Experiences Using DCE and CORBA to Build Tools
for Creating Highly-Available Distributed Systems

E.N. Elnozahy! V. Ratan? M.E. Segal®

February 1995
CMU-CS8-95-117

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

To appear in the International Conference on Open Distributed Process-
ing, February 1995.

1Dept. of Computer Science, Carnegie Mellon University, Pittsburgh , PA 15213. Au-
thor was supported by a National Science Foundation Research Initiation Award under grant
number CCR-9410116.
2Dept. of CSE, FR-35, University of Washington, Seattle WA 98195.
3Bellcore, Morristown, NJ 07960
The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of the NSF, the U.S. Government, Carnegie Mellon University, University of

Washington, or Bellcore.



Keywords: CORBA, Distributed Systems, DCE, Fault tolerance, High-
Availability, Object-Oriented Systems, Standards



Abstract

Open Distributed Processing (ODP) systems simplify the task of building
portable distributed applications that can interoperate even when running on
heterogeneous platforms. In this paper, we report on our experience in augment-
ing an ODP system with tools that allow developers to build highly available
distributed objects with little or no additional programming effort. Our tools
are implemented within the context of the DCE and CORBA standards for
distributed computing. We describe the system that we built and how the com-
bination of DCE and CORBA often helped our efforts and sometimes impeded
them. Based on our laboratory experiences, we conclude that these standards
generally have a good potential for developing tools for high availability that are
portable and applicable to a variety of applications in a distributed computing
environment. This potential, however, is hampered by several shortcomings and
problems in the specifications of the standards. Such problems could impede
other developers and researchers who plan to use these standards. We discuss
these problems and suggest solutions to them.






1. INTRODUCTION

Open Distributed Processing (ODP) systems reduce the complexity of designing and
implementing applications in distributed computing environments. Applications that run on an
ODP system follow standards that allow them to be portable across heterogeneous platforms,
and also allow them to interoperate with other distributed applications that follow the same
standards. This paper describes our experiences augmenting an ODP system with a toolset that
can automatically add high availability to distributed objects. These objects adhere to the
Common Object Request Broker Architecture standard (CORBA) [OMG91, Vinoski93]. A
highly available object continues to run in the presence of hardware or software faults, as well
as planned maintenance activities such as hardware and software upgrades. Applications where
high availability is important include financial transaction-processing systems,
telecommunications, medical systems, and real-time process control.

The toolset includes a number of software-based techniques for providing high availability with
little or no intervention from the programmer. Application developers implement their objects
following the CORBA standard and link them with our toolset to provide the required high
availability. The implementation uses a locally-developed CORBA library [Diener94] which
runs over OSF’s Distributed Computing Environment (DCE) [Millikin94, OSF91] on
SparcStations running SunOS 4.1 and DEC Alphas running OSF/1.

We chose a CORBA-compliant platform to implement our toolset because we believe that many
future distributed applications will adopt the CORBA standard. Thus, our toolset could be
ported to other platforms and application domains. We decided also to rely on DCE to provide
the networking support. There are several alternatives to this decision, each typically consisting
of a CORBA package that implements its own name service, and interacts with the network
directly through the socket layer in Unix® or using another RPC system. We decided against
using these CORBA packages because their reliance on non-standard naming, and lack of
security facilities. DCE does not have these problems and complements the CORBA library that
we had with its naming, security, and RPC services. Our choice also offers a potential for
interoperability with other “pure” (i.e. non-CORBA) DCE applications and tools.

The implementation of our toolset was able to benefit from many of the facilities that CORBA
and DCE provide, such as the name server, the uniform Interface Definition Language, and
RPC groups, among many others. These contributed to the simplification of the implementation
effort and we were able to verify the benefits that both standards offer for the development of
distributed applications. Unfortunately, our laboratory experiences revealed a number of
problems with both CORBA and DCE. Though some problems were specific to our platform,
others were resulting from the definitions of both standards and could impede other researchers
and developers who would be involved in projects using CORBA and/or DCE. We discuss
these problems and we suggest solutions to them.

The primary focus of this paper is our experiences using CORBA and DCE to build a high-
availability toolset. A detailed description of the implementation of the toolset itself and a
performance evaluation can be found elsewhere [Elnozahy95]. Section 2 includes an overview
of the high availability toolset to provide the necessary background and context for describing
our experience with CORBA and DCE, which is detailed in Section 3. We present a summary
and our conclusions in Section 4.

® Unixisa registered trademark of Novell, Inc.



2. THE DESIGN OF A HIGH AVAILABILITY TOOLSET

2.1. Design Goals and Overview

We have constructed a toolset that provides high availability to distributed applications with little
or no additional support by the application programmer. This approach relieves the programmer
from the mundane and often error-prone tasks of handling failures and recoveries at the
application layer. Also, the approach has the potential of improving the availability of existing
applications that were written without consideration for high availability.

The system uses a local implementation of the CORBA standard, called Touring Distributed
Objects (TDO) [Diener94]. In this system, application programs consist of distributed server
and client objects that communicate by remote method invocation according to the CORBA
standard [OMG91]. Server objects follow a multithreaded programming model, where a thread
is automatically started to execute the method invoked by a remote client object. It is assumed
that the execution of a method invocation is short and the corresponding thread lives only during
the course of serving the invoked method. This model is consistent with the familiar remote
procedure call paradigm for client/server applications.

TDO objects are written in C++ and use CORBA’s Interface Definition Language (IDL) to
define the exported methods. Figure 1 illustrates how the components that make up a TDO
CORBA/DCE application fit together.
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client-side server-side
application application
TDO CORBA TDO CORBA
client-side proxy server-side proxy
DCE DCE
/]
operating system operating system /
hardware hardware
communications network

Figure 1 — The Structure of a TDO CORBA/DCE Application

Figures 2a and 2b show the C++ source code for a simple TDO CORBA/DCE application. The
TDO runtime system provides support for exporting the server methods, implemented by server
implementation (SI) objects, by assigning a unique name in a hierarchical name space for each
instance of an exported class. The TDO compiler automatically generates two proxy classes,
one for the client side and the other for the server. These classes act as stubs of remote
communication for each IDL interface. The server proxy class (SP) handles all the details of
translating the remote procedure calls into C++ method invocations, and of exporting the name
of the class into the global name space. Client objects that wish to interact with a certain server
must be linked with the corresponding client proxy of the server. The client can then access the
server through normal invocations of C++ methods. The client proxy locates the required
server and handles the details of translating the remote invocations into remote procedure calls.
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// simple TDO server
main(int arge, char *argv([])

{

// create a proxy and an implementation

simple proxy ;

Simple impl ;

// plug the implementation into the proxy
proxy.represent (&impl) ;

// "advertise" the proxy in the CDS so that

// clients can bind to it...

proxy.export ("/.:/tm/simple.server");

// fork a thread which listens for incoming messages
CORBA: :BOA: :impl_is_ready () ;

// wait for the thread to terminate (i.e. wait forever...
// use ctrl C to kill off the server)

CORBA: :BOA: :wait () ;

exit (0) ;

Figure 2a — C++ Code for a Simple TDO CORBA Server

// simple TDO client

main()

{
// create a proxy
simple clientProxy;
// "bind" it to its implementation using the
// represent member function.
clientProxy.represent("/.:/tm/simple.server") ;

// send it a ping message
clientProxy.ping() ;
exit(0) ;

Figure 2b — C++ Code for a Simple TDO CORBA Client

The system uses DCE to provide the underlying support in the form of remote procedure calls,
multithreading, naming, RPC groups, and security. Most notably, the proxy class uses DCE
RPC to implement remote method invocation. The proxies also use the CDS name space of
DCE to implement the global name space. Additionally, the implementation relies on DCE’s
multithreading support for implementing lightweight threads. The application, however, does
not need to call the DCE layer directly, since TDO abstracts the support provided by DCE. This
approach simplifies the task of the programmer.



2.2, Mechanisms for High Availability

The toolset provides a repertoire of mechanisms that can be used to add high availability to
objects. These mechanisms differ according to their costs and reliability guarantees, with the
cost increasing with the degree of reliability desired. High availability is added by linking the
server proxy of a highly-available object with a library that includes the necessary support.
Application developers can select the appropriate availability mechanism for their applications by
linking with an appropriate library. The system is designed to make this choice as transparent
as possible to the application. A detailed description of the availability mechanisms used by the
system appears elsewhere [Abbott90, Birman93, Elnozahy93, Gray91, Huang93, Segal93].
We focus here on describing the implementation of one technique, namely the primary/backup
scheme and how it made use of CORBA and DCE support. In this technique, several copies of
a server object exist on different machines. One copy is designated the primary while the others
are backups. The primary is the contact point for the client proxies, which are unaware of the
presence of the backups. Each backup has its own private copy of each proxy class that is
exported by the server. Only the primary’s proxy, however, exports the corresponding class
instance into the global name space.

During normal operation, the primary receives invocation requests from client proxies for the
methods that the server object exports. The primary executes the appropriate method and sends
to the backup objects the corresponding updates to the object’s state due to the method
invocation. After the backups acknowledge the receipt of these updates, the primary replies to
the client object with the result. This sequence of steps is shown in Figure 3.

process A process B process C
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Figure 3 — Communication Between HALs, Primary and Backup Servers
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Support for high availability is added through a high-availability layer (HAL) that is linked with
the proxy object at the primary and each of the backup (see Figure 4). The HAL intercepts all
remote procedure calls intended for the object as well as those originating from the object. The
HAL encapsulates all functions related to providing high-availability and is completely
transparent to the application.

avail mechanism 1

avail mechanism 2
[]

avail mechanism n

Zz ¥
client-side server-side
application 7 application
_TDO _CORBA HAL TDO QORBA HAL
client-side proxy server-side proxy
DCE DCE
operating system operating system
hardware hardware
communications network

Figure 4 — The Architecture of a Highly Available Application

The SP for the primary server object exports its interface to the global name space, enabling
client proxies to bind to the replicated object. The HAL at the primary object also creates an
RPC group in a special subtree of the CDS space which contains the names of the primary
server and the backups. This naming scheme allows the primary and backup proxies to
communicate among themselves at the HAL level to support high availability, but is completely
transparent to client objects. Figure 5 shows how a highly-available server, my__app, would be
registered in the CDS namespace.

The HAL implements several functions related to high availability, such as failure detection, the
election of a new primary after a failure, and the communication of state updates. These
functions rely on the existence of the RPC group that was created by the primary. The HAL
communicates using remote method invocation following the CORBA standard.

3. EVALUATION

In this section we describe our experiences using CORBA and DCE to build our high-
availability toolset. Overall, the facilities provided by CORBA and DCE greatly simplified our
implementation efforts. The HALSs at the primary and backups use CORBA remote method
invocation for communication. We found this layering to be very convenient and simpler than
the alternative of performing the HAL-level communications directly through DCE. We initially
considered using DCE to get better control of the underlying communications protocol and
better performance. We eventually decided against it, however, because the low-level
computation and communication abstractions offered by DCE would make our implementation
efforts more difficult than working at the object-oriented CORBA layer. Thus, our code was
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Figure 5 — A Highly-Available Application in the CDS Namespace

operating at a high level which was independent of the hardware or the network protocol. We
believe that this choice led to the simplicity of the design and implementation. The naming
services made available by DCE, especially RPC group naming, were also very valuable in
simplifying the implementation and reducing its complexity. We were also able to use vendor-
supplied tools to monitor the CDS name space while our programs were executing, which was
extremely valuable for debugging the HAL. The alternative of implementing a name service on
top of a lower layer such as Unix sockets or some vendor-supplied name server would perhaps
have required more coding and would not have been useful during debugging. DCE’s excellent
integration of RPC, threads, and exception handling provided a good foundation for building
the CORBA layer as well as the HAL.

Besides these positive facts, our experience also outlined several problems with the CORBA
and DCE standards. Some of these problems are specific to the nature of providing high
availability, while others are more fundamental. We discuss these problems in the remainder of
this section. We have been careful to isolate the problems that were merely bugs in our
implementation or related to our environment. We do not discuss these problems here.



3.1. CORBA Standards Issues

The TDO CORBA platform we used was implemented locally and provided a subset of the
CORBA standard and the likely C++ language mapping as they existed when TDO was written
(early 1994). The first problem that we found with the CORBA standard is that the Interface
Definition Language (IDL) restricts arrays to be of fixed size. This is fundamentally restrictive
for general programming problems and ignores a wealth of experience in distributed computing
which shows that communicating variable-sized data is a very common operation (e.g., the
implementation of TCP/IP [Postel81]). In our case, this restriction proved costly when the
primary object was transmitting state updates to the backups. Since it is impossible to predict at
compile time the amount of state changes that would result from a remote method invocation,
we had three alternatives. The first is to pick a large array size, which would force the
transmission of useless data over the network for small updates, causing a lot of overhead. The
second is to pick a small array size and perform several method invocations until the state update
transfer is complete. This alternative also causes a lot of overhead in the form of repeated
interrupts, and complicates the code because of the need to handle partial updates in the presence
of failures. The third alternative was to export several methods for state transfer, each having a
different array size and use the method with the most effective size during run time. This
alternative reduces the overhead, but it complicates the implementation both at the sender and
receiver. None of these alternatives is satisfactory (we currently use the second one). It may be
argued that this problem can be addressed by using CORBA’s sequence, a data structure type
that does not have limitations on the size of the data to be transmitted. This data structure,
however, is designed to support complex data structures such as trees and lists, and a typical
implementation will have to perform marshalling and unmarshalling on transmission and
receipt, respectively. Sending a variable-sized array as a sequence will thus incur
unnecessary performance overhead. We believe that variable-sized arrays are essential and
should be added to the standard.

The second problem that we found with the CORBA standard is the lack of specifications
concerning threads and exception handling. CORBA-compliant objects are multi-threaded by
default, yet the CORBA standard has intentionally omitted any specification related to the
interactions between threads, exceptions, and the programming language. These problems are
likely to produce CORBA implementations that differ in the way they handle threads and will
create problems in porting applications among heterogeneous platforms, which is against the
spirit of ODP. Perhaps a better way to solve this problem is to follow the approach used by
DCE, which has integrated communication, multi-threading, and exception handling to some
degree. We believe similar integration strategies should be added to the CORBA standard.

The third problem that we encountered was relatively minor. CORBA IDL does not have a
specification for 64-bit data types. On a machine like the DEC Alpha, CORBA’s 1ong data type
is actually mapped to a 32-bit quantity which is different from the machine’s concept of a Llong
variable, which is a 64-bit quantity. It is not clear how this problem could be solved, though.
Supporting 64-bit types would make interoperability between 64-bit and 32-bit machines
difficult. On the other hand, by only supporting 32-bit quantities, application programmers
writing code on 64-bit machines should be aware of the difference, which may require
additional marshalling and unmarshalling, and exposes the network issues at the application
level. DCE, which already provides a 64-bit integer type (hyper), faces the same problem.
On a 32-bit machine, hypers are converted to structures which makes even simple arithmetic
operations (e.g., addition) difficult to implement.



3.2. RPC Groups in CDS

Our toolset uses CDS RPC groups to implement a scheme for keeping track of the backups and
primary of a replicated object. The CDS RPC group mechanism allows a set of servers
registered with CDS to be associated with a single group name. The documentation states that
updates to a group are to be propagated consistently to each node that caches a copy of the
group’s list of names. However, the documentation is vague about how soon updates to a
group should be propagated to all cached copies in the network, and what happens if nodes
crash while a group update is being propagated. We found this vagueness to be a problem for
three reasons.

First, each copy of the replicated object depends on the CDS to know the identities and locations
of the other currently running copies of the object. This information is vital, especially when a
primary process dies and the replicas have to decide who will become the new primary. The
replicas must ensure that only one primary is chosen. As replicated objects die or are newly
created, the RPC group in CDS containing information on the replicated copies changes. Since
group lookups at each node go to the local CDS cache at that node, replicated objects can have
an inconsistent view of the currently active set of objects due to DCE’s loose cache coherency
semantics.

Second, implementations of DCE adopt lax interpretations of these specifications to improve
performance. For example, deleting a name from a group takes from an hour to a day to be
propagated to all cached copies in one implementation, while it is propagated every 12 hours in
another. Such implementations assume that changes to the name space are not frequent, and
therefore they are not suitable for supporting the type of mechanisms that we implemented.

Third, if a node that is running the primary CDS or a cached backup copy of CDS crashes
during a group update propagation, some CDS caches could be properly updated, while some
may be incorrect. Even worse, we don’t know when (or if) the CDS caches will be made
consistent. Since the semantics of the group naming during failures is not specified, we cannot
rely on this technique as a basis for our toolset in the long run.

We were able to work temporarily around the cache coherence problem by patching the DCE
object code to force lookups of group members to go directly to the central CDS database,
thereby bypassing the local cache. A permanent solution to all of these problems is to build a
separate name server that is optimized to maintain a more consistent view of group membership.
This name server could be integrated into CDS via the CDS junction mechanism, which would
allow adding high availability to CDS without modifying CDS itself.

3.3. Proxies and Multicast

The primary/backup scheme discussed in Section 2.2 as well as other software-based
mechanisms for high availability could take advantage of a multicast capability for propagating
updates and synchronizing replicas. We are only interested in a multicast that provides FIFO,
reliable message delivery in the presence of communication failures. We don’t believe though
that a multicast protocol with a sophisticated ordering semantics would be useful for our
purposes. Because our TDO CORBA/DCE programs are multi-threaded and therefore may
execute in a different order on different machines, the receivers will have to implement a
mechanism to ensure that the different interleaving of thread executions would not violate
consistency among the replicas. The end-to-end argument in system design then suggests that a
sophisticated multicast ordering would not be very useful for our purposes. Currently, the
closest thing to a multicast that DCE provides is unreliable broadcast RPC execution semantics



to processes on the same local-area network, which is not useful for our purposes because we
need reliable delivery to a specific group of processes.

We implemented our multicast primitives by explicitly coding the multicasting in the HAL.
While this approach is inefficient, it hides complexity from the application programmer and
allows us to experiment with multicasting in our toolset. If future versions of DCE or a
CORBA-compliant platform provide multicast in a manner that can take advantage of
multicasting network hardware, the efficiency of our toolset will increase dramatically.

3.4. General Observations on DCE

Perhaps the biggest criticism we have for DCE is its enormous complexity. To write even a
small DCE program requires initially climbing a steep learning curve. If DCE is going to be
used to build large systems, tools must be provided to abstract the enormous amount of details
involved in order to make it easier to use. Based on our TDO experiences, we can say that a
well-designed layer over DCE can hide many of its complexities and make it more manageable
for new application developers.

Another significant problem we encountered with DCE is that its implementations are not
robust. While constructing our toolset, the DCE implementations we used crashed frequently.
These crashes made building our toolset more difficult, and would also increase the difficulty of
building highly-available applications. Because the crashes occurred in different DCE
implementations, we attribute these crashes to the complexity of the DCE standard, which
makes the development of a robust DCE implementation difficult.

We have also observed that different DCE implementations behave differently. A stated
advantage of ODP in general, and DCE in particular, is application portability across
heterogeneous computing platforms. Common behavior across platforms is critically important
for building a portable high availability toolset. We attribute these problems to the imprecision
of the specification of many aspects of DCE, especially when it comes to defining behavior
during failures. For example, server-side exceptions are supposed to be caught and possibly
propagated to the client. The integration of communication and exception handling is an
important feature of DCE, but these capabilities behave differently on different platforms. This
is disappointing given the elaborate specification of the standard.

4. CONCLUSIONS AND FUTURE WORK

We have described our experiences in building a toolset to add high availability to distributed
objects on a CORBA-compliant platform which, in turn, runs over DCE. The toolset allows
application developers to create highly-available applications without having to worry about the
underlying technical details of failure handling and recovery. The toolset provides a variety of
mechanisms for increasing program availability that can be selectively incorporated into a
program, depending on its needs.

We built the toolset over CORBA and DCE because we believe these technologies will be used
to create many kinds of distributed applications in the future. Both CORBA and DCE hide
many low-level inter-process communication details and provide facilities to make writing
distributed programs easier. By using these technologies, we were able to build on their
strengths and add capabilities to provide high availability to those applications that require it.
Specifically, we found that building the HAL using CORBA was very convenient, and the high-
level view of the network as a set of distributed objects has greatly simplified our
implementation effort. We also found the naming and RPC group services of DCE to be very
valuable.
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Although CORBA and DCE offered many benefits to our project, we also discovered a number
of problems with both standards that introduced additional complexity in our implementation.
The CORBA standard for instance does not allow the transmission of variable-sized arrays over
the network, something that we believe very essential for distributed applications. We also
struggled because of the lack of specification of the interactions of exception handling and
threads, especially during failures. These led to many ambiguities that are likely to be handled
differently by different implementations of the standard. The CORBA standard should precisely
define the behavior of CORBA-compliant objects to resolve these ambiguities, while
maintaining the overall simplicity of the current standard and avoiding the complexity and
overloading that characterize the DCE standard.

For DCE, we were disappointed that the specifications were imprecise in many situations,
especially concerning the behavior during failures. The specifications were also lacking in
defining what happens to CDS during failure. This imprecision led to implementations of DCE
that behave differently, which is against the spirit of open distributed processing. We also
believe that the lack of multicast support and the complexity of the standard are going to be
serious problems that researchers and developers will have to face when building distributed
applications. We also observed that even though DCE implementations are sold as finished
products, they still have many bugs in them, which we attribute to the complexity of the
standard that makes it very difficult to build robust implementations.

In spite of these criticisms, we believe that CORBA and DCE can form a platform that offers a
good potential for building many kinds of distributed systems. Over time, we hope the
problems we described will be resolved by the suppliers of CORBA and DCE products, as well
as by the appropriate standards organizations. As people attempt to use these systems to build
tools and applications of significant size, more problems will be discovered. As long as there
are ways for people working “in the trenches” to affect the design of CORBA and DCE, these
systems will continue to evolve into better tools for building large applications.
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