lee’s method, this algorithm does vertex decimation
by “one move lookahead”, but unlike his technique, it is
not limited to height fields. Like Faugeras et al. and De
Floriani et al. (1989), it stores a point set with each trian-
gle, but unlike those methods, it is a decimation algorithm,
and it is more general: it can simplify any manifold with
boundary.

Soucy and Laurendeau estimate the expected complex-

ity of their algorithm to be O
(

n log (n/(n−m))
)

. Their

method appears to yield higher quality results than the
method of Schroeder et al., but it is slower and it uses more
memory, since it maintains lists of all deleted points. A re-
vised version of this algorithm is used in the IMCompress
software sold by InnovMetric [64].

Turk 92. Another method for simplifying a manifold
with boundary is due to Turk [124]. This algorithm is not
a decimation method in the same sense as the previous
methods, but we list it here because it also starts with a full
triangulation and simplifies.

Turk’s algorithm takes a triangulated surface as input,
sprinkles a user-specified number of points on these tri-
angles at random, and uses an iterative repulsion proce-
dure to spread the points out nearly uniformly. The points
remain on the surface as they move about. After these
points are inserted into the original surface triangulation,
the original vertices are deleted one by one, yielding a tri-
angulation of the new vertices that has the same topology
as the original surface. Turk also demonstrated an im-
proved variant of this technique that groups points most
densely where the surface is highly curved.

Turk’s method appears to be best for smooth surfaces,
since it tends to blur sharp features8. Overall, it appears
that Turk’s algorithm is quite complex and that it will yield
results inferior in quality to the methods of Schroeder et al.
or Soucy-Laurendeau.

8William Schroeder, SIGGRAPH ’94 tutorial talk.
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Hinker-Hansen 93. Hinker and Hansen developed a
patch decimation algorithm for use in scientific visualiza-
tion [55]. It is a one pass method that first finds patches of
triangles with nearly parallel normal vectors, and then re-
triangulates each patch. The method has O(nlogn) time
cost in practice. A model with about n= 510,000 ver-
tices was simplified to m = 321,000 vertices in 9 min-
utes on a CM-5. The method is “largely ineffective when
faced with surfaces of high curvature”, however [55]. It
appears to work best on piecewise-ruled surfaces: those
with zero curvature in at least one direction, such as cylin-
ders, cones, and planes. Therefore the method is not as
general as that of Schroeder et al. or Soucy-Laurendeau.

Hoppe-DeRose-Duchamp-McDonald-Stuetzle 93.
Hoppe et al. developed an optimization-based algorithm
for general 3-D surface simplification [58]. Their method
takes a set of points and an initial, fine triangulated
surface approximation to those points as input, and
outputs a coarser triangulation of the points with the
same topology as the input mesh. The method attempts
to minimize a global energy measure consisting of three
terms: a complexity term that penalizes meshes with
many vertices, an error term that penalizes geometric
distance of the surface from the input points, and a spring
term that penalizes long edges in the triangulation. The
method proceeds in three nested loops, the outermost
one decreasing the spring constant, the middle one doing
an optimization over mesh topologies, and the inner one
doing an optimization over geometries. The topological
optimization uses heuristics and random selection to
pick an edge and either collapse it, split it, or swap it.
The geometric optimization uses nonlinear optimization
techniques to find the vertex positions that minimize the
global error for a given topology. Topological changes
are kept if they reduce the global error, otherwise they are
discarded. In other words, the method makes repeated
semi-random changes to the mesh, keeping those that
allow better fit and/or a simpler mesh.

Unlike most general surface simplification methods, the
method of Hoppe et al. does not constrain output vertices
to be a subset of the input points. Their method appears
to be less sensitive to noise in the input points than most
other methods because of its freedom in choosing vertices
and because the geometric error measure uses an L2 norm,

and not an L∞ norm.

Their method is slow, but it is capable of very good sim-
plifications. They simplified a mesh with m1=4,059 ver-
tices to m2=262 vertices while fitting to n=16,864 points
in 46 minutes on a 1-processor DEC Alpha. They have
released their code. Their algorithm yields higher quality
approximations than that of Eck et al., but it is slower [33].

Hamann 94. A triangle decimation method was ex-
plored by Hamann [49]. In this algorithm, triangles are
deleted in increasing order of weight, where weight is
the product of “equi-angularity” and curvature, roughly
speaking. Thus, slivers and low curvature triangles are
deleted first. The method appears rather complex, how-
ever, since second degree surface fitting is used to position
the new vertices, and a number of geometric checks are re-
quired to prevent topological changes.

Kalvin 94. In later work, Kalvin and Taylor developed a
patch decimation method called “superfaces” to simplify
manifolds within a given error tolerance [66, 67]. The al-
gorithm operates in a single pass. This pass consists of
three phases. The first phase segments the surface into ap-
proximately planar patches. Each patch is found by pick-
ing a face at random and merging in adjacent faces until the
patch’s faces can no longer be fit by a plane within the error
tolerance. Additional tests prevent degenerate or highly
elongated patches from being created. The second phase
simplifies the curves common to adjacent patches using
the Douglas-Peucker algorithm. The third phase retrian-
gulates the patches by subdividing them into star polygons
and then triangulating each star polygon.

When a face is merged into a patch, the set of feasible
approximating planes ax+ by+ cz + 1 = 0 of the patch
must be updated. This set could be represented using lin-
ear programming, as a convex polytope in the 3-D (a, b, c)
parameter space of planes, but the complexity of this data
structure could grow quite large. Instead, Kalvin and Tay-
lor use an ellipsoidal approximation that supports constant
time updates and queries.

At a high level, this method is quite similar to Hinker-
Hansen, in that it employs a single pass to find nearly
coplanar sets and then retriangulates them. Hinker-
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Hansen define patches based on angles between normal
vectors, however, while Kalvin-Taylor define them based
on distance-to-plane. Distance to plane is probably a bet-
ter method for defining patches, since it is less sensitive
to noise. Guéziec reports that Kalvin and Taylor’s algo-
rithm can simplify a model with about n=90,000 vertices
to m=5,000 vertices in 3 to 5 minutes on an IBM RS6000.

Varshney 94. Using visibility techniques from compu-
tational geometry, Varshney developed a patch decimation
algorithm for simplifying orientable triangulated mani-
folds with boundary [127, 126]. The method has bounded
error. Instead of simplifying in a fast, greedy manner, as
most other decimation methods do, it is much more brute
force, exhaustively testing to find the largest triangle to in-
sert on each pass.

First, the input surface is offset inwards and outwards
by a tolerance distance ε to create two offset surfaces. All
triangles defined by three vertices of the input surface are
checked for validity by testing that they do not intersect
either offset surface and that they do not overlap previ-
ously inserted triangles. On each pass of the algorithm, the
valid triangle that “covers” the greatest number of previ-
ously uncovered input vertices is inserted, the old triangu-
lation of this portion of the surface is deleted, and small
triangles are added to fill the cracks between the old and
the new. The algorithm generates good approximations
when it works, but problems arise when the offset surfaces
collide. So far, the method has not been demonstrated for
simplifications below 30% of the input size, and it is very
slow. The time costs of this algorithm and its variants
range from O(n2) to O(n6)9

Guéziec 95. Guéziec developed a method for simplify-
ing orientable manifolds that employs edge decimation
[46]. He defines the edge collapse, or edge contraction,
operator to delete an edge and merge its two endpoints
into a single vertex (Figure 8). Guéziec’s algorithm or-
ders edges by “importance” (in some unspecified way),
and makes a single pass through the edges in increasing
order of importance, doing edge collapses where legal.

9Personal communication, Pankaj K. Agarwal and Amitabh Varsh-
ney, 1995.

Before After

contract

Figure 8: A simple edge contraction. The highlighted
edge is contracted into a single point. The shaded trian-
gles become degenerate and are removed during the con-
traction.

Testing legality entails most of the work required to do
an edge collapse. The provisional new vertex is positioned
to fit the old faces well and to preserve volume. During
simplification, an error radius is associated with each ver-
tex. By interpolating spheres with these radii across the
surface, a error volume is defined. At any step during sim-
plification, the error volume encloses the original surface.
When an edge collapse is being considered, the error ra-
dius for the provisional new vertex is set so that the new
error volume encloses the old error volume.

The collapse is considered legal if it meets four condi-
tions: (1) the topology of the surface is preserved, (2) the
normals of the modified faces change little, (3) the new tri-
angles are well shaped (not slivers), and (4) the error radius
for the new vertex is below an error threshold.

Use of the error volume could give the user local control
of error tolerance at each vertex. No examples of this are
shown in the paper, however.

Guéziec reports a time of 10 minutes to simplify a
model with about n= 90,000 vertices to m= 5,000 ver-
tices on an IBM RS6000 model 350. He says that Kalvin
and Taylor’s algorithm yields more compact approxima-
tions for small error tolerances, but that his algorithm per-
forms better for large error tolerances, and that his trian-
gles are better shaped. Closely related algorithms are il-
lustrated with better pictures in another paper [47]. In that
work, a model with about n=181,000 vertices was sim-
plified to m=26,000 vertices in 53 minutes, on the same
type of machine. The quality of the resulting meshes ap-
pears good.
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Gourdon 95. Gourdon explored a method for simplify-
ing orientable surface meshes resulting from surface re-
construction [43]. His algorithm differs from almost all
other simplification algorithms in that it does not assume
the surface mesh to be a triangulation. The algorithm is de-
signed to preserve the Euler characteristic10 of the model;
this implies that the topology is preserved. Topological
preservation is important for simplifying medical data,
which is the focus of this technique. The algorithm iter-
atively removes edges based on an unspecified curvature
criterion. Because the algorithm supports non-triangular
facets, no retessellation is required after removing edges.
Gourdon observes that simply removing a sequence of
edges can lead to undesirable, irregular meshes. To con-
trol the regularity of the tessellation, he restricts the degree
of vertices to be at most 6 and facet may have at most 12
edges. Following simplification, a “regularization” step is
performed. Regularization attempts to improve the mesh
by moving points to minimize an energy function, in this
case the sum of squared edge lengths. A simple regulariza-
tion step would move a vertex towards the barycenter of its
neighbors. However, this can produce significant shrink-
age of the surface. To avoid this, Gourdon uses a regular-
ization step that moves the vertex towards the barycenter,
but constrains the vertex to move parallel to the average
plane of its neighbors.

Klein-Liebich-Strasser 96. The algorithm described by
Klein, Liebich, and Strasser [69] is very similar to the
method of Soucy and Laurendeau [119]. It simplifies an
oriented manifold by iteratively removing a vertex a retri-
angulating the resulting hole using a constrained Delaunay
triangulation. Each deleted vertex is linked to the closest
face in the approximation. These links are used to com-
pute the distance between the original and approximate
surfaces. To select a vertex for removal, each vertex is
tentatively removed and the additional error introduced by
the removal is computed. The vertex which introduces the
least error is selected for removal. After the vertex is re-
moved, the links and projected additional errors within its
neighborhood must be recomputed.

10The Euler characteristic of a model is defined as χ = F − E + V
where F, E, and V are, respectively, the number of faces, edges, and
vertices.

Algorri-Schmitt 96. Algorri and Schmitt developed an
algorithm for simplifying closed, dense triangulations re-
sulting from surface reconstruction [2]. Their algorithm
begins with a pre-processing phase which smooths the ini-
tial mesh by swapping edges based on a G1-continuity cri-
terion as in [32]. After this initial smoothing, every edge
whose dihedral angle exceeds some user-specified pla-
narity threshold is classified as a feature edge. Each ver-
tex is subsequently labeled according to its number of inci-
dent feature edges. An independent set of edges connect-
ing “0” vertices is collected, and all the edges are collapsed
simultaneously. This simplification phase is followed by
a smoothing phase were all non-feature edges are consid-
ered for swapping based on the G1-continuity criterion. If
further simplification is desired, edges are reclassified and
the process outlined above is repeated. Since only edges in
mostly planar regions are selected for decimation, the ba-
sic step will not simplify “characteristic curves” (e.g., the
edges of a cube) and there will always be a single vertex
left in the midst of planar regions. Algorri and Schmitt de-
scribe additional iterative steps which simplify these cases
separately from the basic step outlined above.

Ronfard-Rossignac 96. Another algorithm based on
edge collapse was described by Ronfard and Rossignac
[103]. The fundamental observation underlying their al-
gorithm is that each vertex in the original model lies at the
intersection of a set of planes, in particular, the planes of
the faces that adjoin the vertex. They associate a set of
planes with each vertex; they call this set the zone of the
vertex. A vertex’s zone is initialized to be the set of planes
of the adjoining faces. The error at a vertex is measured by
the maximum distance between the vertex and the planes
in its zone. When contracting an edge, the zone of the re-
sulting vertex is the union of the zones of the original end-
points. The error of this resulting vertex characterizes the
cost of contracting the edge. At each iteration, the edge of
lowest cost is selected and contracted. The complexity of
this algorithm would seem to be O(n logn).

Hoppe 96. The simplification algorithm presented by
Hoppe [56] for the construction of progressive meshes is
a simplified version of the algorithm of Hoppe et al. [58].
Rather than performing a more general search, it simply
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Before After

Figure 9: Uniform vertex clustering. Note the triangle
which as collapsed to a single point, and the now dangling
edge at the bottom. Also note how separate components
have been joined together.

selects a sequence of edge contractions. The algorithm
uses essentially the same error formulation of the earlier
method, although it is augmented to handle surface at-
tributes such as colors. Hoppe suggests that the resulting
meshes are just as good, and perhaps even better, than the
results of the more general mesh optimization algorithm.

3.3 Non-Manifold Surfaces

The most general class of surfaces is the non-manifold sur-
face, which permits three or more triangles to share an
edge, and permits arbitrary polygon intersections. Rel-
atively few surface simplification algorithms can handle
models of this generality.

Rossignac-Borrel 93. A very general technique for sim-
plifying general 3-D triangulated models was described
by Rossignac and Borrel [104]. They subdivide the ob-
ject’s bounding volume into a regular grid of boxes of user-
specified size. All vertices are graded (or weighted) ac-
cording to some scheme, and all vertices within each box
are merged together into a new representative vertex. A
simplified model is then synthesized from these represen-
tative vertices by forming triangles according to the origi-
nal topology (see Figure 9). This method is extremely gen-
eral, as it can operate on any set of triangles (not just man-

contract

Before After

Figure 10: Pair contraction joining unconnected vertices.
The dashed line indicates the two vertices being contracted
together.

ifolds), it can achieve arbitrary simplification levels, and
it can even eliminate small objects or otherwise change
the topology of a surface. Unfortunately, it does not pre-
serve detail well [52]. When applied to height fields, it
is roughly equivalent to blurring followed by regular sub-
sampling. This software is being sold as part of IBM’s “3D
Interaction Accelerator” [61]. This method has been ex-
tended using octrees instead of regular grids [78].

Low-Tan 97. Low and Tan [77] developed a clustering
algorithm that is intended to provide higher quality than
the uniform clustering described by Rossignac and Borrel
while maintaining its generality. Their first improvement
was to suggest a better weighting criterion. More impor-
tantly, they replaced the uniform grid with a set of cluster
cells. These cells can be any simple shape, such as cubes
or spheres. Cells are centered around their vertex of high-
est weight. When a vertex falls within the intersection of
multiple cells, it is placed in the cell whose center is clos-
est. In addition to these algorithmic improvements, they
improved the appearance of simplified models by render-
ing stray edges as thick lines whose area approximates the
area of the original model in that region.

Garland-Heckbert 97. We have developed an algo-
rithm for simplifying surfaces based on iterative vertex-
pair contractions [41]. A pair contraction is a natural gen-
eralization of edge contraction (Figure 8) where the vertex
pair need not be connected by an edge (see Figure 10). A
4×4 symmetric matrix Qi is associated with each vertex
vi. The error at the vertex is defined to be vTQv, and when
a pair is contracted, their matrices are added together to
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form the matrix for the resulting vertex. We derive these
matrices to calculate the sum of squared distances of the
vertex to a set of planes (this is similar to the error metric
of Ronfard and Rossignac [103]).

Our technique for tracking vertex error is quite efficient,
and the algorithm is correspondingly fast. The quality
of the approximations is similar to those of Ronfard and
Rossignac, although the algorithm is more general in that
it can join model components.

3.4 Related Techniques

We have focused on approximation of surfaces by poly-
gons, but there has been related work in fitting curved sur-
faces to a set of points on a surface, and approximation of
volumetric data. We include a partial survey.

Fitting a Curved Surface Model. Polygon models for
curved surfaces can be bulky. More compact representa-
tions for surfaces are often possible using curved surface
primitives such as piecewise-polynomial surfaces. The
next class of models beyond piecewise-linear surfaces are
surfaces with tangent continuity. Schmitt and others have
developed adaptive refinement methods for fitting rectan-
gular Bézier patches [113] and triangular Gregory patches
[111] to a grid of points in 3-D. The latter method is supe-
rior to the former because it is better able to adapt to fea-
tures at an angle to the grid. Another curved surface prim-
itive, the subdivision surface, has been fit to points in 3-
D by Hoppe et al., with very nice results [57]. Piecewise
quadratic surfaces have been fit to range data using least
squares techniques [35].

Fitting to a Volume. A generalization of the feature ap-
proach to the approximation of volumes (scalar functions
of three variables) was explored by Hamann and Chen
[50]. They ranked points according to an estimate of the
curvature of the function f (x, y, z) at each point, and in-
crementally inserted vertices into a data-dependent tetra-
hedrization, in decreasing order of curvature, until a given
error tolerance was met. The errors for data-dependent
tetrahedrization were measured using L2 or L∞ norms on
all points inside each tetrahedron. The surface decima-

tion approach has also been generalized to tetrahedriza-
tions [100].

4 Conclusions

Surface simplification is not as well understood as
curve simplification. Whereas there appears to be fairly
widespread agreement that one algorithm, Douglas-
Peucker, does a high quality job of curve simplification at
acceptable speeds, there is little agreement about the best
approach for surface simplification. No thorough empir-
ical comparison of surface simplification methods has
been done analogous to the studies for curves ([85, 130]).
Furthermore, surface simplification seems inherently
much more difficult than curve simplification.

Why are surfaces so much harder? The biggest quali-
tative difference we observe is that curves inherently lend
themselves to divide and conquer strategies like Douglas-
Peucker, since splitting a curve at the point of highest er-
ror yields two curves, breaking the task into two smaller
subtasks of the same type. Splitting a surface at the point
of highest error is an ambiguous concept. Certain meth-
ods arbitrarily choose some way of splitting at a point, as
with the hierarchical subdivision methods that split a tri-
angle into three or more subtriangles; and other methods
abandon the divide and conquer strategy and employ the
more complex general triangulations.

Our purpose has been primarily to survey the existing
methods, not to evaluate them, so we offer few conclu-
sions here. Instead we hope that this survey, by collecting
references and descriptions to the large body of work on
this topic, will draw attention to similar lines of research
in disparate fields, and facilitate future cross-fertilization.
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