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Abstract

For synthesizing realistic images of a real three dimensional object, reflectance properties of
the object surface, as well as the object shape, need to be measured. This paper describes
one approach to create a three dimensional object model with physically correct reflectance
properties by observing a real object. The approach consists of three steps. First, a sequence
of range images and color images is measured by rotating a real object on a rotary table with
fixed viewing and illumination directions. Then, the object shape is obtained as a collection
of triangular patches by merging multiple range images. Secondly, by using the recovered
object shape, color pixel intensities of the color image sequence are separated into the dif-
fuse reflection component and the specular reflection component. Finally, the separated
reflection components are used to estimate parameters of the Lambertian reflection model
and a simplified Torrance-Sparrow reflection model. We have successfully tested our
approach by using images of a real object. Synthesized images of the object under arbitrary
illumination conditions are shown in this paper.
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1 Introduction

Recently, a demand for highly realistic synthesized images has been expanding rapidly in
many applications such as virtual reality and electrical museums. For generating realistic images
of a three dimensional object, two aspects of information are fundamental: the object’s shape and
reflectance properties such as color and specularity. We call those two aspects of information the
geometric information-and the photometric information. Significant improvements have been
achieved in the field of computer graphics hardwares and image rendering algorithms. However,
it is often the case that three dimensional models are created manually by users. That input pro-
cess is normally time-consuming and can be a bottle neck for realistic image synthesis. Therefore,
techniques to obtain object model data automatically by observing a real object could have great
significance in practical applications.

Techniques for measuring the geometric information by using range data from real objects
have been intensively studied in the past. Turk and Levoy developed a system which can merge
multiple surface meshes one by one, by using two step strategy: registration by the iterative clos-
est point algorithm (ICP algorithm) and integration by the zippering algorithm [23]. Higuchi and
Ikeuchi has developed a method for merging multiple range views of a free-form surface obtained
from arbitrary viewing directions, with no initial estimation of relative transformation among
those viewing directions [6]. The method is based on the Spherical Attribute Image (SAI) repre-
sentation of free-form surfaces which was originally introduced by Delingette, Hebert and Ikeuchi
in [4]. Hoppe, DeRose, and Duchamp [7] have introduced an algorithm to construct three dimen-
sional surface models from a cloud of points without spatial connectivity. The algorithm differs
from others in that it does not require surface meshes as input. It is important to see that those
techniques are mainly focused on obtaining the geometric information from range data, but only
limited attention has been paid to the photometric information such as reflectance properties.

On the other hand, techniques to obtain the geometric information and the photometric
information only from intensity images have been developed by other researchers. Sato and Ikeu-
chi [18] introduced a method to analyze a sequence of color images taken under a moving light
source. They successfully estimated parameters of a reflectance function as well as object shapes,
by explicitly separate the diffuse and specular reflection components. Subsequently, the technique
has been applied to analyze a color image sequence taken in an outdoor environment under solar
illumination [19]. Lu and Little developed a method to estimate a reflectance function from a
sequence of black and white images of a rotating smooth object, and the object shape was suc-
cessfully recovered by using the estimated reflectance function [12]. Since the reflectance func-
tion is measured directly from the input image sequence, the method does not assume a particular
reflection model such as the Lambertian model which is commonly used in computer vision.
However, the method works only for smooth objects which are symmetric about a rotation axis.
Another interesting attempt for measuring a reflectance function from intensity images has been
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reported by Ward [24]. Ward designed a special device with a half-silvered hemisphere and a
CCD video camera, which can measure a bidirectional reflectance distribution function (BDRF)
of anisotoropic reflection. The main advantage of the device is that it takes significantly less time
to measure a BDRF than a conventional gonioreflectometer. A BDRF of a real object surface has
been measured by the device and highly realistic images are synthesized. However, this approach
cannot be easily extended for modeling real object with various reflectance properties. A small
piece of test material has to be given to measure the material’s BDRF. In addition, an object shape
was not measured and simply given by a user manually.

Recently, techniques to measure the geometric and photometric information together by
using both range images and black and white intensity images have been studied. Ikeuchi and
Sato originally developed a method to measure object shapes and reflection function parameters
from one set of range image and intensity image [9]. In their attempt, the surface shape is recov-
ered from the range image at first, and then surface normals of the recovered object surface are
used for reflectance parameter estimation. The main drawback of the method is that it assumes
uniform reflectance properties over the object surface. Additionally, only partial object shape was
recovered because only one range image was used. Kay and Caelli introduced another method to
use a set of a range image and 4 or 8 intensity images taken under different illumination condi-
tions [10]. By increasing the number of intensity images, they estimated reflection function
parameters locally for each image pixels. Unlike the algorithm proposed by Sato and Ikeuchi, the
method can handle object surfaces with varying reflectance properties. However, it is reported
that parameter estimation can be unstable especially when the specular reflection component is
not observed strongly.

In this paper, we propose one approach to recover both the geometric and photometric
information from a sequence of range images and color images of a rotating object. Unlike previ-
ously introduced methods, our approach is cable of estimating parameters of a reflection function
locally in a robust manner. Firstly, a sequence of range images is used for recovering an entire
shape of the object as a collection of triangular patches. The zipper system developed by Turk and
Levoy [23] is used for the shape recovery stage. Then, a sequence of color images are mapped
onto the recovered shape. As a result, we can determine observed color changes through the
image sequence for all triangular patches of the object surface. The observed color sequence is
separated into the diffuse reflection component and the specular reflection component by the algo-
rithm used originally by Sato and Ikeuchi in [18]. Subsequently, parameters of a reflection func-
tion used in our analysis are estimated reliably for the diffuse and specular reflection components.
The reflection model used here is described as a linear combination of the Lambertian model and
the Torrance-Sparrow model The Torrance-Sparrow model is modified according to our experi-
mental setup where the viewing and illumination directions are always the same. Finally, color
images of the object are synthesized from the recovered shape and reflectance properties to dem-
onstrate the feasibility of the proposed approach.
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The paper is organized as follows. The section 2.1 describes the recovery of an object
shape from a sequence of range images. In the section 2.2, a projection of color images onto the
recovered object shape will be explained. The section 3.1 introduces the reflection model used in
our experiment. The algorithm for separating the diffuse and specular reflection components is
explained in the section 3.2, and reflectance parameter estimation is discussed in the section 3.3.
The algorithm is applied to range images and color images of a real object, and experimental
results will be shown in the section 4. Concluding remarks are presented in the section 5.
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2 Modeling of geometric information

2.1 Shape recovery

In this section, a method for generating a three dimensional object shape from multiple
range images is described.

In the past, there have been a large number of techniques investigated for constructing
three dimensional object shapes from unorganized or organized points. For instance, Turk and
Levoy [23] developed a technique to combine multiple range images one by one, using a two step
strategy: registration and integration. Their technique uses a modified version of the iterated clos-
est-point algorithm (ICP algorithm) which was originally developed by Besl and McKay [2].
After the registration procedure, two surface meshes composed of small triangular patches are
integrated to produce one combined surface mesh. They called the integration algorithm the zip-
per algorithm. Turk and Levoy’s zipper algorithm is effective for producing an object model with
a large number of triangular patches. In their paper [2], example objects typically consist of over
100,000 triangle patches. One of the advantages of the zipper system is that it does not require an
accurate relative transformation between the range images. That is because the all range images
can be aligned by using the ICP algorithm. We found that it is still advantageous even when the
relative transformation can be measured directly (e.g. using a rotary table). The zipper system
takes surface meshes created from range images as its input. That reduces the complexity of the
integration algorithm significantly, while other algorithms use a collection of data points without
connectivity information among the points. Because of the zipper system’s advantages mentioned
here, we decided to use the system for modeling geometric information of real objects. For more
details of the zipper system, refer to the paper by Turk and Levoy [23].

Range images are obtained by using a light stripe range finder with a liquid crystal shutter
and a color CCD video camera [17]. It can compute three dimensional point locations correspond-
ing to image pixels based on optical triangulation. For each range image, a set of six images is
obtained. Those images contain x, y and z locations and red, green, and blue color band values of
all pixels. Pixels of the range images and the color images correspond because all images are cap-
tured by using the same camera. An experimental setup used in our experiments is illustrated in
Figure 1. A single point light source is used for illuminating a target object. The light source is
located nearby the camera lens, so that both the viewing direction and the illumination direction
are approximately the same.

First, the range finder is calibrated by using a calibration box of known size and shape.
The calibration produces a 4 x3 matrix which represents the projection transformation between
the world coordinate system and the image coordinate system. The projection transformation
matrix will be used for mapping a sequence of input color images onto the recovered object shape
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(section 2.2). An object whose shape and reflectance information are to be recovered is located on
a computer-controlled rotary table. Then, range and color images are captured by the range finder
at a fixed angle step of object orientation. Each range image is used for creating a surface mesh
which consists of small triangular patches. Following the measurement of range and color images,
the zipper system is used for combining all surface meshes to create a merged object shape. The
recovered object shape and a sequence of input color images will be used for analyzing the
object’s reflectance properties later, which will be explained in the section 3.

light stripe projector

/
/ ;;/
/ i
/ AN
color camera
rotary table

Figure 1 Experimental setup

2.2 Mapping color images onto recovered object shape

The recovered object shape and the sequence of input color images are used for estimating
reflection model parameters at each triangular patch. The algorithm to estimate reflectance param-
eters of the object surface from the sequence of color images will be explained in the section 3.

For the reflectance parameter estimation, we need to know how the observed color
changes at each triangular patch, as the object rotates. That can be done by mapping the sequence
of color images onto the recovered object shape. The recovered object shape as a collection of tri-
angular patches is defined in a three dimensional world coordinate system. The rotary table’s
location and orientation in the world coordinate system are given by calibration. Thus, locations
of all triangular patches in the world coordinate system can be easily computed for each orienta-
tion of the object. Subsequently, the triangular patches are projected back onto the image plane by
using the 4x3 projection transformation matrix based on a perspective projection model. The
center of the projection is simply computed from the projection matrix [21]. The Z-buffer algo-
rithm is used for determining visible triangular patches and their locations on the image plane.
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Ideally, all triangular patches are small enough to have uniform color on the image plane. How-
ever, a projection of a triangular patch on the image plane often corresponds to multiple image
pixels of different color. Therefore, the average color intensity of all corresponding pixels is
assigned to the triangular patch. It would be a straightforward extension to assign a two dimen-
sional array to each triangular patch to store all pixel colors when the resolution of triangular
patches is high enough.

By applying the procedure explained above for all object orientations, we finally get a col-
lection of triangular patches each of which has a sequence of observed color with respect to the
object orientation.
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3 Modeling of photometric information

3.1 Reflection model

In this section, a reflectance model used in this report is described. The reflectance model
will be used later for separating the diffuse and surface reflection components from a sequence of
color images. The reflection component separation will be described in the section 3.2. The model
will also be used for reflectance parameter estimation which will be explained in the section 3.3.

A mechanism- of reflection is described in terms of three reflection components, namely
the diffuse lobe, the specular lobe, and the specular spike [13]. The diffuse lobe component is
explained as internal scattering. When an incident light ray penetrates object surface, it is
reflected and refracted repeatedly at a boundary between small particles and medium of the
object. The scattered light ray eventually reaches the object surface, and is refracted into the air in
various directions. This phenomenon results in the diffuse lobe component. The Lambertian
model is based on the assumption that those directions are evenly distributed in all directions. In
this paper, the Lambertian model is used for modelling the diffuse lobe component.

Unlike the diffuse lobe and the specular lobe components, the specular spike component is
not commonly observed in many actual applications. The component can be observed only from
mirror-like smooth surfaces where reflected light rays of the specular spike component are con-
centrated in a specular direction. That makes it hard to observe the specular spike component
from viewing directions at coarse sampling angles. Therefore, in many computer vision and com-
puter graphics applications, a reflection mechanism is modelled as a linear combination of two
reflection components: the diffuse lobe component and the specular lobe component. Those two
reflection components are normally called the diffuse reflection component and the specular
reflection component, respectively. The reflection model was formally introduced by Shafer as the
dichromatic reflection model [20]. Based on the dichromatic reflection model, the reflection
model used in our analysis is represented as a linear combination of the diffuse reflection compo-
nent and the specular reflection component. The Lambertian model and the Torrance-Sparrow
model are used for modelling those two reflection components, respectively. As Figure 1 illus-
trates, illumination and viewing directions are fixed and the same. In Appendices of this paper, the
reflection model used for the particular experiment setup is derived and given as:

e2
20'(21

1
I, = Kdiff, m €088 + Kspec, Mmeos®C m = red, green, blue (EQ1)

where 6 is the angle between the surface normal and the viewing direction (or the light

source direction) (Figure 10), K, . m and K yrf m 2r€ a constant for each reflection component, o,



page 8

is the standard deviation of a facet slope o of the Torrance and Sparrow model. The direction of
the light source and the camera with respect to the surface normal is referred as the sensor direc-
tion 6 in this paper.

3.2 Reflection component separation

The algorithm to separate the two reflection components is described here. The separation
of the two fundamental reflection components is important for robust estimation of reflectance
parameters. It has been reported that estimating all reflectance parameters at once tends to make
computation unstable and sometimes makes it hard to converge [10]. Therefore, the separation
algorithm is applied prior to reflectance parameter estimation. The separation algorithm was orig-
inally introduced for the case of a moving light source by Sato and Ikeuchi in [18]. In this paper, a
similar algorithm is applied for the case of a moving object.

Using three color bands: red, green, and blue, the coefficients X diff. m and Kspec’ in
(EQ1), become two linearly independent vectors, K diff and Kspec , unless the colors of the two
reflection components are accidentally the same:

8T eq (M) gige (M) s (1) dA
K jiff, red A
I”{diff = Kdiff, green| — 7..: green ) kdlff (A) s (A) dA (EQ2)
K,
diff, bl
e 8 [ Totue (M) kigge (V) 5 (1) dA
8[Treq (V) Koo (W) 5 (M) dA
Kspec, red A
Kspec = Kspec, green| — { green A kspec (M) s (1) dA (EQ3)
K
, bl
spec, blue gJ-Tblue (A) kspec (A) s (M) dA

These two vectors represent the colors of the diffuse and specular reflection components
in the dichromatic reflectance model [20].

First, the observed color intensities in the R, G, and B channels with » different object
orientations, are measured at each triangular patch of the recovered object shape. It is important to
note that all intensities are measured at the same triangular patch. The three sequences of inten-
sity values are stored in the columns of an n X 3 matrix M. Considering the reflectance model
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and two color vectors in (EQ1), (EQ2), and (EQ3), the intensity values in the R, G, and B chan-
nels can be represented as:

M= My Mg My

cos@, P(6,)

cos6, P(9,)
2 2 Kdiff, red Kdiff, green Kdiff, blue

spec, red Kspec, green Kspec, blue

cos e, P (Gn)_

T
_ K
_ | K digr
- _Gdiff Gspec:l T
~spec
=GK (EQ4)

where P(0) = (exp(—ez/ci»/cose, and the two vectors G diff and G oc Tepresent the
intensity values of the diffuse and specular reflection components with respect topthe sensor direc-
tion 8. The vector K 7 represents the diffuse reflection color vector. The vector Igspec repre-
sents the specular reflection color vector. We call the two matrices G and K, the geometry matrix

and the color matrix, respectively.

Suppose we have an estimation of the color matrix K. Then, the two reflection compo-
nents represented by the geometry matrix G are obtained by projecting the observed reflection

stored in M onto the two color vectors X ... and K .
~diff ~spec

G = MK" (EQ5)
where K* isa 3 x 2 pseudoinverse matrix of the color matrix K.

The derivation shown above is based on the assumption that the color matrix K is known.
In our experiments, the specular reflection color vector Igspecis directly measured by using a
standard color chart. Therefore, only the diffuse color vector K diff is unknown. The method to
estimate the diffuse color vector is explained in the following section.

* Estimation of the diffuse reflection color

From (EQ1), it can be seen that the distribution of the specular reflection component 115
limited to a fixed angle, depending on ©. Therefore, if two vectors, w, = |Ip I Ip.
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(i = 1,2) are sampled on the 0 axis at large enough interval, at least one of these vectors will be
equal to the color vector of the diffuse reflection component X diff" This vector has no specular
reflection component. The desired color vector of the diffuse reﬂectionTcomponent K, iff is the
vector w. which subtends the largest angle with respect to the vector Igspec. The angle between
the two color vectors can be calculated as:

T

A "W,
B = acos—s]{’ec - (EQS6)
[

~spec
Once we get the color matrix K, the geometry matrix G can be calculated from (EQ5).
Then, each of the diffuse and specular reflection components are given as:

T
Myisr = i aigr (EQ7)
M_ =G K
spec ~ =spec~spec (EQ8)

3.3 Reflectance parameter estimation for segmented regions

In the previous section, the method to separate the two reflection components from a
sequence of observed colors of each triangular patch was described. In this section, we will dis-
cuss how to estimate parameters of the reflectance model for the triangular patch by using the sep-
arated reflection components.

By applying the separation algorithm that was explained in the previous section, we obtain
a sequence of the diffuse reflection component and a sequence of the specular reflection compo-
nent for each triangular patch. That makes it possible to estimate reflectance parameters of the
reflection model (EQ1) separately for the two reflection components. The parameter estimation is
performed for each triangular patch one by one. As (EQ1) shows, the reflectance model is a func-
tion of the angle between the surface normal and the viewing direction 0. Therefore, for estimat-
ing reflectance parameters: K ;. m Kopec,m and o, the angle 8 has to be computed as the rotary
table rotates. Since the projection transformation matrix is already given and the object orienta-
tion is known in the world coordinate system, it is straightforward to compute a surface normal
vector and a viewing direction vector (or a illumination vector) at a center of each triangular
patch. Thus, the angle © between the surface normal and the viewing direction vector can be
computed. After the angle 6 is computed, the reflectance parameters for the diffuse reflection
component (K, i ) and the specular reflection component (K PeB and o) are estimated sepa-
rately by the Levenberg-Marquardt method [16]. In our experiment, the camera output is cali-
brated so that the specular reflection color has the same value from the three color channels.

Therefore, only one color band is used to estimate Kspec in our experiment.
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By repeating the estimation procedure for all triangular patches, we can estimate the dif-
fuse reflection component parameters for all triangular patches if those patches are illuminated in
one or more frames of the image sequence. On the other hand, the specular reflection component
can be observed only in a limited viewing direction. Due to this fact, the specular reflection com-
ponent can be observed only in a small subset of all triangular patches. We cannot estimate the
specular reflection component parameters for those patches in which the specular reflection com-
ponent is not observed. Even if the specular reflection component is observed, the parameter esti-
mation can become unreliable if the specular reflection is not sufficiently strong. To avoid that, we
can increase the number of sampled object orientations and take more color images. However,
that still cannot guarantee that all triangular patches show the specular reflection component. Tak-
ing more color images may not be practical since more sampled images require more measure-
ment time and data processing time.

Forthe above reasons, we decided to assign the specular reflection component parameters
based on region segmentation. In our experiments, it is assumed that the object surface can be
segmented into a finite number of regions which have uniform diffuse color, and all triangular
patches within each region have the same specular reflection component parameters. If the region
segmentation cannot be performed correctly (e.g. fine texture on the object surface), the segmen-
tation can be done by other measures such as uniform surface normal directions, depending on the
type of target objects. By using the segmentation algorithm, the specular reflection parameters of
each region can be estimated from triangular patches with strong specularity. The estimated
parameters are assigned to the rest of patches in the region. The triangular patches with strong
specularity can be easily selected after the reflectance component separation explained in the sec-
tion 3.2. The limitation of this approach is that the specular reflection parameters for a region can-
not be estimated if no specularity is observed in the region. In that case, the specular reflection
parameters of neighboring regions can be assigned to the region as an approximation. It is impor-
tant to note that the segmentation and parameter estimation are used only for the specular reflec-
tion component. The diffuse reflection component parameter are estimated locally regardless of

specularity.

After reflectance parameters are estimated for all triangular patches, we have the object
shape as a collection of triangular patches and reflectance parameters for those patches. This
information can be used for synthesizing computer graphics images with physically correct reflec-
tion. Some examples of synthesized images will be shown in the section 4.7.
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4 Experimental results

4.1 Experimental setup

In the previous sections, we described the method to obtain shape and reflectance informa-
tion from multiple range images and color images. The method includes three steps: 1. merging
multiple triangular surface patches into one patch to generate an object shape model, 2. separating
the two fundamental reflection components from a sequence of color images, and 3. estimating
the reflection model parameters from the separated reflection components. We applied the method
to actual range and color images taken in a laboratory setup, in order to demonstrate the feasibility
of the proposed method. A SONY CCD color video camera module model XC-711 is used to take
color images in our experiments. A light stripe range finder with a liquid crystal shutter is used for
taking range images. The same color camera is used to take images in the range finder. This guar-
antees correspondence between the range images and the color images at each pixel. The target
object used in our experiment is a plastic dinosaur with an approximate height of 170mm. The
object is painted in several colors, and each painted surface region appears to have a uniform
color. The object is located on a rotary table whose orientation can be controlled by a computer.
Multiple range and color images of the object are taken for different object orientations. A single
xenon lamp whose diameter is approximately 10mm is used as a point light source. The light
source is located close by the camera, and the light source direction is considered to be the same
as the viewing direction. The camera and light source locations are fixed in our experiment. The
approximate distance between the object and the camera is 2m . Our experimental setup is illus-
trated in Figure 1.

The range finder is calibrated to obtain the 4 x 3 projection transformation matrix between
the world coordinate system and the image coordinate system. The matrix is used for mapping the
color images onto the recovered object shape. The location and orientation of the rotary table in
the world coordinate system is also measured by using a calibration box and the range finder. As a
result, the direction and location of the rotation axis in the world coordinate system are known.
They are used for projecting the color images onto the recovered object shape as described in the
section 2.2. The color video camera is calibrated by using a standard color chart to ensure linear
response from all three color bands. The color chart is also used for measuring the light source
color. Therefore, the illumination color is assumed to be known in our experiment.

4.2 Measurement

Range images and color images of the target object are taken by using the experimental
setup described in the previous section. The object is placed on the rotary table, and range images
and color images are captured as the object rotates on the table. In our experiment, range images
are captured for every 45°, and color images are obtained for every 3°. In total, 8 range images
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and 120 color images are digitized. The reason why we need more color images than range
images is because fine sampling is necessary to capture the specular reflection distribution cor-
rectly. On the other hand, the range images are used only for recovering the object shape, and it
does not require fine sampling. The small number of images are sufficient to observe the object
shape entirely. Two frames of the input range images are shown as triangular surface patches in
Figure 2. Color Figure 1 shows the sequence of input color images. Six frames out of 120 are

shown as examples.

frame 0O: object orientation = 0° frame 4: object orientation =180°

Figure 2 Input range data: 2 out of 8 frames are shown here.

4.3 Shape recovery

The zipper system [23] was used for merging eight triangular surface meshes created from
the input range images. The recovered object shape is shown in Figure 3. The object shape con-
sists of 9943 triangular patches. In the process of merging surface meshes, the object shape was
manually edited to remove noticeable defects such as holes and spikes. The manual edit will be
unnecessary if more range images are used.
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Figure 3 Recovered object shape

4.4 View mapping

After the object shape is generated from the range images, the sequence of input color
images are mapped onto the recovered object shape as described in the section 2.2. The result of
the color image mapping is illustrated in Color Figure 2. Six frames are shown as examples here.

Based on the image mapping onto the recovered object shape, a sequence of observed col-
ors is determined at each triangular patch of the object shape as explained in the section 2.2. The
observed color is not defined if the triangular patch is not visible from the camera. In this case, the
observed color is set to zero. Figure 4 illustrates a typical observed color sequence at a triangular
patch with strong specularity. The specular reflection component can be observed strongly near
image frame 67. When the specular reflection component exists, the output color intensity is a lin-
ear combination of the diffuse reflection component and the specular reflection component. The
two reflection components are separated by using the algorithm explained in the section 3.2, and
the separation result will be shown in the next section. The intensities are set to zero before the
image frame 39 and after the image frame 92 because the triangular patch is not visible from the
camera due to occlusion. Another example with weak specularity is shown in Figure 5. In the
example, the observed specular reflection is relatively small compared to the diffuse reflection
component. As a result, estimating reflectance parameters for both the diffuse and specular reflec-
tion components together could be sensitive to various disturbances such as image noise. That is
why the reflection component separation is introduced in prior to parameter estimation in our
analysis. By separating the two reflection components based on color, reflectance parameters can
be estimated separately in a robust manner.
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Figure 4 intensity change with strong specularity
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Figure 5 intensity change with little specularity

4.5 Reflection component separation

The algorithm to separate the diffuse and specular reflection components, described in the
section 3.2, was applied to the observed color sequence at each triangular patch. The red, green,
and blue intensities of the observed color sequence are stored in the matrix M as its columns
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(EQ4). Then, the matrix G is computed from the matrix M and the matrix ¥ which is estimated as
described in the section 3.2.1. Finally, the diffuse and specular reflection components are given as
shown in (EQ7) and (EQ8). This reflection component separation is repeated for all triangular
patches of the object. Some of the separation results are shown in Figure 6 and Figure 7. Figure 6
shows the separated reflection components with strong specularity. The measured color sequence
is shown in Figure 4 in the previous section. Another example of the reflection component separa-
tion is given in Figure 7. In that case, the specular reflection component is relatively small com-
pared to the diffuse reflection component. That example indicates that the separation algorithm
can be applied robustly even if the specularity is not observed strongly. After the reflection com-
ponent separation, reflectance parameters can be estimated separately. The result of parameter
estimation will be shown in the section 4.6.

The separated reflection components at all triangular patches of a particular image frame
can be used to generate the diffuse reflection image and the specular reflection image. The result
of the diffuse and specular reflection images are shown in Color Figure 3 and Color Figure 4.
Image frame O and 60 are used to generate Color Figure 3 and Color Figure 4, respectively.
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Figure 6 separated reflection components with strong specularity
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Figure 7 separated reflection component with little specularity

4.6 Reflectance parameter estimation for segmented regions

By using the separated diffuse reflection components of all triangular patches, the object
surface was segmented based on the hue of the diffuse reflection components, as explained in the
section 3.3. The result of the region segmentation is shown in Figure 8 where segmented regions
are represented as grey level. For estimating specular reflection component parameters, ten trian-
gular patches with the largest specular reflection component are selected for each of the seg-
mented regions. Then, the specular reflection component parameters of the reflection model
(EQ1) are estimated by the Levenberg-Marquardt method for each of the ten selected triangular
patches. Finally, the average of the estimated parameters of the selected triangular patches is used
as the specular reflection component parameters of the segmented region. The estimated specular
reflection parameters are assigned to all triangular patches within the segmented region. In our
experiments, the four largest segmented regions were used for specular reflection parameter esti-
mation, and the rest of small regions were not used. The small regions were found to be located
near or at the boundaries of the large regions. Hence, a surface normal of a triangular patch does
not necessarily represent a surface normal of the object surface at the location. That causes the
parameter estimation to be inaccurate. Therefore, those small regions are assumed to have the
same specular reflection properties as the large regions in our analysis. The result of the estimated
specular reflection component parameters is shown in Table 1.

Unlike the specular reflection parameter estimation, parameters of the diffuse reflection
component are estimated for each triangular patch individually. That is because the diffuse reflec-
tion component at the triangular patch is guaranteed to be observed as long as the patch is illumi-
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nated and not occluded from the viewing direction. The result of the diffuse reflection component
parameter estimation will be shown in the next section as synthesized images of the object.

mm 00«

Figure 8 Segmentation result (grey levels represent regions)

Table 1 estimated parameters of the specular reflection component

region # Kspec Oy
0 134.58 0.091
| 111.32 0.119
2 38.86 0.147
3 39.87 0.177

4.7 Synthesized images with correct reflection

By using the recovered object shape and reflection model parameters, images of the object
under arbitrary illumination conditions can be generated. In this section, some of the images are
shown to demonstrate the feasibility of the proposed method to produce highly realistic images.
Point light sources located far from the object are used for generating images. Color Figure 5
shows the object illuminated from the left side. The arrow in the image represents the illumination
direction. It is important to see that region 2 shows less specularity than region 0 and region 1.
(See Figure 8 for region numbers.) In addition, the specular reflection is widely distributed in
region 2 because region 2 has a large reflectance parameter o, . Another example image with a
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different illumination direction is shown in Color Figure 6. The object is illuminated by incoming
light from the upper right side in the image. Color Figure 7 shows the object illuminated by two
light sources. In the example, highlights on the object surface appear to be a combination of high-
lights shown in Color Figure 5 and Color Figure 6.
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5 Conclusion

We have studied an approach for creating a three dimensional object model with physi-
cally correct reflectance properties by observing a real object. The Lambertian model and the Tor-
rance-Sparrow reflection model are used as the basic reflectance model in our analysis. The object
is located on a rotary table, and a sequence of range and color images are taken as the object
rotates. First, the object shape is recovered from a range image sequence as a collection of trian-
gular patches. Then, a sequence of input color images are mapped onto the recovered object shape
to determine an observed color sequence at each triangular patch individually. The observed color
sequence is ééparated into the diffuse and specular reflection components. Finally, parameters of
the Lambertian model and the Torrance-Sparrow model are estimated separately at each of trian-
gular patches. By using the recovered object shape and estimated reflectance parameters associ-
ated with-each triangular patch, highly realistic images of the real object can be synthesized under
arbitrary illumination conditions. The proposed approach has been applied to real range and color
images of a plastic object, and the effectiveness of the proposed approach has been successfully
demonstrated by showing synthesized images of the object under different illumination condi-

tions.
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Appendix A Simplified Torrance-Sparrow model

In our work, the Torrance-Sparrow model [22] is used for representing the specular lobe
reflection component. The model describes single reflection of incident light rays by rough sur-
faces. This model is reported to be valid when the wavelength of light is much smaller than the
roughness of the surface [22], which is always true in our experiments. The surface is modelled as
a collection of planer micro-facets which are perfectly smooth and reflect light rays as perfect
specular reflectors. The geometry for the Torrance-Sparrow model is shown in Figure 9. The sur-
face area dA; is located at the center of the coordinate system. An incoming light beam lies in the
X -Z plane and is incident on the surface at an angle 6,. The radiance and solid angle of the light
source are represented as L; and do,, respectively.

In the Torrance-Sparrow model, the micro-facet slopes are assumed to be normally distrib-
uted. Additionally, the distribution is assumed to be symmetric around the mean surface normal
# . The distribution is represented by a one-dimensional normal distribution:

(EQ9)

where ¢ is a constant, and the facet slope o has mean value (o) = 0 and standard devia-
tion o, .

In the geometry shown in Figure 9, only planar micro-facets having normal vectors within
the solid angle do’ can reflect incoming light flux specularly. The number of facets per unit area
of the surface that are oriented within the solid angle do’ is equal to p, («) dw’. Hence, consider-
ing the area of each facet a and the area of the illuminated surface dA_, the incoming flux on the
set of reflecting facets is determined as:

i, = Lo, (ap, () do'dA,) cose; (EQ10)

The Torrance and Sparrow model considers two terms to determine what portion of the
incoming flux is reflected as outgoing flux. One term is the Fresnel reflection coefficient,
F(8,,m’,A) where n’ is the refractive index of the material, and A is the wave length of the
incoming light. Its value for a perfect mirror-like surface depends on wavelength, incident angle
and material. The other term is called the geometric attenuation factor, and it is represented as
G(98,,9,0,) . It accounts for the fact that at large incidence angles light incoming to a facet may be
shadowed by adjacent surface irregularities, and outgoing light along the viewing direction that
grazes the surface may be masked or interrupted in its passage to the viewer. Considering those
two factors, the flux d2d>r reflected into the solid angle dw, is determined as:
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2 ’ s 2
d'® =F(,,n,2)G(0,6,0)d, (EQ11)

The radiance of reflected light is defined as:

i
dLsPeC’ r dmrdAscos Gr (EG12)
Substituting (EQ10) and (EQ11) into(EQ12), we obtain:
dLs _ F (Gi’, n,AG (6?., Gr, ¢r) Lidmi (af,ooc (o) dm’dAs) cosei’ (EQ13)
pec, r d(ordAScos Gr

Since only facets with normals that lie within the solid angle dw’ can reflect light into the
solid angle dw_, the those two solid angles are related as:

dw

dw = —— (EQ14)
4cos9,

Substituting (EQ14) into (EQ13), surface radiance of the surface dA_ given by the specu-
lar reflection component is represented as:

2
o

caF(0/,m",1)G(8,8,9,)Ldo, 262
spec,r — 4 cosere

dL (EQ15)

As stated above, the Fresnel coefficient F( 6,,n’,A) and the geometrical attenuation factor
G(8,86,,6,) depend on the illumination and viewing geometry. In our experiments, the geometry
is simplified because the viewing direction and the illumination direction always coincide. The
simplified geometry is shown in Figure 10. Substituting 8, = 8, = «, 8, = 0, and ¢, = =, (EQ15)
is simplified to:

02

!

_caF(0,m,1)G (6,6, Lidmie}?i

spec,r 4 cos 0,

dL (EQ16)

It is observed that the geometrical attenuation factor G equals unity for angles of inci-
dence not near the grazing angle. Since that is not the case in our experiment, the geometrical
attenuation factor G is assumed to be constant in our analysis. The Fresnel coefficient can be
regarded as a function of the wave length A because the local angle of incidence 6, is always
equal to 0. Finally, the surface radiance of the specular reflection component in our experiments
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is represented as:

92

cafF (A) GLidmi _E
= e

spec,r 4 cos®,

dL (EQ17)

The dichromatic reflection model [20] predicts that a reflection mechanism is modelled as
a linear combination of two reflection components: the diffuse reflection component and the spec-
ular reflection component. According to the dichromatic reflection model, the reflection model
used in this paper is represented as a combination of the Lambertian model and (EQ17):

ks n (A) 203
dL = kdl.ff().) cos9i+p—e Ldo. (EQ18)

r cos Gi 2

where & d,.ff(x) represents the ratio of the radiance to the irradiance of the diffuse reflec-

tion, and kopec (V) = caF (M) G/4. That expression is integrated in the case of a collimated light

source to produce:

e2

ko (AMs(A) 26
e

_ _ spec o
L = j dL, = kg (R) s (M) cos® + —=

(EQ19)
[OR

4

where s (A) is the surface irradiance on a plane perpendicular to the light source direction.

reflected beam

Figure 9 Geometry for Torrance-Sparrow model [22]
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incident beam Z

reflected beam -
n

Figure 10 Simplified geometry
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Appendix B Image formation model

If the object distance is much larger than the focal length and the diameter of the entrance
pupil of the imaging system, it can be shown that the image irradiance E, is proportional to scene
radiance L . It is given as:

n(d\2 4
EP = L’Z(j_”) cos Y (EQ20)

where d-is the diameter of a lens, s is the focal length of the lens, and v is the angle
between the optical axis and the line of sight [8]. In our experiments, changes of those three
parameters 4, f, and y are assumed to be relatively small. Therefore, (EQ20) can be simply given

as:
E = gL (EQ21)

where g = g(;—,i)zcos “y. Combining (EQ19) and (EQ21), we have:

92

8kypoe W) s (V) 207
Ep = gk, ff(K) s (A) cosO + 050 e (EQ22)

Now let © (L), m = (red, green, blue) be the spectral responsivity of the color camera in
red, green and blue bands. Then, the output from the color camera in each band can be expressed
as:

I = _[ T, (W) E, (A) dh (EQ23)
A

This equation can be simplified as:

I = Kdl.ff’ 1, C0S0 + Kspec’ m3osB¢ (EQ24)

where

K yie m = g{‘cm(k)kdiff(k)s(?»)dk

spec, m

= gjrm(x) Kgpee (W) 5 (1) dA
A (EQ25)
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Color figures

Color Figure 1 Input color images
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frame#=40

frame#=60 frame#=80 frame#=100

Color Figure 2 View mapping result

Color Figure 3 diffuse image and specular image: example 1
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Color Figure 4 diffuse image and specular image: example 2

Color Figure 5 Synthesized image 1
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Color Figure 6 Synthesized image 2

Color Figure 7 Synthesized image 3
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