
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

To appear: inProceedings of the IEEE CompCon Conference, March 5-8, 1995. San Francisco.

Abstract

To meet the bandwidth needs of modern computer systems, parallel storage systems are evolving
beyond RAID levels 1 through 5. The Parallel Data Lab at Carnegie Mellon University has constructed
three Scotch parallel storage testbeds to explore and evaluate five directions in RAID evolution: first,
the development of new RAID architectures to reduce the cost/performance penalty of maintaining
redundant data; second, an extensible software framework for rapid prototyping of new architectures;
third, mechanisms to reduce the complexity of and automate error-handling in RAID subsystems;
fourth, a file system extension that allows serial programs to exploit parallel storage; and lastly, a paral-
lel file system that extends the RAID advantages to distributed, parallel computing environments. This
paper describes these five RAID evolutions and the testbeds in which they are being implemented and
evaluated.
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1 Introduction

As information systems become increasingly critical, the demand for high-capacity, high-performance,
highly available, storage systems increases. The introduction of parallel processing, coupled with the unrelent-
ing pace of microprocessor performance improvements, has converted many traditionally compute-con-
strained tasks to ones dominated by I/O. Redundant Arrays of Inexpensive Disks (RAID), as defined by
Patterson, Gibson, and Katz [1], has emerged as the most promising technology for meeting these needs. Con-
sequently, the market for RAID systems is undergoing rapid growth, exceeding three billion dollars in 1994
and expected to surpass 13 billion dollars by 1997 [2].

However, RAID storage is not without limitations. First, there are cost and performance penalties for main-
taining a redundant encoding of stored data. Overcoming these penalties continues to spur the development of
new variations of RAID architectures. Second, while the rapid invention of clever new architectures is impor-
tant, it exacerbates the need for a high-fidelity framework for rapid development and evaluation of new
designs. Third, the complexity of fault-tolerance is becoming more unmanageable with each new optimization
incorporated. Fourth, even ignoring the implications of failures, many workloads generate I/O accesses with
inadequate concurrency or sequentially to efficiently exploit parallel storage. Finally, RAID architectures
directly attached to a host system bus are inherently not scalable.

In this paper we present research projects addressing each of these five challenges for parallel storage sys-
tems. We begin, in Section 2, with an overview of the experimental testbeds used to demonstrate and evaluate
our research. Section 3 focuses on the first three limitations, all of which arise and can be addressed within
directly attached RAID subsystems. It presents a variant of RAID level 5 that improves on-line failure recov-
ery performance, an extensible framework for evaluating RAID architectures, and a methodology for structur-
ing RAID control software that automates error handling. Section 4 presents informed prefetching and
scalable, parallel file systems research that address the latter two limitations through application disclosure of
future accesses and application coordination of parallel file system synchronization.

2 Scotch Experimental Testbeds

The Parallel Data Lab at Carnegie Mellon University contains three experimental “Scotch” testbeds for par-
allel storage research. In the sections that follow we describe the research that is being evaluated in each test-
bed.

The first Scotch testbed, Scotch-1, no longer in use, was primarily used for the prefetching file systems
research described in Section 4. As shown in Figure 1, Scotch-1 is composed of a 25 MHz Decstation 5000/
200 with a turbochannel system bus (100 MB/s) running the Mach 3.0 operating system. It is equipped with
two SCSI buses and four 300 MB IBM 0661 “Lightning” drives.

The second Scotch testbed, Scotch-2, is a larger and faster version of Scotch-1 used for the RAID architec-
ture and implementation research described in Section 3 and for second generation prefetching file system
experiments. As Figure 1 shows, Scotch-2 is composed of a 150-Mhz DEC 3000/500 (Alpha) workstation run-
ning the OSF/1 operating system and equipped with six fast SCSI bus controllers. Each bus has five HP 2247
drives, giving the total system a capacity of 30 GB.

The third testbed, Scotch-3, is the storage component in a heterogenous multicomputer composed of 38
workstations, 30 DEC 3000 (Alpha) and 8 IBM RS6000 (PowerPC), distributed over switched-HIPPI and
OC3 ATM networks. This multicomputer is used for parallel application, parallel programming tool, and mul-
ticomputer operating system experiments in addition to the parallel file system research described in Section 4.
As shown in Figure 2, Scotch-3 is composed of ten DEC 3000 (Alpha) workstations with turbochannel system
buses. Each workstation contains one fast, wide, differential SCSI adapter connected to both controllers of an
AT&T (NCR) 6299 disk array. All workstations are interconnected by OC3 (155 Mbit/s) links to a FORE
ASX-200 ATM switch complex and five of the workstations are also connected by HIPPI (800 Mbit/s) links to
a NSC PS-32 HIPPI switch complex. All storage is available to any node through the Scotch parallel file sys-
tem and the appropriate routing.
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3 Storage Subsystem Research

A crucial factor in the acceptance of RAID has been the ability of storage subsystem providers to provide
the RAID advantages of performance, capacity and reliability through existing storage subsystem interfaces
such as the SCSI bus and the IBM channel interface. In this section we present research that can be applied
without nullifying this advantage. For the sake of brevity, we describe only parity declustering, our most
mature RAID architecture. Additional architectures and the work of others is described in a broad survey of
RAID research by Chen, Lee, Gibson, Katz, and Patterson [3].

3.1 Architecture Example: Parity Declustering

Fault tolerance and high concurrency make RAID level 5 an attractive storage architecture for transaction
processing environments. However, RAID level 5 disk arrays typically experience a 60-80% load increase in
the presence of a failed drive. This severe performance degradation limits the applicability of RAID level 5
disk arrays to systems that must be highly available. Further, this failure-mode performance degradation may
lead implementors to restrict the fault-free user workload to 50% of the saturated load, to avoid overload dur-
ing on-line failure recovery.

Parity declustering is a variant of RAID level 5 that reduces the performance degradation of on-line failure
recovery [4]. The key idea behind parity declustering is that a parity unit protects fewer thanN-1 data units,
whereN is the number of disks in the array. To achieve this, parity declustering introduces a second layer of
mapping between the RAID address spaces and the physical disks (Figure 3) .

We have implemented parity declustering in the Scotch-2 parallel storage testbed. Figure 4 shows the time
measured for the reconstruction of the first 200 MB of a disk in a 15-disk declustered array under three work-
load intensities [5]. As the width of the logical array decreases, both the amount of I/O and computation
required for reconstruction drops, allowing reconstruction time to approach the minimum possible– the time
to sequentially write 200 MB to the replacement drive.
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3.2 Rapid Prototyping with RAIDframe

Design and evaluation of novel RAID architectures such as parity declustering is typically done by custom,
design-specific simulation. To achieve more compelling evaluation of competitive or interacting storage archi-
tectures, more designs need to be given concrete implementation. However, concrete implementations are
often prohibitively expensive and time-consuming to develop. To level the playing field and enrich the design
environment, we are developing a portable, extensible framework, RAIDframe, applicable to both simulation
and implementation of novel RAID designs. RAIDframe is currently operational as both a simulator and a
user-level software array controller that accesses disks via the UNIX raw-device interface. We use its imple-
mentation in the Scotch-2 parallel storage testbed where the measurements of parity declustering reported in
Figure 4 were collected.

RAIDframe’s key feature is the separation of mapping, operation semantics, concurrency control, and error
handling, illustrated in Figure 5. Central to the design of RAIDframe is the use of directed acyclic graphs
(DAGs) as a flexible, extensible representation of the semantics of an architecture’s operations. Figure 6 exem-
plifies the DAGs RAIDframe uses to specify its operations. Based on our experience with RAID architectures,
these DAGs capture the dependencies, primitives, and optimizations that are the essential differences between
RAID architectures.

Our first extension of RAID functionality in RAIDframe was the addition of double-failure correction (a
P+Q encoding) [5],[6]. Further extensions are underway.

3.3 Automated Error Recovery

Error handling is one of the major sources of complexity in the implementation of a RAID controller [7]. In
a non-fault-tolerant system, many errors are handled by discarding all operations in progress and reporting the
error for host software to handle. The increasingly complex algorithms which optimize error-free performance
in RAIDs have led to an explosion in the size of the state space that must be navigated by error-handling code.
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Further compounding the problem, RAID implementations often add state-specific performance optimizations
to the error-recovery code in a misguided attempt to build a faster RAID. Our approach, consistent with the
automated DAG execution in RAIDframe, is to emphasize a separated, mechanized, simple, and robust error-
handling system that does not degrade the performance of error-free operation.

In a manner similar to transaction systems, our approach simplifies recovery by eliminating the need for
interpretation of incomplete state transitions exposed when an operation fails. However, unlike transaction sys-
tems, we do not journal state changes to a log, thereby avoiding the error-free performance penalty associated
with logging.

When a DAG fails, we discard it from the system, returning any resources which it may have acquired.
After the state of the array has been updated to reflect the fault which caused the error, we initiate a compensat-
ing DAG which completes the requested operation. This compensating DAG uses neither data read or com-
puted by the initial method.

The approach is mechanized in RAIDframe by defining a cleanup node for each node of a DAG. A cleanup
node releases the resources acquired by its associated node. When an error is detected during forward execu-
tion of the graph, we begin working backward through the graph, executing cleanup nodes. When the header

Figure 5:  The structure of RAIDframe.
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Figure 6: RAIDframe I/O templates.

Nodes labelled “H” and “T” are the header and terminator nodes of the DAG. “R” and “W” nodes
invoke disk reads and writes. “XOR” nodes implement an XOR computation over a set of input
buffers. An “RMW” node causes the contents of a disk unit to be read into a buffer, and then
immediately overwritten with the contents of a second buffer. An “RXW” node causes a disk unit to
be read and then immediately overwritten with the XOR of the unit’s contents and other buffers.
The subscript “d” identifies a read or write of data that is specifically addressed by the user opera-
tion, “ud” identifies data in the stripe that is not being directly addressed by the operation, and “p”
identifies parity.
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node is reached, all resources for the graph have been returned and a compensating method may be initiated.
This process is illustrated in Figure 7.

The goal of this approach is to define a minimal set of constraints on the design of error-free DAGs that
while allowing a compensating method to not depend on the state of the original DAG at which failure
occurred.

4 File Systems Research

In contrast to the RAID subsystem research reported in the previous section, this section reports research
embedded in file systems controlling parallel storage.

4.1 Transparent Informed Prefetching

When a workload has many concurrent accesses or consists of huge transfers, parallel storage systems can
be immediately employed to achieve increased I/O performance. Unfortunately, many workloads serially issue
small or medium-sized I/O requests, presenting little I/O parallelism. For write-intensive workloads, write-
behind can be used to batch and parallelize this sequential request stream. However, for read-intensive work-
loads, the comparable technique, sequential read-ahead, becomes more expensive and less efficient as more
parallelism is sought.

Fortunately, many read-intensive applications know in advance the sequence of I/O requests they will make.
If applications disclose this advance knowledge, the file system can convert the application’s serial request
stream into a set of parallel data prefetch accesses.

The performance benefits of exploiting advance knowledge are threefold. First, by exposing parallelism not
found in the demand request stream, I/O throughput is increased and application response time decreased. Sec-
ond, resource decisions, notably buffer-cache management, can be improved by foreknowledge. Third, deep
prefetching yields deep disk queues that allow disk scheduling to improve access throughput.

Transparent Informed Prefetching (TIP) is a system we have developed to exploit access-pattern informa-
tion for read-intensive workloads [8]. Applications are annotated to generate hints that disclose future
accesses. The application passes these hints to the buffer cache manager through the file system interface,
which then issues prefetch accesses that efficiently utilize the parallel storage system and available system
memory.

The TIP system provides applications with portable I/O optimizations. Applications express hints in terms
of the existing demand-access interface and thus obtain cross-layer optimizations in a manner consistent with
the software engineering principle of modularity. Furthermore, because applications can provide hints without
knowing the details of the underlying system configuration, they obtain performance optimizations portable to
any machine incorporating a TIP system.
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TIP has been implemented in the Scotch-1 direct-attach storage testbed and measured for compilation, text
search, and visualization applications [8]. Figure 8 shows the our experience with the 3-D scientific data visu-
alization package, XDataSlice. Originally an in-core rendering tool, we modified XDataSlice to handle
datasets too large for memory, in this case 112 MB, by staging data directly from blocked disk files. This
blocking is asymmetric, so the X-Y plane contains half as many disk blocks as the other two, to balance
approximately the single-disk, non-TIP response time for rendering a slice in each of the Y-Z, X-Z, and X-Y
planes. Measurements were taken for each plane both with and without TIP when the dataset was striped over
1, 2, 3, and 4 disks. Speedup is the ratio of the time to fetch a slice’s data without TIP to the comparable time
with TIP.

Figure 8 shows that XDataSlice cannot exploit a disk array without TIP and that with only one disk,
XDataSlice is so I/O-bound that TIP is unable to overlap much computation with I/O. With as little as two
disks, however, TIP provides speedups of 1.2 to 2.4, saturating Scotch-1’s CPU for the Y-Z and X-Z planes.
The X-Y plane continues to benefit from increased disk parallelism, saturating the CPU at four disks with a
speedup of 3.7.

While the results of applying TIP in Scotch-1 are promising, this testbed is too slow and small to evaluate
many I/O-bound applications. We are in the process of constructing a second implementation of TIP in the
Scotch-2 direct-attach storage testbed with emphasis on exploiting application disclosure to make informed
cache-management decisions.

4.2 Parallel File Systems

The data sharing needs of network-interconnected workstations are usually provided by adistributed file
system,in which an individual file is stored on a single server, and the access bandwidth of a single file is lim-
ited to that of a single server. Multiple clients simultaneously writing a single file is rare, and is either unsup-
ported or supported with relatively poor performance ([9],[10]). While there may be multiple storage devices
in this environment, they are not managed as a parallel storage system.

As the speed of individual client workstations increases, their bandwidth needs cannot be satisfied by a dis-
tributed file system. However, their data sharing needs may be met by adistributed file system with parallel
storage, in which individual files are striped over many storage nodes. This allows a file to be read or written at
high bandwidth by a single client ([11],[12]). While simultaneous write access by several clients in these envi-
ronments remains an unanticipated occurrence, their storage is managed as a unit and may be endowed with
RAID functionality.

In many environments, these fast client machines are used for time-consuming computations such as VLSI
simulation, weather simulation, and rational drug design [13], whose datasets are often massive (10 MB - 100
GB). With the wide availability of high-level parallel programming tools, such as PVM, high performance
FORTRAN, and distributed shared memory (DSM), there is a growing trend to implement each of these appli-

Figure 8: Visualizing 3-D dataset slices with TIP.
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cations as a parallel task running on many workstations ([14],[15],[16],[17]). We call a network of worksta-
tions used in parallel amulticomputer[18].

The multicomputer environment provides new challenges for a distributed file system. The bandwidth and
storage capacity requirements are similar to that of a supercomputing environment, but multiple clients con-
currently writing a single file are now commonplace. The sharing, fault-tolerance, and scaling challenges of a
multicomputer environment are being by the development of parallel file systems [19].

We are developing the Scotch Parallel File System (SPFS) for the multicomputer environment shown in
Figure 2. It supports concurrent-read and -write sharing within a parallel application and provides scalable
bandwidth and customizable availability by striping over independent servers on a file-by-file basis.

SPFS client processes interface directly with SPFS servers through a portable library and the environment’s
high-performance reliable packet protocol. The SPFS client library includes protocols that coordinate SPFS
servers and to provide a single file system image.

SPFS servers are stateless with respect to each other. The pieces of a parallel file that are managed by one
server are exported by that server as a single file with the same name as the parallel file. For efficiency, SPFS
servers access their file in large blocks through the UNIX raw-device interface. SPFS servers each export a flat
namespace, and file access and allocation controls.

SPFS exploits application disclosure of access patterns by integrating informed prefetching. Both SPFS cli-
ents and servers use this access pattern knowledge to aggressively prefetch data and defer writes, leading to
efficient utilization of servers, network links, and storage devices, and masking the high latencies of networks
and disks. SPFS servers additionally utilize informed cache management on manage server memory resources.

SPFS provides redundancy on a per-file basis. This allows applications to choose the level of fault-protec-
tion, and the associated overhead cost, on a per-file basis. Because miscomputation of the redundant data
encoding only corrupts data the application could already destroy, the per-file redundancy may be computed by
SPFS clients on behalf of the application without compromising SPFS integrity. Also, at the application’s dis-
cretion, redundancy computations can be selectively disabled and enabled to minimize the performance cost of
short bursts of rapid changes. This idea, the deferred computation of parity, is called aparitypoint by Cormen
and Kotz in their requirements for out-of-core algorithms [20].

SPFS is intended to complement rather than replace parallel programming tools such as PVM or DSM by
providing high-bandwidth file storage. We expect the generic synchronization needs of applications to be meet
by mechanisms provided by these tools. Therefore, SPFS does not provide synchronization primitives such as
barriers or locks. However, because SPFS does anticipate file sharing within a parallel application and because
it aggressively defers and prefetches, SPFS implements a form ofweakly consistent shared memory [21].

SPFS exports two primitives, propagateandexpunge, to provide weakly-consistent sharing. Sometime after
writing a portion of a shared file, an SPFS client must explicitly propagate that portion to make sure it is visible
to other SPFS clients. A sequence of writes without an intervening propagate allows the SPFS client library to
coalesce and delay writes. Similarly, an application must explicitly expunge a portion of a shared file to guar-
antee that its subsequent reads will return the data that has been more recently propagated (exposed) by other
clients. A sequence of reads without an intervening expunge allows the SPFS client library to return locally
cached data, improving performance.

Figure 9 shows an example of a sequentially consistent single-program multiple-data application modified
to allow SPFS to optimize aggressively. After a phase in which all processes read arbitrary sections of the file,
each process writes a private section of the file. A barrier naturally occurs between each phase to avoid read/
write data hazards. To achieve the proper synchronization in SPFS, the barrier after the write phase is preceded
by a propagate (to make the written data visible) and succeeded by an expunge (to discard stale data before
entering the read phase).

SPFS’s sharing model is close to a DSM model calledentry consistency [15], illustrated in Figure 10.
Expunge and propagate in SPFS are analogous to acquire and release in entry consistency, respectively, but
lack the synchronization semantics.

While the largest part of SPFS’s implementation is in progress, an early and incomplete version is opera-
tional on the Scotch-3 testbed to facilitate application development.
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5 Conclusions

The demand for high performance and highly reliable secondary storage systems continues to grow
unabated. The Parallel Data Lab at CMU has constructed the Scotch parallel storage systems as testbeds for the
development of advanced parallel storage subsystems and file systems for parallel storage.

To advance parallel storage subsystems, we are developing new RAID architectures, an extensible frame-
work for rapidly prototyping RAID architectures, and coding methodologies for simplifying error handling in
RAID controllers. RAIDframe, our extensible framework, is operational in Scotch-2 testbed, has demonstrated
fast, on-line reconstruction for RAID levels 5 and 6, and is structured for automatic error handling.

/* Sequentially consistent file system*/

file_handle fh;
int my_start = 2000 * process_number();

loop forever
fs_read(fh,...);
computation
fs_read(fh,...)
computation
...
BARRIER;
/* write a disjoint section */
fs_write(fh,...);
computation
fs_write(fh,...);
computation
....
BARRIER;

endloop

Figure 9: Data parallelism using SPFS.

reads may span
entire file and overlap

writes restricted to
my_start ... my_start+2000

/* Weak consistency for SPFS */

spfs_file_handle sfh;
int my_start = 2000 * process_number();

loop forever
spfs_read(sfh,...);
computation
spfs_read(sfh,...);
computation
...
BARRIER;
/* write a disjoint section */
spfs_write(sfh,...);
computation
spfs_write(sfh,...);
computation
....
spfs_propagate(sfh,my_start,2000);
BARRIER;
spfs_expunge(sfh,entire_file);

endloop

reads may span
entire file and overlap

writes restricted to
my_start ... my_start+2000

lock L
integer a=0;
float b = 5.0;

....
Acquire L;
a = 3;
b += 5;
Release L;
....

Process 1

...

Acquire L;

a = a+2;
if (b/a > 1.0)

a = 1;
Release L
....
Process 2

request lock

hand-off lock,
send current
values of a & b.

Figure 10: Entry-consistent shared memory.

Entry-consistent programs associate every
shared data with a multiple-reader/single-
writer lock. Only during a critical section does
an entry-consistent system guarantee that a
process will obtain valid data. Consequently,
entry-consistent programs must communicate
shared data only when a lock is acquired,
allowing the data transfer to be piggybacked
on lock acquisition. This figure shows a frag-
ment of an entry-consistent program. Variables
a and b are guarded by lock L. When Process
2 wants to acquire L, it determines that Pro-
cess 1 was the last holder of L and requests
the lock. Since Process 1 has already released
the lock, it immediately responds, sending both
the lock and the new values of a and b. In par-
ticular, changing (writing) a and b does not
require the writing process to either broadcast
the new value or invalidate other processor’s
copies of the variable.

Although SPFS does not participate in an application’s locking of ranges of a shared file, it offers
expunge and propagate primitives to achieve the consistency provided by acquire and release,
respectively.
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Towards file systems for parallel storage, we are developing prefetching and cache management strategies
based on application disclosure and a fault-tolerant network-based parallel file system to support I/O-intensive
parallel applications. TIP, our informed prefetching system, has demonstrated a factor of up to 3.7 reduction in
execution time for out-of-core visualization on a four-disk array, and is being extended to perform informed
cache management. SPFS, our Scotch parallel file system, exploits client-side file management to provide scal-
ability, weak consistency, and per-file configurable availability.

We encourage interested parties to poll our web page, URLhttp:://www.cs.cmu.edu:8001/Web/Groups/
PDL, for further information including the status of these projects and the availability of code. The PDL can
also be contacted by electronic mail aspdl@cs.cmu.edu.
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