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Abstract

It is generally very difficult, if not impossible, for a robot to perform fine manipulation
tasks without the benefit of some form of sensory feedback during actual task execution.
As a result, robot sensing strategy planning is an important component in assembly task
planning.

This report describes a method of systematically generating visual sensing strategies based on
knowledge of the task to be performed. Since visual sensing is usually performed with limited
resources, visual sensing strategies should be planned so that only necessary information is
obtained efficiently. The generation of the appropriate visual sensing strategy entails knowing
what information to extract, where to get it, and how to get it. This is facilitated by the
knowledge of the task, which describes what objects are involved in the operation, and how
they are assembled.

In the proposed method, using the task analysis based on face contact relations between
objects, necessary information for the current operation is first extracted. Then, visual
features to be observed are determined using the knowledge of the sensor, which describes
the relationship between a visual feature and information to be obtained. Finally, feasible
visual sensing strategies are evaluated based on the predicted success probability, and the
best strategy is selected.

Our method has been implemented using a laser range finder as the sensor. Experimental
results show the feasibility of the method, and point out the importance of task-oriented
evaluation of visual sensing strategies.
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1. Introduction

In vision-guided robotic operations, vision is used for extracting necessary information for
proper task execution. Since visual sensirg is usually performed with limited resources, visual
sensing strategies should be planned so that only necessary information is obtained efficiently.
To determine an efficient visual sensing strategy, knowledge of the task is necessary. Without
knowledge of the task, it is often difficult to select the appropriate visual features to be
observed. In addition, resources may be wasted in tracking uninformative features.

From this standpoint, research on task-oriented vision, active vision, or purposive vision
has been actively investigated [1] [2] [4] [5] [11]. By using knowledge of the task, the vision
system can be designed to be fast and robust. However, the designing process tends to be
task-specific and requires a significant amount of effort. Thus, it is desirable to develop a
systematic method which can generate task-oriented visual sensing strategies automatically,
namely a method that optimizes each visual sensing strategy according to a given task.

The generation of task-oriented sensing strategy is decomposed into the following three
subproblems to be solved successively:

o determine what visual information is necessary for the current task;
o determine which visual features carry such necessary information; and
e determine how to get necessary information with the sensors used.

The first two subproblems are concerned with focusing the attention to informative visual
features; the last problem is concerned with evaluation of sensing strategies.

The ability of focusing attention is important to realize efficient visual sensing strategies.
There have been several approaches to this problem.

Hutchinson and Kak [10] dealt with the problem of resolving the ambiguity of sensor
information. They used Dempster-Shafer theory to represent uncertainties of hypotheses in
object identification. An entropy of a set of hypotheses was used as a utility function; a
sensor placement was selected which minimizes the entropy.

Rimey [17] presented a framework of task-oriented vision which can solve high-level vision
problems such as determining which object to search for next to answer a query. The
knowledge of the task is represented by a Bayesian network, and the sensing action is selected
which has the highest expected utility. The utility function is defined as the combination of
the predicted information value and the sensing cost.

Birnbaum et al. [6] presented a vision system which can explain a scene of blocks world in
terms of stability of block structures. Using the rules derived from causal knowledge of naive
physics, the focus of attention is moved to look for evidence that explains the situation.

These works are concerned with exploratory visual sensing tasks under uncertainty of the
knowledge of the scene. Visual feature set, from which the observed features are selected, is
given in advance; it is not automatically derived from the task description.

3



Kuniyoshi and Inoue [15] proposed a framework of qualitatively recognizing ongoing hu-
man action. Using a hierarchical action model, which is given in advance, possible upcoming
events are predicted, and visual features to be paid attention to are selected based on that
prediction.

Horswill [8] proposed a concept of specialization for constructing task-specific robot vision
systems. By analyzing the property of the task including the environment in which the robot
operates, a simple but robust vision algorithm is organized from a set of given small vision
processes.

TIkeuchi and Suehiro [13] have developed a system called the Assembly Plan from Ob-
servation (APO) system, which observes a human performing an assembly task, recognizes
object relations and relation transitions, maps relation transitions to assembly tasks to cause
such relations, and then generate a program which instructs a robot to reproduce the series
of movements originally performed by the human. Using the abstract models of assembly
operations, necessary information for task recognition is efficiently extracted from the range
data.

These works are concerned with the usage of the task, including the constraints on the
environment, for concentrating the visual processing to only necessary portion of image.
This allows visual recognition to be fast and robust. These approaches are, however, highly
task-specific and are based on the careful ¢ priori examination of the task.

For sensor planning in inspection tasks, several methods have been proposed which gen-
erate a set of features to be observed. Features are indicated directly in the inspection
specification [20] or are selected from the specification of entities to be measured through
given knowledge of mapping from measurable entities of an object to features to be observed
[25]. In sensor planning for inspection, derivation of feature set to be observe is relatively
easy because the purpose of the task itself is visual recognition.

The third subproblem (i.e., how to get necessary information) is decomposed further
into two more specific problems of determining a set of feasible sensing strategies and sub-
sequently selecting the most appropriate one among them. The goal of the former is to
determine sensing condition which satisfies several requirements on imaging such as resolu-
tion, field of view, focus and visibility [7] [18] [23] [22]. The ability of solving such a problem
would be necessary for any sensor planners as a subroutine of automatically determining
feasible sensing conditions.

As mentioned above, the second more specific problem is to determine the best sensing
strategy which maximizes some “goodness” function. The minimum uncertainty criterion
has often been used [14] [24] [26]; some measure of uncertainty, such as the determinant of
the covariance matrix of the parameter vector to be estimated, is used for selecting the best
strategy. In certain types of tasks, however, this criterion may not be appropriate; some part
of information may need to be more accurate than the rest for a specific task, for example. A
weighted sum of uncertainty parameters is one way to deal with such a case. It is, however,
difficult to determine appropriate weights for a given task. Thus, some appropriate function
should be automatically designed for each task which can measure how each sensing strategy



contributes to the proper execution of the current task.

This report proposes a novel method of systematically generating visual sensing strategies
based on knowledge of the task. We deal with visual sensing strategy generation in assembly
tasks, in which the environment is known, that is, the shape, the size, and the approximate
location of every object is known to the system. In this situation, the role of visual sensors is
to determine the position of the currently assembled object with sufficient accuracy so that
the object can be, with a high degree of certainty, mated with other objects.

In assembly operations, degrees of freedom of assembled objects are gradually constrained.
Thus, specific degrees of freedom of the currently manipulated object need to be observed in
each assembly operation. In this context, the above-mentioned three subproblems are solved
as follows. The description of the current operation indicates the degrees of freedom that
should be measured by vision (what information to extract). The description also provides
candidates of features to be observed. Among those features, by using the knowledge of
the relationships between observed features and degrees of freedom to be measured, visual
features to be observed are selected (which features to observe). Then, candidates of feasible
sensing strategies which allow the selected features to be observed are generated. Subse-
quently, the best sensing strategy is selected based on its contribution to proper execution
of the current operation (how to observe the features).

The rest of this report is organized as follows. Section 2 describes a theory to determine
what visual information is necessary in each assembly operation. The theory is based on the
face contact analysis of the operations. Section 3 describes a method to select visual features
to be observed using the task description. Section 4 explains a task-oriented evaluation of
visual sensing strategies. Section 5 describes an implementation of the proposed methods
using a line laser range finder. Section 6 describes the experimental results, which show
the feasibility of the mothods and point out the importance of the task-oriented evaluation
of visual sensing strategies. Section 7 describes a configuration of task-oriented sensing
strategy generation system. Section 8 summarizes the report, and discusses an extension of
our approach to more general visual sensing strategy generation.

2. Determining What Information is Necessary

Visual information can be effectively used in certain types of assembly operations, while
other types can be performed without visual information if the robot is capable of compliant
motion. In this section, we first describe the task analysis based on face contact relations
between objects. Then, using the result of the analysis, we explain how to determine what
visual information is necessary for each assembly operation.

2.1. Task Analysis Based on Face Contact State

We analyze a state of the environment in terms of face contacts between object surfaces [13].
The analysis first deals with the case where polyhedral objects perform only translational
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motions, and is extended later (see Section 2.4). We assume that each assembly operation
involves one manipulated object, manipulated by a robot for the current operation, and
several stationary environmental objects which have face contacts with the manipulated
object. We also assume that the goal of each assembly operation is to establish the required
face contact state.

2.2. Representation of Face Contact States

Let us suppose a surface patch of the manipulated object have a face contact to a surface
patch of an environmental object. This surface contact pair constrains the manipulated
object’s possible translation motion by:

N-AT >0,

where AT denotes possible translational motion vectors of the manipulated object and N
denotes the normal direction of an environmental surface patch.

We use points on the Gaussian sphere to specify both a constraint vector and all possible
translation vectors. Fach vector is translated so that its start point is located at the center
of the Gaussian sphere and its end point exists at some point on the surface of the Gaussian
sphere. We use this point to denote the vector.

The constraint from a patch pair defines several regions in the Gaussian sphere (see
Fig. 1). We refer to the plane perpendicular to the normal, N, as the constraint plane;
this plane divides the Gaussian sphere into two hemispheres. Assuming that the normal
points to the north pole of the Gaussian sphere without loss of generality, the northern
hemisphere corresponds to possible motion directions; the southern hemisphere corresponds
to prohibited motion directions.

manipulated object N

LA —
constraint plane
—— Y
s/ maintaining
motion directions

environmental object

Fig. 1: Constraint inequality depicted on the Gaussian sphere.

When several surface patches of different orientations make contact, possible motion
directions are constrained through simultaneous linear inequalities. These constraints are
represented as a combined region in the Gaussian sphere.

In Fig. 1, motions of the directions corresponding to the boundary of the southern
hemisphere (the equator) maintain the current face contact state. The degrees of freedom
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Fig. 2: A bidirectional constraint.

of the maintaining the contact state (maintaining DOF) is two. Motions of the directions
corresponding to the inside of the detaching hemisphere break the contact state, and is
referred to as the detaching motion. A pure detaching motion is the detaching motion which
does not contain any maintaining motion component. The pure detaching motion in Fig. 1
is along the constraint normal IV; its degrees of freedom (detaching DOF) is one.

Fig. 2 shows the case where two normal vectors of environmental objects have the opposite
directions. The possible motion directions of the manipulated object can be represented as
the entire great circle perpendicular to the axis connecting the two poles. There are no
detaching motions; the detaching DOF is zero. One direction along the surface normals
is completely constrained; the degrees of freedom of the constraint directions (constraining

DOF) is one.

We can specify a face contact state by using a triplet of maintaining, detaching, and
constraining DOFs. Using this triplet, for example, the states of Figs. 1 and 2 are represented
as (2,1,0) and (2,0,1), respectively.

In general, possible contact states are classified into ten contact states as shown in Fig. 3
[13]. The triplet of DOF's for each state is indicated in the figure. Note that the sum of the
maintaining DOF (D), the detaching DOF (D) and the constraining DOF (D,) is three:
D, + Dy+ D, = 3. (Recall that only three-dimensional translational motion is considered

here.)

Each assembly operation is considered as a transition from one face contact state to an-
other. We extract possible transitions between the ten contact states based on the following
criteria [13]:

1. If a direct detach motion (a motion that immediately breaks a face-contact) exists,
choose it.

2. If a lateral motion (a motion that maintain the same contact state) that would break
face-contacts by crossing a certain boundary exists, choose it.

3. If several candidate motions satisfy criterion 1 or criterion 2, choose the motion that
least reduces the number of face contacts.

The application of these criteria to the analysis of face contact relations results in the contact
state transition graph as shown in Fig. 4.
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Fig. 3: Ten contact states; the white areas in the Gaussian sphere denote possible motion
vectors. Each state has a label. The three digits denote maintaining DOF, detaching DOF,
and constraining DOF, respectively [13].
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2.3. Determining What Visual Information is Necessary

An assembly operation (i.e., a transition of face contact state) always increases constraints
on some degrees of freedom of the manipulated object. This increase of constraint is clas-
sified into three cases: from maintaining DOF to detaching DOF, from detaching DOF to
constraining DOF, and from maintaining DOT" to constraining DOF. Fig. 5 shows typical
situations corresponding to the three cases.

f
()

(b)

Fig. 5: Three typical cases of increase of constraint on a degree of freedom. Type and
transition of the triplet is as follows:
(a): maintaining — detaching ((
(b): detaching — constraining ((
(c): maintaining — constraining
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Let us examine how the type of the degree of freedom for horizontal motion changes in
these cases, and how that change is realized. In case (a), the degree of freedom changes from
maintaining DOF to detaching DOF. Since the approaching direction of the block is parallel
to the direction of the pure detaching motion at the final state (i.e., the normal vector of
the wall), this operation is realized by moving the block until the face contact occurs. Thus,
this operation can be performed by compliant motion without visual information. In case
(b), the degree of freedom changes from detaching DOF to constraining DOF. Although
the horizontal degree of freedom is constrained at the final state, visual information is also
unnecessary because the desired horizontal position can be kept by maintaining the contact
between the block and the right wall. In case (c), the degree of freedom changes from
maintaining DOF to constraining DOF. The horizontal position of the block needs to be
adjusted with visual information before mating so that both the left and the right face
contact are achieved simultaneously.

If a degree of freedom is maintaining DOF, there is no physical contact regarding that
degree of freedom; the positioning of that degree of freedom cannot receive the benefit from
force information. Thus, if that degree of freedom is to be constraining DOF by the current
operation, that degree of freedom should be observed by vision.!

TA sophisticated force control-based manipulation strategy may be employed to perform this kind of
assembly operation without visual feedback [21]. Even in such a case, reducing errors by visual information
would be useful. For example, with the help of visual information, the number of motion steps could be

reduced [9].
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To summarize, if a degree of freedom becomes constraining DOF from maintaining DOF,
that degree of freedom should be observed. If such a transition of degrees of freedom does
not exist in the current operation, that operation does not require visual information.?
By applying this theory to thirteen possible state transitions enumerated in Fig. 4, four
transitions (S—B, S—»E, A—E and B—E) were found to require visual information (see

Fig. 6).

A
B|-— A\
\v$
|

G H

o |— O

Fig. 6: Classification of state transitions. Bold lines indicate the transitions that require
visual information. Thin lines indicate the transitions that do not require visual information.

2.4. Extension of Analysis of Face Contact State

In this subsection, we extend the previous contact state analysis to the case where an object
can be composed of planar or cylindrical surfaces, and where, in addition to three transla-
tional degrees of freedom, one rotational degree of freedom is allowed. Since most of assembly
operations in practical situations are realized by these four degrees of freedom, this extended
analysis is considered to be reasonable for practical use.

Fig. 7 shows a typical object, which has both planar and cylindrical surfaces, used in
the extended face contact analysis. We limit the contact states of a cylindrical surface
to the three cases where (from left to right) no contact occurs, contact occurs on half of
its surface, and contact occurs on all of its surface; these cases correspond to maintaining
DOF, detaching DOF, and constraining DOF for the translational motion perpendicular to
the principal axis of the cylindrical surface. In this extended analysis, we represent a face
contact state by a sextuplet of DOF, which is composed of two triplets of translational DOF's
and of rotational DOFs.

?Note that this theory is based on the above-mentioned assumptions thai the manipulated object is
assembled through several face contact states, and that the goal of each assembly operation is to establish
the required face contact state.
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Fig. T7: The object considered in the contact state analysis.

Fig. 8 summarizes the analysis result. In the figure, the possible face contact states
are arranged according to their sextuplets of DOFs. The number of states is 54, which is
rather large as compared with the number of states in case that only polyhedral objects and
translational motions are considered, namely 10.

We then enumerate possible transitions between contact states. By applying the above-
mentioned criteria on feasible transitions to the states, we extracted 85 feasible transitions
shown in Fig. 9.

The above theory of determining necessary visual information for assembly operations,
which is derived for translational motions, is also applicable to rotational motions because
an infinitesimal rotational motion just before the state transition can be considered as a
translational motion. By examining the change of sextuplet in each state transition, 19 out
of 85 transitions are found to require visual information. These transitions are indicated by
bold (solid or dotted) lines in Fig. 9. Further examination in terms of the degrees of freedom
to be observed by vision classifies these 19 transitions into six groups. Typical situations for
the groups are depicted in Fig. 10.

3. Selection of Features to be Observed

In each vision-guided assembly operation, a relevant set of features needs to be selected
so that necessary degrees of freedom of the assembled objects are observed. This section
describe how to select this set of visual features using knowledge of the task.

3.1. Sensing Primitive

To solve the feature selection problem, we introduce a concept of sensing primitive. Sensing
primitive is an abstract sensing procedure, which describes the relationship between an
observable feature and degrees of freedom to be measured. For each primitive visual feature,
such as a straight edge of a polyhedron, one sensing primitive is prepared. The repertoire of
sensing primitives is generated in advance by enumerating possible geometric features that
could appear in the assembly task under consideration, and that are observable with the
sensor used. Examples of sensor primitives are shown below.

12



“NOT MMREZANNBRWVZERRN

ROTATIONAL DOFs

(m, d, c) (0,0, 1) (0, 1,0) (1,0,0)
S
(3,0,0 @
Al 3 —
(2,1,0) @ ®’@ | E
B1 ' 2 S R
& §
(2,0 1) '
Ci-1 C1-2 : C2-1 C2-2 '
(1,2,0) | /j[‘/};
Di-1 Di-2 DI-3 D14 D2-1 D2-2 D2-3 D24 | D3
) S
& -{\ - Y
ook
(1,1, 1) SV |
& .
| s [
El-1 Ei-2 E1-3 El4 E2-1 E2-2 E2-3 E2-4 " E3
& (@, S
@% Q&%g i PRNSAE
(1,0, 2) s.l ’ % F S | S
& _ & o '
F1 F2 ['_
|
(0, 3, 0) S i % $ @ _
GI-1 Gi-2 T G1-3 [ G2-1 G2 G2-3 63 '
% ' S
7 | 3 1=
- i = '
s o | S |
Hi-1 HI-2 Hi-3 HI-4 HI-5 H2-1 H2-2 H2-3  H2-4 H2-5 H3-1 H3-2
$ & e |
[ =8 S8 s S
(0,1, 2) G A g
& = o \\\R
-1 I1-2 12 ' 3
R
(07 0: 3 ) %I f%

Fig. 8: Summary of extended contact state analysis.

13




o , by \
/ Al.,',l‘",[mu-..,,,. - o, i //// / WA \\\ \
|y e, [ /s WA

, % L "0y, MY ovi, 7 ,“"'. Ve \\ \ ‘
| | ,-:':'f p. i, ey ,, “‘&"u.&,‘""' ",.//. IR \l | |
I W N o\ L S GTN AN
L] A 1-1; E1-2// El-3 El-dm——pa\ 1\ /) /
NS~ st o B RN 'Ry

7\ BT A PP N ) 7

PN N Sl B2l E2-2 |E2-314 E2-4” ﬁ;ﬂl
\ 2\ P, 7\ Wy T

bt \ DR e = —
B2 B3 = — — B /1
A T = /!
e — T N=E .‘ /1
< < ' \ 2alt B X/
. e D171 /D1-2\D1-3 D14} ...\....D3 )( h
I by I
o XN o™ D2-2 ’DZ— / D2—4‘ 7
P ﬁ:’_- D21 D232 ‘34 1
,;‘/ '/_;‘:“,'-—-—-—-—'—"\'&\\ \/’4\: /J’—: ‘!’///
SOEN e =L T T
G1-1 /G1-2% G1-3 ="~ P i '
y \ _-G3 i '
G2-1 G2-2 G2-3~ i ,' H3-1\—}~
.’ i
! j H3-2
Hi-1 [ Hi-2™ H1-3 'lH1—4 jHI-S /s b
H2-1 H2-2“H2-3 H2-4" H2—5 /
---------------- » rotate—to—touch

—— = move—to—touch

— [N1SEFLION

————» guided—motion

———— » guided—motion + move—to—touch
---------------- » guided—motion + insertion

Fig. 9: Transition graph for extended analysis.

14




contact

@ ©) (0

Fig. 10: Transition groups which need visual information. Thick arrows indicate the
direction of movement. Thin arrows indicate degrees of freedom to be adjusted by use of
visual information. The transition of sextuplet for each case is as follows:

(a): (3,0,0;1,0,0) — (1,0,2;0,0,1).

(b): (2,1,0;0,0,1) — (1,0,2;0,0,1)/(2,0,1;0,0,1) — (1,0,2;0,0,1).
(c): (3,0,0;1,0,0) — (2,0,1;0,0,1)
(d): (3,0,0;1,0,0) — (1,0,2;1,0,0).
(e): (1,0,2;1,0,0) — (1,0,2;0,0,1)/(1,1,1;1,0,0) — (1,0,2;0,0,1)
(f):  (1,0,2;1,0,0) — (0,0,3;1,0,0Y/(1,1,1;1,0,0) — (0,1,2;1,0,0)
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3.2. Feature Selection Process

Fig. 11 illustrates the process of the feature selection.  From the task description, the degrees
of freedom to be constrained by the current assembly operation is obtained by the method
described in the previous section. On the other hand, a set of observable features comes
from the face contact information in the task description. By consulting prepared sensing
primitives, a feasible set of features is selected. Necessary geometric information in this
selection is retrieved from a CAD-based world model.?

CAD-Based
World Model

Task
Description

Repertoire of
Sensing Primitives

® Observable Feature Set

wh| [easible Sets
V| of Featuers

DOFs to be constrained

Fig. 11: Selection of features to be observed using task description and sensing primitives.

The selection problem is formalized as follows. Let us consider a general case where an
assembled object has six degrees of freedom. Since constraints for translational ones and
that for rotational ones can be considered separately, we take two Gaussian spheres, GT
and G®, and use points on each sphere to represent movable directions (on GT) or possible
rotation azes (on G*#) under a certain set of constraints. Let us use the following notation:

o AL, (AR .): A set of points on G” (GF) which represents desired constraints which
need to be achieved after the next sensing is completed.

o AT

curr

(AR ): A set of points on GT (GF) under the current set of constraints. This

includes constraints realized by a motion control during the current assembly operation
(e.g., contact-maintaining operation in Fig. 5(b)) as well as geometric constraints

achieved so far.

o AT (AF): A set of points on GT (G®) which represents constraints to be obtained
by measuring the 3D position of the :th feature; this information is described in each

sensing primitive.

By observing n different features {feature;|i = 1,...,n}, the following two resultant point

sets, A%, , and AE_, are obtained:

3The object recognizer determines each object configuration in the real world and generates a CAD-based

world model.
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In order that this set of features is sufficient for providing enough constraints, the following
condition must be satisfied:

AT DAL L NAR D AR (1)

goal goal

A pair of AT and AF is a representation of a sensing primitive. For exampe, let us
consider the case where we have four primitive features: a straight edge, a planar surface,
a circular edge, and a cylindrical surface. The Gaussian spheres representing constraints
obtained by measuring the 3D position of each feature are shown in Fig. 12. For example,
by observing a straight line of an object, we can determine the position of the object except
the displacement along the direction of the line; we can determine the orientation of the
object except the rotation about the direction of the line.

As an example of feature selection, let us consider two cases (a) and (b) of peg-in-hole
operation shown in Fig. 13. Suppose we are localizing the hole by observing the position of
its edges. Since the degrees of freedom to be adjusted are limited on a plane perpendicular to
the insertion direction, we use the Gaussian circle instead of the Gaussian sphere. Also, we
consider it only for translation because the rotational degree of freedom will be constrained
by observing at least one edge.

First, as shown in Fig. 13, AZ  for case (a) is represented by the full circle, while that
for case (b) is represented by two points on the z axis. Ag:ml is the Gaussian circle with no
points for both cases. Then, as shown in Fig. 14, AT for two edges, e; and e,, is represented
by two points corresponding the direction of the edge. By applying equation (1) to these
data, we can decide that observing only e, is sufficient for case (b), and that observing both

e; and ey is necessary for case (a).

3.3. Generation of Candidate Sensor Position

Once a set of features to be observed is selected, a set of feasible sensor positions is enu-
merated from which all of the selected features are observable. There has been work done
on generating a set of feasible viewpoints which satisfy various observation condition such
as visibility and detectability of visual features [7] [18]. Similarly, the candidates for sensor
positions are enumerated by considering visibility of features and the possibility of collision
between sensors and other objects, as well as the configuration of sensors. The selection of
the final sensing strategy from the candidates is described in the next section.
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4. Task-Oriented Evaluation of Visual Sensing Strategies

4.1. Uncertainty-Based Evaluation

In the assembly tasks treated in this report, the purpose of sensing is to acquire positional
information of the assembled object with respect to the static environment, thereby feeding
it back to the robot to adjust the position of the currently manipulated object. Thus, we
evaluate sensory information in terms of accuracy of the estimate of the object position.

We assume that sensor data consist of position measurements, and that each measurement
has the uncertainty, which can be calculated using the uncertainty model of the sensor. The
problem of estimating the object position is described as follows. Let a be the parameter
vector representing the object position. .Suppose that the parameter vector is estimated
from a set of 3D measurements {®;|: = 1,..., N}, and that the following equation f;, which
represents constraints on measurements (shape of the measured feature) and comes from the
CAD-based world model, should ideally be satisfied for each measurements:

fi(miva) =0 (2)

The initial estimate of the parameters are also obtained from the CAD-based world model.
Since this equation is non-linear in general, by applying the Extended Kalman Filter theory
[3] to this estimation problem, the covariance matrix S of a is given by

N
STt o= Y MIwT'M,,
i=1
of;
Y= Ba )
_ Of:, af"
VVz - G_:mAtaa:, 9

where A; is the covariance matrix representing the uncertainty in the :th measurement ;.

Accuracy of an estimate can be evaluated based on the covariance matrix S. Note that
the uncertainty of each element of @ has a different effect to the success of the current
operation, and that this relative effects of the elements depends on the assembly operation
currently being carried out. A weighted sum of elements in the covariance matrix may be
one way to handle such relative effects. It is, however, difficult to determine appropriate
weights for a given task, especially when the shape of the assembled is complex.

The next subsection describes a general method to define an appropriate evaluation func-
tion for each assembly operation to be performed.

4.2. Evaluation Based on Predicted Success Probability

If the position estimation of the assembled object is poor, the current operation will most
likely fail; if position estimation is accurate enough, the operation will succeed. Thus, one
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of the most direct criteria that measures the “goodness” of sensing strategy is whether
the current operation will succeed with a selected sensing strategy. Therefore, we use the
predicted success probability of the operation as the criterion; the sensing strategy that is
selected is the one most likely to result in successful task execution.

To calculate the success probability, we first calculate a region in the space of the error of
the position parameter vector such that if the error is inside the region, the current operation
succeeds. We call this region a success region. Then, the predicted success probability is
given by calculating how much portion of the uncertainty distribution of the error, which is
predicted from the sensor model, is inside the success region of the current operation (see
Fig.15). This success probability is numerically calculated by quantizing the space of the
error vector. After calculating the probabilities for all feasible sensing strategies, the one
with the highest probability is selected as the final sensing strategy.

Success region obtained from
the CAD-based world model

- AX

Uncertainty ellipse (ellipsoid)
obtained from the sensor model

Fig. 15: Calculation of the predicted success probability. This figure shows the case where
the position parameter of the object is two-dimensional, (X,Y).

4.3. Derivation of Inequalities Representing Success Region

A success region is formed in a space of unconstrained degrees of freedom in each operation.
In case of operation (a) in Fig. 10, for example, the success region is formed in a three-
dimensional space composed of two translational and one rotational degrees of freedom on
the plane perpendicular to the insertion direction.

A success region is a representation of the clearance of the operation, and is automatically
calculated using the CAD models of objects. Since we are now dealing with assembly of
objects which are composed of planar or cylindrical surfaces, considering the following three
cases is sufficient:

Case (1): insertion of a peg with a polygonal cross-section into a hole (cases (a) and (b)
in Fig. 10). In this case, for each pair of vertices of a peg and a hole, two inequalities are
generated; if the peg vertex is convex, inequalities are generated between the peg vertex
and the two edges crossing at the hole vertex; if the peg vertex is concave, inequalities
are generated between the hole vertex and the two edges crossing at the peg vertex. Fig.
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16 shows the two possibilities; V', L; and L, indicate the vertex and the edges used for
generating inequalities.

(a) vertex is convex (b) vertex is concave

Fig. 16: Vertex (V) and edges (L; and L,) used for generating inequalities in the case of
insertion of a peg with a polygonal cross-section into a hole.

Case (2): insertion of a peg with a polygonal cross-section into a parallel gap (cases (c),
(e) and (f) in Fig. 10). In this case, for each pair of a vertex and an edge, one inequality
is generated. Fig. 17 shows two possibilities; V' and L indicate the vertex and the edge for
generating an inequality.

(a) vertex is inside the gap  (b) vertex is outside the gap

Fig. 17: Vertex (V) and edge (L) used for generating an inequality in the case of insertion
of a peg with a polygonal cross-section into a parallel gap.

Case (3): insertion of a peg with a circular cross-section into a hole (case (d) in Fig. 10). In
this case, the success region is represented as a circle in a two-dimensional space composed
of two translational DOFs; the radius of the circle is the difference between the radius of the

hole and that of the peg.

The above calculations of success region deal with a general case, that is, the case where
there is no constraints on the peg before the operation. If there is some constraints before
the operation (e.g., case (b) in Fig. 10), the actual success region is given as a cross-section
of the general success region cut by fixed parameter values under the constraints.
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Here, as an example, we derive the success region for the case where the shape of the
cross-section is rectangle. Fig. 18 shows a top view of the operation. Edges of the hole are
aligned to the X and the Y axes. Let Wx and Wy be the widths of the peg in the X and Y
axes, respectively. Also, let k£ denote the clearance ratio of the hole. These values come from
the CAD model. We need to adjust the position and the orientation of the peg, (X,Y, ).

(I+k)Wy
AN
‘ % 7 I.- /, : |
Nl \(I+k)Wy
7 & ) "
l—x \\ =

Fig. 18: Rectangular peg-in-hole operation.

Let (AX,AY, Af) denote the error of (X,Y,6). Based on the above method of success
region calculation (case 1), the following set of eight inequalities is derived:

AX—I——WQ—)-(-COSAB——I%—}:SinAQ < %Wx ( e
AY + %Sin Ab + %cos Al < k;1Wy upper right vertex)
A %COSMJF %SMM = %WX (1 ight vert
AY + %{sinAe—%ms Al > _k;zl—lWY ower right vertex)
AX — %cos Al — %sinAG > —]C2L1WX 3 (4)
t
Ay - Mnng+ B eosnn < Hlw upper eft verter
AX—%COSAH-M-;KSmAe > —%Wx -
t vert
AY—%SinAH—%cosAa > _k-zl-IWY (lower left vertex)

We calculated the actual success regions for two sets of geometric values. Fig. 19 shows
the resultant success regions. As shown in the figure, the tolerance in AX in case (b) is larger
than that in case (a), while the tolerance in A@ is smaller. If the uncertainty distribution of
the position parameter is the same to both cases, the resultant success probabilities should
differ from each other. Thus, the effect of the uncertainty in the parameter vector to the
task execution needs to be evaluated by considering the success region.
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AO (deg.)

AX (mm)

(a) Wx =19.05 (mm), Wy =19.05 (mm), (b) Wx = 38.10 (mm), Wy = 19.05 (mm),
k = 0.043. k = 0.043.

Fig. 19: The shape of an success region depends on the task.

5. Implementation of the Method using Line Laser Range Finder

5.1. Laser Range Finder and General Sensing Strategy

The proposed method has been implemented using a Toyota line laser range finder (LRF)
[16] as the sensor. The LRF emits slit laser, detects highlighted portion of the object by a
TV camera, and obtains a line of 3D measurements (see Fig. 20). The LRF is attached to
an overhead platform of the RobotWorld [19]. This platform has four degrees of freedom:
three degrees of freedom for translation and one for rotation about the vertical axis.

TV camera <

G

slit—laser source

Fig. 20: A line laser range finder.

Every assembly operation that requires visual information is a kind of “peg-in-hole”
operation. The location of a peg is measured by observing its side faces; the location of
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Fig. 21: A strategy for observing a peg and a
hole. Fig. 22: Candidate positions.

the hole is measured by observing several points (currently, five points) on its edges. Thus,
we prepare sensing primitives for the following four geometric features: a straight edge, a
circular edge, a planar face and a cylindrical surface. We use a sensing strategy as shown
in Fig. 21; data for one assembly operation are collected at several position by moving the
LRF in parallel with the insertion direction because the relative displacement on the plane
perpendicular to the insertion direction is important for the operation. We also control the
position of the range finger so that each measured point is kept within a certain area of
the slit laser; the uncertainty of the measurement with the LRF is considered to be almost
constant in this area. Thus, the only parameter that specifies the position of the range finder
is the angle ¢ between the direction of the laser and some axis of the plane perpendicular to
the insertion direction (see Fig. 22).

5.2. Assembly Operation with Visual Feedback

The actual vision-guided assembly operation is performed in a “stop and sense” mode. First,
a peg is moved by a manipulator to the position just before a hole. Then, the LRF is placed
to the planned position, and measures the position of the hole and the peg. If the error in
the relative position between the peg and the hole is within the success region (see Section
4.2), the peg is inserted. Otherwise, the peg position is adjusted and the peg is observed
again. This final step is repeated until the relative position becomes satisfactory, and then
the peg is inserted.

6. Experimental Results

This section describes the experimental results. We conducted three kinds of operations
which are often involved in ordinary assembly tasks: a peg-in-hole operation, an operation
of putting the tip of a screwdriver into the slot of a bolt head, and a gear-mating operation.
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To validate the selection of visual sensing strategy based on predicted success probability
(see Section 4.2), we compared the predicted success probability, which is predicted from
the object models and sensor models, with the actual success ratio, which is statistically
obtained through a number of actual trials of the same operation by the actual robot and
the sensor.

6.1. Uncertainty Model of Laser Range Finder

The laser range finder we used provides quite accurate measurement: less than 0.1mm in
depth and less than 0.3mm in the horizontal position. In order to stress the effect of un-
certainty to the success probability, we artificially added a relatively large Gaussian noise
to the measurement; we added Gaussian of standard deviation 0.12mm to the depth mea-
surement and that of standard deviation 0.30mm to the horizontal position measurement;
uncertainties of these two measurements are set to be independent of each other. Fig. 23
shows the distribution of 500 measurements of the same point. The resultant uncertainties
are reasonably Gaussian with almost the desired standard deviations.

freq. freq.
50 0 =0.1193 (mm) 50 O = 0.2893 (mm)
40 - 40
30 - 30
20 20
II L l‘ |
0= |.|| lll-_. ______ Ll ||| IIII . 5
13.8 14.0 14.2 14.4 14.6 -05 0 05 10 15
depth (mm) horizontal

position (mm)

Fig. 23: Distribution of measurements and estimated standard deviation.
The reason why we used this uncertainty model is that the purpose of this report is not

to construct an uncertainty model of our laser range finder but to demonstrate that our
method can generate the optimal sensing strategy if the uncertainty model of the sensor is

given.
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6.2. A Peg-in-Hole Operation
6.2.1. Face Contact Analysis and Actual Operation

The first operation is the operation of inserting a peg with a rectangular cross-section into
a hole. Fig. 24 shows the face contact analysis of the operation. This operation belongs to
group (a) in Fig. 10, and results in two translational and one rotational degrees of freedom
being constrained. The face contacts to be achieved are (f1-f1), (fo-f3), (fs-f3) and (fs-f1)-
The candidates for observed features are fi, f;, f3 and f4 for the peg, and €}, €}, €5 and
ey for the hole. To obtain sufficient information for localization, two neighboring faces and
edges were observed. Considering the conditions that five points are completely observed on
an edge, and that the LRF does not collide with the robot manipulating the peg, the range
of the feasible viewing direction (¢) were determined as shown in Fig. 25. The center of
the circular trajectory of the LRF was placed on the vertex at the intersection of the two
neighboring edges. Fig. 26 shows a successful peg-in-hole operation.

I
insertion j fI

direction

S:(3,0,0;1,0,0)

adjust x, y and ©
N N

¢ E1-1:(1,0,2; 0,0, 1)
I cd
I f; e

| |
EEE

Fig. 24: Face contact analysis of the rectangular peg-in-hole operation. The triplet of
DOFs (see Section 2.2) changes from (3,0,0) to (1,0,2).

6.2.2. Comparison of Predicted Success Probability with Actual Success Ratio
We compared the predicted success probability with the actual success ratio in the following
two sets of the objects:

Case (a): The cross-section of the peg is a square of 19.05(mm) x 19.05(mm). The clearance
ratio of the hole is 0.043. The success region for this case is shown in Fig. 19(a).

Case (b): The cross-section of the peg is a rectangle of 38.1(mm) x 19.05(mm). The
clearance ratio of the hole is 0.043. The success region for this case is shown in Fig. 19(b).

In each case, several viewing angle (¢ in Fig. 25) were selected; for each angle, the
same operation was performed 50 times and the numbers of success and of failure were
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Fig. 25: Top view of candidate viewing directions for observing two edges and faces.
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accumulated to calculate actual success ratio.

Since the number of the data points for the peg is much larger than that for the hole, the
uncertainty of the peg position is small (about 100 times more accurate) compared to that
of the hole position. Thus, we neglected the uncertainty of the peg position and considered
only the uncertainty of the hole position in calculation of predicted success probabilities.

Fig. 27 shows the comparison results; the results of actual experiments coincide with
the predicted results quite well. We think this result shows the importance of task-oriented
evaluation of sensing strategies, i.e., the appropriate sensing strategy should be selected by
considering the task to be performed.

probability

1.0 of success probability
1 predicted success probability 1.0+ of success
@  actual success ratio predicted success probability
@  actual success ratio

0.8+ 0.8+

0.6+ 0.6+

0.4 ¢ 0.4

L ®
e @
0.2 0.2+
o
200 300 400 500 060.0 700 _r(deg. ) 20.0 300 400 500 600 700 ——(de g.)
Case (a) Case (b)

Fig. 27: Comparison of the predicted success probability with the actual success ratio.
The success ratio for each viewing angle ¢ was obtained by repeating the same operation
50 times by the RobotWorld, and by counting the numbers of success and failture of the
operation.

6.3. Putting Screwdriver on Bolt

Fig. 28 shows an operation of inserting the tip of a screwdriver into the slot on a bolt head.
This operation belongs to group (c) in Fig. 10. By this operation, two degrees of freedom
are constrained. The face contacts to be achieved are (fi-f]) and (f2-f3). The candidates
for observed features are f1, f2, fs and f, for the screwdriver, and e} and e} for the hole.

In this case, because of the geometric constraints between manipulators for object han-
dling and for the LRF, the screwdriver and the bolt could not be observed at once. Thus,

28



the LRF observed only the bolt because the positional uncertainty of the bolt is much larger
than that of the screwdriver. Thus, edges €] and e}, of the bolt are observed. Fig. 29 shows
a successful operation of putting a screwdriver on a bolt.

o (3,0,0;1,0,0)
direction of
insertion

adjust x and ©

2,0,1;0,0,1)

Fig. 28: Contact state analysis of putting a screwdriver on a bolt. Transition in terms
of three kinds of DOFs (see section 2) for both translational and rotational ones is also
indicated.

| observe the bolt adjust position |8 | push screwdriver

Fig. 29: The screwdriver was successfully inserted into the slot of the bolt head.

Fig. 30 shows the comparison of the predicted success probability with the actual success
ratio. Again, the experimental results coincide with each the predicted results quite well.

6.4. Gear Mating

Figure 31 shows a gear-mating operation. This operation belongs to group (e) in Fig. 10.
In this operation, e priori knowledge about how gears are mated is necessary because there
are many potential matches between teeth of gears. First, two virtual edges e, and €, are
generated; one edge is placed on the center of the nearest tooth (or gap) to the line connecting
two gear centers; another edge is placed on the center of the nearest gap (or tooth) to the
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Fig. 30: Comparison of the two success probabilities in the screwdriver-bolt operation.
The angle ¢ indicates the relative angle between the direction of the slot and the viewing
direction of the range finder. In each viewing angle, the same operation was repeated 50
times to obtain the sucess ratio.

line. Then, the orientation of the inserted gear is adjusted so that these two virtual edges
are aligned.

The position of a virtual edge is calculated from the position of the edges on the tooth
(or gap) on which the virtual edge is set (see Fig. 32). Assuming that the shape of the tooth
is almost rectangular, the virtual edge is obtained by fitting a line of the center points of
pairs of edge points.

Since the position of a virtual edge is calculated by measuring several points on the edge,
it 1s safest to place the LRF so that the direction of the slit laser is perpendicular to the
edge. Thus, to observe the two virtual edges from one position, the LRF is placed so that
the direction of the slit laser is aligned to the line connecting the two gear centers. Fig. 33
shows a successful gear-mating operation.

Fig. 34 shows the comparison of the predicted success probability with the actual success
ratio. Also in this case, the experimental results coincide with the predicted results quite

well.
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Fig. 31: Contact state analysis of gear mat- Fig. 32: Measuing the tooth position from
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Fig. 33: The gears were successfully mated.
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Fig. 34: Comparison of the predicted success probability and the actual success ratio in the
gear-mating operation. The angle ¢ indicates the relative anlge between the line connecting
two gear centers and the viewing direction of the range finder. In each viewing angle, the
same operation was repeated 50 times to obtain the sucess ratio.

7. Task-Oriented Sensing Strategy Generation System

This section describes the structure of task-oriented sensing strategy generation system,
which incorporates with various other modules of automatic assembly system such as a task
planner and a task executor. Fig. 35 illustrates the outline of task-oriented sensing strategy
generation. Before planning, abstract sensing task models, which are abstract templates
of sensing strategies, are generated from the task description and the sensor models. At
planning time, by instantiating the appropriate sensing task model, the sensing strategy is
efficiently generated.

7.1. Task Model and Sensor Model

The description of a task is represented by a structure called an abstract task model. An
abstract task model associates a state transition with an assembly operation which causes
the transition. Each task model has slots for necessary information for performing the
operation by a robot, such as assembled objects and geometric relations to be achieved. In
addition, the task model contains a robot motion macro and parameters to expand the macro,
such as grasping position, departing position and approaching position. An instantiated task
model, whose slots have actual values, is either generated by observing an assembly operation
performed by a human [13], or generated from the task specification by a task planner.

The sensor model [12] describes knowledge about a sensor such as features which are
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Fig. 35: Framework of task-oriented sensing strategy generation.
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observable with the sensor, range of the sensor (distance and field of view), and sensor data
uncertainty.

7.2. Sensing Task Model

Sensing strategies are dependent upon the sensors used and assembly operations to be per-
formed. An abstract sensing task model is generated for a sensor and an assembly operation
(or a group of assembly operations) from the sensor model and abstract task models. An
abstract sensing task model contains the following information:

Transition of the sextuplet
o Which degrees of freedom to observe.

o Feature set to observe

e feasible sensor position set to observe it.

A function for estimating uncertainty of the relative location of the manipulated object
with respect to the stationary environment. Uncertainty estimation is described by a
covariance matrix (see Section 4.1).

® a success region for evaluating sensing strategies (see Section 4.2).

Some values of the above information are dependent upon geometric values (shape, size and
position) of the objects involved in each operation.

In order to efficiently generate visual sensing strategies, we enumerate in advance op-
erations which involve only objects of typical shapes such as rectangular parallelepiped or
cylinder, and describe the above infomation in a parameterized form for those operations.
Parameters (i.e., the size and the position of objects involved in each operation) are in-
stantiated at planning time by referring to the instantiated task model. Fig. 36 shows a
parameterized abstract sensing task model for the operation of inserting a peg with a circular
cross-section into a hole.

For those operations that do not have corresponding parameterized information, only
the transition of the sextuplet and the degrees of freedom to be observed are stored. The
rest of the necessary information is generated from scratch, that is, feasible feature sets
are selected by the method described in Section 3.2; uncertainty estimate is calculated by
combinining uncertainty estimate for each visual feature into a covariance matrix through
matrix transformation based on actual geometric values; a success region for evaluating
sensing strategies is derived by the method described in Section 4.3. It would be a useful
extension to add a capability to the system which expands the repertoire of “typical” shapes
through the interaction with a human expert whenever the system encounters an object for
which a parameterized abstract sensing task is not prepared.
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direction
(X0, Y0, Z0)
N (1+k)r
transition of sextuplet: (3,0,0; 1,0,00 — (1,0,2; 1,0,0)
DOFs to be observed: Xand Y
Feature set: J; and e
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Function to estimate uncertainty:  (obtained from the equation of the circle
(X-XOP+ (Y-YO)/= R, Z=Z0 (R=r, (1+k)r) )
Success region: circle of radius kr

Fig. 36: A parameterized abstract sensing task model for the operation of inserting a peg
with a circular cross-section into a hole. f; and f; indicate faces; e; and e, indicate edges.
The radius of the cross-section of the peg is r; clearance ratio is k.

7.3. Process of Sensing Task Model Generation

Before planning, abstract sensing task models are generated for a sensor model and a set of
abstract task models using the following steps:

1. Collect and classify state transitions in which visual information should be used. This
step is based on the analysis of transitions of contact states (see section 2).

2. For each state transition groups, enumerate possible shapes of objects, for which pa-
rameterized abstract sensing models are prepared. A parameterized abstract sensing
model is generated in the following steps:

(a) Collect feasible sets of visual features to observe.

(b) Determine feasible sensor positions for each of the above sets, by considering the
visibility of the visual features and the collision possibility with them.

(c¢) Define a function to estimate the positional uncertainty of the manipulated object.

(d) Calculate a success region.

7.4. Automatic Sensing Strategy Generation using Sensing Task Model

At planning time, given an instantiated task model and the sensing task models, sensing
strategy for the operation is automatically generated by the following steps (see Fig. 35):
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1. Instantiation. Select the appropriate abstract sensing task model for the current as-
sembly operation, and instantiate it using actual geometric values.

2. Candidate generation. From the instantiated sensing task model, possible sensor posi-
tions are generated. In this step, considering all objects in the workspace, the visibility
and the detectability of visual features are examined. Also, the possibility of collision
between the sensor and the environment including other robots is examined.

3. Selection. Evaluate each sensing strategy using the evaluation function, and finally
select the optimal one.

8. Concluding Remarks

8.1. Summary

We have described a method of systematically generating visual sensing strategies in as-
sembly tasks using the knowledge of the task to be performed. Based on the result of the
analysis of the assembly tasks in terms of the transition of face contacts between object
surfaces, we can determine which degrees of freedom of the assembled objects should be
measured. A set of visual features to be observed are then selected by which the necessary
degrees of freedom are measured. Finally, among feasible visual sensing strategies, the one
with the highest predicted success probability is selected as the final sensing strategy. The
proposed method has been implemented using a line laser range finder as the sensor. The
experimental results show the feasibility of the method, and point out the importance of
task-oriented evaluation of visual sensing strategies. We also have described a structure of
task-oriented visual sensing startegy generation system based on the proposed method.

8.2. Extension to General Sensing Strategy Generation

The proposed method can be applied to other sensing strategy generation problems provided
that the description of the task and the model of sensors are given. In order to apply the
method to other problems, we would need the following;:

e Primitives for describing the problem, i.e., for describing the change of the state (or
the purpose of the task). We call this kind of primitive the information primitive. In
this report, we used “degrees of freedom” as an information primitive.

o Relationships between observable visual features and obtained information; this infor-
mation is described with information primitives. This relationship is described in an
abstract sensing procedure called a sensing primitive (see Section 3.1).

e Evaluation function. We used predicted success probability as the evaluation function.

Using the above primitives and the function, the outline of task-oriented sensing strategy
generation is illustrated as follows (see Fig. 37):
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Fig. 37: Outline of task-oriented sensing strategy generation.

Step 1: From the description of the current robotic operation, necessary visual information
is determined. This step determines what information to extract. If no visual information is
required in the current operations, visual sensors are not used.

Step 2: A set of observable features is generated from both the description of the operation
and the model of objects.

Step 3: From both the necessary information and the set of observable features, by referring
to sensing primitives, sets of visual features to be observed are selected. By observing each
set of the features, necessary information will be obtained. This step determines where to
get necessary information.

Step 4: By considering constraints on observation conditions such as visibility and possibil-
ity of collision between sensors and objects, feasible sensing strategies are generated. Fach
strategy includes not only the sensor placement but also sensor data processing to extract
necessary information for the current operation.

Step 5: Among candidates for sensing strategies, the best one is selected based on the
task-oriented evaluation. Steps 4 and 5 determine how to get necessary information.
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